Add PS4 port.
[luajit-2.0.git] / src / lj_alloc.c
blobf856a7a017fa94f05c46983a59c7c119bd43460a
1 /*
2 ** Bundled memory allocator.
3 **
4 ** Beware: this is a HEAVILY CUSTOMIZED version of dlmalloc.
5 ** The original bears the following remark:
6 **
7 ** This is a version (aka dlmalloc) of malloc/free/realloc written by
8 ** Doug Lea and released to the public domain, as explained at
9 ** http://creativecommons.org/licenses/publicdomain.
11 ** * Version pre-2.8.4 Wed Mar 29 19:46:29 2006 (dl at gee)
13 ** No additional copyright is claimed over the customizations.
14 ** Please do NOT bother the original author about this version here!
16 ** If you want to use dlmalloc in another project, you should get
17 ** the original from: ftp://gee.cs.oswego.edu/pub/misc/
18 ** For thread-safe derivatives, take a look at:
19 ** - ptmalloc: http://www.malloc.de/
20 ** - nedmalloc: http://www.nedprod.com/programs/portable/nedmalloc/
23 #define lj_alloc_c
24 #define LUA_CORE
26 /* To get the mremap prototype. Must be defined before any system includes. */
27 #if defined(__linux__) && !defined(_GNU_SOURCE)
28 #define _GNU_SOURCE
29 #endif
31 #include "lj_def.h"
32 #include "lj_arch.h"
33 #include "lj_alloc.h"
35 #ifndef LUAJIT_USE_SYSMALLOC
37 #define MAX_SIZE_T (~(size_t)0)
38 #define MALLOC_ALIGNMENT ((size_t)8U)
40 #define DEFAULT_GRANULARITY ((size_t)128U * (size_t)1024U)
41 #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
42 #define DEFAULT_MMAP_THRESHOLD ((size_t)128U * (size_t)1024U)
43 #define MAX_RELEASE_CHECK_RATE 255
45 /* ------------------- size_t and alignment properties -------------------- */
47 /* The byte and bit size of a size_t */
48 #define SIZE_T_SIZE (sizeof(size_t))
49 #define SIZE_T_BITSIZE (sizeof(size_t) << 3)
51 /* Some constants coerced to size_t */
52 /* Annoying but necessary to avoid errors on some platforms */
53 #define SIZE_T_ZERO ((size_t)0)
54 #define SIZE_T_ONE ((size_t)1)
55 #define SIZE_T_TWO ((size_t)2)
56 #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
57 #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
58 #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
60 /* The bit mask value corresponding to MALLOC_ALIGNMENT */
61 #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
63 /* the number of bytes to offset an address to align it */
64 #define align_offset(A)\
65 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
66 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
68 /* -------------------------- MMAP support ------------------------------- */
70 #define MFAIL ((void *)(MAX_SIZE_T))
71 #define CMFAIL ((char *)(MFAIL)) /* defined for convenience */
73 #define IS_DIRECT_BIT (SIZE_T_ONE)
75 #if LJ_TARGET_WINDOWS
77 #define WIN32_LEAN_AND_MEAN
78 #include <windows.h>
80 #if LJ_64
82 /* Undocumented, but hey, that's what we all love so much about Windows. */
83 typedef long (*PNTAVM)(HANDLE handle, void **addr, ULONG zbits,
84 size_t *size, ULONG alloctype, ULONG prot);
85 static PNTAVM ntavm;
87 /* Number of top bits of the lower 32 bits of an address that must be zero.
88 ** Apparently 0 gives us full 64 bit addresses and 1 gives us the lower 2GB.
90 #define NTAVM_ZEROBITS 1
92 static void INIT_MMAP(void)
94 ntavm = (PNTAVM)GetProcAddress(GetModuleHandleA("ntdll.dll"),
95 "NtAllocateVirtualMemory");
98 /* Win64 32 bit MMAP via NtAllocateVirtualMemory. */
99 static LJ_AINLINE void *CALL_MMAP(size_t size)
101 DWORD olderr = GetLastError();
102 void *ptr = NULL;
103 long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size,
104 MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
105 SetLastError(olderr);
106 return st == 0 ? ptr : MFAIL;
109 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
110 static LJ_AINLINE void *DIRECT_MMAP(size_t size)
112 DWORD olderr = GetLastError();
113 void *ptr = NULL;
114 long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size,
115 MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, PAGE_READWRITE);
116 SetLastError(olderr);
117 return st == 0 ? ptr : MFAIL;
120 #else
122 #define INIT_MMAP() ((void)0)
124 /* Win32 MMAP via VirtualAlloc */
125 static LJ_AINLINE void *CALL_MMAP(size_t size)
127 DWORD olderr = GetLastError();
128 void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
129 SetLastError(olderr);
130 return ptr ? ptr : MFAIL;
133 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
134 static LJ_AINLINE void *DIRECT_MMAP(size_t size)
136 DWORD olderr = GetLastError();
137 void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
138 PAGE_READWRITE);
139 SetLastError(olderr);
140 return ptr ? ptr : MFAIL;
143 #endif
145 /* This function supports releasing coalesed segments */
146 static LJ_AINLINE int CALL_MUNMAP(void *ptr, size_t size)
148 DWORD olderr = GetLastError();
149 MEMORY_BASIC_INFORMATION minfo;
150 char *cptr = (char *)ptr;
151 while (size) {
152 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
153 return -1;
154 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
155 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
156 return -1;
157 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
158 return -1;
159 cptr += minfo.RegionSize;
160 size -= minfo.RegionSize;
162 SetLastError(olderr);
163 return 0;
166 #else
168 #include <errno.h>
169 #include <sys/mman.h>
171 #define MMAP_PROT (PROT_READ|PROT_WRITE)
172 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
173 #define MAP_ANONYMOUS MAP_ANON
174 #endif
175 #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
177 #if LJ_64
178 /* 64 bit mode needs special support for allocating memory in the lower 2GB. */
180 #if defined(MAP_32BIT)
182 /* Actually this only gives us max. 1GB in current Linux kernels. */
183 static LJ_AINLINE void *CALL_MMAP(size_t size)
185 int olderr = errno;
186 void *ptr = mmap(NULL, size, MMAP_PROT, MAP_32BIT|MMAP_FLAGS, -1, 0);
187 errno = olderr;
188 return ptr;
191 #elif LJ_TARGET_OSX || LJ_TARGET_PS4 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__sun__)
193 /* OSX and FreeBSD mmap() use a naive first-fit linear search.
