Initialize uv->immutable for upvalues of loaded chunks.
[luajit-2.0.git] / src / lj_opt_split.c
bloba5093bad33228e79b75c497d4680139a23907596
1 /*
2 ** SPLIT: Split 64 bit IR instructions into 32 bit IR instructions.
3 ** Copyright (C) 2005-2016 Mike Pall. See Copyright Notice in luajit.h
4 */
6 #define lj_opt_split_c
7 #define LUA_CORE
9 #include "lj_obj.h"
11 #if LJ_HASJIT && (LJ_SOFTFP || (LJ_32 && LJ_HASFFI))
13 #include "lj_err.h"
14 #include "lj_str.h"
15 #include "lj_ir.h"
16 #include "lj_jit.h"
17 #include "lj_ircall.h"
18 #include "lj_iropt.h"
19 #include "lj_vm.h"
21 /* SPLIT pass:
23 ** This pass splits up 64 bit IR instructions into multiple 32 bit IR
24 ** instructions. It's only active for soft-float targets or for 32 bit CPUs
25 ** which lack native 64 bit integer operations (the FFI is currently the
26 ** only emitter for 64 bit integer instructions).
28 ** Splitting the IR in a separate pass keeps each 32 bit IR assembler
29 ** backend simple. Only a small amount of extra functionality needs to be
30 ** implemented. This is much easier than adding support for allocating
31 ** register pairs to each backend (believe me, I tried). A few simple, but
32 ** important optimizations can be performed by the SPLIT pass, which would
33 ** be tedious to do in the backend.
35 ** The basic idea is to replace each 64 bit IR instruction with its 32 bit
36 ** equivalent plus an extra HIOP instruction. The splitted IR is not passed
37 ** through FOLD or any other optimizations, so each HIOP is guaranteed to
38 ** immediately follow it's counterpart. The actual functionality of HIOP is
39 ** inferred from the previous instruction.
41 ** The operands of HIOP hold the hiword input references. The output of HIOP
42 ** is the hiword output reference, which is also used to hold the hiword
43 ** register or spill slot information. The register allocator treats this
44 ** instruction independently of any other instruction, which improves code
45 ** quality compared to using fixed register pairs.
47 ** It's easier to split up some instructions into two regular 32 bit
48 ** instructions. E.g. XLOAD is split up into two XLOADs with two different
49 ** addresses. Obviously 64 bit constants need to be split up into two 32 bit
50 ** constants, too. Some hiword instructions can be entirely omitted, e.g.
51 ** when zero-extending a 32 bit value to 64 bits. 64 bit arguments for calls
52 ** are split up into two 32 bit arguments each.
54 ** On soft-float targets, floating-point instructions are directly converted
55 ** to soft-float calls by the SPLIT pass (except for comparisons and MIN/MAX).
56 ** HIOP for number results has the type IRT_SOFTFP ("sfp" in -jdump).
58 ** Here's the IR and x64 machine code for 'x.b = x.a + 1' for a struct with
59 ** two int64_t fields:
61 ** 0100 p32 ADD base +8
62 ** 0101 i64 XLOAD 0100
63 ** 0102 i64 ADD 0101 +1
64 ** 0103 p32 ADD base +16
65 ** 0104 i64 XSTORE 0103 0102
67 ** mov rax, [esi+0x8]
68 ** add rax, +0x01
69 ** mov [esi+0x10], rax
71 ** Here's the transformed IR and the x86 machine code after the SPLIT pass:
73 ** 0100 p32 ADD base +8
74 ** 0101 int XLOAD 0100
75 ** 0102 p32 ADD base +12
76 ** 0103 int XLOAD 0102
77 ** 0104 int ADD 0101 +1
78 ** 0105 int HIOP 0103 +0
79 ** 0106 p32 ADD base +16
80 ** 0107 int XSTORE 0106 0104
81 ** 0108 int HIOP 0106 0105
83 ** mov eax, [esi+0x8]
84 ** mov ecx, [esi+0xc]
85 ** add eax, +0x01
86 ** adc ecx, +0x00
87 ** mov [esi+0x10], eax
88 ** mov [esi+0x14], ecx
90 ** You may notice the reassociated hiword address computation, which is
91 ** later fused into the mov operands by the assembler.
