[AArch64][GlobalISel] Fix incorrect ABI when tail call not supported (#70215)
[llvm-project.git] / llvm / lib / Target / AArch64 / GISel / AArch64CallLowering.cpp
blob84057ea8d2214ac1f8e5d74bbef657006f71a3d9
1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "AArch64CallLowering.h"
16 #include "AArch64ISelLowering.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/ObjCARCUtil.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
27 #include "llvm/CodeGen/GlobalISel/Utils.h"
28 #include "llvm/CodeGen/LowLevelTypeUtils.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/MachineValueType.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/Value.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
50 #define DEBUG_TYPE "aarch64-call-lowering"
52 using namespace llvm;
54 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
55 : CallLowering(&TLI) {}
57 static void applyStackPassedSmallTypeDAGHack(EVT OrigVT, MVT &ValVT,
58 MVT &LocVT) {
59 // If ValVT is i1/i8/i16, we should set LocVT to i8/i8/i16. This is a legacy
60 // hack because the DAG calls the assignment function with pre-legalized
61 // register typed values, not the raw type.
63 // This hack is not applied to return values which are not passed on the
64 // stack.
65 if (OrigVT == MVT::i1 || OrigVT == MVT::i8)
66 ValVT = LocVT = MVT::i8;
67 else if (OrigVT == MVT::i16)
68 ValVT = LocVT = MVT::i16;
71 // Account for i1/i8/i16 stack passed value hack
72 static LLT getStackValueStoreTypeHack(const CCValAssign &VA) {
73 const MVT ValVT = VA.getValVT();
74 return (ValVT == MVT::i8 || ValVT == MVT::i16) ? LLT(ValVT)
75 : LLT(VA.getLocVT());
78 namespace {
80 struct AArch64IncomingValueAssigner
81 : public CallLowering::IncomingValueAssigner {
82 AArch64IncomingValueAssigner(CCAssignFn *AssignFn_,
83 CCAssignFn *AssignFnVarArg_)
84 : IncomingValueAssigner(AssignFn_, AssignFnVarArg_) {}
86 bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT,
87 CCValAssign::LocInfo LocInfo,
88 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
89 CCState &State) override {
90 applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT);
91 return IncomingValueAssigner::assignArg(ValNo, OrigVT, ValVT, LocVT,
92 LocInfo, Info, Flags, State);
96 struct AArch64OutgoingValueAssigner
97 : public CallLowering::OutgoingValueAssigner {
98 const AArch64Subtarget &Subtarget;
100 /// Track if this is used for a return instead of function argument
101 /// passing. We apply a hack to i1/i8/i16 stack passed values, but do not use
102 /// stack passed returns for them and cannot apply the type adjustment.
103 bool IsReturn;
105 AArch64OutgoingValueAssigner(CCAssignFn *AssignFn_,
106 CCAssignFn *AssignFnVarArg_,
107 const AArch64Subtarget &Subtarget_,
108 bool IsReturn)
109 : OutgoingValueAssigner(AssignFn_, AssignFnVarArg_),
110 Subtarget(Subtarget_), IsReturn(IsReturn) {}
112 bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT,
113 CCValAssign::LocInfo LocInfo,
114 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
115 CCState &State) override {
116 bool IsCalleeWin = Subtarget.isCallingConvWin64(State.getCallingConv());
117 bool UseVarArgsCCForFixed = IsCalleeWin && State.isVarArg();
119 bool Res;
120 if (Info.IsFixed && !UseVarArgsCCForFixed) {
121 if (!IsReturn)
122 applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT);
123 Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
124 } else
125 Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);
127 StackSize = State.getStackSize();
128 return Res;
132 struct IncomingArgHandler : public CallLowering::IncomingValueHandler {
133 IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
134 : IncomingValueHandler(MIRBuilder, MRI) {}
136 Register getStackAddress(uint64_t Size, int64_t Offset,
137 MachinePointerInfo &MPO,
138 ISD::ArgFlagsTy Flags) override {
139 auto &MFI = MIRBuilder.getMF().getFrameInfo();
141 // Byval is assumed to be writable memory, but other stack passed arguments
142 // are not.
143 const bool IsImmutable = !Flags.isByVal();
145 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
146 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
147 auto AddrReg = MIRBuilder.buildFrameIndex(LLT::pointer(0, 64), FI);
148 return AddrReg.getReg(0);
151 LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA,
152 ISD::ArgFlagsTy Flags) const override {
153 // For pointers, we just need to fixup the integer types reported in the
154 // CCValAssign.
155 if (Flags.isPointer())
156 return CallLowering::ValueHandler::getStackValueStoreType(DL, VA, Flags);
157 return getStackValueStoreTypeHack(VA);
160 void assignValueToReg(Register ValVReg, Register PhysReg,
161 const CCValAssign &VA) override {
162 markPhysRegUsed(PhysReg);
163 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
166 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
167 const MachinePointerInfo &MPO,
168 const CCValAssign &VA) override {
169 MachineFunction &MF = MIRBuilder.getMF();
171 LLT ValTy(VA.getValVT());
172 LLT LocTy(VA.getLocVT());
174 // Fixup the types for the DAG compatibility hack.
175 if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16)
176 std::swap(ValTy, LocTy);
177 else {
178 // The calling code knows if this is a pointer or not, we're only touching
179 // the LocTy for the i8/i16 hack.
180 assert(LocTy.getSizeInBits() == MemTy.getSizeInBits());
181 LocTy = MemTy;
184 auto MMO = MF.getMachineMemOperand(
185 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, LocTy,
186 inferAlignFromPtrInfo(MF, MPO));
188 switch (VA.getLocInfo()) {
189 case CCValAssign::LocInfo::ZExt:
190 MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, ValVReg, Addr, *MMO);
191 return;
192 case CCValAssign::LocInfo::SExt:
193 MIRBuilder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, ValVReg, Addr, *MMO);
194 return;
195 default:
196 MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
197 return;
201 /// How the physical register gets marked varies between formal
202 /// parameters (it's a basic-block live-in), and a call instruction
203 /// (it's an implicit-def of the BL).