194 ** That's perfect for us. Except that -pagezero_size must be set for OSX,
195 ** otherwise the lower 4GB are blocked. And the 32GB RLIMIT_DATA needs
196 ** to be reduced to 250MB on FreeBSD.
198 #if LJ_TARGET_OSX
199 #define MMAP_REGION_START ((uintptr_t)0x10000)
200 #elif LJ_TARGET_PS4
201 #define MMAP_REGION_START ((uintptr_t)0x4000)
202 #else
203 #define MMAP_REGION_START ((uintptr_t)0x10000000)
204 #endif
205 #define MMAP_REGION_END ((uintptr_t)0x80000000)
207 #if (defined(__FreeBSD__) || defined(__FreeBSD_kernel__)) && !LJ_TARGET_PS4
208 #include <sys/resource.h>
209 #endif
211 static LJ_AINLINE void *CALL_MMAP(size_t size)
213 int olderr = errno;
214 /* Hint for next allocation. Doesn't need to be thread-safe. */
215 static uintptr_t alloc_hint = MMAP_REGION_START;
216 int retry = 0;
217 #if (defined(__FreeBSD__) || defined(__FreeBSD_kernel__)) && !LJ_TARGET_PS4
218 static int rlimit_modified = 0;
219 if (LJ_UNLIKELY(rlimit_modified == 0)) {
220 struct rlimit rlim;
221 rlim.rlim_cur = rlim.rlim_max = MMAP_REGION_START;
222 setrlimit(RLIMIT_DATA, &rlim); /* Ignore result. May fail below. */
223 rlimit_modified = 1;
225 #endif
226 for (;;) {
227 void *p = mmap((void *)alloc_hint, size, MMAP_PROT, MMAP_FLAGS, -1, 0);
228 if ((uintptr_t)p >= MMAP_REGION_START &&
229 (uintptr_t)p + size < MMAP_REGION_END) {
230 alloc_hint = (uintptr_t)p + size;
231 errno = olderr;
232 return p;
234 if (p != CMFAIL) munmap(p, size);
235 #ifdef __sun__
236 alloc_hint += 0x1000000; /* Need near-exhaustive linear scan. */
237 if (alloc_hint + size < MMAP_REGION_END) continue;
238 #endif
239 if (retry) break;
240 retry = 1;
241 alloc_hint = MMAP_REGION_START;
243 errno = olderr;
244 return CMFAIL;
247 #else
249 #error "NYI: need an equivalent of MAP_32BIT for this 64 bit OS"
251 #endif
253 #else
255 /* 32 bit mode is easy. */
256 static LJ_AINLINE void *CALL_MMAP(size_t size)
258 int olderr = errno;
259 void *ptr = mmap(NULL, size, MMAP_PROT, MMAP_FLAGS, -1, 0);
260 errno = olderr;
261 return ptr;
264 #endif
266 #define INIT_MMAP() ((void)0)
267 #define DIRECT_MMAP(s) CALL_MMAP(s)
269 static LJ_AINLINE int CALL_MUNMAP(void *ptr, size_t size)
271 int olderr = errno;
272 int ret = munmap(ptr, size);
273 errno = olderr;
274 return ret;
277 #if LJ_TARGET_LINUX
278 /* Need to define _GNU_SOURCE to get the mremap prototype. */
279 static LJ_AINLINE void *CALL_MREMAP_(void *ptr, size_t osz, size_t nsz,
280 int flags)
282 int olderr = errno;
283 ptr = mremap(ptr, osz, nsz, flags);
284 errno = olderr;
285 return ptr;
288 #define CALL_MREMAP(addr, osz, nsz, mv) CALL_MREMAP_((addr), (osz), (nsz), (mv))
289 #define CALL_MREMAP_NOMOVE 0
290 #define CALL_MREMAP_MAYMOVE 1
291 #if LJ_64
292 #define CALL_MREMAP_MV CALL_MREMAP_NOMOVE
293 #else
294 #define CALL_MREMAP_MV CALL_MREMAP_MAYMOVE
295 #endif
296 #endif
298 #endif
300 #ifndef CALL_MREMAP
301 #define CALL_MREMAP(addr, osz, nsz, mv) ((void)osz, MFAIL)
302 #endif
304 /* ----------------------- Chunk representations ------------------------ */
306 struct malloc_chunk {
307 size_t prev_foot; /* Size of previous chunk (if free). */
308 size_t head; /* Size and inuse bits. */
309 struct malloc_chunk *fd; /* double links -- used only if free. */
310 struct malloc_chunk *bk;
313 typedef struct malloc_chunk mchunk;
314 typedef struct malloc_chunk *mchunkptr;
315 typedef struct malloc_chunk *sbinptr; /* The type of bins of chunks */
316 typedef size_t bindex_t; /* Described below */
317 typedef unsigned int binmap_t; /* Described below */
318 typedef unsigned int flag_t; /* The type of various bit flag sets */
320 /* ------------------- Chunks sizes and alignments ----------------------- */
322 #define MCHUNK_SIZE (sizeof(mchunk))
324 #define CHUNK_OVERHEAD (SIZE_T_SIZE)
326 /* Direct chunks need a second word of overhead ... */
327 #define DIRECT_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
328 /* ... and additional padding for fake next-chunk at foot */
329 #define DIRECT_FOOT_PAD (FOUR_SIZE_T_SIZES)
331 /* The smallest size we can malloc is an aligned minimal chunk */
332 #define MIN_CHUNK_SIZE\
333 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
335 /* conversion from malloc headers to user pointers, and back */
336 #define chunk2mem(p) ((void *)((char *)(p) + TWO_SIZE_T_SIZES))
337 #define mem2chunk(mem) ((mchunkptr)((char *)(mem) - TWO_SIZE_T_SIZES))
338 /* chunk associated with aligned address A */
339 #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
341 /* Bounds on request (not chunk) sizes. */
342 #define MAX_REQUEST ((~MIN_CHUNK_SIZE+1) << 2)
343 #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
345 /* pad request bytes into a usable size */
346 #define pad_request(req) \
347 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
349 /* pad request, checking for minimum (but not maximum) */
350 #define request2size(req) \
351 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
353 /* ------------------ Operations on head and foot fields ----------------- */
355 #define PINUSE_BIT (SIZE_T_ONE)