94 /* Some local macros to save typing. Undef'd at the end. */
95 #define IR(ref) (&J->cur.ir[(ref)])
97 /* Directly emit the transformed IR without updating chains etc. */
98 static IRRef split_emit(jit_State *J, uint16_t ot, IRRef1 op1, IRRef1 op2)
100 IRRef nref = lj_ir_nextins(J);
101 IRIns *ir = IR(nref);
102 ir->ot = ot;
103 ir->op1 = op1;
104 ir->op2 = op2;
105 return nref;
108 #if LJ_SOFTFP
109 /* Emit a (checked) number to integer conversion. */
110 static IRRef split_num2int(jit_State *J, IRRef lo, IRRef hi, int check)
112 IRRef tmp, res;
113 #if LJ_LE
114 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), lo, hi);
115 #else
116 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hi, lo);
117 #endif
118 res = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_softfp_d2i);
119 if (check) {
120 tmp = split_emit(J, IRTI(IR_CALLN), res, IRCALL_softfp_i2d);
121 split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
122 split_emit(J, IRTGI(IR_EQ), tmp, lo);
123 split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP), tmp+1, hi);
125 return res;
128 /* Emit a CALLN with one split 64 bit argument. */
129 static IRRef split_call_l(jit_State *J, IRRef1 *hisubst, IRIns *oir,
130 IRIns *ir, IRCallID id)
132 IRRef tmp, op1 = ir->op1;
133 J->cur.nins--;
134 #if LJ_LE
135 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
136 #else
137 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
138 #endif
139 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
140 return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
143 /* Emit a CALLN with one split 64 bit argument and a 32 bit argument. */
144 static IRRef split_call_li(jit_State *J, IRRef1 *hisubst, IRIns *oir,
145 IRIns *ir, IRCallID id)
147 IRRef tmp, op1 = ir->op1, op2 = ir->op2;
148 J->cur.nins--;
149 #if LJ_LE
150 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
151 #else
152 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
153 #endif
154 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
155 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
156 return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
158 #endif
160 /* Emit a CALLN with two split 64 bit arguments. */
161 static IRRef split_call_ll(jit_State *J, IRRef1 *hisubst, IRIns *oir,
162 IRIns *ir, IRCallID id)
164 IRRef tmp, op1 = ir->op1, op2 = ir->op2;
165 J->cur.nins--;
166 #if LJ_LE
167 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
168 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
169 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]);
170 #else
171 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
172 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]);
173 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
174 #endif
175 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
176 return split_emit(J,
177 IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT),
178 tmp, tmp);
181 /* Get a pointer to the other 32 bit word (LE: hiword, BE: loword). */
182 static IRRef split_ptr(jit_State *J, IRIns *oir, IRRef ref)
184 IRRef nref = oir[ref].prev;
185 IRIns *ir = IR(nref);
186 int32_t ofs = 4;
187 if (ir->o == IR_KPTR)
188 return lj_ir_kptr(J, (char *)ir_kptr(ir) + ofs);
189 if (ir->o == IR_ADD && irref_isk(ir->op2) && !irt_isphi(oir[ref].t)) {