204 virtual void markPhysRegUsed(MCRegister PhysReg) = 0;
207 struct FormalArgHandler : public IncomingArgHandler {
208 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
209 : IncomingArgHandler(MIRBuilder, MRI) {}
211 void markPhysRegUsed(MCRegister PhysReg) override {
212 MIRBuilder.getMRI()->addLiveIn(PhysReg);
213 MIRBuilder.getMBB().addLiveIn(PhysReg);
217 struct CallReturnHandler : public IncomingArgHandler {
218 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
219 MachineInstrBuilder MIB)
220 : IncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
222 void markPhysRegUsed(MCRegister PhysReg) override {
223 MIB.addDef(PhysReg, RegState::Implicit);
226 MachineInstrBuilder MIB;
229 /// A special return arg handler for "returned" attribute arg calls.
230 struct ReturnedArgCallReturnHandler : public CallReturnHandler {
231 ReturnedArgCallReturnHandler(MachineIRBuilder &MIRBuilder,
232 MachineRegisterInfo &MRI,
233 MachineInstrBuilder MIB)
234 : CallReturnHandler(MIRBuilder, MRI, MIB) {}
236 void markPhysRegUsed(MCRegister PhysReg) override {}
239 struct OutgoingArgHandler : public CallLowering::OutgoingValueHandler {
240 OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
241 MachineInstrBuilder MIB, bool IsTailCall = false,
242 int FPDiff = 0)
243 : OutgoingValueHandler(MIRBuilder, MRI), MIB(MIB), IsTailCall(IsTailCall),
244 FPDiff(FPDiff),
245 Subtarget(MIRBuilder.getMF().getSubtarget<AArch64Subtarget>()) {}
247 Register getStackAddress(uint64_t Size, int64_t Offset,
248 MachinePointerInfo &MPO,
249 ISD::ArgFlagsTy Flags) override {
250 MachineFunction &MF = MIRBuilder.getMF();
251 LLT p0 = LLT::pointer(0, 64);
252 LLT s64 = LLT::scalar(64);
254 if (IsTailCall) {
255 assert(!Flags.isByVal() && "byval unhandled with tail calls");
257 Offset += FPDiff;
258 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
259 auto FIReg = MIRBuilder.buildFrameIndex(p0, FI);
260 MPO = MachinePointerInfo::getFixedStack(MF, FI);
261 return FIReg.getReg(0);
264 if (!SPReg)
265 SPReg = MIRBuilder.buildCopy(p0, Register(AArch64::SP)).getReg(0);
267 auto OffsetReg = MIRBuilder.buildConstant(s64, Offset);
269 auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);
271 MPO = MachinePointerInfo::getStack(MF, Offset);
272 return AddrReg.getReg(0);
275 /// We need to fixup the reported store size for certain value types because
276 /// we invert the interpretation of ValVT and LocVT in certain cases. This is
277 /// for compatability with the DAG call lowering implementation, which we're
278 /// currently building on top of.
279 LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA,
280 ISD::ArgFlagsTy Flags) const override {
281 if (Flags.isPointer())
282 return CallLowering::ValueHandler::getStackValueStoreType(DL, VA, Flags);
283 return getStackValueStoreTypeHack(VA);
286 void assignValueToReg(Register ValVReg, Register PhysReg,
287 const CCValAssign &VA) override {
288 MIB.addUse(PhysReg, RegState::Implicit);
289 Register ExtReg = extendRegister(ValVReg, VA);
290 MIRBuilder.buildCopy(PhysReg, ExtReg);
293 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
294 const MachinePointerInfo &MPO,
295 const CCValAssign &VA) override {
296 MachineFunction &MF = MIRBuilder.getMF();
297 auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, MemTy,
298 inferAlignFromPtrInfo(MF, MPO));
299 MIRBuilder.buildStore(ValVReg, Addr, *MMO);
302 void assignValueToAddress(const CallLowering::ArgInfo &Arg, unsigned RegIndex,
303 Register Addr, LLT MemTy,
304 const MachinePointerInfo &MPO,
305 const CCValAssign &VA) override {
306 unsigned MaxSize = MemTy.getSizeInBytes() * 8;
307 // For varargs, we always want to extend them to 8 bytes, in which case
308 // we disable setting a max.
309 if (!Arg.IsFixed)
310 MaxSize = 0;
312 Register ValVReg = Arg.Regs[RegIndex];
313 if (VA.getLocInfo() != CCValAssign::LocInfo::FPExt) {
314 MVT LocVT = VA.getLocVT();
315 MVT ValVT = VA.getValVT();
317 if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16) {
318 std::swap(ValVT, LocVT);
319 MemTy = LLT(VA.getValVT());
322 ValVReg = extendRegister(ValVReg, VA, MaxSize);
323 } else {
324 // The store does not cover the full allocated stack slot.
325 MemTy = LLT(VA.getValVT());
328 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
331 MachineInstrBuilder MIB;
333 bool IsTailCall;
335 /// For tail calls, the byte offset of the call's argument area from the
336 /// callee's. Unused elsewhere.
337 int FPDiff;
339 // Cache the SP register vreg if we need it more than once in this call site.
340 Register SPReg;
342 const AArch64Subtarget &Subtarget;
344 } // namespace
346 static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
347 return (CallConv == CallingConv::Fast && TailCallOpt) ||
348 CallConv == CallingConv::Tail || CallConv == CallingConv::SwiftTail;
351 bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
352 const Value *Val,
353 ArrayRef<Register> VRegs,
354 FunctionLoweringInfo &FLI,
355 Register SwiftErrorVReg) const {
356 auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
357 assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
358 "Return value without a vreg");
360 bool Success = true;
361 if (!FLI.CanLowerReturn) {
362 insertSRetStores(MIRBuilder, Val->getType(), VRegs, FLI.DemoteRegister);
363 } else if (!VRegs.empty()) {
364 MachineFunction &MF = MIRBuilder.getMF();
365 const Function &F = MF.getFunction();
366 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
368 MachineRegisterInfo &MRI = MF.getRegInfo();
369 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
370 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
371 auto &DL = F.getParent()->getDataLayout();
372 LLVMContext &Ctx = Val->getType()->getContext();
374 SmallVector<EVT, 4> SplitEVTs;
375 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
376 assert(VRegs.size() == SplitEVTs.size() &&
377 "For each split Type there should be exactly one VReg.");
379 SmallVector<ArgInfo, 8> SplitArgs;
380 CallingConv::ID CC = F.getCallingConv();
382 for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
383 Register CurVReg = VRegs[i];
384 ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx), 0};
385 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
387 // i1 is a special case because SDAG i1 true is naturally zero extended
388 // when widened using ANYEXT. We need to do it explicitly here.
