Land the long talked about "type system rewrite" patch. This
[llvm/stm8.git] / lib / VMCore / Type.cpp
blob734d43a0174085310602ab9c93e144c14e16ffda
1 //===-- Type.cpp - Implement the Type class -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Type class for the VMCore library.
12 //===----------------------------------------------------------------------===//
14 #include "LLVMContextImpl.h"
15 #include "llvm/Module.h"
16 #include <algorithm>
17 #include <cstdarg>
18 #include "llvm/ADT/SmallString.h"
19 using namespace llvm;
21 //===----------------------------------------------------------------------===//
22 // Type Class Implementation
23 //===----------------------------------------------------------------------===//
25 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
26 switch (IDNumber) {
27 case VoidTyID : return getVoidTy(C);
28 case FloatTyID : return getFloatTy(C);
29 case DoubleTyID : return getDoubleTy(C);
30 case X86_FP80TyID : return getX86_FP80Ty(C);
31 case FP128TyID : return getFP128Ty(C);
32 case PPC_FP128TyID : return getPPC_FP128Ty(C);
33 case LabelTyID : return getLabelTy(C);
34 case MetadataTyID : return getMetadataTy(C);
35 case X86_MMXTyID : return getX86_MMXTy(C);
36 default:
37 return 0;
41 /// getScalarType - If this is a vector type, return the element type,
42 /// otherwise return this.
43 const Type *Type::getScalarType() const {
44 if (const VectorType *VTy = dyn_cast<VectorType>(this))
45 return VTy->getElementType();
46 return this;
49 /// isIntegerTy - Return true if this is an IntegerType of the specified width.
50 bool Type::isIntegerTy(unsigned Bitwidth) const {
51 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
54 /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
55 /// integer types.
56 ///
57 bool Type::isIntOrIntVectorTy() const {
58 if (isIntegerTy())
59 return true;
60 if (ID != Type::VectorTyID) return false;
62 return cast<VectorType>(this)->getElementType()->isIntegerTy();
65 /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP types.
66 ///
67 bool Type::isFPOrFPVectorTy() const {
68 if (ID == Type::FloatTyID || ID == Type::DoubleTyID ||
69 ID == Type::FP128TyID || ID == Type::X86_FP80TyID ||
70 ID == Type::PPC_FP128TyID)
71 return true;
72 if (ID != Type::VectorTyID) return false;
74 return cast<VectorType>(this)->getElementType()->isFloatingPointTy();
77 // canLosslesslyBitCastTo - Return true if this type can be converted to
78 // 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
80 bool Type::canLosslesslyBitCastTo(const Type *Ty) const {
81 // Identity cast means no change so return true
82 if (this == Ty)
83 return true;
85 // They are not convertible unless they are at least first class types
86 if (!this->isFirstClassType() || !Ty->isFirstClassType())
87 return false;
89 // Vector -> Vector conversions are always lossless if the two vector types
90 // have the same size, otherwise not. Also, 64-bit vector types can be
91 // converted to x86mmx.
92 if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
93 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
94 return thisPTy->getBitWidth() == thatPTy->getBitWidth();
95 if (Ty->getTypeID() == Type::X86_MMXTyID &&
96 thisPTy->getBitWidth() == 64)
97 return true;
100 if (this->getTypeID() == Type::X86_MMXTyID)
101 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
102 if (thatPTy->getBitWidth() == 64)
103 return true;
105 // At this point we have only various mismatches of the first class types
106 // remaining and ptr->ptr. Just select the lossless conversions. Everything
107 // else is not lossless.
108 if (this->isPointerTy())
109 return Ty->isPointerTy();
110 return false; // Other types have no identity values
113 bool Type::isEmptyTy() const {
114 const ArrayType *ATy = dyn_cast<ArrayType>(this);
115 if (ATy) {
116 unsigned NumElements = ATy->getNumElements();
117 return NumElements == 0 || ATy->getElementType()->isEmptyTy();
120 const StructType *STy = dyn_cast<StructType>(this);
121 if (STy) {
122 unsigned NumElements = STy->getNumElements();
123 for (unsigned i = 0; i < NumElements; ++i)
124 if (!STy->getElementType(i)->isEmptyTy())
125 return false;
126 return true;
129 return false;
132 unsigned Type::getPrimitiveSizeInBits() const {
133 switch (getTypeID()) {
134 case Type::FloatTyID: return 32;
135 case Type::DoubleTyID: return 64;
136 case Type::X86_FP80TyID: return 80;
137 case Type::FP128TyID: return 128;
138 case Type::PPC_FP128TyID: return 128;
139 case Type::X86_MMXTyID: return 64;
140 case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
141 case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
142 default: return 0;
146 /// getScalarSizeInBits - If this is a vector type, return the
147 /// getPrimitiveSizeInBits value for the element type. Otherwise return the
148 /// getPrimitiveSizeInBits value for this type.
