replace some function names
[linux-2.6/zen-sources.git] / mm / page_alloc.c
blob62cc9160920a9f660c3992e5df61cd09847dee1c
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
55 * Array of node states.
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
68 EXPORT_SYMBOL(node_states);
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
79 static void __free_pages_ok(struct page *page, unsigned int order);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
101 #endif
105 EXPORT_SYMBOL(totalram_pages);
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
121 int min_free_kbytes = 1024;
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
170 int page_group_by_mobility_disabled __read_mostly;
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
193 return ret;
196 static int page_is_consistent(struct zone *zone, struct page *page)
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
203 return 1;
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone *zone, struct page *page)
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
215 return 0;
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
220 return 0;
222 #endif
224 static void bad_page(struct page *page)
226 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
227 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
228 current->comm, page, (int)(2*sizeof(unsigned long)),
229 (unsigned long)page->flags, page->mapping,
230 page_mapcount(page), page_count(page));
232 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
233 KERN_EMERG "Backtrace:\n");
234 dump_stack();
235 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
236 set_page_count(page, 0);
237 reset_page_mapcount(page);
238 page->mapping = NULL;
239 add_taint(TAINT_BAD_PAGE);
243 * Higher-order pages are called "compound pages". They are structured thusly:
245 * The first PAGE_SIZE page is called the "head page".
247 * The remaining PAGE_SIZE pages are called "tail pages".
249 * All pages have PG_compound set. All pages have their ->private pointing at
250 * the head page (even the head page has this).
252 * The first tail page's ->lru.next holds the address of the compound page's
253 * put_page() function. Its ->lru.prev holds the order of allocation.
254 * This usage means that zero-order pages may not be compound.
257 static void free_compound_page(struct page *page)
259 __free_pages_ok(page, compound_order(page));
262 void prep_compound_page(struct page *page, unsigned long order)
264 int i;
265 int nr_pages = 1 << order;
267 set_compound_page_dtor(page, free_compound_page);
268 set_compound_order(page, order);
269 __SetPageHead(page);
270 for (i = 1; i < nr_pages; i++) {
271 struct page *p = page + i;
273 __SetPageTail(p);
274 p->first_page = page;
278 #ifdef CONFIG_HUGETLBFS
279 void prep_compound_gigantic_page(struct page *page, unsigned long order)
281 int i;
282 int nr_pages = 1 << order;
283 struct page *p = page + 1;
285 set_compound_page_dtor(page, free_compound_page);
286 set_compound_order(page, order);
287 __SetPageHead(page);
288 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
289 __SetPageTail(p);
290 p->first_page = page;
293 #endif
295 static void destroy_compound_page(struct page *page, unsigned long order)
297 int i;
298 int nr_pages = 1 << order;
300 if (unlikely(compound_order(page) != order))
301 bad_page(page);
303 if (unlikely(!PageHead(page)))
304 bad_page(page);
305 __ClearPageHead(page);
306 for (i = 1; i < nr_pages; i++) {
307 struct page *p = page + i;
309 if (unlikely(!PageTail(p) |
310 (p->first_page != page)))
311 bad_page(page);
312 __ClearPageTail(p);
316 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
318 int i;
321 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
322 * and __GFP_HIGHMEM from hard or soft interrupt context.
324 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
325 for (i = 0; i < (1 << order); i++)
326 clear_highpage(page + i);
329 static inline void set_page_order(struct page *page, int order)
331 set_page_private(page, order);
332 __SetPageBuddy(page);
335 static inline void rmv_page_order(struct page *page)
337 __ClearPageBuddy(page);
338 set_page_private(page, 0);
342 * Locate the struct page for both the matching buddy in our
343 * pair (buddy1) and the combined O(n+1) page they form (page).
345 * 1) Any buddy B1 will have an order O twin B2 which satisfies
346 * the following equation:
347 * B2 = B1 ^ (1 << O)
348 * For example, if the starting buddy (buddy2) is #8 its order
349 * 1 buddy is #10:
350 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
352 * 2) Any buddy B will have an order O+1 parent P which
353 * satisfies the following equation:
354 * P = B & ~(1 << O)
356 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
358 static inline struct page *
359 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
361 unsigned long buddy_idx = page_idx ^ (1 << order);
363 return page + (buddy_idx - page_idx);
366 static inline unsigned long
367 __find_combined_index(unsigned long page_idx, unsigned int order)
369 return (page_idx & ~(1 << order));
373 * This function checks whether a page is free && is the buddy
374 * we can do coalesce a page and its buddy if
375 * (a) the buddy is not in a hole &&
376 * (b) the buddy is in the buddy system &&
377 * (c) a page and its buddy have the same order &&
378 * (d) a page and its buddy are in the same zone.
380 * For recording whether a page is in the buddy system, we use PG_buddy.
381 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
383 * For recording page's order, we use page_private(page).
385 static inline int page_is_buddy(struct page *page, struct page *buddy,
386 int order)
388 if (!pfn_valid_within(page_to_pfn(buddy)))
389 return 0;
391 if (page_zone_id(page) != page_zone_id(buddy))
392 return 0;
394 if (PageBuddy(buddy) && page_order(buddy) == order) {
395 BUG_ON(page_count(buddy) != 0);
396 return 1;
398 return 0;
402 * Freeing function for a buddy system allocator.
404 * The concept of a buddy system is to maintain direct-mapped table
405 * (containing bit values) for memory blocks of various "orders".
406 * The bottom level table contains the map for the smallest allocatable
407 * units of memory (here, pages), and each level above it describes
408 * pairs of units from the levels below, hence, "buddies".
409 * At a high level, all that happens here is marking the table entry
410 * at the bottom level available, and propagating the changes upward
411 * as necessary, plus some accounting needed to play nicely with other
412 * parts of the VM system.
413 * At each level, we keep a list of pages, which are heads of continuous
414 * free pages of length of (1 << order) and marked with PG_buddy. Page's
415 * order is recorded in page_private(page) field.
416 * So when we are allocating or freeing one, we can derive the state of the
417 * other. That is, if we allocate a small block, and both were
418 * free, the remainder of the region must be split into blocks.
419 * If a block is freed, and its buddy is also free, then this
420 * triggers coalescing into a block of larger size.