389 auto &Flags = CurArgInfo.Flags[0];
390 if (MRI.getType(CurVReg).getSizeInBits() == 1 && !Flags.isSExt() &&
391 !Flags.isZExt()) {
392 CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
393 } else if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) ==
394 1) {
395 // Some types will need extending as specified by the CC.
396 MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
397 if (EVT(NewVT) != SplitEVTs[i]) {
398 unsigned ExtendOp = TargetOpcode::G_ANYEXT;
399 if (F.getAttributes().hasRetAttr(Attribute::SExt))
400 ExtendOp = TargetOpcode::G_SEXT;
401 else if (F.getAttributes().hasRetAttr(Attribute::ZExt))
402 ExtendOp = TargetOpcode::G_ZEXT;
404 LLT NewLLT(NewVT);
405 LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
406 CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
407 // Instead of an extend, we might have a vector type which needs
408 // padding with more elements, e.g. <2 x half> -> <4 x half>.
409 if (NewVT.isVector()) {
410 if (OldLLT.isVector()) {
411 if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
413 CurVReg =
414 MIRBuilder.buildPadVectorWithUndefElements(NewLLT, CurVReg)
415 .getReg(0);
416 } else {
417 // Just do a vector extend.
418 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
419 .getReg(0);
421 } else if (NewLLT.getNumElements() >= 2 &&
422 NewLLT.getNumElements() <= 8) {
423 // We need to pad a <1 x S> type to <2/4/8 x S>. Since we don't
424 // have <1 x S> vector types in GISel we use a build_vector
425 // instead of a vector merge/concat.
426 CurVReg =
427 MIRBuilder.buildPadVectorWithUndefElements(NewLLT, CurVReg)
428 .getReg(0);
429 } else {
430 LLVM_DEBUG(dbgs() << "Could not handle ret ty\n");
431 return false;
433 } else {
434 // If the split EVT was a <1 x T> vector, and NewVT is T, then we
435 // don't have to do anything since we don't distinguish between the
436 // two.
437 if (NewLLT != MRI.getType(CurVReg)) {
438 // A scalar extend.
439 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
440 .getReg(0);
445 if (CurVReg != CurArgInfo.Regs[0]) {
446 CurArgInfo.Regs[0] = CurVReg;
447 // Reset the arg flags after modifying CurVReg.
448 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
450 splitToValueTypes(CurArgInfo, SplitArgs, DL, CC);
453 AArch64OutgoingValueAssigner Assigner(AssignFn, AssignFn, Subtarget,
454 /*IsReturn*/ true);
455 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB);
456 Success = determineAndHandleAssignments(Handler, Assigner, SplitArgs,
457 MIRBuilder, CC, F.isVarArg());
460 if (SwiftErrorVReg) {
461 MIB.addUse(AArch64::X21, RegState::Implicit);
462 MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
465 MIRBuilder.insertInstr(MIB);
466 return Success;
469 bool AArch64CallLowering::canLowerReturn(MachineFunction &MF,
470 CallingConv::ID CallConv,
471 SmallVectorImpl<BaseArgInfo> &Outs,
472 bool IsVarArg) const {
473 SmallVector<CCValAssign, 16> ArgLocs;
474 const auto &TLI = *getTLI<AArch64TargetLowering>();
475 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
476 MF.getFunction().getContext());
478 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv));
481 /// Helper function to compute forwarded registers for musttail calls. Computes
482 /// the forwarded registers, sets MBB liveness, and emits COPY instructions that
483 /// can be used to save + restore registers later.
484 static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
485 CCAssignFn *AssignFn) {
486 MachineBasicBlock &MBB = MIRBuilder.getMBB();
487 MachineFunction &MF = MIRBuilder.getMF();
488 MachineFrameInfo &MFI = MF.getFrameInfo();
490 if (!MFI.hasMustTailInVarArgFunc())
491 return;
493 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
494 const Function &F = MF.getFunction();
495 assert(F.isVarArg() && "Expected F to be vararg?");
497 // Compute the set of forwarded registers. The rest are scratch.
498 SmallVector<CCValAssign, 16> ArgLocs;
499 CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
500 F.getContext());
501 SmallVector<MVT, 2> RegParmTypes;
502 RegParmTypes.push_back(MVT::i64);
503 RegParmTypes.push_back(MVT::f128);
505 // Later on, we can use this vector to restore the registers if necessary.
506 SmallVectorImpl<ForwardedRegister> &Forwards =
507 FuncInfo->getForwardedMustTailRegParms();
508 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);
510 // Conservatively forward X8, since it might be used for an aggregate
511 // return.
512 if (!CCInfo.isAllocated(AArch64::X8)) {
513 Register X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
514 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
517 // Add the forwards to the MachineBasicBlock and MachineFunction.
518 for (const auto &F : Forwards) {
519 MBB.addLiveIn(F.PReg);
520 MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
524 bool AArch64CallLowering::fallBackToDAGISel(const MachineFunction &MF) const {
525 auto &F = MF.getFunction();
526 if (F.getReturnType()->isScalableTy() ||
527 llvm::any_of(F.args(), [](const Argument &A) {
528 return A.getType()->isScalableTy();
530 return true;
531 const auto &ST = MF.getSubtarget<AArch64Subtarget>();
532 if (!ST.hasNEON() || !ST.hasFPARMv8()) {
533 LLVM_DEBUG(dbgs() << "Falling back to SDAG because we don't support no-NEON\n");
534 return true;
537 SMEAttrs Attrs(F);
538 if (Attrs.hasZAState() || Attrs.hasStreamingInterfaceOrBody() ||
539 Attrs.hasStreamingCompatibleInterface())
540 return true;
542 return false;
545 void AArch64CallLowering::saveVarArgRegisters(
546 MachineIRBuilder &MIRBuilder, CallLowering::IncomingValueHandler &Handler,
547 CCState &CCInfo) const {
548 auto GPRArgRegs = AArch64::getGPRArgRegs();
549 auto FPRArgRegs = AArch64::getFPRArgRegs();
551 MachineFunction &MF = MIRBuilder.getMF();
552 MachineRegisterInfo &MRI = MF.getRegInfo();
553 MachineFrameInfo &MFI = MF.getFrameInfo();
554 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
555 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
556 bool IsWin64CC =
557 Subtarget.isCallingConvWin64(CCInfo.getCallingConv());
558 const LLT p0 = LLT::pointer(0, 64);
559 const LLT s64 = LLT::scalar(64);
561 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
562 unsigned NumVariadicGPRArgRegs = GPRArgRegs.size() - FirstVariadicGPR + 1;
564 unsigned GPRSaveSize = 8 * (GPRArgRegs.size() - FirstVariadicGPR);
565 int GPRIdx = 0;
566 if (GPRSaveSize != 0) {
567 if (IsWin64CC) {
568 GPRIdx = MFI.CreateFixedObject(GPRSaveSize,
569 -static_cast<int>(GPRSaveSize), false);
570 if (GPRSaveSize & 15)
571 // The extra size here, if triggered, will always be 8.