149 unsigned Type::getScalarSizeInBits() const {
150 return getScalarType()->getPrimitiveSizeInBits();
153 /// getFPMantissaWidth - Return the width of the mantissa of this type. This
154 /// is only valid on floating point types. If the FP type does not
155 /// have a stable mantissa (e.g. ppc long double), this method returns -1.
156 int Type::getFPMantissaWidth() const {
157 if (const VectorType *VTy = dyn_cast<VectorType>(this))
158 return VTy->getElementType()->getFPMantissaWidth();
159 assert(isFloatingPointTy() && "Not a floating point type!");
160 if (ID == FloatTyID) return 24;
161 if (ID == DoubleTyID) return 53;
162 if (ID == X86_FP80TyID) return 64;
163 if (ID == FP128TyID) return 113;
164 assert(ID == PPC_FP128TyID && "unknown fp type");
165 return -1;
168 /// isSizedDerivedType - Derived types like structures and arrays are sized
169 /// iff all of the members of the type are sized as well. Since asking for
170 /// their size is relatively uncommon, move this operation out of line.
171 bool Type::isSizedDerivedType() const {
172 if (this->isIntegerTy())
173 return true;
175 if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
176 return ATy->getElementType()->isSized();
178 if (const VectorType *VTy = dyn_cast<VectorType>(this))
179 return VTy->getElementType()->isSized();
181 if (!this->isStructTy())
182 return false;
184 // Opaque structs have no size.
185 if (cast<StructType>(this)->isOpaque())
186 return false;
188 // Okay, our struct is sized if all of the elements are.
189 for (subtype_iterator I = subtype_begin(), E = subtype_end(); I != E; ++I)
190 if (!(*I)->isSized())
191 return false;
193 return true;
196 //===----------------------------------------------------------------------===//
197 // Primitive 'Type' data
198 //===----------------------------------------------------------------------===//
200 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
201 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
202 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
203 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
204 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
205 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
206 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
207 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
208 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
210 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
211 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
212 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
213 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
214 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
216 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
217 return IntegerType::get(C, N);
220 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
221 return getFloatTy(C)->getPointerTo(AS);
224 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
225 return getDoubleTy(C)->getPointerTo(AS);
228 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
229 return getX86_FP80Ty(C)->getPointerTo(AS);
232 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
233 return getFP128Ty(C)->getPointerTo(AS);
236 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
237 return getPPC_FP128Ty(C)->getPointerTo(AS);
240 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
241 return getX86_MMXTy(C)->getPointerTo(AS);
244 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
245 return getIntNTy(C, N)->getPointerTo(AS);
248 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
249 return getInt1Ty(C)->getPointerTo(AS);
252 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
253 return getInt8Ty(C)->getPointerTo(AS);
256 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
257 return getInt16Ty(C)->getPointerTo(AS);
260 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
261 return getInt32Ty(C)->getPointerTo(AS);
264 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
265 return getInt64Ty(C)->getPointerTo(AS);
269 //===----------------------------------------------------------------------===//
270 // IntegerType Implementation
271 //===----------------------------------------------------------------------===//
273 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
274 assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
275 assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
277 // Check for the built-in integer types
278 switch (NumBits) {
279 case 1: return cast<IntegerType>(Type::getInt1Ty(C));
280 case 8: return cast<IntegerType>(Type::getInt8Ty(C));
281 case 16: return cast<IntegerType>(Type::getInt16Ty(C));
282 case 32: return cast<IntegerType>(Type::getInt32Ty(C));
283 case 64: return cast<IntegerType>(Type::getInt64Ty(C));
284 default:
285 break;
288 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
290 if (Entry == 0)
291 Entry = new IntegerType(C, NumBits);
293 return Entry;
296 bool IntegerType::isPowerOf2ByteWidth() const {
297 unsigned BitWidth = getBitWidth();
298 return (BitWidth > 7) && isPowerOf2_32(BitWidth);
301 APInt IntegerType::getMask() const {
302 return APInt::getAllOnesValue(getBitWidth());
305 //===----------------------------------------------------------------------===//
306 // FunctionType Implementation
307 //===----------------------------------------------------------------------===//
309 FunctionType::FunctionType(const Type *Result, ArrayRef<Type*> Params,
310 bool IsVarArgs)
311 : DerivedType(Result->getContext(), FunctionTyID) {
312 Type **SubTys = reinterpret_cast<Type**>(this+1);
313 assert(isValidReturnType(Result) && "invalid return type for function");
314 setSubclassData(IsVarArgs);
316 SubTys[0] = const_cast<Type*>(Result);
318 for (unsigned i = 0, e = Params.size(); i != e; ++i) {
319 assert(isValidArgumentType(Params[i]) &&
320 "Not a valid type for function argument!");
321 SubTys[i+1] = Params[i];
324 ContainedTys = SubTys;
325 NumContainedTys = Params.size() + 1; // + 1 for result type
328 // FIXME: Remove this version.