356 #define CINUSE_BIT (SIZE_T_TWO)
357 #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
359 /* Head value for fenceposts */
360 #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
362 /* extraction of fields from head words */
363 #define cinuse(p) ((p)->head & CINUSE_BIT)
364 #define pinuse(p) ((p)->head & PINUSE_BIT)
365 #define chunksize(p) ((p)->head & ~(INUSE_BITS))
367 #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
368 #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
370 /* Treat space at ptr +/- offset as a chunk */
371 #define chunk_plus_offset(p, s) ((mchunkptr)(((char *)(p)) + (s)))
372 #define chunk_minus_offset(p, s) ((mchunkptr)(((char *)(p)) - (s)))
374 /* Ptr to next or previous physical malloc_chunk. */
375 #define next_chunk(p) ((mchunkptr)(((char *)(p)) + ((p)->head & ~INUSE_BITS)))
376 #define prev_chunk(p) ((mchunkptr)(((char *)(p)) - ((p)->prev_foot) ))
378 /* extract next chunk's pinuse bit */
379 #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
381 /* Get/set size at footer */
382 #define get_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot)
383 #define set_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot = (s))
385 /* Set size, pinuse bit, and foot */
386 #define set_size_and_pinuse_of_free_chunk(p, s)\
387 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
389 /* Set size, pinuse bit, foot, and clear next pinuse */
390 #define set_free_with_pinuse(p, s, n)\
391 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
393 #define is_direct(p)\
394 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_DIRECT_BIT))
396 /* Get the internal overhead associated with chunk p */
397 #define overhead_for(p)\
398 (is_direct(p)? DIRECT_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
400 /* ---------------------- Overlaid data structures ----------------------- */
402 struct malloc_tree_chunk {
403 /* The first four fields must be compatible with malloc_chunk */
404 size_t prev_foot;
405 size_t head;
406 struct malloc_tree_chunk *fd;
407 struct malloc_tree_chunk *bk;
409 struct malloc_tree_chunk *child[2];
410 struct malloc_tree_chunk *parent;
411 bindex_t index;
414 typedef struct malloc_tree_chunk tchunk;
415 typedef struct malloc_tree_chunk *tchunkptr;
416 typedef struct malloc_tree_chunk *tbinptr; /* The type of bins of trees */
418 /* A little helper macro for trees */
419 #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
421 /* ----------------------------- Segments -------------------------------- */
423 struct malloc_segment {
424 char *base; /* base address */
425 size_t size; /* allocated size */
426 struct malloc_segment *next; /* ptr to next segment */
429 typedef struct malloc_segment msegment;
430 typedef struct malloc_segment *msegmentptr;
432 /* ---------------------------- malloc_state ----------------------------- */
434 /* Bin types, widths and sizes */
435 #define NSMALLBINS (32U)
436 #define NTREEBINS (32U)
437 #define SMALLBIN_SHIFT (3U)
438 #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
439 #define TREEBIN_SHIFT (8U)
440 #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
441 #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
442 #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
444 struct malloc_state {
445 binmap_t smallmap;
446 binmap_t treemap;
447 size_t dvsize;
448 size_t topsize;
449 mchunkptr dv;
450 mchunkptr top;
451 size_t trim_check;
452 size_t release_checks;
453 mchunkptr smallbins[(NSMALLBINS+1)*2];
454 tbinptr treebins[NTREEBINS];
455 msegment seg;
458 typedef struct malloc_state *mstate;
460 #define is_initialized(M) ((M)->top != 0)
462 /* -------------------------- system alloc setup ------------------------- */
464 /* page-align a size */
465 #define page_align(S)\
466 (((S) + (LJ_PAGESIZE - SIZE_T_ONE)) & ~(LJ_PAGESIZE - SIZE_T_ONE))
468 /* granularity-align a size */
469 #define granularity_align(S)\
470 (((S) + (DEFAULT_GRANULARITY - SIZE_T_ONE))\
471 & ~(DEFAULT_GRANULARITY - SIZE_T_ONE))
473 #if LJ_TARGET_WINDOWS
474 #define mmap_align(S) granularity_align(S)
475 #else
476 #define mmap_align(S) page_align(S)
477 #endif
479 /* True if segment S holds address A */
480 #define segment_holds(S, A)\
481 ((char *)(A) >= S->base && (char *)(A) < S->base + S->size)
483 /* Return segment holding given address */
484 static msegmentptr segment_holding(mstate m, char *addr)
486 msegmentptr sp = &m->seg;
487 for (;;) {
488 if (addr >= sp->base && addr < sp->base + sp->size)
489 return sp;
490 if ((sp = sp->next) == 0)
491 return 0;
495 /* Return true if segment contains a segment link */
496 static int has_segment_link(mstate m, msegmentptr ss)
498 msegmentptr sp = &m->seg;
499 for (;;) {
500 if ((char *)sp >= ss->base && (char *)sp < ss->base + ss->size)
501 return 1;
502 if ((sp = sp->next) == 0)
503 return 0;
508 TOP_FOOT_SIZE is padding at the end of a segment, including space
509 that may be needed to place segment records and fenceposts when new
510 noncontiguous segments are added.