422 * -- wli
425 static inline void __free_one_page(struct page *page,
426 struct zone *zone, unsigned int order)
428 unsigned long page_idx;
429 int order_size = 1 << order;
430 int migratetype = get_pageblock_migratetype(page);
432 if (unlikely(PageCompound(page)))
433 destroy_compound_page(page, order);
435 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
437 VM_BUG_ON(page_idx & (order_size - 1));
438 VM_BUG_ON(bad_range(zone, page));
440 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
441 while (order < MAX_ORDER-1) {
442 unsigned long combined_idx;
443 struct page *buddy;
445 buddy = __page_find_buddy(page, page_idx, order);
446 if (!page_is_buddy(page, buddy, order))
447 break;
449 /* Our buddy is free, merge with it and move up one order. */
450 list_del(&buddy->lru);
451 zone->free_area[order].nr_free--;
452 rmv_page_order(buddy);
453 combined_idx = __find_combined_index(page_idx, order);
454 page = page + (combined_idx - page_idx);
455 page_idx = combined_idx;
456 order++;
458 set_page_order(page, order);
459 list_add(&page->lru,
460 &zone->free_area[order].free_list[migratetype]);
461 zone->free_area[order].nr_free++;
464 static inline int free_pages_check(struct page *page)
466 free_page_mlock(page);
467 if (unlikely(page_mapcount(page) |
468 (page->mapping != NULL) |
469 (page_count(page) != 0) |
470 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
471 bad_page(page);
472 if (PageDirty(page))
473 __ClearPageDirty(page);
474 if (PageSwapBacked(page))
475 __ClearPageSwapBacked(page);
477 * For now, we report if PG_reserved was found set, but do not
478 * clear it, and do not free the page. But we shall soon need
479 * to do more, for when the ZERO_PAGE count wraps negative.
481 return PageReserved(page);
485 * Frees a list of pages.
486 * Assumes all pages on list are in same zone, and of same order.
487 * count is the number of pages to free.
489 * If the zone was previously in an "all pages pinned" state then look to
490 * see if this freeing clears that state.
492 * And clear the zone's pages_scanned counter, to hold off the "all pages are
493 * pinned" detection logic.
495 static void free_pages_bulk(struct zone *zone, int count,
496 struct list_head *list, int order)
498 spin_lock(&zone->lock);
499 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
500 zone->pages_scanned = 0;
501 while (count--) {
502 struct page *page;
504 VM_BUG_ON(list_empty(list));
505 page = list_entry(list->prev, struct page, lru);
506 /* have to delete it as __free_one_page list manipulates */
507 list_del(&page->lru);
508 __free_one_page(page, zone, order);
510 spin_unlock(&zone->lock);
513 static void free_one_page(struct zone *zone, struct page *page, int order)
515 spin_lock(&zone->lock);
516 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
517 zone->pages_scanned = 0;
518 __free_one_page(page, zone, order);
519 spin_unlock(&zone->lock);
522 static void __free_pages_ok(struct page *page, unsigned int order)
524 unsigned long flags;
525 int i;
526 int reserved = 0;
528 for (i = 0 ; i < (1 << order) ; ++i)
529 reserved += free_pages_check(page + i);
530 if (reserved)
531 return;
533 if (!PageHighMem(page)) {
534 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
535 debug_check_no_obj_freed(page_address(page),
536 PAGE_SIZE << order);
538 arch_free_page(page, order);
539 kernel_map_pages(page, 1 << order, 0);
541 local_irq_save(flags);
542 __count_vm_events(PGFREE, 1 << order);
543 free_one_page(page_zone(page), page, order);
544 local_irq_restore(flags);
548 * permit the bootmem allocator to evade page validation on high-order frees
550 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
552 if (order == 0) {
553 __ClearPageReserved(page);
554 set_page_count(page, 0);
555 set_page_refcounted(page);
556 __free_page(page);
557 } else {
558 int loop;
560 prefetchw(page);
561 for (loop = 0; loop < BITS_PER_LONG; loop++) {
562 struct page *p = &page[loop];
564 if (loop + 1 < BITS_PER_LONG)
565 prefetchw(p + 1);
566 __ClearPageReserved(p);
567 set_page_count(p, 0);
570 set_page_refcounted(page);
571 __free_pages(page, order);
577 * The order of subdivision here is critical for the IO subsystem.
578 * Please do not alter this order without good reasons and regression
579 * testing. Specifically, as large blocks of memory are subdivided,
580 * the order in which smaller blocks are delivered depends on the order
581 * they're subdivided in this function. This is the primary factor
582 * influencing the order in which pages are delivered to the IO
583 * subsystem according to empirical testing, and this is also justified
584 * by considering the behavior of a buddy system containing a single
585 * large block of memory acted on by a series of small allocations.
586 * This behavior is a critical factor in sglist merging's success.
588 * -- wli
590 static inline void expand(struct zone *zone, struct page *page,
591 int low, int high, struct free_area *area,
592 int migratetype)
594 unsigned long size = 1 << high;
596 while (high > low) {
597 area--;
598 high--;
599 size >>= 1;
600 VM_BUG_ON(bad_range(zone, &page[size]));
601 list_add(&page[size].lru, &area->free_list[migratetype]);
602 area->nr_free++;
603 set_page_order(&page[size], high);
608 * This page is about to be returned from the page allocator
610 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
612 if (unlikely(page_mapcount(page) |
613 (page->mapping != NULL) |
614 (page_count(page) != 0) |
615 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
616 bad_page(page);
619 * For now, we report if PG_reserved was found set, but do not
620 * clear it, and do not allocate the page: as a safety net.
622 if (PageReserved(page))
623 return 1;
625 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
626 1 << PG_referenced | 1 << PG_arch_1 |
627 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk
628 #ifdef CONFIG_UNEVICTABLE_LRU
629 | 1 << PG_mlocked
630 #endif
632 set_page_private(page, 0);
633 set_page_refcounted(page);
635 arch_alloc_page(page, order);
636 kernel_map_pages(page, 1 << order, 1);
638 if (gfp_flags & __GFP_ZERO)
639 prep_zero_page(page, order, gfp_flags);
641 if (order && (gfp_flags & __GFP_COMP))
642 prep_compound_page(page, order);
644 return 0;
648 * Go through the free lists for the given migratetype and remove
649 * the smallest available page from the freelists
651 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
652 int migratetype)
654 unsigned int current_order;
655 struct free_area * area;
656 struct page *page;
658 /* Find a page of the appropriate size in the preferred list */
659 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
660 area = &(zone->free_area[current_order]);
661 if (list_empty(&area->free_list[migratetype]))
662 continue;
664 page = list_entry(area->free_list[migratetype].next,
665 struct page, lru);
666 list_del(&page->lru);
667 rmv_page_order(page);
668 area->nr_free--;
669 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
670 expand(zone, page, order, current_order, area, migratetype);
671 return page;
674 return NULL;
679 * This array describes the order lists are fallen back to when
680 * the free lists for the desirable migrate type are depleted
682 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
683 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
684 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
685 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
686 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
690 * Move the free pages in a range to the free lists of the requested type.
691 * Note that start_page and end_pages are not aligned on a pageblock
692 * boundary. If alignment is required, use move_freepages_block()
694 static int move_freepages(struct zone *zone,
695 struct page *start_page, struct page *end_page,
696 int migratetype)
698 struct page *page;
699 unsigned long order;
700 int pages_moved = 0;
702 #ifndef CONFIG_HOLES_IN_ZONE
704 * page_zone is not safe to call in this context when
705 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
706 * anyway as we check zone boundaries in move_freepages_block().