572 MFI.CreateFixedObject(16 - (GPRSaveSize & 15),
573 -static_cast<int>(alignTo(GPRSaveSize, 16)),
574 false);
575 } else
576 GPRIdx = MFI.CreateStackObject(GPRSaveSize, Align(8), false);
578 auto FIN = MIRBuilder.buildFrameIndex(p0, GPRIdx);
579 auto Offset =
580 MIRBuilder.buildConstant(MRI.createGenericVirtualRegister(s64), 8);
582 for (unsigned i = FirstVariadicGPR; i < GPRArgRegs.size(); ++i) {
583 Register Val = MRI.createGenericVirtualRegister(s64);
584 Handler.assignValueToReg(
585 Val, GPRArgRegs[i],
586 CCValAssign::getReg(i + MF.getFunction().getNumOperands(), MVT::i64,
587 GPRArgRegs[i], MVT::i64, CCValAssign::Full));
588 auto MPO = IsWin64CC ? MachinePointerInfo::getFixedStack(
589 MF, GPRIdx, (i - FirstVariadicGPR) * 8)
590 : MachinePointerInfo::getStack(MF, i * 8);
591 MIRBuilder.buildStore(Val, FIN, MPO, inferAlignFromPtrInfo(MF, MPO));
593 FIN = MIRBuilder.buildPtrAdd(MRI.createGenericVirtualRegister(p0),
594 FIN.getReg(0), Offset);
597 FuncInfo->setVarArgsGPRIndex(GPRIdx);
598 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
600 if (Subtarget.hasFPARMv8() && !IsWin64CC) {
601 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
603 unsigned FPRSaveSize = 16 * (FPRArgRegs.size() - FirstVariadicFPR);
604 int FPRIdx = 0;
605 if (FPRSaveSize != 0) {
606 FPRIdx = MFI.CreateStackObject(FPRSaveSize, Align(16), false);
608 auto FIN = MIRBuilder.buildFrameIndex(p0, FPRIdx);
609 auto Offset =
610 MIRBuilder.buildConstant(MRI.createGenericVirtualRegister(s64), 16);
612 for (unsigned i = FirstVariadicFPR; i < FPRArgRegs.size(); ++i) {
613 Register Val = MRI.createGenericVirtualRegister(LLT::scalar(128));
614 Handler.assignValueToReg(
615 Val, FPRArgRegs[i],
616 CCValAssign::getReg(
617 i + MF.getFunction().getNumOperands() + NumVariadicGPRArgRegs,
618 MVT::f128, FPRArgRegs[i], MVT::f128, CCValAssign::Full));
620 auto MPO = MachinePointerInfo::getStack(MF, i * 16);
621 MIRBuilder.buildStore(Val, FIN, MPO, inferAlignFromPtrInfo(MF, MPO));
623 FIN = MIRBuilder.buildPtrAdd(MRI.createGenericVirtualRegister(p0),
624 FIN.getReg(0), Offset);
627 FuncInfo->setVarArgsFPRIndex(FPRIdx);
628 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
632 bool AArch64CallLowering::lowerFormalArguments(
633 MachineIRBuilder &MIRBuilder, const Function &F,
634 ArrayRef<ArrayRef<Register>> VRegs, FunctionLoweringInfo &FLI) const {
635 MachineFunction &MF = MIRBuilder.getMF();
636 MachineBasicBlock &MBB = MIRBuilder.getMBB();
637 MachineRegisterInfo &MRI = MF.getRegInfo();
638 auto &DL = F.getParent()->getDataLayout();
639 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
640 // TODO: Support Arm64EC
641 bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv()) && !Subtarget.isWindowsArm64EC();
643 SmallVector<ArgInfo, 8> SplitArgs;
644 SmallVector<std::pair<Register, Register>> BoolArgs;
646 // Insert the hidden sret parameter if the return value won't fit in the
647 // return registers.
648 if (!FLI.CanLowerReturn)
649 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
651 unsigned i = 0;
652 for (auto &Arg : F.args()) {
653 if (DL.getTypeStoreSize(Arg.getType()).isZero())
654 continue;
656 ArgInfo OrigArg{VRegs[i], Arg, i};
657 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);
659 // i1 arguments are zero-extended to i8 by the caller. Emit a
660 // hint to reflect this.
661 if (OrigArg.Ty->isIntegerTy(1)) {
662 assert(OrigArg.Regs.size() == 1 &&
663 MRI.getType(OrigArg.Regs[0]).getSizeInBits() == 1 &&
664 "Unexpected registers used for i1 arg");
666 auto &Flags = OrigArg.Flags[0];
667 if (!Flags.isZExt() && !Flags.isSExt()) {
668 // Lower i1 argument as i8, and insert AssertZExt + Trunc later.