512 #define TOP_FOOT_SIZE\
513 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
515 /* ---------------------------- Indexing Bins ---------------------------- */
517 #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
518 #define small_index(s) ((s) >> SMALLBIN_SHIFT)
519 #define small_index2size(i) ((i) << SMALLBIN_SHIFT)
520 #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
522 /* addressing by index. See above about smallbin repositioning */
523 #define smallbin_at(M, i) ((sbinptr)((char *)&((M)->smallbins[(i)<<1])))
524 #define treebin_at(M,i) (&((M)->treebins[i]))
526 /* assign tree index for size S to variable I */
527 #define compute_tree_index(S, I)\
529 unsigned int X = (unsigned int)(S >> TREEBIN_SHIFT);\
530 if (X == 0) {\
531 I = 0;\
532 } else if (X > 0xFFFF) {\
533 I = NTREEBINS-1;\
534 } else {\
535 unsigned int K = lj_fls(X);\
536 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
540 /* Bit representing maximum resolved size in a treebin at i */
541 #define bit_for_tree_index(i) \
542 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
544 /* Shift placing maximum resolved bit in a treebin at i as sign bit */
545 #define leftshift_for_tree_index(i) \
546 ((i == NTREEBINS-1)? 0 : \
547 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
549 /* The size of the smallest chunk held in bin with index i */
550 #define minsize_for_tree_index(i) \
551 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
552 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
554 /* ------------------------ Operations on bin maps ----------------------- */
556 /* bit corresponding to given index */
557 #define idx2bit(i) ((binmap_t)(1) << (i))
559 /* Mark/Clear bits with given index */
560 #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
561 #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
562 #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
564 #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
565 #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
566 #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
568 /* mask with all bits to left of least bit of x on */
569 #define left_bits(x) ((x<<1) | (~(x<<1)+1))
571 /* Set cinuse bit and pinuse bit of next chunk */
572 #define set_inuse(M,p,s)\
573 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
574 ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT)
576 /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
577 #define set_inuse_and_pinuse(M,p,s)\
578 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
579 ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT)
581 /* Set size, cinuse and pinuse bit of this chunk */
582 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
583 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
585 /* ----------------------- Operations on smallbins ----------------------- */
587 /* Link a free chunk into a smallbin */
588 #define insert_small_chunk(M, P, S) {\
589 bindex_t I = small_index(S);\
590 mchunkptr B = smallbin_at(M, I);\
591 mchunkptr F = B;\
592 if (!smallmap_is_marked(M, I))\
593 mark_smallmap(M, I);\
594 else\
595 F = B->fd;\
596 B->fd = P;\
597 F->bk = P;\
598 P->fd = F;\
599 P->bk = B;\
602 /* Unlink a chunk from a smallbin */
603 #define unlink_small_chunk(M, P, S) {\
604 mchunkptr F = P->fd;\
605 mchunkptr B = P->bk;\
606 bindex_t I = small_index(S);\
607 if (F == B) {\
608 clear_smallmap(M, I);\
609 } else {\
610 F->bk = B;\
611 B->fd = F;\
615 /* Unlink the first chunk from a smallbin */
616 #define unlink_first_small_chunk(M, B, P, I) {\
617 mchunkptr F = P->fd;\
618 if (B == F) {\
619 clear_smallmap(M, I);\
620 } else {\
621 B->fd = F;\
622 F->bk = B;\
626 /* Replace dv node, binning the old one */
627 /* Used only when dvsize known to be small */
628 #define replace_dv(M, P, S) {\
629 size_t DVS = M->dvsize;\
630 if (DVS != 0) {\
631 mchunkptr DV = M->dv;\
632 insert_small_chunk(M, DV, DVS);\
634 M->dvsize = S;\
635 M->dv = P;\
638 /* ------------------------- Operations on trees ------------------------- */
640 /* Insert chunk into tree */
641 #define insert_large_chunk(M, X, S) {\
642 tbinptr *H;\
643 bindex_t I;\
644 compute_tree_index(S, I);\
645 H = treebin_at(M, I);\
646 X->index = I;\
647 X->child[0] = X->child[1] = 0;\
648 if (!treemap_is_marked(M, I)) {\
649 mark_treemap(M, I);\
650 *H = X;\
651 X->parent = (tchunkptr)H;\
652 X->fd = X->bk = X;\
653 } else {\
654 tchunkptr T = *H;\
655 size_t K = S << leftshift_for_tree_index(I);\
656 for (;;) {\
657 if (chunksize(T) != S) {\
658 tchunkptr *C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
659 K <<= 1;\
660 if (*C != 0) {\
661 T = *C;\
662 } else {\
663 *C = X;\
664 X->parent = T;\
665 X->fd = X->bk = X;\
666 break;\
668 } else {\
669 tchunkptr F = T->fd;\
670 T->fd = F->bk = X;\
671 X->fd = F;\
672 X->bk = T;\
673 X->parent = 0;\
674 break;\
680 #define unlink_large_chunk(M, X) {\
681 tchunkptr XP = X->parent;\
682 tchunkptr R;\
683 if (X->bk != X) {\
684 tchunkptr F = X->fd;\
685 R = X->bk;\