707 * Remove at a later date when no bug reports exist related to
708 * grouping pages by mobility
710 BUG_ON(page_zone(start_page) != page_zone(end_page));
711 #endif
713 for (page = start_page; page <= end_page;) {
714 /* Make sure we are not inadvertently changing nodes */
715 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
717 if (!pfn_valid_within(page_to_pfn(page))) {
718 page++;
719 continue;
722 if (!PageBuddy(page)) {
723 page++;
724 continue;
727 order = page_order(page);
728 list_del(&page->lru);
729 list_add(&page->lru,
730 &zone->free_area[order].free_list[migratetype]);
731 page += 1 << order;
732 pages_moved += 1 << order;
735 return pages_moved;
738 static int move_freepages_block(struct zone *zone, struct page *page,
739 int migratetype)
741 unsigned long start_pfn, end_pfn;
742 struct page *start_page, *end_page;
744 start_pfn = page_to_pfn(page);
745 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
746 start_page = pfn_to_page(start_pfn);
747 end_page = start_page + pageblock_nr_pages - 1;
748 end_pfn = start_pfn + pageblock_nr_pages - 1;
750 /* Do not cross zone boundaries */
751 if (start_pfn < zone->zone_start_pfn)
752 start_page = page;
753 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
754 return 0;
756 return move_freepages(zone, start_page, end_page, migratetype);
759 /* Remove an element from the buddy allocator from the fallback list */
760 static struct page *__rmqueue_fallback(struct zone *zone, int order,
761 int start_migratetype)
763 struct free_area * area;
764 int current_order;
765 struct page *page;
766 int migratetype, i;
768 /* Find the largest possible block of pages in the other list */
769 for (current_order = MAX_ORDER-1; current_order >= order;
770 --current_order) {
771 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
772 migratetype = fallbacks[start_migratetype][i];
774 /* MIGRATE_RESERVE handled later if necessary */
775 if (migratetype == MIGRATE_RESERVE)
776 continue;
778 area = &(zone->free_area[current_order]);
779 if (list_empty(&area->free_list[migratetype]))
780 continue;
782 page = list_entry(area->free_list[migratetype].next,
783 struct page, lru);
784 area->nr_free--;
787 * If breaking a large block of pages, move all free
788 * pages to the preferred allocation list. If falling
789 * back for a reclaimable kernel allocation, be more
790 * agressive about taking ownership of free pages
792 if (unlikely(current_order >= (pageblock_order >> 1)) ||
793 start_migratetype == MIGRATE_RECLAIMABLE) {
794 unsigned long pages;
795 pages = move_freepages_block(zone, page,
796 start_migratetype);
798 /* Claim the whole block if over half of it is free */
799 if (pages >= (1 << (pageblock_order-1)))
800 set_pageblock_migratetype(page,
801 start_migratetype);
803 migratetype = start_migratetype;
806 /* Remove the page from the freelists */
807 list_del(&page->lru);
808 rmv_page_order(page);
809 __mod_zone_page_state(zone, NR_FREE_PAGES,
810 -(1UL << order));
812 if (current_order == pageblock_order)
813 set_pageblock_migratetype(page,
814 start_migratetype);
816 expand(zone, page, order, current_order, area, migratetype);
817 return page;
821 /* Use MIGRATE_RESERVE rather than fail an allocation */
822 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
826 * Do the hard work of removing an element from the buddy allocator.
827 * Call me with the zone->lock already held.
829 static struct page *__rmqueue(struct zone *zone, unsigned int order,
830 int migratetype)
832 struct page *page;
834 page = __rmqueue_smallest(zone, order, migratetype);
836 if (unlikely(!page))
837 page = __rmqueue_fallback(zone, order, migratetype);
839 return page;
843 * Obtain a specified number of elements from the buddy allocator, all under
844 * a single hold of the lock, for efficiency. Add them to the supplied list.
845 * Returns the number of new pages which were placed at *list.
847 static int rmqueue_bulk(struct zone *zone, unsigned int order,
848 unsigned long count, struct list_head *list,
849 int migratetype)
851 int i;
853 spin_lock(&zone->lock);
854 for (i = 0; i < count; ++i) {
855 struct page *page = __rmqueue(zone, order, migratetype);
856 if (unlikely(page == NULL))
857 break;
860 * Split buddy pages returned by expand() are received here
861 * in physical page order. The page is added to the callers and
862 * list and the list head then moves forward. From the callers
863 * perspective, the linked list is ordered by page number in
864 * some conditions. This is useful for IO devices that can
865 * merge IO requests if the physical pages are ordered
866 * properly.
868 list_add(&page->lru, list);
869 set_page_private(page, migratetype);
870 list = &page->lru;
872 spin_unlock(&zone->lock);
873 return i;
876 #ifdef CONFIG_NUMA
878 * Called from the vmstat counter updater to drain pagesets of this
879 * currently executing processor on remote nodes after they have
880 * expired.
882 * Note that this function must be called with the thread pinned to
883 * a single processor.
885 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
887 unsigned long flags;
888 int to_drain;
890 local_irq_save(flags);
891 if (pcp->count >= pcp->batch)
892 to_drain = pcp->batch;
893 else
894 to_drain = pcp->count;
895 free_pages_bulk(zone, to_drain, &pcp->list, 0);
896 pcp->count -= to_drain;
897 local_irq_restore(flags);
899 #endif
902 * Drain pages of the indicated processor.
904 * The processor must either be the current processor and the
905 * thread pinned to the current processor or a processor that
906 * is not online.