669 Register OrigReg = OrigArg.Regs[0];
670 Register WideReg = MRI.createGenericVirtualRegister(LLT::scalar(8));
671 OrigArg.Regs[0] = WideReg;
672 BoolArgs.push_back({OrigReg, WideReg});
676 if (Arg.hasAttribute(Attribute::SwiftAsync))
677 MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
679 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv());
680 ++i;
683 if (!MBB.empty())
684 MIRBuilder.setInstr(*MBB.begin());
686 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
687 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(F.getCallingConv(), IsWin64 && F.isVarArg());
689 AArch64IncomingValueAssigner Assigner(AssignFn, AssignFn);
690 FormalArgHandler Handler(MIRBuilder, MRI);
691 SmallVector<CCValAssign, 16> ArgLocs;
692 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
693 if (!determineAssignments(Assigner, SplitArgs, CCInfo) ||
694 !handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, MIRBuilder))
695 return false;
697 if (!BoolArgs.empty()) {
698 for (auto &KV : BoolArgs) {
699 Register OrigReg = KV.first;
700 Register WideReg = KV.second;
701 LLT WideTy = MRI.getType(WideReg);
702 assert(MRI.getType(OrigReg).getScalarSizeInBits() == 1 &&
703 "Unexpected bit size of a bool arg");
704 MIRBuilder.buildTrunc(
705 OrigReg, MIRBuilder.buildAssertZExt(WideTy, WideReg, 1).getReg(0));
709 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
710 uint64_t StackSize = Assigner.StackSize;
711 if (F.isVarArg()) {
712 if ((!Subtarget.isTargetDarwin() && !Subtarget.isWindowsArm64EC()) || IsWin64) {
713 // The AAPCS variadic function ABI is identical to the non-variadic
714 // one. As a result there may be more arguments in registers and we should
715 // save them for future reference.
716 // Win64 variadic functions also pass arguments in registers, but all
717 // float arguments are passed in integer registers.
718 saveVarArgRegisters(MIRBuilder, Handler, CCInfo);
719 } else if (Subtarget.isWindowsArm64EC()) {
720 return false;
723 // We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
724 StackSize = alignTo(Assigner.StackSize, Subtarget.isTargetILP32() ? 4 : 8);
726 auto &MFI = MIRBuilder.getMF().getFrameInfo();
727 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackSize, true));
730 if (doesCalleeRestoreStack(F.getCallingConv(),
731 MF.getTarget().Options.GuaranteedTailCallOpt)) {
732 // We have a non-standard ABI, so why not make full use of the stack that
733 // we're going to pop? It must be aligned to 16 B in any case.
734 StackSize = alignTo(StackSize, 16);
736 // If we're expected to restore the stack (e.g. fastcc), then we'll be
737 // adding a multiple of 16.
738 FuncInfo->setArgumentStackToRestore(StackSize);
740 // Our own callers will guarantee that the space is free by giving an
741 // aligned value to CALLSEQ_START.
744 // When we tail call, we need to check if the callee's arguments
745 // will fit on the caller's stack. So, whenever we lower formal arguments,
746 // we should keep track of this information, since we might lower a tail call
747 // in this function later.
748 FuncInfo->setBytesInStackArgArea(StackSize);
750 if (Subtarget.hasCustomCallingConv())
751 Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
753 handleMustTailForwardedRegisters(MIRBuilder, AssignFn);
755 // Move back to the end of the basic block.
756 MIRBuilder.setMBB(MBB);
758 return true;
761 /// Return true if the calling convention is one that we can guarantee TCO for.
762 static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
763 return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
764 CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
767 /// Return true if we might ever do TCO for calls with this calling convention.
768 static bool mayTailCallThisCC(CallingConv::ID CC) {
769 switch (CC) {
770 case CallingConv::C:
771 case CallingConv::PreserveMost:
772 case CallingConv::PreserveAll:
773 case CallingConv::Swift:
774 case CallingConv::SwiftTail:
775 case CallingConv::Tail:
776 case CallingConv::Fast:
777 return true;
778 default:
779 return false;
783 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
784 /// CC.
785 static std::pair<CCAssignFn *, CCAssignFn *>
786 getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
787 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
790 bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
791 CallLoweringInfo &Info, MachineFunction &MF,
792 SmallVectorImpl<ArgInfo> &InArgs) const {
793 const Function &CallerF = MF.getFunction();
794 CallingConv::ID CalleeCC = Info.CallConv;
795 CallingConv::ID CallerCC = CallerF.getCallingConv();
797 // If the calling conventions match, then everything must be the same.
798 if (CalleeCC == CallerCC)
799 return true;
801 // Check if the caller and callee will handle arguments in the same way.
802 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
803 CCAssignFn *CalleeAssignFnFixed;
804 CCAssignFn *CalleeAssignFnVarArg;
805 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
806 getAssignFnsForCC(CalleeCC, TLI);
808 CCAssignFn *CallerAssignFnFixed;
809 CCAssignFn *CallerAssignFnVarArg;
810 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
811 getAssignFnsForCC(CallerCC, TLI);
813 AArch64IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
814 CalleeAssignFnVarArg);
815 AArch64IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
816 CallerAssignFnVarArg);
818 if (!resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner))
819 return false;
821 // Make sure that the caller and callee preserve all of the same registers.
822 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
823 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
824 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
825 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
826 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
827 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
830 return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
833 bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
834 CallLoweringInfo &Info, MachineFunction &MF,
835 SmallVectorImpl<ArgInfo> &OrigOutArgs) const {
836 // If there are no outgoing arguments, then we are done.
837 if (OrigOutArgs.empty())
838 return true;
840 const Function &CallerF = MF.getFunction();
841 LLVMContext &Ctx = CallerF.getContext();
842 CallingConv::ID CalleeCC = Info.CallConv;
843 CallingConv::ID CallerCC = CallerF.getCallingConv();
844 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
845 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
847 CCAssignFn *AssignFnFixed;
848 CCAssignFn *AssignFnVarArg;
849 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
851 // We have outgoing arguments. Make sure that we can tail call with them.
852 SmallVector<CCValAssign, 16> OutLocs;
853 CCState OutInfo(CalleeCC, false, MF, OutLocs, Ctx);
855 AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg,
856 Subtarget, /*IsReturn*/ false);
857 // determineAssignments() may modify argument flags, so make a copy.
858 SmallVector<ArgInfo, 8> OutArgs;
859 append_range(OutArgs, OrigOutArgs);
860 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) {
861 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
862 return false;
865 // Make sure that they can fit on the caller's stack.
866 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
867 if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) {
868 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
869 return false;
872 // Verify that the parameters in callee-saved registers match.