190 /* Reassociate address. */
191 ofs += IR(ir->op2)->i;
192 nref = ir->op1;
193 if (ofs == 0) return nref;
195 return split_emit(J, IRTI(IR_ADD), nref, lj_ir_kint(J, ofs));
198 /* Substitute references of a snapshot. */
199 static void split_subst_snap(jit_State *J, SnapShot *snap, IRIns *oir)
201 SnapEntry *map = &J->cur.snapmap[snap->mapofs];
202 MSize n, nent = snap->nent;
203 for (n = 0; n < nent; n++) {
204 SnapEntry sn = map[n];
205 IRIns *ir = &oir[snap_ref(sn)];
206 if (!(LJ_SOFTFP && (sn & SNAP_SOFTFPNUM) && irref_isk(snap_ref(sn))))
207 map[n] = ((sn & 0xffff0000) | ir->prev);
211 /* Transform the old IR to the new IR. */
212 static void split_ir(jit_State *J)
214 IRRef nins = J->cur.nins, nk = J->cur.nk;
215 MSize irlen = nins - nk;
216 MSize need = (irlen+1)*(sizeof(IRIns) + sizeof(IRRef1));
217 IRIns *oir = (IRIns *)lj_str_needbuf(J->L, &G(J->L)->tmpbuf, need);
218 IRRef1 *hisubst;
219 IRRef ref, snref;
220 SnapShot *snap;
222 /* Copy old IR to buffer. */
223 memcpy(oir, IR(nk), irlen*sizeof(IRIns));
224 /* Bias hiword substitution table and old IR. Loword kept in field prev. */
225 hisubst = (IRRef1 *)&oir[irlen] - nk;
226 oir -= nk;
228 /* Remove all IR instructions, but retain IR constants. */
229 J->cur.nins = REF_FIRST;
230 J->loopref = 0;
232 /* Process constants and fixed references. */
233 for (ref = nk; ref <= REF_BASE; ref++) {
234 IRIns *ir = &oir[ref];
235 if ((LJ_SOFTFP && ir->o == IR_KNUM) || ir->o == IR_KINT64) {
236 /* Split up 64 bit constant. */
237 TValue tv = *ir_k64(ir);
238 ir->prev = lj_ir_kint(J, (int32_t)tv.u32.lo);
239 hisubst[ref] = lj_ir_kint(J, (int32_t)tv.u32.hi);
240 } else {
241 ir->prev = ref; /* Identity substitution for loword. */
242 hisubst[ref] = 0;
246 /* Process old IR instructions. */
247 snap = J->cur.snap;
248 snref = snap->ref;
249 for (ref = REF_FIRST; ref < nins; ref++) {
250 IRIns *ir = &oir[ref];
251 IRRef nref = lj_ir_nextins(J);
252 IRIns *nir = IR(nref);
253 IRRef hi = 0;
255 if (ref >= snref) {
256 snap->ref = nref;
257 split_subst_snap(J, snap++, oir);
258 snref = snap < &J->cur.snap[J->cur.nsnap] ? snap->ref : ~(IRRef)0;
261 /* Copy-substitute old instruction to new instruction. */
262 nir->op1 = ir->op1 < nk ? ir->op1 : oir[ir->op1].prev;
263 nir->op2 = ir->op2 < nk ? ir->op2 : oir[ir->op2].prev;
264 ir->prev = nref; /* Loword substitution. */
265 nir->o = ir->o;
266 nir->t.irt = ir->t.irt & ~(IRT_MARK|IRT_ISPHI);
267 hisubst[ref] = 0;
269 /* Split 64 bit instructions. */
270 #if LJ_SOFTFP
271 if (irt_isnum(ir->t)) {
272 nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */
273 /* Note: hi ref = lo ref + 1! Required for SNAP_SOFTFPNUM logic. */
274 switch (ir->o) {
275 case IR_ADD:
276 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_add);
277 break;
278 case IR_SUB:
279 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_sub);
280 break;
281 case IR_MUL:
282 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_mul);
283 break;
284 case IR_DIV:
285 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_div);
286 break;
287 case IR_POW:
288 hi = split_call_li(J, hisubst, oir, ir, IRCALL_lj_vm_powi);
289 break;
290 case IR_FPMATH:
291 /* Try to rejoin pow from EXP2, MUL and LOG2. */
292 if (nir->op2 == IRFPM_EXP2 && nir->op1 > J->loopref) {