908 static void drain_pages(unsigned int cpu)
910 unsigned long flags;
911 struct zone *zone;
913 for_each_zone(zone) {
914 struct per_cpu_pageset *pset;
915 struct per_cpu_pages *pcp;
917 if (!populated_zone(zone))
918 continue;
920 pset = zone_pcp(zone, cpu);
922 pcp = &pset->pcp;
923 local_irq_save(flags);
924 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
925 pcp->count = 0;
926 local_irq_restore(flags);
931 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
933 void drain_local_pages(void *arg)
935 drain_pages(smp_processor_id());
939 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
941 void drain_all_pages(void)
943 on_each_cpu(drain_local_pages, NULL, 1);
946 #ifdef CONFIG_HIBERNATION
948 void mark_free_pages(struct zone *zone)
950 unsigned long pfn, max_zone_pfn;
951 unsigned long flags;
952 int order, t;
953 struct list_head *curr;
955 if (!zone->spanned_pages)
956 return;
958 spin_lock_irqsave(&zone->lock, flags);
960 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
961 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
962 if (pfn_valid(pfn)) {
963 struct page *page = pfn_to_page(pfn);
965 if (!swsusp_page_is_forbidden(page))
966 swsusp_unset_page_free(page);
969 for_each_migratetype_order(order, t) {
970 list_for_each(curr, &zone->free_area[order].free_list[t]) {
971 unsigned long i;
973 pfn = page_to_pfn(list_entry(curr, struct page, lru));
974 for (i = 0; i < (1UL << order); i++)
975 swsusp_set_page_free(pfn_to_page(pfn + i));
978 spin_unlock_irqrestore(&zone->lock, flags);
980 #endif /* CONFIG_PM */
983 * Free a 0-order page
985 static void free_hot_cold_page(struct page *page, int cold)
987 struct zone *zone = page_zone(page);
988 struct per_cpu_pages *pcp;
989 unsigned long flags;
991 if (PageAnon(page))
992 page->mapping = NULL;
993 if (free_pages_check(page))
994 return;
996 if (!PageHighMem(page)) {
997 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
998 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1000 arch_free_page(page, 0);
1001 kernel_map_pages(page, 1, 0);
1003 pcp = &zone_pcp(zone, get_cpu())->pcp;
1004 local_irq_save(flags);
1005 __count_vm_event(PGFREE);
1006 if (cold)
1007 list_add_tail(&page->lru, &pcp->list);
1008 else
1009 list_add(&page->lru, &pcp->list);
1010 set_page_private(page, get_pageblock_migratetype(page));
1011 pcp->count++;
1012 if (pcp->count >= pcp->high) {
1013 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1014 pcp->count -= pcp->batch;
1016 local_irq_restore(flags);
1017 put_cpu();
1020 void free_hot_page(struct page *page)
1022 free_hot_cold_page(page, 0);
1025 void free_cold_page(struct page *page)
1027 free_hot_cold_page(page, 1);
1031 * split_page takes a non-compound higher-order page, and splits it into
1032 * n (1<<order) sub-pages: page[0..n]
1033 * Each sub-page must be freed individually.
1035 * Note: this is probably too low level an operation for use in drivers.
1036 * Please consult with lkml before using this in your driver.
1038 void split_page(struct page *page, unsigned int order)
1040 int i;
1042 VM_BUG_ON(PageCompound(page));
1043 VM_BUG_ON(!page_count(page));
1044 for (i = 1; i < (1 << order); i++)
1045 set_page_refcounted(page + i);
1049 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1050 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1051 * or two.
1053 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1054 struct zone *zone, int order, gfp_t gfp_flags)
1056 unsigned long flags;
1057 struct page *page;
1058 int cold = !!(gfp_flags & __GFP_COLD);
1059 int cpu;
1060 int migratetype = allocflags_to_migratetype(gfp_flags);
1062 again:
1063 cpu = get_cpu();
1064 if (likely(order == 0)) {
1065 struct per_cpu_pages *pcp;
1067 pcp = &zone_pcp(zone, cpu)->pcp;
1068 local_irq_save(flags);
1069 if (!pcp->count) {
1070 pcp->count = rmqueue_bulk(zone, 0,
1071 pcp->batch, &pcp->list, migratetype);
1072 if (unlikely(!pcp->count))
1073 goto failed;
1076 /* Find a page of the appropriate migrate type */
1077 if (cold) {
1078 list_for_each_entry_reverse(page, &pcp->list, lru)
1079 if (page_private(page) == migratetype)
1080 break;
1081 } else {
1082 list_for_each_entry(page, &pcp->list, lru)
1083 if (page_private(page) == migratetype)
1084 break;
1087 /* Allocate more to the pcp list if necessary */
1088 if (unlikely(&page->lru == &pcp->list)) {
1089 pcp->count += rmqueue_bulk(zone, 0,
1090 pcp->batch, &pcp->list, migratetype);
1091 page = list_entry(pcp->list.next, struct page, lru);
1094 list_del(&page->lru);
1095 pcp->count--;
1096 } else {
1097 spin_lock_irqsave(&zone->lock, flags);
1098 page = __rmqueue(zone, order, migratetype);
1099 spin_unlock(&zone->lock);
1100 if (!page)
1101 goto failed;
1104 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1105 zone_statistics(preferred_zone, zone);
1106 local_irq_restore(flags);
1107 put_cpu();
1109 VM_BUG_ON(bad_range(zone, page));
1110 if (prep_new_page(page, order, gfp_flags))
1111 goto again;
1112 return page;
1114 failed:
1115 local_irq_restore(flags);
1116 put_cpu();
1117 return NULL;
1120 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1121 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1122 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1123 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1124 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1125 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1126 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1128 #ifdef CONFIG_FAIL_PAGE_ALLOC
1130 static struct fail_page_alloc_attr {
1131 struct fault_attr attr;
1133 u32 ignore_gfp_highmem;
1134 u32 ignore_gfp_wait;
1135 u32 min_order;
1137 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1139 struct dentry *ignore_gfp_highmem_file;
1140 struct dentry *ignore_gfp_wait_file;
1141 struct dentry *min_order_file;
1143 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1145 } fail_page_alloc = {
1146 .attr = FAULT_ATTR_INITIALIZER,
1147 .ignore_gfp_wait = 1,
1148 .ignore_gfp_highmem = 1,
1149 .min_order = 1,
1152 static int __init setup_fail_page_alloc(char *str)
1154 return setup_fault_attr(&fail_page_alloc.attr, str);
1156 __setup("fail_page_alloc=", setup_fail_page_alloc);
1158 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1160 if (order < fail_page_alloc.min_order)
1161 return 0;
1162 if (gfp_mask & __GFP_NOFAIL)
1163 return 0;
1164 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1165 return 0;
1166 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1167 return 0;
1169 return should_fail(&fail_page_alloc.attr, 1 << order);
1172 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1174 static int __init fail_page_alloc_debugfs(void)
1176 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1177 struct dentry *dir;
1178 int err;
1180 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1181 "fail_page_alloc");
1182 if (err)
1183 return err;
1184 dir = fail_page_alloc.attr.dentries.dir;
1186 fail_page_alloc.ignore_gfp_wait_file =
1187 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1188 &fail_page_alloc.ignore_gfp_wait);
1190 fail_page_alloc.ignore_gfp_highmem_file =
1191 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1192 &fail_page_alloc.ignore_gfp_highmem);
1193 fail_page_alloc.min_order_file =
1194 debugfs_create_u32("min-order", mode, dir,
1195 &fail_page_alloc.min_order);
1197 if (!fail_page_alloc.ignore_gfp_wait_file ||
1198 !fail_page_alloc.ignore_gfp_highmem_file ||
1199 !fail_page_alloc.min_order_file) {
1200 err = -ENOMEM;
1201 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1202 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1203 debugfs_remove(fail_page_alloc.min_order_file);
1204 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1207 return err;
1210 late_initcall(fail_page_alloc_debugfs);
1212 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1214 #else /* CONFIG_FAIL_PAGE_ALLOC */
1216 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1218 return 0;
1221 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1224 * Return 1 if free pages are above 'mark'. This takes into account the order
1225 * of the allocation.