686 F->bk = R;\
687 R->fd = F;\
688 } else {\
689 tchunkptr *RP;\
690 if (((R = *(RP = &(X->child[1]))) != 0) ||\
691 ((R = *(RP = &(X->child[0]))) != 0)) {\
692 tchunkptr *CP;\
693 while ((*(CP = &(R->child[1])) != 0) ||\
694 (*(CP = &(R->child[0])) != 0)) {\
695 R = *(RP = CP);\
697 *RP = 0;\
700 if (XP != 0) {\
701 tbinptr *H = treebin_at(M, X->index);\
702 if (X == *H) {\
703 if ((*H = R) == 0) \
704 clear_treemap(M, X->index);\
705 } else {\
706 if (XP->child[0] == X) \
707 XP->child[0] = R;\
708 else \
709 XP->child[1] = R;\
711 if (R != 0) {\
712 tchunkptr C0, C1;\
713 R->parent = XP;\
714 if ((C0 = X->child[0]) != 0) {\
715 R->child[0] = C0;\
716 C0->parent = R;\
718 if ((C1 = X->child[1]) != 0) {\
719 R->child[1] = C1;\
720 C1->parent = R;\
726 /* Relays to large vs small bin operations */
728 #define insert_chunk(M, P, S)\
729 if (is_small(S)) { insert_small_chunk(M, P, S)\
730 } else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
732 #define unlink_chunk(M, P, S)\
733 if (is_small(S)) { unlink_small_chunk(M, P, S)\
734 } else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
736 /* ----------------------- Direct-mmapping chunks ----------------------- */
738 static void *direct_alloc(size_t nb)
740 size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
741 if (LJ_LIKELY(mmsize > nb)) { /* Check for wrap around 0 */
742 char *mm = (char *)(DIRECT_MMAP(mmsize));
743 if (mm != CMFAIL) {
744 size_t offset = align_offset(chunk2mem(mm));
745 size_t psize = mmsize - offset - DIRECT_FOOT_PAD;
746 mchunkptr p = (mchunkptr)(mm + offset);
747 p->prev_foot = offset | IS_DIRECT_BIT;
748 p->head = psize|CINUSE_BIT;
749 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
750 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
751 return chunk2mem(p);
754 return NULL;
757 static mchunkptr direct_resize(mchunkptr oldp, size_t nb)
759 size_t oldsize = chunksize(oldp);
760 if (is_small(nb)) /* Can't shrink direct regions below small size */
761 return NULL;
762 /* Keep old chunk if big enough but not too big */
763 if (oldsize >= nb + SIZE_T_SIZE &&
764 (oldsize - nb) <= (DEFAULT_GRANULARITY >> 1)) {
765 return oldp;
766 } else {
767 size_t offset = oldp->prev_foot & ~IS_DIRECT_BIT;
768 size_t oldmmsize = oldsize + offset + DIRECT_FOOT_PAD;
769 size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
770 char *cp = (char *)CALL_MREMAP((char *)oldp - offset,
771 oldmmsize, newmmsize, CALL_MREMAP_MV);
772 if (cp != CMFAIL) {
773 mchunkptr newp = (mchunkptr)(cp + offset);
774 size_t psize = newmmsize - offset - DIRECT_FOOT_PAD;
775 newp->head = psize|CINUSE_BIT;
776 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
777 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
778 return newp;
781 return NULL;
784 /* -------------------------- mspace management -------------------------- */
786 /* Initialize top chunk and its size */
787 static void init_top(mstate m, mchunkptr p, size_t psize)
789 /* Ensure alignment */
790 size_t offset = align_offset(chunk2mem(p));
791 p = (mchunkptr)((char *)p + offset);
792 psize -= offset;
794 m->top = p;
795 m->topsize = psize;
796 p->head = psize | PINUSE_BIT;
797 /* set size of fake trailing chunk holding overhead space only once */
798 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
799 m->trim_check = DEFAULT_TRIM_THRESHOLD; /* reset on each update */
802 /* Initialize bins for a new mstate that is otherwise zeroed out */
803 static void init_bins(mstate m)
805 /* Establish circular links for smallbins */
806 bindex_t i;
807 for (i = 0; i < NSMALLBINS; i++) {
808 sbinptr bin = smallbin_at(m,i);
809 bin->fd = bin->bk = bin;
813 /* Allocate chunk and prepend remainder with chunk in successor base. */
814 static void *prepend_alloc(mstate m, char *newbase, char *oldbase, size_t nb)
816 mchunkptr p = align_as_chunk(newbase);
817 mchunkptr oldfirst = align_as_chunk(oldbase);
818 size_t psize = (size_t)((char *)oldfirst - (char *)p);
819 mchunkptr q = chunk_plus_offset(p, nb);
820 size_t qsize = psize - nb;
821 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
823 /* consolidate remainder with first chunk of old base */
824 if (oldfirst == m->top) {
825 size_t tsize = m->topsize += qsize;
826 m->top = q;
827 q->head = tsize | PINUSE_BIT;
828 } else if (oldfirst == m->dv) {
829 size_t dsize = m->dvsize += qsize;
830 m->dv = q;
831 set_size_and_pinuse_of_free_chunk(q, dsize);
832 } else {
833 if (!cinuse(oldfirst)) {
834 size_t nsize = chunksize(oldfirst);
835 unlink_chunk(m, oldfirst, nsize);
836 oldfirst = chunk_plus_offset(oldfirst, nsize);
837 qsize += nsize;
839 set_free_with_pinuse(q, qsize, oldfirst);
840 insert_chunk(m, q, qsize);
843 return chunk2mem(p);
846 /* Add a segment to hold a new noncontiguous region */
847 static void add_segment(mstate m, char *tbase, size_t tsize)
849 /* Determine locations and sizes of segment, fenceposts, old top */
850 char *old_top = (char *)m->top;
851 msegmentptr oldsp = segment_holding(m, old_top);
852 char *old_end = oldsp->base + oldsp->size;