293 IRIns *irp = IR(nir->op1);
294 if (irp->o == IR_CALLN && irp->op2 == IRCALL_softfp_mul) {
295 IRIns *irm4 = IR(irp->op1);
296 IRIns *irm3 = IR(irm4->op1);
297 IRIns *irm12 = IR(irm3->op1);
298 IRIns *irl1 = IR(irm12->op1);
299 if (irm12->op1 > J->loopref && irl1->o == IR_CALLN &&
300 irl1->op2 == IRCALL_lj_vm_log2) {
301 IRRef tmp = irl1->op1; /* Recycle first two args from LOG2. */
302 IRRef arg3 = irm3->op2, arg4 = irm4->op2;
303 J->cur.nins--;
304 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg3);
305 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg4);
306 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_pow);
307 hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
308 break;
312 hi = split_call_l(J, hisubst, oir, ir, IRCALL_lj_vm_floor + ir->op2);
313 break;
314 case IR_ATAN2:
315 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_atan2);
316 break;
317 case IR_LDEXP:
318 hi = split_call_li(J, hisubst, oir, ir, IRCALL_ldexp);
319 break;
320 case IR_NEG: case IR_ABS:
321 nir->o = IR_CONV; /* Pass through loword. */
322 nir->op2 = (IRT_INT << 5) | IRT_INT;
323 hi = split_emit(J, IRT(ir->o == IR_NEG ? IR_BXOR : IR_BAND, IRT_SOFTFP),
324 hisubst[ir->op1], hisubst[ir->op2]);
325 break;
326 case IR_SLOAD:
327 if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from int to number. */
328 nir->op2 &= ~IRSLOAD_CONVERT;
329 ir->prev = nref = split_emit(J, IRTI(IR_CALLN), nref,
330 IRCALL_softfp_i2d);
331 hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
332 break;
334 /* fallthrough */
335 case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
336 case IR_STRTO:
337 hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
338 break;
339 case IR_XLOAD: {
340 IRIns inslo = *nir; /* Save/undo the emit of the lo XLOAD. */
341 J->cur.nins--;
342 hi = split_ptr(J, oir, ir->op1); /* Insert the hiref ADD. */
343 nref = lj_ir_nextins(J);
344 nir = IR(nref);
345 *nir = inslo; /* Re-emit lo XLOAD immediately before hi XLOAD. */
346 hi = split_emit(J, IRT(IR_XLOAD, IRT_SOFTFP), hi, ir->op2);
347 #if LJ_LE
348 ir->prev = nref;
349 #else
350 ir->prev = hi; hi = nref;
351 #endif
352 break;
354 case IR_ASTORE: case IR_HSTORE: case IR_USTORE: case IR_XSTORE:
355 split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nir->op1, hisubst[ir->op2]);
356 break;
357 case IR_CONV: { /* Conversion to number. Others handled below. */
358 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
359 UNUSED(st);
360 #if LJ_32 && LJ_HASFFI
361 if (st == IRT_I64 || st == IRT_U64) {
362 hi = split_call_l(J, hisubst, oir, ir,
363 st == IRT_I64 ? IRCALL_fp64_l2d : IRCALL_fp64_ul2d);
364 break;
366 #endif
367 lua_assert(st == IRT_INT ||
368 (LJ_32 && LJ_HASFFI && (st == IRT_U32 || st == IRT_FLOAT)));
369 nir->o = IR_CALLN;
370 #if LJ_32 && LJ_HASFFI
371 nir->op2 = st == IRT_INT ? IRCALL_softfp_i2d :
372 st == IRT_FLOAT ? IRCALL_softfp_f2d :
373 IRCALL_softfp_ui2d;
374 #else
375 nir->op2 = IRCALL_softfp_i2d;
376 #endif
377 hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
378 break;
380 case IR_CALLN:
381 case IR_CALLL:
382 case IR_CALLS:
383 case IR_CALLXS:
384 goto split_call;
385 case IR_PHI:
386 if (nir->op1 == nir->op2)
387 J->cur.nins--; /* Drop useless PHIs. */
388 if (hisubst[ir->op1] != hisubst[ir->op2])
389 split_emit(J, IRT(IR_PHI, IRT_SOFTFP),