1227 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1228 int classzone_idx, int alloc_flags)
1230 /* free_pages my go negative - that's OK */
1231 long min = mark;
1232 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1233 int o;
1235 if (alloc_flags & ALLOC_HIGH)
1236 min -= min / 2;
1237 if (alloc_flags & ALLOC_HARDER)
1238 min -= min / 4;
1240 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1241 return 0;
1242 for (o = 0; o < order; o++) {
1243 /* At the next order, this order's pages become unavailable */
1244 free_pages -= z->free_area[o].nr_free << o;
1246 /* Require fewer higher order pages to be free */
1247 min >>= 1;
1249 if (free_pages <= min)
1250 return 0;
1252 return 1;
1255 #ifdef CONFIG_NUMA
1257 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1258 * skip over zones that are not allowed by the cpuset, or that have
1259 * been recently (in last second) found to be nearly full. See further
1260 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1261 * that have to skip over a lot of full or unallowed zones.
1263 * If the zonelist cache is present in the passed in zonelist, then
1264 * returns a pointer to the allowed node mask (either the current
1265 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1267 * If the zonelist cache is not available for this zonelist, does
1268 * nothing and returns NULL.
1270 * If the fullzones BITMAP in the zonelist cache is stale (more than
1271 * a second since last zap'd) then we zap it out (clear its bits.)
1273 * We hold off even calling zlc_setup, until after we've checked the
1274 * first zone in the zonelist, on the theory that most allocations will
1275 * be satisfied from that first zone, so best to examine that zone as
1276 * quickly as we can.
1278 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1280 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1281 nodemask_t *allowednodes; /* zonelist_cache approximation */
1283 zlc = zonelist->zlcache_ptr;
1284 if (!zlc)
1285 return NULL;
1287 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1288 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1289 zlc->last_full_zap = jiffies;
1292 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1293 &cpuset_current_mems_allowed :
1294 &node_states[N_HIGH_MEMORY];
1295 return allowednodes;
1299 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1300 * if it is worth looking at further for free memory:
1301 * 1) Check that the zone isn't thought to be full (doesn't have its
1302 * bit set in the zonelist_cache fullzones BITMAP).
1303 * 2) Check that the zones node (obtained from the zonelist_cache
1304 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1305 * Return true (non-zero) if zone is worth looking at further, or
1306 * else return false (zero) if it is not.
1308 * This check -ignores- the distinction between various watermarks,
1309 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1310 * found to be full for any variation of these watermarks, it will
1311 * be considered full for up to one second by all requests, unless
1312 * we are so low on memory on all allowed nodes that we are forced
1313 * into the second scan of the zonelist.
1315 * In the second scan we ignore this zonelist cache and exactly
1316 * apply the watermarks to all zones, even it is slower to do so.
1317 * We are low on memory in the second scan, and should leave no stone
1318 * unturned looking for a free page.
1320 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1321 nodemask_t *allowednodes)
1323 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1324 int i; /* index of *z in zonelist zones */
1325 int n; /* node that zone *z is on */
1327 zlc = zonelist->zlcache_ptr;
1328 if (!zlc)
1329 return 1;
1331 i = z - zonelist->_zonerefs;
1332 n = zlc->z_to_n[i];
1334 /* This zone is worth trying if it is allowed but not full */
1335 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1339 * Given 'z' scanning a zonelist, set the corresponding bit in
1340 * zlc->fullzones, so that subsequent attempts to allocate a page
1341 * from that zone don't waste time re-examining it.
1343 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1345 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1346 int i; /* index of *z in zonelist zones */
1348 zlc = zonelist->zlcache_ptr;
1349 if (!zlc)
1350 return;
1352 i = z - zonelist->_zonerefs;
1354 set_bit(i, zlc->fullzones);
1357 #else /* CONFIG_NUMA */
1359 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1361 return NULL;
1364 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1365 nodemask_t *allowednodes)
1367 return 1;
1370 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1373 #endif /* CONFIG_NUMA */
1376 * get_page_from_freelist goes through the zonelist trying to allocate
1377 * a page.
1379 static struct page *
1380 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1381 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1383 struct zoneref *z;
1384 struct page *page = NULL;
1385 int classzone_idx;
1386 struct zone *zone, *preferred_zone;
1387 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1388 int zlc_active = 0; /* set if using zonelist_cache */
1389 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1391 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1392 &preferred_zone);
1393 if (!preferred_zone)
1394 return NULL;
1396 classzone_idx = zone_idx(preferred_zone);
1398 zonelist_scan:
1400 * Scan zonelist, looking for a zone with enough free.
1401 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1403 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1404 high_zoneidx, nodemask) {
1405 if (NUMA_BUILD && zlc_active &&
1406 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1407 continue;
1408 if ((alloc_flags & ALLOC_CPUSET) &&
1409 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1410 goto try_next_zone;
1412 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1413 unsigned long mark;
1414 if (alloc_flags & ALLOC_WMARK_MIN)
1415 mark = zone->pages_min;
1416 else if (alloc_flags & ALLOC_WMARK_LOW)
1417 mark = zone->pages_low;
1418 else
1419 mark = zone->pages_high;
1420 if (!zone_watermark_ok(zone, order, mark,
1421 classzone_idx, alloc_flags)) {
1422 if (!zone_reclaim_mode ||
1423 !zone_reclaim(zone, gfp_mask, order))
1424 goto this_zone_full;
1428 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1429 if (page)
1430 break;
1431 this_zone_full:
1432 if (NUMA_BUILD)
1433 zlc_mark_zone_full(zonelist, z);
1434 try_next_zone:
1435 if (NUMA_BUILD && !did_zlc_setup) {
1436 /* we do zlc_setup after the first zone is tried */
1437 allowednodes = zlc_setup(zonelist, alloc_flags);
1438 zlc_active = 1;
1439 did_zlc_setup = 1;
1443 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1444 /* Disable zlc cache for second zonelist scan */
1445 zlc_active = 0;
1446 goto zonelist_scan;
1448 return page;
1452 * This is the 'heart' of the zoned buddy allocator.