329 FunctionType *FunctionType::get(const Type *ReturnType,
330 ArrayRef<const Type*> Params, bool isVarArg) {
331 return get(ReturnType, ArrayRef<Type*>(const_cast<Type**>(Params.data()),
332 Params.size()), isVarArg);
335 // FunctionType::get - The factory function for the FunctionType class.
336 FunctionType *FunctionType::get(const Type *ReturnType,
337 ArrayRef<Type*> Params, bool isVarArg) {
338 // TODO: This is brutally slow.
339 std::vector<Type*> Key;
340 Key.reserve(Params.size()+2);
341 Key.push_back(const_cast<Type*>(ReturnType));
342 for (unsigned i = 0, e = Params.size(); i != e; ++i)
343 Key.push_back(const_cast<Type*>(Params[i]));
344 if (isVarArg)
345 Key.push_back(0);
347 FunctionType *&FT = ReturnType->getContext().pImpl->FunctionTypes[Key];
349 if (FT == 0) {
350 FT = (FunctionType*) operator new(sizeof(FunctionType) +
351 sizeof(Type*)*(Params.size()+1));
352 new (FT) FunctionType(ReturnType, Params, isVarArg);
355 return FT;
359 FunctionType *FunctionType::get(const Type *Result, bool isVarArg) {
360 return get(Result, ArrayRef<const Type *>(), isVarArg);
364 /// isValidReturnType - Return true if the specified type is valid as a return
365 /// type.
366 bool FunctionType::isValidReturnType(const Type *RetTy) {
367 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
368 !RetTy->isMetadataTy();
371 /// isValidArgumentType - Return true if the specified type is valid as an
372 /// argument type.
373 bool FunctionType::isValidArgumentType(const Type *ArgTy) {
374 return ArgTy->isFirstClassType();
377 //===----------------------------------------------------------------------===//
378 // StructType Implementation
379 //===----------------------------------------------------------------------===//
381 // Primitive Constructors.
383 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
384 bool isPacked) {
385 // FIXME: std::vector is horribly inefficient for this probe.
386 std::vector<Type*> Key;
387 for (unsigned i = 0, e = ETypes.size(); i != e; ++i) {
388 assert(isValidElementType(ETypes[i]) &&
389 "Invalid type for structure element!");
390 Key.push_back(ETypes[i]);
392 if (isPacked)
393 Key.push_back(0);
395 StructType *&ST = Context.pImpl->AnonStructTypes[Key];
397 if (ST) return ST;
399 // Value not found. Create a new type!
400 ST = new StructType(Context);
401 ST->setSubclassData(SCDB_IsAnonymous); // Anonymous struct.
402 ST->setBody(ETypes, isPacked);
403 return ST;
406 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
407 assert(isOpaque() && "Struct body already set!");
409 setSubclassData(getSubclassData() | SCDB_HasBody);
410 if (isPacked)
411 setSubclassData(getSubclassData() | SCDB_Packed);
413 Type **Elts = new Type*[Elements.size()];
414 memcpy(Elts, Elements.data(), sizeof(Elements[0])*Elements.size());
416 ContainedTys = Elts;
417 NumContainedTys = Elements.size();
420 StructType *StructType::createNamed(LLVMContext &Context, StringRef Name) {
421 StructType *ST = new StructType(Context);
422 ST->setName(Name);
423 return ST;
426 void StructType::setName(StringRef Name) {
427 if (Name == getName()) return;
429 // If this struct already had a name, remove its symbol table entry.