853 size_t ssize = pad_request(sizeof(struct malloc_segment));
854 char *rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
855 size_t offset = align_offset(chunk2mem(rawsp));
856 char *asp = rawsp + offset;
857 char *csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
858 mchunkptr sp = (mchunkptr)csp;
859 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
860 mchunkptr tnext = chunk_plus_offset(sp, ssize);
861 mchunkptr p = tnext;
863 /* reset top to new space */
864 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
866 /* Set up segment record */
867 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
868 *ss = m->seg; /* Push current record */
869 m->seg.base = tbase;
870 m->seg.size = tsize;
871 m->seg.next = ss;
873 /* Insert trailing fenceposts */
874 for (;;) {
875 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
876 p->head = FENCEPOST_HEAD;
877 if ((char *)(&(nextp->head)) < old_end)
878 p = nextp;
879 else
880 break;
883 /* Insert the rest of old top into a bin as an ordinary free chunk */
884 if (csp != old_top) {
885 mchunkptr q = (mchunkptr)old_top;
886 size_t psize = (size_t)(csp - old_top);
887 mchunkptr tn = chunk_plus_offset(q, psize);
888 set_free_with_pinuse(q, psize, tn);
889 insert_chunk(m, q, psize);
893 /* -------------------------- System allocation -------------------------- */
895 static void *alloc_sys(mstate m, size_t nb)
897 char *tbase = CMFAIL;
898 size_t tsize = 0;
900 /* Directly map large chunks */
901 if (LJ_UNLIKELY(nb >= DEFAULT_MMAP_THRESHOLD)) {
902 void *mem = direct_alloc(nb);
903 if (mem != 0)
904 return mem;
908 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
909 size_t rsize = granularity_align(req);
910 if (LJ_LIKELY(rsize > nb)) { /* Fail if wraps around zero */
911 char *mp = (char *)(CALL_MMAP(rsize));
912 if (mp != CMFAIL) {
913 tbase = mp;
914 tsize = rsize;
919 if (tbase != CMFAIL) {
920 msegmentptr sp = &m->seg;
921 /* Try to merge with an existing segment */
922 while (sp != 0 && tbase != sp->base + sp->size)
923 sp = sp->next;
924 if (sp != 0 && segment_holds(sp, m->top)) { /* append */
925 sp->size += tsize;
926 init_top(m, m->top, m->topsize + tsize);
927 } else {
928 sp = &m->seg;
929 while (sp != 0 && sp->base != tbase + tsize)
930 sp = sp->next;
931 if (sp != 0) {
932 char *oldbase = sp->base;
933 sp->base = tbase;
934 sp->size += tsize;
935 return prepend_alloc(m, tbase, oldbase, nb);
936 } else {
937 add_segment(m, tbase, tsize);
941 if (nb < m->topsize) { /* Allocate from new or extended top space */
942 size_t rsize = m->topsize -= nb;
943 mchunkptr p = m->top;
944 mchunkptr r = m->top = chunk_plus_offset(p, nb);
945 r->head = rsize | PINUSE_BIT;
946 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
947 return chunk2mem(p);
951 return NULL;
954 /* ----------------------- system deallocation -------------------------- */
956 /* Unmap and unlink any mmapped segments that don't contain used chunks */
957 static size_t release_unused_segments(mstate m)
959 size_t released = 0;
960 size_t nsegs = 0;
961 msegmentptr pred = &m->seg;
962 msegmentptr sp = pred->next;
963 while (sp != 0) {
964 char *base = sp->base;
965 size_t size = sp->size;
966 msegmentptr next = sp->next;
967 nsegs++;
969 mchunkptr p = align_as_chunk(base);
970 size_t psize = chunksize(p);
971 /* Can unmap if first chunk holds entire segment and not pinned */
972 if (!cinuse(p) && (char *)p + psize >= base + size - TOP_FOOT_SIZE) {
973 tchunkptr tp = (tchunkptr)p;
974 if (p == m->dv) {
975 m->dv = 0;
976 m->dvsize = 0;
977 } else {
978 unlink_large_chunk(m, tp);
980 if (CALL_MUNMAP(base, size) == 0) {
981 released += size;
982 /* unlink obsoleted record */
983 sp = pred;
984 sp->next = next;
985 } else { /* back out if cannot unmap */
986 insert_large_chunk(m, tp, psize);
990 pred = sp;
991 sp = next;
993 /* Reset check counter */
994 m->release_checks = nsegs > MAX_RELEASE_CHECK_RATE ?
995 nsegs : MAX_RELEASE_CHECK_RATE;
996 return released;
999 static int alloc_trim(mstate m, size_t pad)
1001 size_t released = 0;
1002 if (pad < MAX_REQUEST && is_initialized(m)) {
1003 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
1005 if (m->topsize > pad) {
1006 /* Shrink top space in granularity-size units, keeping at least one */
1007 size_t unit = DEFAULT_GRANULARITY;
1008 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
1009 SIZE_T_ONE) * unit;
1010 msegmentptr sp = segment_holding(m, (char *)m->top);
1012 if (sp->size >= extra &&
1013 !has_segment_link(m, sp)) { /* can't shrink if pinned */
1014 size_t newsize = sp->size - extra;
1015 /* Prefer mremap, fall back to munmap */
1016 if ((CALL_MREMAP(sp->base, sp->size, newsize, CALL_MREMAP_NOMOVE) != MFAIL) ||
1017 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
1018 released = extra;
1022 if (released != 0) {
1023 sp->size -= released;
1024 init_top(m, m->top, m->topsize - released);
1028 /* Unmap any unused mmapped segments */
1029 released += release_unused_segments(m);