1454 struct page *
1455 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1456 struct zonelist *zonelist, nodemask_t *nodemask)
1458 const gfp_t wait = gfp_mask & __GFP_WAIT;
1459 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1460 struct zoneref *z;
1461 struct zone *zone;
1462 struct page *page;
1463 struct reclaim_state reclaim_state;
1464 struct task_struct *p = current;
1465 int do_retry;
1466 int alloc_flags;
1467 unsigned long did_some_progress;
1468 unsigned long pages_reclaimed = 0;
1470 might_sleep_if(wait);
1472 if (should_fail_alloc_page(gfp_mask, order))
1473 return NULL;
1475 restart:
1476 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1478 if (unlikely(!z->zone)) {
1480 * Happens if we have an empty zonelist as a result of
1481 * GFP_THISNODE being used on a memoryless node
1483 return NULL;
1486 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1487 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1488 if (page)
1489 goto got_pg;
1492 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1493 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1494 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1495 * using a larger set of nodes after it has established that the
1496 * allowed per node queues are empty and that nodes are
1497 * over allocated.
1499 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1500 goto nopage;
1502 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1503 wakeup_kswapd(zone, order);
1506 * OK, we're below the kswapd watermark and have kicked background
1507 * reclaim. Now things get more complex, so set up alloc_flags according
1508 * to how we want to proceed.
1510 * The caller may dip into page reserves a bit more if the caller
1511 * cannot run direct reclaim, or if the caller has realtime scheduling
1512 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1513 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1515 alloc_flags = ALLOC_WMARK_MIN;
1516 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1517 alloc_flags |= ALLOC_HARDER;
1518 if (gfp_mask & __GFP_HIGH)
1519 alloc_flags |= ALLOC_HIGH;
1520 if (wait)
1521 alloc_flags |= ALLOC_CPUSET;
1524 * Go through the zonelist again. Let __GFP_HIGH and allocations
1525 * coming from realtime tasks go deeper into reserves.
1527 * This is the last chance, in general, before the goto nopage.
1528 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1529 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1531 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1532 high_zoneidx, alloc_flags);
1533 if (page)
1534 goto got_pg;
1536 /* This allocation should allow future memory freeing. */
1538 rebalance:
1539 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1540 && !in_interrupt()) {
1541 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1542 nofail_alloc:
1543 /* go through the zonelist yet again, ignoring mins */
1544 page = get_page_from_freelist(gfp_mask, nodemask, order,
1545 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1546 if (page)
1547 goto got_pg;
1548 if (gfp_mask & __GFP_NOFAIL) {
1549 congestion_wait(WRITE, HZ/50);
1550 goto nofail_alloc;
1553 goto nopage;
1556 /* Atomic allocations - we can't balance anything */
1557 if (!wait)
1558 goto nopage;
1560 cond_resched();
1562 /* We now go into synchronous reclaim */
1563 cpuset_memory_pressure_bump();
1565 * The task's cpuset might have expanded its set of allowable nodes
1567 cpuset_update_task_memory_state();
1568 p->flags |= PF_MEMALLOC;
1569 reclaim_state.reclaimed_slab = 0;
1570 p->reclaim_state = &reclaim_state;
1572 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1574 p->reclaim_state = NULL;
1575 p->flags &= ~PF_MEMALLOC;
1577 cond_resched();
1579 if (order != 0)
1580 drain_all_pages();
1582 if (likely(did_some_progress)) {
1583 page = get_page_from_freelist(gfp_mask, nodemask, order,
1584 zonelist, high_zoneidx, alloc_flags);
1585 if (page)
1586 goto got_pg;
1587 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1588 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1589 schedule_timeout_uninterruptible(1);
1590 goto restart;
1594 * Go through the zonelist yet one more time, keep
1595 * very high watermark here, this is only to catch
1596 * a parallel oom killing, we must fail if we're still
1597 * under heavy pressure.
1599 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1600 order, zonelist, high_zoneidx,
1601 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1602 if (page) {
1603 clear_zonelist_oom(zonelist, gfp_mask);
1604 goto got_pg;
1607 /* The OOM killer will not help higher order allocs so fail */
1608 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1609 clear_zonelist_oom(zonelist, gfp_mask);
1610 goto nopage;
1613 out_of_memory(zonelist, gfp_mask, order);
1614 clear_zonelist_oom(zonelist, gfp_mask);
1615 goto restart;
1619 * Don't let big-order allocations loop unless the caller explicitly
1620 * requests that. Wait for some write requests to complete then retry.
1622 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1623 * means __GFP_NOFAIL, but that may not be true in other
1624 * implementations.
1626 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1627 * specified, then we retry until we no longer reclaim any pages
1628 * (above), or we've reclaimed an order of pages at least as
1629 * large as the allocation's order. In both cases, if the
1630 * allocation still fails, we stop retrying.
1632 pages_reclaimed += did_some_progress;
1633 do_retry = 0;
1634 if (!(gfp_mask & __GFP_NORETRY)) {
1635 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1636 do_retry = 1;
1637 } else {
1638 if (gfp_mask & __GFP_REPEAT &&
1639 pages_reclaimed < (1 << order))
1640 do_retry = 1;
1642 if (gfp_mask & __GFP_NOFAIL)
1643 do_retry = 1;
1645 if (do_retry) {
1646 congestion_wait(WRITE, HZ/50);
1647 goto rebalance;
1650 nopage:
1651 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1652 printk(KERN_WARNING "%s: page allocation failure."
1653 " order:%d, mode:0x%x\n",
1654 p->comm, order, gfp_mask);
1655 dump_stack();
1656 show_mem();
1658 got_pg:
1659 return page;
1661 EXPORT_SYMBOL(__alloc_pages_internal);
1664 * Common helper functions.
1666 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1668 struct page * page;
1669 page = alloc_pages(gfp_mask, order);
1670 if (!page)
1671 return 0;
1672 return (unsigned long) page_address(page);
1675 EXPORT_SYMBOL(__get_free_pages);
1677 unsigned long get_zeroed_page(gfp_t gfp_mask)
1679 struct page * page;
1682 * get_zeroed_page() returns a 32-bit address, which cannot represent
1683 * a highmem page
1685 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1687 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1688 if (page)
1689 return (unsigned long) page_address(page);
1690 return 0;
1693 EXPORT_SYMBOL(get_zeroed_page);
1695 void __pagevec_free(struct pagevec *pvec)
1697 int i = pagevec_count(pvec);
1699 while (--i >= 0)
1700 free_hot_cold_page(pvec->pages[i], pvec->cold);
1703 void __free_pages(struct page *page, unsigned int order)
1705 if (put_page_testzero(page)) {
1706 if (order == 0)
1707 free_hot_page(page);
1708 else
1709 __free_pages_ok(page, order);
1713 EXPORT_SYMBOL(__free_pages);
1715 void free_pages(unsigned long addr, unsigned int order)
1717 if (addr != 0) {
1718 VM_BUG_ON(!virt_addr_valid((void *)addr));
1719 __free_pages(virt_to_page((void *)addr), order);
1723 EXPORT_SYMBOL(free_pages);
1726 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1727 * @size: the number of bytes to allocate
1728 * @gfp_mask: GFP flags for the allocation
1730 * This function is similar to alloc_pages(), except that it allocates the
1731 * minimum number of pages to satisfy the request. alloc_pages() can only
1732 * allocate memory in power-of-two pages.