430 if (SymbolTableEntry) {
431 getContext().pImpl->NamedStructTypes.erase(getName());
432 SymbolTableEntry = 0;
435 // If this is just removing the name, we're done.
436 if (Name.empty())
437 return;
439 // Look up the entry for the name.
440 StringMapEntry<StructType*> *Entry =
441 &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
443 // While we have a name collision, try a random rename.
444 if (Entry->getValue()) {
445 SmallString<64> TempStr(Name);
446 TempStr.push_back('.');
447 raw_svector_ostream TmpStream(TempStr);
449 do {
450 TempStr.resize(Name.size()+1);
451 TmpStream.resync();
452 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
454 Entry = &getContext().pImpl->
455 NamedStructTypes.GetOrCreateValue(TmpStream.str());
456 } while (Entry->getValue());
459 // Okay, we found an entry that isn't used. It's us!
460 Entry->setValue(this);
462 SymbolTableEntry = Entry;
465 //===----------------------------------------------------------------------===//
466 // StructType Helper functions.
468 // FIXME: Remove this version.
469 StructType *StructType::get(LLVMContext &Context, ArrayRef<const Type*>Elements,
470 bool isPacked) {
471 return get(Context, ArrayRef<Type*>(const_cast<Type**>(Elements.data()),
472 Elements.size()), isPacked);
475 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
476 return get(Context, llvm::ArrayRef<const Type*>(), isPacked);
479 StructType *StructType::get(const Type *type, ...) {
480 assert(type != 0 && "Cannot create a struct type with no elements with this");
481 LLVMContext &Ctx = type->getContext();
482 va_list ap;
483 SmallVector<const llvm::Type*, 8> StructFields;
484 va_start(ap, type);
485 while (type) {
486 StructFields.push_back(type);
487 type = va_arg(ap, llvm::Type*);
489 return llvm::StructType::get(Ctx, StructFields);
492 StructType *StructType::createNamed(LLVMContext &Context, StringRef Name,
493 ArrayRef<Type*> Elements, bool isPacked) {
494 StructType *ST = createNamed(Context, Name);
495 ST->setBody(Elements, isPacked);
496 return ST;
499 StructType *StructType::createNamed(StringRef Name, ArrayRef<Type*> Elements,
500 bool isPacked) {
501 assert(!Elements.empty() &&
502 "This method may not be invoked with an empty list");
503 return createNamed(Elements[0]->getContext(), Name, Elements, isPacked);
506 StructType *StructType::createNamed(StringRef Name, Type *type, ...) {
507 assert(type != 0 && "Cannot create a struct type with no elements with this");
508 LLVMContext &Ctx = type->getContext();
509 va_list ap;
510 SmallVector<llvm::Type*, 8> StructFields;
511 va_start(ap, type);
512 while (type) {
513 StructFields.push_back(type);
514 type = va_arg(ap, llvm::Type*);
516 return llvm::StructType::createNamed(Ctx, Name, StructFields);
519 StringRef StructType::getName() const {
520 assert(!isAnonymous() && "Anonymous structs never have names");
521 if (SymbolTableEntry == 0) return StringRef();
523 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
526 void StructType::setBody(Type *type, ...) {
527 assert(type != 0 && "Cannot create a struct type with no elements with this");
528 va_list ap;
529 SmallVector<llvm::Type*, 8> StructFields;
530 va_start(ap, type);
531 while (type) {
532 StructFields.push_back(type);
533 type = va_arg(ap, llvm::Type*);
535 setBody(StructFields);
538 bool StructType::isValidElementType(const Type *ElemTy) {
539 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
540 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
543 /// isLayoutIdentical - Return true if this is layout identical to the
544 /// specified struct.
545 bool StructType::isLayoutIdentical(const StructType *Other) const {
546 if (this == Other) return true;
548 if (isPacked() != Other->isPacked() ||
549 getNumElements() != Other->getNumElements())
550 return false;
552 return std::equal(element_begin(), element_end(), Other->element_begin());
556 /// getTypeByName - Return the type with the specified name, or null if there
557 /// is none by that name.