1031 /* On failure, disable autotrim to avoid repeated failed future calls */
1032 if (released == 0 && m->topsize > m->trim_check)
1033 m->trim_check = MAX_SIZE_T;
1036 return (released != 0)? 1 : 0;
1039 /* ---------------------------- malloc support --------------------------- */
1041 /* allocate a large request from the best fitting chunk in a treebin */
1042 static void *tmalloc_large(mstate m, size_t nb)
1044 tchunkptr v = 0;
1045 size_t rsize = ~nb+1; /* Unsigned negation */
1046 tchunkptr t;
1047 bindex_t idx;
1048 compute_tree_index(nb, idx);
1050 if ((t = *treebin_at(m, idx)) != 0) {
1051 /* Traverse tree for this bin looking for node with size == nb */
1052 size_t sizebits = nb << leftshift_for_tree_index(idx);
1053 tchunkptr rst = 0; /* The deepest untaken right subtree */
1054 for (;;) {
1055 tchunkptr rt;
1056 size_t trem = chunksize(t) - nb;
1057 if (trem < rsize) {
1058 v = t;
1059 if ((rsize = trem) == 0)
1060 break;
1062 rt = t->child[1];
1063 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
1064 if (rt != 0 && rt != t)
1065 rst = rt;
1066 if (t == 0) {
1067 t = rst; /* set t to least subtree holding sizes > nb */
1068 break;
1070 sizebits <<= 1;
1074 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
1075 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
1076 if (leftbits != 0)
1077 t = *treebin_at(m, lj_ffs(leftbits));
1080 while (t != 0) { /* find smallest of tree or subtree */
1081 size_t trem = chunksize(t) - nb;
1082 if (trem < rsize) {
1083 rsize = trem;
1084 v = t;
1086 t = leftmost_child(t);
1089 /* If dv is a better fit, return NULL so malloc will use it */
1090 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
1091 mchunkptr r = chunk_plus_offset(v, nb);
1092 unlink_large_chunk(m, v);
1093 if (rsize < MIN_CHUNK_SIZE) {
1094 set_inuse_and_pinuse(m, v, (rsize + nb));
1095 } else {
1096 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
1097 set_size_and_pinuse_of_free_chunk(r, rsize);
1098 insert_chunk(m, r, rsize);
1100 return chunk2mem(v);
1102 return NULL;
1105 /* allocate a small request from the best fitting chunk in a treebin */
1106 static void *tmalloc_small(mstate m, size_t nb)
1108 tchunkptr t, v;
1109 mchunkptr r;
1110 size_t rsize;
1111 bindex_t i = lj_ffs(m->treemap);
1113 v = t = *treebin_at(m, i);
1114 rsize = chunksize(t) - nb;
1116 while ((t = leftmost_child(t)) != 0) {
1117 size_t trem = chunksize(t) - nb;
1118 if (trem < rsize) {
1119 rsize = trem;
1120 v = t;
1124 r = chunk_plus_offset(v, nb);
1125 unlink_large_chunk(m, v);
1126 if (rsize < MIN_CHUNK_SIZE) {
1127 set_inuse_and_pinuse(m, v, (rsize + nb));
1128 } else {
1129 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
1130 set_size_and_pinuse_of_free_chunk(r, rsize);
1131 replace_dv(m, r, rsize);
1133 return chunk2mem(v);
1136 /* ----------------------------------------------------------------------- */
1138 void *lj_alloc_create(void)
1140 size_t tsize = DEFAULT_GRANULARITY;
1141 char *tbase;
1142 INIT_MMAP();
1143 tbase = (char *)(CALL_MMAP(tsize));
1144 if (tbase != CMFAIL) {
1145 size_t msize = pad_request(sizeof(struct malloc_state));
1146 mchunkptr mn;
1147 mchunkptr msp = align_as_chunk(tbase);
1148 mstate m = (mstate)(chunk2mem(msp));
1149 memset(m, 0, msize);
1150 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
1151 m->seg.base = tbase;
1152 m->seg.size = tsize;
1153 m->release_checks = MAX_RELEASE_CHECK_RATE;
1154 init_bins(m);
1155 mn = next_chunk(mem2chunk(m));
1156 init_top(m, mn, (size_t)((tbase + tsize) - (char *)mn) - TOP_FOOT_SIZE);
1157 return m;
1159 return NULL;
1162 void lj_alloc_destroy(void *msp)
1164 mstate ms = (mstate)msp;
1165 msegmentptr sp = &ms->seg;
1166 while (sp != 0) {
1167 char *base = sp->base;
1168 size_t size = sp->size;
1169 sp = sp->next;
1170 CALL_MUNMAP(base, size);
1174 static LJ_NOINLINE void *lj_alloc_malloc(void *msp, size_t nsize)
1176 mstate ms = (mstate)msp;
1177 void *mem;
1178 size_t nb;
1179 if (nsize <= MAX_SMALL_REQUEST) {
1180 bindex_t idx;
1181 binmap_t smallbits;
1182 nb = (nsize < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(nsize);
1183 idx = small_index(nb);
1184 smallbits = ms->smallmap >> idx;
1186 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
1187 mchunkptr b, p;
1188 idx += ~smallbits & 1; /* Uses next bin if idx empty */
1189 b = smallbin_at(ms, idx);
1190 p = b->fd;
1191 unlink_first_small_chunk(ms, b, p, idx);
1192 set_inuse_and_pinuse(ms, p, small_index2size(idx));
1193 mem = chunk2mem(p);
1194 return mem;
1195 } else if (nb > ms->dvsize) {
1196 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
1197 mchunkptr b, p, r;
1198 size_t rsize;
1199 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
1200 bindex_t i = lj_ffs(leftbits);
1201 b = smallbin_at(ms, i);
1202 p = b->fd;
1203 unlink_first_small_chunk(ms, b, p, i);
1204 rsize = small_index2size(i) - nb;
1205 /* Fit here cannot be remainderless if 4byte sizes */
1206 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) {
1207 set_inuse_and_pinuse(ms, p, small_index2size(i));