1734 * This function is also limited by MAX_ORDER.
1736 * Memory allocated by this function must be released by free_pages_exact().
1738 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1740 unsigned int order = get_order(size);
1741 unsigned long addr;
1743 addr = __get_free_pages(gfp_mask, order);
1744 if (addr) {
1745 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1746 unsigned long used = addr + PAGE_ALIGN(size);
1748 split_page(virt_to_page(addr), order);
1749 while (used < alloc_end) {
1750 free_page(used);
1751 used += PAGE_SIZE;
1755 return (void *)addr;
1757 EXPORT_SYMBOL(alloc_pages_exact);
1760 * free_pages_exact - release memory allocated via alloc_pages_exact()
1761 * @virt: the value returned by alloc_pages_exact.
1762 * @size: size of allocation, same value as passed to alloc_pages_exact().
1764 * Release the memory allocated by a previous call to alloc_pages_exact.
1766 void free_pages_exact(void *virt, size_t size)
1768 unsigned long addr = (unsigned long)virt;
1769 unsigned long end = addr + PAGE_ALIGN(size);
1771 while (addr < end) {
1772 free_page(addr);
1773 addr += PAGE_SIZE;
1776 EXPORT_SYMBOL(free_pages_exact);
1778 static unsigned int nr_free_zone_pages(int offset)
1780 struct zoneref *z;
1781 struct zone *zone;
1783 /* Just pick one node, since fallback list is circular */
1784 unsigned int sum = 0;
1786 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1788 for_each_zone_zonelist(zone, z, zonelist, offset) {
1789 unsigned long size = zone->present_pages;
1790 unsigned long high = zone->pages_high;
1791 if (size > high)
1792 sum += size - high;
1795 return sum;
1798 static unsigned int nr_unallocated_zone_pages(int offset)
1800 struct zoneref *z;
1801 struct zone *zone;
1803 /* Just pick one node, since fallback list is circular */
1804 unsigned int sum = 0;
1806 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1808 for_each_zone_zonelist(zone, z, zonelist, offset) {
1809 unsigned long high = zone->pages_high;
1810 unsigned long left = zone_page_state(zone, NR_FREE_PAGES);
1811 if (left > high)
1812 sum += left - high;
1815 return sum;
1819 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1821 unsigned int nr_free_buffer_pages(void)
1823 return nr_free_zone_pages(gfp_zone(GFP_USER));
1825 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1828 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1830 unsigned int nr_unallocated_buffer_pages(void)
1832 return nr_unallocated_zone_pages(gfp_zone(GFP_USER));
1834 EXPORT_IF_TOI_MODULAR(nr_unallocated_buffer_pages);
1837 * Amount of free RAM allocatable within all zones
1839 unsigned int nr_free_pagecache_pages(void)
1841 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1844 static inline void show_node(struct zone *zone)
1846 if (NUMA_BUILD)
1847 printk("Node %d ", zone_to_nid(zone));
1850 void si_meminfo(struct sysinfo *val)
1852 val->totalram = totalram_pages;
1853 val->sharedram = 0;
1854 val->freeram = global_page_state(NR_FREE_PAGES);
1855 val->bufferram = nr_blockdev_pages();
1856 val->totalhigh = totalhigh_pages;
1857 val->freehigh = nr_free_highpages();
1858 val->mem_unit = PAGE_SIZE;
1861 EXPORT_SYMBOL(si_meminfo);
1863 #ifdef CONFIG_NUMA
1864 void si_meminfo_node(struct sysinfo *val, int nid)
1866 pg_data_t *pgdat = NODE_DATA(nid);
1868 val->totalram = pgdat->node_present_pages;
1869 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1870 #ifdef CONFIG_HIGHMEM
1871 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1872 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1873 NR_FREE_PAGES);
1874 #else
1875 val->totalhigh = 0;
1876 val->freehigh = 0;
1877 #endif
1878 val->mem_unit = PAGE_SIZE;
1880 #endif
1882 #define K(x) ((x) << (PAGE_SHIFT-10))
1885 * Show free area list (used inside shift_scroll-lock stuff)
1886 * We also calculate the percentage fragmentation. We do this by counting the
1887 * memory on each free list with the exception of the first item on the list.
1889 void show_free_areas(void)
1891 int cpu;
1892 struct zone *zone;
1894 for_each_zone(zone) {
1895 if (!populated_zone(zone))
1896 continue;
1898 show_node(zone);
1899 printk("%s per-cpu:\n", zone->name);
1901 for_each_online_cpu(cpu) {
1902 struct per_cpu_pageset *pageset;
1904 pageset = zone_pcp(zone, cpu);
1906 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1907 cpu, pageset->pcp.high,
1908 pageset->pcp.batch, pageset->pcp.count);
1912 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1913 " inactive_file:%lu"
1914 //TODO: check/adjust line lengths
1915 #ifdef CONFIG_UNEVICTABLE_LRU
1916 " unevictable:%lu"
1917 #endif
1918 " dirty:%lu writeback:%lu unstable:%lu\n"
1919 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1920 global_page_state(NR_ACTIVE_ANON),
1921 global_page_state(NR_ACTIVE_FILE),
1922 global_page_state(NR_INACTIVE_ANON),
1923 global_page_state(NR_INACTIVE_FILE),
1924 #ifdef CONFIG_UNEVICTABLE_LRU
1925 global_page_state(NR_UNEVICTABLE),
1926 #endif
1927 global_page_state(NR_FILE_DIRTY),
1928 global_page_state(NR_WRITEBACK),
1929 global_page_state(NR_UNSTABLE_NFS),
1930 global_page_state(NR_FREE_PAGES),
1931 global_page_state(NR_SLAB_RECLAIMABLE) +
1932 global_page_state(NR_SLAB_UNRECLAIMABLE),
1933 global_page_state(NR_FILE_MAPPED),
1934 global_page_state(NR_PAGETABLE),
1935 global_page_state(NR_BOUNCE));
1937 for_each_zone(zone) {
1938 int i;
1940 if (!populated_zone(zone))
1941 continue;
1943 show_node(zone);
1944 printk("%s"
1945 " free:%lukB"
1946 " min:%lukB"
1947 " low:%lukB"
1948 " high:%lukB"
1949 " active_anon:%lukB"
1950 " inactive_anon:%lukB"
1951 " active_file:%lukB"
1952 " inactive_file:%lukB"
1953 #ifdef CONFIG_UNEVICTABLE_LRU
1954 " unevictable:%lukB"
1955 #endif
1956 " present:%lukB"
1957 " pages_scanned:%lu"
1958 " all_unreclaimable? %s"
1959 "\n",
1960 zone->name,
1961 K(zone_page_state(zone, NR_FREE_PAGES)),
1962 K(zone->pages_min),
1963 K(zone->pages_low),
1964 K(zone->pages_high),
1965 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1966 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1967 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1968 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1969 #ifdef CONFIG_UNEVICTABLE_LRU
1970 K(zone_page_state(zone, NR_UNEVICTABLE)),
1971 #endif
1972 K(zone->present_pages),
1973 zone->pages_scanned,
1974 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1976 printk("lowmem_reserve[]:");
1977 for (i = 0; i < MAX_NR_ZONES; i++)
1978 printk(" %lu", zone->lowmem_reserve[i]);
1979 printk("\n");
1982 for_each_zone(zone) {
1983 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1985 if (!populated_zone(zone))
1986 continue;
1988 show_node(zone);
1989 printk("%s: ", zone->name);
1991 spin_lock_irqsave(&zone->lock, flags);
1992 for (order = 0; order < MAX_ORDER; order++) {
1993 nr[order] = zone->free_area[order].nr_free;
1994 total += nr[order] << order;
1996 spin_unlock_irqrestore(&zone->lock, flags);
1997 for (order = 0; order < MAX_ORDER; order++)
1998 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1999 printk("= %lukB\n", K(total));
2002 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2004 show_swap_cache_info();
2007 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2009 zoneref->zone = zone;
2010 zoneref->zone_idx = zone_idx(zone);
2014 * Builds allocation fallback zone lists.