558 StructType *Module::getTypeByName(StringRef Name) const {
559 StringMap<StructType*>::iterator I =
560 getContext().pImpl->NamedStructTypes.find(Name);
561 if (I != getContext().pImpl->NamedStructTypes.end())
562 return I->second;
563 return 0;
567 //===----------------------------------------------------------------------===//
568 // CompositeType Implementation
569 //===----------------------------------------------------------------------===//
571 Type *CompositeType::getTypeAtIndex(const Value *V) const {
572 if (const StructType *STy = dyn_cast<StructType>(this)) {
573 unsigned Idx = (unsigned)cast<ConstantInt>(V)->getZExtValue();
574 assert(indexValid(Idx) && "Invalid structure index!");
575 return STy->getElementType(Idx);
578 return cast<SequentialType>(this)->getElementType();
580 Type *CompositeType::getTypeAtIndex(unsigned Idx) const {
581 if (const StructType *STy = dyn_cast<StructType>(this)) {
582 assert(indexValid(Idx) && "Invalid structure index!");
583 return STy->getElementType(Idx);
586 return cast<SequentialType>(this)->getElementType();
588 bool CompositeType::indexValid(const Value *V) const {
589 if (const StructType *STy = dyn_cast<StructType>(this)) {
590 // Structure indexes require 32-bit integer constants.
591 if (V->getType()->isIntegerTy(32))
592 if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
593 return CU->getZExtValue() < STy->getNumElements();
594 return false;
597 // Sequential types can be indexed by any integer.
598 return V->getType()->isIntegerTy();
601 bool CompositeType::indexValid(unsigned Idx) const {
602 if (const StructType *STy = dyn_cast<StructType>(this))
603 return Idx < STy->getNumElements();
604 // Sequential types can be indexed by any integer.
605 return true;
609 //===----------------------------------------------------------------------===//
610 // ArrayType Implementation
611 //===----------------------------------------------------------------------===//
613 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
614 : SequentialType(ArrayTyID, ElType) {
615 NumElements = NumEl;
619 ArrayType *ArrayType::get(const Type *elementType, uint64_t NumElements) {
620 Type *ElementType = const_cast<Type*>(elementType);
621 assert(isValidElementType(ElementType) && "Invalid type for array element!");
623 ArrayType *&Entry = ElementType->getContext().pImpl
624 ->ArrayTypes[std::make_pair(ElementType, NumElements)];
626 if (Entry == 0)
627 Entry = new ArrayType(ElementType, NumElements);
628 return Entry;
631 bool ArrayType::isValidElementType(const Type *ElemTy) {
632 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
633 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
636 //===----------------------------------------------------------------------===//
637 // VectorType Implementation
638 //===----------------------------------------------------------------------===//
640 VectorType::VectorType(Type *ElType, unsigned NumEl)
641 : SequentialType(VectorTyID, ElType) {
642 NumElements = NumEl;
645 VectorType *VectorType::get(const Type *elementType, unsigned NumElements) {
646 Type *ElementType = const_cast<Type*>(elementType);
647 assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
648 assert(isValidElementType(ElementType) &&
649 "Elements of a VectorType must be a primitive type");
651 VectorType *&Entry = ElementType->getContext().pImpl
652 ->VectorTypes[std::make_pair(ElementType, NumElements)];
654 if (Entry == 0)
655 Entry = new VectorType(ElementType, NumElements);
656 return Entry;
659 bool VectorType::isValidElementType(const Type *ElemTy) {
660 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy();
663 //===----------------------------------------------------------------------===//
664 // PointerType Implementation
665 //===----------------------------------------------------------------------===//
667 PointerType *PointerType::get(const Type *eltTy, unsigned AddressSpace) {
668 Type *EltTy = const_cast<Type*>(eltTy);
669 assert(EltTy && "Can't get a pointer to <null> type!");
670 assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
672 LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
674 // Since AddressSpace #0 is the common case, we special case it.
675 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
676 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
678 if (Entry == 0)
679 Entry = new PointerType(EltTy, AddressSpace);
680 return Entry;
684 PointerType::PointerType(Type *E, unsigned AddrSpace)
685 : SequentialType(PointerTyID, E) {
686 setSubclassData(AddrSpace);
689 PointerType *Type::getPointerTo(unsigned addrs) const {
690 return PointerType::get(this, addrs);
693 bool PointerType::isValidElementType(const Type *ElemTy) {
694 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
695 !ElemTy->isMetadataTy();