1208 } else {
1209 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1210 r = chunk_plus_offset(p, nb);
1211 set_size_and_pinuse_of_free_chunk(r, rsize);
1212 replace_dv(ms, r, rsize);
1214 mem = chunk2mem(p);
1215 return mem;
1216 } else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
1217 return mem;
1220 } else if (nsize >= MAX_REQUEST) {
1221 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
1222 } else {
1223 nb = pad_request(nsize);
1224 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
1225 return mem;
1229 if (nb <= ms->dvsize) {
1230 size_t rsize = ms->dvsize - nb;
1231 mchunkptr p = ms->dv;
1232 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
1233 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
1234 ms->dvsize = rsize;
1235 set_size_and_pinuse_of_free_chunk(r, rsize);
1236 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1237 } else { /* exhaust dv */
1238 size_t dvs = ms->dvsize;
1239 ms->dvsize = 0;
1240 ms->dv = 0;
1241 set_inuse_and_pinuse(ms, p, dvs);
1243 mem = chunk2mem(p);
1244 return mem;
1245 } else if (nb < ms->topsize) { /* Split top */
1246 size_t rsize = ms->topsize -= nb;
1247 mchunkptr p = ms->top;
1248 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
1249 r->head = rsize | PINUSE_BIT;
1250 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1251 mem = chunk2mem(p);
1252 return mem;
1254 return alloc_sys(ms, nb);
1257 static LJ_NOINLINE void *lj_alloc_free(void *msp, void *ptr)
1259 if (ptr != 0) {
1260 mchunkptr p = mem2chunk(ptr);
1261 mstate fm = (mstate)msp;
1262 size_t psize = chunksize(p);
1263 mchunkptr next = chunk_plus_offset(p, psize);
1264 if (!pinuse(p)) {
1265 size_t prevsize = p->prev_foot;
1266 if ((prevsize & IS_DIRECT_BIT) != 0) {
1267 prevsize &= ~IS_DIRECT_BIT;
1268 psize += prevsize + DIRECT_FOOT_PAD;
1269 CALL_MUNMAP((char *)p - prevsize, psize);
1270 return NULL;
1271 } else {
1272 mchunkptr prev = chunk_minus_offset(p, prevsize);
1273 psize += prevsize;
1274 p = prev;
1275 /* consolidate backward */
1276 if (p != fm->dv) {
1277 unlink_chunk(fm, p, prevsize);
1278 } else if ((next->head & INUSE_BITS) == INUSE_BITS) {
1279 fm->dvsize = psize;
1280 set_free_with_pinuse(p, psize, next);
1281 return NULL;
1285 if (!cinuse(next)) { /* consolidate forward */
1286 if (next == fm->top) {
1287 size_t tsize = fm->topsize += psize;
1288 fm->top = p;
1289 p->head = tsize | PINUSE_BIT;
1290 if (p == fm->dv) {
1291 fm->dv = 0;
1292 fm->dvsize = 0;
1294 if (tsize > fm->trim_check)
1295 alloc_trim(fm, 0);
1296 return NULL;
1297 } else if (next == fm->dv) {
1298 size_t dsize = fm->dvsize += psize;
1299 fm->dv = p;
1300 set_size_and_pinuse_of_free_chunk(p, dsize);
1301 return NULL;
1302 } else {
1303 size_t nsize = chunksize(next);
1304 psize += nsize;
1305 unlink_chunk(fm, next, nsize);
1306 set_size_and_pinuse_of_free_chunk(p, psize);
1307 if (p == fm->dv) {
1308 fm->dvsize = psize;
1309 return NULL;
1312 } else {
1313 set_free_with_pinuse(p, psize, next);
1316 if (is_small(psize)) {
1317 insert_small_chunk(fm, p, psize);
1318 } else {
1319 tchunkptr tp = (tchunkptr)p;
1320 insert_large_chunk(fm, tp, psize);
1321 if (--fm->release_checks == 0)
1322 release_unused_segments(fm);
1325 return NULL;
1328 static LJ_NOINLINE void *lj_alloc_realloc(void *msp, void *ptr, size_t nsize)
1330 if (nsize >= MAX_REQUEST) {
1331 return NULL;
1332 } else {
1333 mstate m = (mstate)msp;
1334 mchunkptr oldp = mem2chunk(ptr);
1335 size_t oldsize = chunksize(oldp);
1336 mchunkptr next = chunk_plus_offset(oldp, oldsize);
1337 mchunkptr newp = 0;
1338 size_t nb = request2size(nsize);
1340 /* Try to either shrink or extend into top. Else malloc-copy-free */
1341 if (is_direct(oldp)) {
1342 newp = direct_resize(oldp, nb); /* this may return NULL. */
1343 } else if (oldsize >= nb) { /* already big enough */
1344 size_t rsize = oldsize - nb;
1345 newp = oldp;
1346 if (rsize >= MIN_CHUNK_SIZE) {
1347 mchunkptr rem = chunk_plus_offset(newp, nb);
1348 set_inuse(m, newp, nb);
1349 set_inuse(m, rem, rsize);
1350 lj_alloc_free(m, chunk2mem(rem));
1352 } else if (next == m->top && oldsize + m->topsize > nb) {
1353 /* Expand into top */
1354 size_t newsize = oldsize + m->topsize;
1355 size_t newtopsize = newsize - nb;
1356 mchunkptr newtop = chunk_plus_offset(oldp, nb);
1357 set_inuse(m, oldp, nb);
1358 newtop->head = newtopsize |PINUSE_BIT;
1359 m->top = newtop;
1360 m->topsize = newtopsize;
1361 newp = oldp;
1364 if (newp != 0) {
1365 return chunk2mem(newp);
1366 } else {
1367 void *newmem = lj_alloc_malloc(m, nsize);
1368 if (newmem != 0) {
1369 size_t oc = oldsize - overhead_for(oldp);
1370 memcpy(newmem, ptr, oc < nsize ? oc : nsize);
1371 lj_alloc_free(m, ptr);
1373 return newmem;
1378 void *lj_alloc_f(void *msp, void *ptr, size_t osize, size_t nsize)
1380 (void)osize;
1381 if (nsize == 0) {
1382 return lj_alloc_free(msp, ptr);
1383 } else if (ptr == NULL) {
1384 return lj_alloc_malloc(msp, nsize);
1385 } else {
1386 return lj_alloc_realloc(msp, ptr, nsize);
1390 #endif