873 // TODO: Port this over to CallLowering as general code once swiftself is
874 // supported.
875 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
876 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
877 MachineRegisterInfo &MRI = MF.getRegInfo();
879 if (Info.IsVarArg) {
880 // Be conservative and disallow variadic memory operands to match SDAG's
881 // behaviour.
882 // FIXME: If the caller's calling convention is C, then we can
883 // potentially use its argument area. However, for cases like fastcc,
884 // we can't do anything.
885 for (unsigned i = 0; i < OutLocs.size(); ++i) {
886 auto &ArgLoc = OutLocs[i];
887 if (ArgLoc.isRegLoc())
888 continue;
890 LLVM_DEBUG(
891 dbgs()
892 << "... Cannot tail call vararg function with stack arguments\n");
893 return false;
897 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
900 bool AArch64CallLowering::isEligibleForTailCallOptimization(
901 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
902 SmallVectorImpl<ArgInfo> &InArgs,
903 SmallVectorImpl<ArgInfo> &OutArgs) const {
905 // Must pass all target-independent checks in order to tail call optimize.
906 if (!Info.IsTailCall)
907 return false;
909 CallingConv::ID CalleeCC = Info.CallConv;
910 MachineFunction &MF = MIRBuilder.getMF();
911 const Function &CallerF = MF.getFunction();
913 LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");
915 if (Info.SwiftErrorVReg) {
916 // TODO: We should handle this.
917 // Note that this is also handled by the check for no outgoing arguments.
918 // Proactively disabling this though, because the swifterror handling in
919 // lowerCall inserts a COPY *after* the location of the call.
920 LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
921 return false;
924 if (!mayTailCallThisCC(CalleeCC)) {
925 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
926 return false;
929 // Byval parameters hand the function a pointer directly into the stack area
930 // we want to reuse during a tail call. Working around this *is* possible (see
931 // X86).
933 // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
934 // it?
936 // On Windows, "inreg" attributes signify non-aggregate indirect returns.
937 // In this case, it is necessary to save/restore X0 in the callee. Tail
938 // call opt interferes with this. So we disable tail call opt when the
939 // caller has an argument with "inreg" attribute.
941 // FIXME: Check whether the callee also has an "inreg" argument.
943 // When the caller has a swifterror argument, we don't want to tail call
944 // because would have to move into the swifterror register before the
945 // tail call.
946 if (any_of(CallerF.args(), [](const Argument &A) {
947 return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
948 })) {
949 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
950 "inreg, or swifterror arguments\n");
951 return false;
954 // Externally-defined functions with weak linkage should not be
955 // tail-called on AArch64 when the OS does not support dynamic
956 // pre-emption of symbols, as the AAELF spec requires normal calls
957 // to undefined weak functions to be replaced with a NOP or jump to the
958 // next instruction. The behaviour of branch instructions in this
959 // situation (as used for tail calls) is implementation-defined, so we
960 // cannot rely on the linker replacing the tail call with a return.
961 if (Info.Callee.isGlobal()) {
962 const GlobalValue *GV = Info.Callee.getGlobal();
963 const Triple &TT = MF.getTarget().getTargetTriple();
964 if (GV->hasExternalWeakLinkage() &&
965 (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
966 TT.isOSBinFormatMachO())) {
967 LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
968 "with weak linkage for this OS.\n");
969 return false;
973 // If we have -tailcallopt, then we're done.
974 if (canGuaranteeTCO(CalleeCC, MF.getTarget().Options.GuaranteedTailCallOpt))
975 return CalleeCC == CallerF.getCallingConv();
977 // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
978 // Try to find cases where we can do that.
980 // I want anyone implementing a new calling convention to think long and hard
981 // about this assert.
982 assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
983 "Unexpected variadic calling convention");
985 // Verify that the incoming and outgoing arguments from the callee are
986 // safe to tail call.
987 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
988 LLVM_DEBUG(
989 dbgs()
990 << "... Caller and callee have incompatible calling conventions.\n");
991 return false;
994 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
995 return false;
997 LLVM_DEBUG(
998 dbgs() << "... Call is eligible for tail call optimization.\n");
999 return true;
1002 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
1003 bool IsTailCall) {
1004 if (!IsTailCall)
1005 return IsIndirect ? getBLRCallOpcode(CallerF) : (unsigned)AArch64::BL;
1007 if (!IsIndirect)
1008 return AArch64::TCRETURNdi;
1010 // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
1011 // x16 or x17.
1012 if (CallerF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement())
1013 return AArch64::TCRETURNriBTI;
1015 return AArch64::TCRETURNri;
1018 static const uint32_t *
1019 getMaskForArgs(SmallVectorImpl<AArch64CallLowering::ArgInfo> &OutArgs,
1020 AArch64CallLowering::CallLoweringInfo &Info,
1021 const AArch64RegisterInfo &TRI, MachineFunction &MF) {
1022 const uint32_t *Mask;
1023 if (!OutArgs.empty() && OutArgs[0].Flags[0].isReturned()) {
1024 // For 'this' returns, use the X0-preserving mask if applicable
1025 Mask = TRI.getThisReturnPreservedMask(MF, Info.CallConv);
1026 if (!Mask) {
1027 OutArgs[0].Flags[0].setReturned(false);
1028 Mask = TRI.getCallPreservedMask(MF, Info.CallConv);
1030 } else {
1031 Mask = TRI.getCallPreservedMask(MF, Info.CallConv);
1033 return Mask;
1036 bool AArch64CallLowering::lowerTailCall(
1037 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
1038 SmallVectorImpl<ArgInfo> &OutArgs) const {
1039 MachineFunction &MF = MIRBuilder.getMF();
1040 const Function &F = MF.getFunction();
1041 MachineRegisterInfo &MRI = MF.getRegInfo();
1042 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
1043 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1045 // True when we're tail calling, but without -tailcallopt.
1046 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt &&
1047 Info.CallConv != CallingConv::Tail &&
1048 Info.CallConv != CallingConv::SwiftTail;
1050 // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
1051 // register class. Until we can do that, we should fall back here.
1052 if (MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) {
1053 LLVM_DEBUG(
1054 dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
1055 return false;
1058 // Find out which ABI gets to decide where things go.