390 hisubst[ir->op1], hisubst[ir->op2]);
391 break;
392 case IR_HIOP:
393 J->cur.nins--; /* Drop joining HIOP. */
394 ir->prev = nir->op1;
395 hi = nir->op2;
396 break;
397 default:
398 lua_assert(ir->o <= IR_NE || ir->o == IR_MIN || ir->o == IR_MAX);
399 hi = split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP),
400 hisubst[ir->op1], hisubst[ir->op2]);
401 break;
403 } else
404 #endif
405 #if LJ_32 && LJ_HASFFI
406 if (irt_isint64(ir->t)) {
407 IRRef hiref = hisubst[ir->op1];
408 nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */
409 switch (ir->o) {
410 case IR_ADD:
411 case IR_SUB:
412 /* Use plain op for hiword if loword cannot produce a carry/borrow. */
413 if (irref_isk(nir->op2) && IR(nir->op2)->i == 0) {
414 ir->prev = nir->op1; /* Pass through loword. */
415 nir->op1 = hiref; nir->op2 = hisubst[ir->op2];
416 hi = nref;
417 break;
419 /* fallthrough */
420 case IR_NEG:
421 hi = split_emit(J, IRTI(IR_HIOP), hiref, hisubst[ir->op2]);
422 break;
423 case IR_MUL:
424 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_lj_carith_mul64);
425 break;
426 case IR_DIV:
427 hi = split_call_ll(J, hisubst, oir, ir,
428 irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
429 IRCALL_lj_carith_divu64);
430 break;
431 case IR_MOD:
432 hi = split_call_ll(J, hisubst, oir, ir,
433 irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
434 IRCALL_lj_carith_modu64);
435 break;
436 case IR_POW:
437 hi = split_call_ll(J, hisubst, oir, ir,
438 irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
439 IRCALL_lj_carith_powu64);
440 break;
441 case IR_FLOAD:
442 lua_assert(ir->op2 == IRFL_CDATA_INT64);
443 hi = split_emit(J, IRTI(IR_FLOAD), nir->op1, IRFL_CDATA_INT64_4);
444 #if LJ_BE
445 ir->prev = hi; hi = nref;
446 #endif
447 break;
448 case IR_XLOAD:
449 hi = split_emit(J, IRTI(IR_XLOAD), split_ptr(J, oir, ir->op1), ir->op2);
450 #if LJ_BE
451 ir->prev = hi; hi = nref;
452 #endif
453 break;
454 case IR_XSTORE:
455 split_emit(J, IRTI(IR_HIOP), nir->op1, hisubst[ir->op2]);
456 break;
457 case IR_CONV: { /* Conversion to 64 bit integer. Others handled below. */
458 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
459 #if LJ_SOFTFP
460 if (st == IRT_NUM) { /* NUM to 64 bit int conv. */
461 hi = split_call_l(J, hisubst, oir, ir,
462 irt_isi64(ir->t) ? IRCALL_fp64_d2l : IRCALL_fp64_d2ul);
463 } else if (st == IRT_FLOAT) { /* FLOAT to 64 bit int conv. */
464 nir->o = IR_CALLN;
465 nir->op2 = irt_isi64(ir->t) ? IRCALL_fp64_f2l : IRCALL_fp64_f2ul;
466 hi = split_emit(J, IRTI(IR_HIOP), nref, nref);
468 #else
469 if (st == IRT_NUM || st == IRT_FLOAT) { /* FP to 64 bit int conv. */
470 hi = split_emit(J, IRTI(IR_HIOP), nir->op1, nref);
472 #endif
473 else if (st == IRT_I64 || st == IRT_U64) { /* 64/64 bit cast. */
474 /* Drop cast, since assembler doesn't care. But fwd both parts. */
475 hi = hiref;
476 goto fwdlo;
477 } else if ((ir->op2 & IRCONV_SEXT)) { /* Sign-extend to 64 bit. */
478 IRRef k31 = lj_ir_kint(J, 31);
479 nir = IR(nref); /* May have been reallocated. */
480 ir->prev = nir->op1; /* Pass through loword. */
481 nir->o = IR_BSAR; /* hi = bsar(lo, 31). */
482 nir->op2 = k31;
483 hi = nref;
484 } else { /* Zero-extend to 64 bit. */
485 hi = lj_ir_kint(J, 0);
486 goto fwdlo;
488 break;
490 case IR_CALLXS:
491 goto split_call;
492 case IR_PHI: {
493 IRRef hiref2;
494 if ((irref_isk(nir->op1) && irref_isk(nir->op2)) ||
495 nir->op1 == nir->op2)
496 J->cur.nins--; /* Drop useless PHIs. */
497 hiref2 = hisubst[ir->op2];
498 if (!((irref_isk(hiref) && irref_isk(hiref2)) || hiref == hiref2))
499 split_emit(J, IRTI(IR_PHI), hiref, hiref2);
500 break;
502 case IR_HIOP:
503 J->cur.nins--; /* Drop joining HIOP. */
504 ir->prev = nir->op1;
505 hi = nir->op2;
506 break;
507 default:
508 lua_assert(ir->o <= IR_NE); /* Comparisons. */
509 split_emit(J, IRTGI(IR_HIOP), hiref, hisubst[ir->op2]);
510 break;
512 } else
513 #endif
514 #if LJ_SOFTFP
515 if (ir->o == IR_SLOAD) {
516 if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from number to int. */
517 nir->op2 &= ~IRSLOAD_CONVERT;
518 if (!(nir->op2 & IRSLOAD_TYPECHECK))
519 nir->t.irt = IRT_INT; /* Drop guard. */
520 split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
521 ir->prev = split_num2int(J, nref, nref+1, irt_isguard(ir->t));
523 } else if (ir->o == IR_TOBIT) {
524 IRRef tmp, op1 = ir->op1;
525 J->cur.nins--;
526 #if LJ_LE
527 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
528 #else
529 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
530 #endif
531 ir->prev = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_lj_vm_tobit);
532 } else if (ir->o == IR_TOSTR) {
533 if (hisubst[ir->op1]) {
534 if (irref_isk(ir->op1))
535 nir->op1 = ir->op1;
536 else
537 split_emit(J, IRT(IR_HIOP, IRT_NIL), hisubst[ir->op1], nref);
539 } else if (ir->o == IR_HREF || ir->o == IR_NEWREF) {
540 if (irref_isk(ir->op2) && hisubst[ir->op2])
541 nir->op2 = ir->op2;
542 } else
543 #endif
544 if (ir->o == IR_CONV) { /* See above, too. */
545 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
546 #if LJ_32 && LJ_HASFFI
547 if (st == IRT_I64 || st == IRT_U64) { /* Conversion from 64 bit int. */
548 #if LJ_SOFTFP
549 if (irt_isfloat(ir->t)) {
550 split_call_l(J, hisubst, oir, ir,
551 st == IRT_I64 ? IRCALL_fp64_l2f : IRCALL_fp64_ul2f);
552 J->cur.nins--; /* Drop unused HIOP. */
554 #else
555 if (irt_isfp(ir->t)) { /* 64 bit integer to FP conversion. */
556 ir->prev = split_emit(J, IRT(IR_HIOP, irt_type(ir->t)),
557 hisubst[ir->op1], nref);
559 #endif
560 else { /* Truncate to lower 32 bits. */
561 fwdlo:
562 ir->prev = nir->op1; /* Forward loword. */
563 /* Replace with NOP to avoid messing up the snapshot logic. */
564 nir->ot = IRT(IR_NOP, IRT_NIL);
565 nir->op1 = nir->op2 = 0;
568 #endif
569 #if LJ_SOFTFP && LJ_32 && LJ_HASFFI
570 else if (irt_isfloat(ir->t)) {
571 if (st == IRT_NUM) {
572 split_call_l(J, hisubst, oir, ir, IRCALL_softfp_d2f);
573 J->cur.nins--; /* Drop unused HIOP. */
574 } else {
575 nir->o = IR_CALLN;
576 nir->op2 = st == IRT_INT ? IRCALL_softfp_i2f : IRCALL_softfp_ui2f;
578 } else if (st == IRT_FLOAT) {
579 nir->o = IR_CALLN;
580 nir->op2 = irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui;
581 } else
582 #endif
583 #if LJ_SOFTFP
584 if (st == IRT_NUM || (LJ_32 && LJ_HASFFI && st == IRT_FLOAT)) {
585 if (irt_isguard(ir->t)) {
586 lua_assert(st == IRT_NUM && irt_isint(ir->t));
587 J->cur.nins--;
588 ir->prev = split_num2int(J, nir->op1, hisubst[ir->op1], 1);
589 } else {
590 split_call_l(J, hisubst, oir, ir,
591 #if LJ_32 && LJ_HASFFI
592 st == IRT_NUM ?