1059 CallingConv::ID CalleeCC = Info.CallConv;
1060 CCAssignFn *AssignFnFixed;
1061 CCAssignFn *AssignFnVarArg;
1062 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1064 MachineInstrBuilder CallSeqStart;
1065 if (!IsSibCall)
1066 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
1068 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
1069 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1070 MIB.add(Info.Callee);
1072 // Byte offset for the tail call. When we are sibcalling, this will always
1073 // be 0.
1074 MIB.addImm(0);
1076 // Tell the call which registers are clobbered.
1077 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1078 auto TRI = Subtarget.getRegisterInfo();
1079 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
1080 if (Subtarget.hasCustomCallingConv())
1081 TRI->UpdateCustomCallPreservedMask(MF, &Mask);
1082 MIB.addRegMask(Mask);
1084 if (Info.CFIType)
1085 MIB->setCFIType(MF, Info.CFIType->getZExtValue());
1087 if (TRI->isAnyArgRegReserved(MF))
1088 TRI->emitReservedArgRegCallError(MF);
1090 // FPDiff is the byte offset of the call's argument area from the callee's.
1091 // Stores to callee stack arguments will be placed in FixedStackSlots offset
1092 // by this amount for a tail call. In a sibling call it must be 0 because the
1093 // caller will deallocate the entire stack and the callee still expects its
1094 // arguments to begin at SP+0.
1095 int FPDiff = 0;
1097 // This will be 0 for sibcalls, potentially nonzero for tail calls produced
1098 // by -tailcallopt. For sibcalls, the memory operands for the call are
1099 // already available in the caller's incoming argument space.
1100 unsigned NumBytes = 0;
1101 if (!IsSibCall) {
1102 // We aren't sibcalling, so we need to compute FPDiff. We need to do this
1103 // before handling assignments, because FPDiff must be known for memory
1104 // arguments.
1105 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1106 SmallVector<CCValAssign, 16> OutLocs;
1107 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
1109 AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg,
1110 Subtarget, /*IsReturn*/ false);
1111 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
1112 return false;
1114 // The callee will pop the argument stack as a tail call. Thus, we must
1115 // keep it 16-byte aligned.
1116 NumBytes = alignTo(OutInfo.getStackSize(), 16);
1118 // FPDiff will be negative if this tail call requires more space than we
1119 // would automatically have in our incoming argument space. Positive if we
1120 // actually shrink the stack.
1121 FPDiff = NumReusableBytes - NumBytes;
1123 // Update the required reserved area if this is the tail call requiring the
1124 // most argument stack space.
1125 if (FPDiff < 0 && FuncInfo->getTailCallReservedStack() < (unsigned)-FPDiff)
1126 FuncInfo->setTailCallReservedStack(-FPDiff);
1128 // The stack pointer must be 16-byte aligned at all times it's used for a
1129 // memory operation, which in practice means at *all* times and in
1130 // particular across call boundaries. Therefore our own arguments started at
1131 // a 16-byte aligned SP and the delta applied for the tail call should
1132 // satisfy the same constraint.
1133 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
1136 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
1138 AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg,
1139 Subtarget, /*IsReturn*/ false);
1141 // Do the actual argument marshalling.
1142 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB,
1143 /*IsTailCall*/ true, FPDiff);
1144 if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder,
1145 CalleeCC, Info.IsVarArg))
1146 return false;
1148 Mask = getMaskForArgs(OutArgs, Info, *TRI, MF);
1150 if (Info.IsVarArg && Info.IsMustTailCall) {
1151 // Now we know what's being passed to the function. Add uses to the call for
1152 // the forwarded registers that we *aren't* passing as parameters. This will
1153 // preserve the copies we build earlier.
1154 for (const auto &F : Forwards) {
1155 Register ForwardedReg = F.PReg;
1156 // If the register is already passed, or aliases a register which is
1157 // already being passed, then skip it.
1158 if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
1159 if (!Use.isReg())
1160 return false;
1161 return TRI->regsOverlap(Use.getReg(), ForwardedReg);
1163 continue;
1165 // We aren't passing it already, so we should add it to the call.
1166 MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
1167 MIB.addReg(ForwardedReg, RegState::Implicit);
1171 // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1172 // sequence start and end here.
1173 if (!IsSibCall) {
1174 MIB->getOperand(1).setImm(FPDiff);
1175 CallSeqStart.addImm(0).addImm(0);
1176 // End the call sequence *before* emitting the call. Normally, we would
1177 // tidy the frame up after the call. However, here, we've laid out the
1178 // parameters so that when SP is reset, they will be in the correct
1179 // location.
1180 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(0).addImm(0);
1183 // Now we can add the actual call instruction to the correct basic block.
1184 MIRBuilder.insertInstr(MIB);
1186 // If Callee is a reg, since it is used by a target specific instruction,
1187 // it must have a register class matching the constraint of that instruction.
1188 if (MIB->getOperand(0).isReg())
1189 constrainOperandRegClass(MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
1190 *MF.getSubtarget().getRegBankInfo(), *MIB,
1191 MIB->getDesc(), MIB->getOperand(0), 0);
1193 MF.getFrameInfo().setHasTailCall();
1194 Info.LoweredTailCall = true;
1195 return true;
1198 bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1199 CallLoweringInfo &Info) const {
1200 MachineFunction &MF = MIRBuilder.getMF();
1201 const Function &F = MF.getFunction();
1202 MachineRegisterInfo &MRI = MF.getRegInfo();
1203 auto &DL = F.getParent()->getDataLayout();
1204 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
1205 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1207 // Arm64EC has extra requirements for varargs calls; bail out for now.
1208 if (Info.IsVarArg && Subtarget.isWindowsArm64EC())
1209 return false;
1211 SmallVector<ArgInfo, 8> OutArgs;
1212 for (auto &OrigArg : Info.OrigArgs) {
1213 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1214 // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
1215 auto &Flags = OrigArg.Flags[0];
1216 if (OrigArg.Ty->isIntegerTy(1) && !Flags.isSExt() && !Flags.isZExt()) {
1217 ArgInfo &OutArg = OutArgs.back();
1218 assert(OutArg.Regs.size() == 1 &&
1219 MRI.getType(OutArg.Regs[0]).getSizeInBits() == 1 &&
1220 "Unexpected registers used for i1 arg");
1222 // We cannot use a ZExt ArgInfo flag here, because it will
1223 // zero-extend the argument to i32 instead of just i8.