593 (irt_isint(ir->t) ? IRCALL_softfp_d2i : IRCALL_softfp_d2ui) :
594 (irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui)
595 #else
596 IRCALL_softfp_d2i
597 #endif
599 J->cur.nins--; /* Drop unused HIOP. */
602 #endif
603 } else if (ir->o == IR_CALLXS) {
604 IRRef hiref;
605 split_call:
606 hiref = hisubst[ir->op1];
607 if (hiref) {
608 IROpT ot = nir->ot;
609 IRRef op2 = nir->op2;
610 nir->ot = IRT(IR_CARG, IRT_NIL);
611 #if LJ_LE
612 nir->op2 = hiref;
613 #else
614 nir->op2 = nir->op1; nir->op1 = hiref;
615 #endif
616 ir->prev = nref = split_emit(J, ot, nref, op2);
618 if (LJ_SOFTFP ? irt_is64(ir->t) : irt_isint64(ir->t))
619 hi = split_emit(J,
620 IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT),
621 nref, nref);
622 } else if (ir->o == IR_CARG) {
623 IRRef hiref = hisubst[ir->op1];
624 if (hiref) {
625 IRRef op2 = nir->op2;
626 #if LJ_LE
627 nir->op2 = hiref;
628 #else
629 nir->op2 = nir->op1; nir->op1 = hiref;
630 #endif
631 ir->prev = nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2);
632 nir = IR(nref);
634 hiref = hisubst[ir->op2];
635 if (hiref) {
636 #if !LJ_TARGET_X86
637 int carg = 0;
638 IRIns *cir;
639 for (cir = IR(nir->op1); cir->o == IR_CARG; cir = IR(cir->op1))
640 carg++;
641 if ((carg & 1) == 0) { /* Align 64 bit arguments. */
642 IRRef op2 = nir->op2;
643 nir->op2 = REF_NIL;
644 nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2);
645 nir = IR(nref);
647 #endif
648 #if LJ_BE
649 { IRRef tmp = nir->op2; nir->op2 = hiref; hiref = tmp; }
650 #endif
651 ir->prev = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, hiref);
653 } else if (ir->o == IR_CNEWI) {
654 if (hisubst[ir->op2])
655 split_emit(J, IRT(IR_HIOP, IRT_NIL), nref, hisubst[ir->op2]);
656 } else if (ir->o == IR_LOOP) {
657 J->loopref = nref; /* Needed by assembler. */
659 hisubst[ref] = hi; /* Store hiword substitution. */
661 if (snref == nins) { /* Substitution for last snapshot. */
662 snap->ref = J->cur.nins;
663 split_subst_snap(J, snap, oir);
666 /* Add PHI marks. */
667 for (ref = J->cur.nins-1; ref >= REF_FIRST; ref--) {
668 IRIns *ir = IR(ref);
669 if (ir->o != IR_PHI) break;
670 if (!irref_isk(ir->op1)) irt_setphi(IR(ir->op1)->t);
671 if (ir->op2 > J->loopref) irt_setphi(IR(ir->op2)->t);
675 /* Protected callback for split pass. */
676 static TValue *cpsplit(lua_State *L, lua_CFunction dummy, void *ud)
678 jit_State *J = (jit_State *)ud;
679 split_ir(J);
680 UNUSED(L); UNUSED(dummy);
681 return NULL;
684 #if defined(LUA_USE_ASSERT) || LJ_SOFTFP
685 /* Slow, but sure way to check whether a SPLIT pass is needed. */
686 static int split_needsplit(jit_State *J)
688 IRIns *ir, *irend;
689 IRRef ref;
690 for (ir = IR(REF_FIRST), irend = IR(J->cur.nins); ir < irend; ir++)
691 if (LJ_SOFTFP ? irt_is64orfp(ir->t) : irt_isint64(ir->t))
692 return 1;
693 if (LJ_SOFTFP) {
694 for (ref = J->chain[IR_SLOAD]; ref; ref = IR(ref)->prev)
695 if ((IR(ref)->op2 & IRSLOAD_CONVERT))
696 return 1;
697 if (J->chain[IR_TOBIT])
698 return 1;
700 for (ref = J->chain[IR_CONV]; ref; ref = IR(ref)->prev) {
701 IRType st = (IR(ref)->op2 & IRCONV_SRCMASK);
702 if ((LJ_SOFTFP && (st == IRT_NUM || st == IRT_FLOAT)) ||
703 st == IRT_I64 || st == IRT_U64)
704 return 1;
706 return 0; /* Nope. */
708 #endif
710 /* SPLIT pass. */
711 void lj_opt_split(jit_State *J)
713 #if LJ_SOFTFP
714 if (!J->needsplit)
715 J->needsplit = split_needsplit(J);
716 #else
717 lua_assert(J->needsplit >= split_needsplit(J)); /* Verify flag. */
718 #endif
719 if (J->needsplit) {
720 int errcode = lj_vm_cpcall(J->L, NULL, J, cpsplit);
721 if (errcode) {
722 /* Completely reset the trace to avoid inconsistent dump on abort. */
723 J->cur.nins = J->cur.nk = REF_BASE;
724 J->cur.nsnap = 0;
725 lj_err_throw(J->L, errcode); /* Propagate errors. */
730 #undef IR
732 #endif