1224 OutArg.Regs[0] =
1225 MIRBuilder.buildZExt(LLT::scalar(8), OutArg.Regs[0]).getReg(0);
1226 LLVMContext &Ctx = MF.getFunction().getContext();
1227 OutArg.Ty = Type::getInt8Ty(Ctx);
1231 SmallVector<ArgInfo, 8> InArgs;
1232 if (!Info.OrigRet.Ty->isVoidTy())
1233 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1235 // If we can lower as a tail call, do that instead.
1236 bool CanTailCallOpt =
1237 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1239 // We must emit a tail call if we have musttail.
1240 if (Info.IsMustTailCall && !CanTailCallOpt) {
1241 // There are types of incoming/outgoing arguments we can't handle yet, so
1242 // it doesn't make sense to actually die here like in ISelLowering. Instead,
1243 // fall back to SelectionDAG and let it try to handle this.
1244 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1245 return false;
1248 Info.IsTailCall = CanTailCallOpt;
1249 if (CanTailCallOpt)
1250 return lowerTailCall(MIRBuilder, Info, OutArgs);
1252 // Find out which ABI gets to decide where things go.
1253 CCAssignFn *AssignFnFixed;
1254 CCAssignFn *AssignFnVarArg;
1255 std::tie(AssignFnFixed, AssignFnVarArg) =
1256 getAssignFnsForCC(Info.CallConv, TLI);
1258 MachineInstrBuilder CallSeqStart;
1259 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
1261 // Create a temporarily-floating call instruction so we can add the implicit
1262 // uses of arg registers.
1264 unsigned Opc = 0;
1265 // Calls with operand bundle "clang.arc.attachedcall" are special. They should
1266 // be expanded to the call, directly followed by a special marker sequence and
1267 // a call to an ObjC library function.
1268 if (Info.CB && objcarc::hasAttachedCallOpBundle(Info.CB))
1269 Opc = AArch64::BLR_RVMARKER;
1270 // A call to a returns twice function like setjmp must be followed by a bti
1271 // instruction.
1272 else if (Info.CB && Info.CB->hasFnAttr(Attribute::ReturnsTwice) &&
1273 !Subtarget.noBTIAtReturnTwice() &&
1274 MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement())
1275 Opc = AArch64::BLR_BTI;
1276 else
1277 Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1279 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1280 unsigned CalleeOpNo = 0;
1282 if (Opc == AArch64::BLR_RVMARKER) {
1283 // Add a target global address for the retainRV/claimRV runtime function
1284 // just before the call target.
1285 Function *ARCFn = *objcarc::getAttachedARCFunction(Info.CB);
1286 MIB.addGlobalAddress(ARCFn);
1287 ++CalleeOpNo;
1288 } else if (Info.CFIType) {
1289 MIB->setCFIType(MF, Info.CFIType->getZExtValue());
1292 MIB.add(Info.Callee);
1294 // Tell the call which registers are clobbered.
1295 const uint32_t *Mask;
1296 const auto *TRI = Subtarget.getRegisterInfo();
1298 AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg,
1299 Subtarget, /*IsReturn*/ false);
1300 // Do the actual argument marshalling.
1301 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, /*IsReturn*/ false);
1302 if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder,
1303 Info.CallConv, Info.IsVarArg))
1304 return false;
1306 Mask = getMaskForArgs(OutArgs, Info, *TRI, MF);
1308 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
1309 TRI->UpdateCustomCallPreservedMask(MF, &Mask);
1310 MIB.addRegMask(Mask);
1312 if (TRI->isAnyArgRegReserved(MF))
1313 TRI->emitReservedArgRegCallError(MF);
1315 // Now we can add the actual call instruction to the correct basic block.
1316 MIRBuilder.insertInstr(MIB);
1318 uint64_t CalleePopBytes =
1319 doesCalleeRestoreStack(Info.CallConv,
1320 MF.getTarget().Options.GuaranteedTailCallOpt)
1321 ? alignTo(Assigner.StackSize, 16)
1322 : 0;
1324 CallSeqStart.addImm(Assigner.StackSize).addImm(0);
1325 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
1326 .addImm(Assigner.StackSize)
1327 .addImm(CalleePopBytes);
1329 // If Callee is a reg, since it is used by a target specific
1330 // instruction, it must have a register class matching the
1331 // constraint of that instruction.
1332 if (MIB->getOperand(CalleeOpNo).isReg())
1333 constrainOperandRegClass(MF, *TRI, MRI, *Subtarget.getInstrInfo(),
1334 *Subtarget.getRegBankInfo(), *MIB, MIB->getDesc(),
1335 MIB->getOperand(CalleeOpNo), CalleeOpNo);
1337 // Finally we can copy the returned value back into its virtual-register. In
1338 // symmetry with the arguments, the physical register must be an
1339 // implicit-define of the call instruction.
1340 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1341 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv);
1342 CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1343 bool UsingReturnedArg =
1344 !OutArgs.empty() && OutArgs[0].Flags[0].isReturned();
1346 AArch64OutgoingValueAssigner Assigner(RetAssignFn, RetAssignFn, Subtarget,
1347 /*IsReturn*/ false);
1348 ReturnedArgCallReturnHandler ReturnedArgHandler(MIRBuilder, MRI, MIB);
1349 if (!determineAndHandleAssignments(
1350 UsingReturnedArg ? ReturnedArgHandler : Handler, Assigner, InArgs,
1351 MIRBuilder, Info.CallConv, Info.IsVarArg,
1352 UsingReturnedArg ? ArrayRef(OutArgs[0].Regs) : std::nullopt))
1353 return false;
1356 if (Info.SwiftErrorVReg) {
1357 MIB.addDef(AArch64::X21, RegState::Implicit);
1358 MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
1361 if (!Info.CanLowerReturn) {
1362 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1363 Info.DemoteRegister, Info.DemoteStackIndex);
1365 return true;
1368 bool AArch64CallLowering::isTypeIsValidForThisReturn(EVT Ty) const {
1369 return Ty.getSizeInBits() == 64;