2016 * Add all populated zones of a node to the zonelist.
2018 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2019 int nr_zones, enum zone_type zone_type)
2021 struct zone *zone;
2023 BUG_ON(zone_type >= MAX_NR_ZONES);
2024 zone_type++;
2026 do {
2027 zone_type--;
2028 zone = pgdat->node_zones + zone_type;
2029 if (populated_zone(zone)) {
2030 zoneref_set_zone(zone,
2031 &zonelist->_zonerefs[nr_zones++]);
2032 check_highest_zone(zone_type);
2035 } while (zone_type);
2036 return nr_zones;
2041 * zonelist_order:
2042 * 0 = automatic detection of better ordering.
2043 * 1 = order by ([node] distance, -zonetype)
2044 * 2 = order by (-zonetype, [node] distance)
2046 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2047 * the same zonelist. So only NUMA can configure this param.
2049 #define ZONELIST_ORDER_DEFAULT 0
2050 #define ZONELIST_ORDER_NODE 1
2051 #define ZONELIST_ORDER_ZONE 2
2053 /* zonelist order in the kernel.
2054 * set_zonelist_order() will set this to NODE or ZONE.
2056 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2057 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2060 #ifdef CONFIG_NUMA
2061 /* The value user specified ....changed by config */
2062 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2063 /* string for sysctl */
2064 #define NUMA_ZONELIST_ORDER_LEN 16
2065 char numa_zonelist_order[16] = "default";
2068 * interface for configure zonelist ordering.
2069 * command line option "numa_zonelist_order"
2070 * = "[dD]efault - default, automatic configuration.
2071 * = "[nN]ode - order by node locality, then by zone within node
2072 * = "[zZ]one - order by zone, then by locality within zone
2075 static int __parse_numa_zonelist_order(char *s)
2077 if (*s == 'd' || *s == 'D') {
2078 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2079 } else if (*s == 'n' || *s == 'N') {
2080 user_zonelist_order = ZONELIST_ORDER_NODE;
2081 } else if (*s == 'z' || *s == 'Z') {
2082 user_zonelist_order = ZONELIST_ORDER_ZONE;
2083 } else {
2084 printk(KERN_WARNING
2085 "Ignoring invalid numa_zonelist_order value: "
2086 "%s\n", s);
2087 return -EINVAL;
2089 return 0;
2092 static __init int setup_numa_zonelist_order(char *s)
2094 if (s)
2095 return __parse_numa_zonelist_order(s);
2096 return 0;
2098 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2101 * sysctl handler for numa_zonelist_order
2103 int numa_zonelist_order_handler(ctl_table *table, int write,
2104 struct file *file, void __user *buffer, size_t *length,
2105 loff_t *ppos)
2107 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2108 int ret;
2110 if (write)
2111 strncpy(saved_string, (char*)table->data,
2112 NUMA_ZONELIST_ORDER_LEN);
2113 ret = proc_dostring(table, write, file, buffer, length, ppos);
2114 if (ret)
2115 return ret;
2116 if (write) {
2117 int oldval = user_zonelist_order;
2118 if (__parse_numa_zonelist_order((char*)table->data)) {
2120 * bogus value. restore saved string
2122 strncpy((char*)table->data, saved_string,
2123 NUMA_ZONELIST_ORDER_LEN);
2124 user_zonelist_order = oldval;
2125 } else if (oldval != user_zonelist_order)
2126 build_all_zonelists();
2128 return 0;
2132 #define MAX_NODE_LOAD (num_online_nodes())
2133 static int node_load[MAX_NUMNODES];
2136 * find_next_best_node - find the next node that should appear in a given node's fallback list
2137 * @node: node whose fallback list we're appending
2138 * @used_node_mask: nodemask_t of already used nodes
2140 * We use a number of factors to determine which is the next node that should
2141 * appear on a given node's fallback list. The node should not have appeared
2142 * already in @node's fallback list, and it should be the next closest node
2143 * according to the distance array (which contains arbitrary distance values
2144 * from each node to each node in the system), and should also prefer nodes
2145 * with no CPUs, since presumably they'll have very little allocation pressure
2146 * on them otherwise.
2147 * It returns -1 if no node is found.
2149 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2151 int n, val;
2152 int min_val = INT_MAX;
2153 int best_node = -1;
2154 node_to_cpumask_ptr(tmp, 0);
2156 /* Use the local node if we haven't already */
2157 if (!node_isset(node, *used_node_mask)) {
2158 node_set(node, *used_node_mask);
2159 return node;
2162 for_each_node_state(n, N_HIGH_MEMORY) {
2164 /* Don't want a node to appear more than once */
2165 if (node_isset(n, *used_node_mask))
2166 continue;
2168 /* Use the distance array to find the distance */
2169 val = node_distance(node, n);
2171 /* Penalize nodes under us ("prefer the next node") */
2172 val += (n < node);
2174 /* Give preference to headless and unused nodes */
2175 node_to_cpumask_ptr_next(tmp, n);
2176 if (!cpus_empty(*tmp))
2177 val += PENALTY_FOR_NODE_WITH_CPUS;
2179 /* Slight preference for less loaded node */
2180 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2181 val += node_load[n];
2183 if (val < min_val) {
2184 min_val = val;
2185 best_node = n;
2189 if (best_node >= 0)
2190 node_set(best_node, *used_node_mask);
2192 return best_node;
2197 * Build zonelists ordered by node and zones within node.
2198 * This results in maximum locality--normal zone overflows into local
2199 * DMA zone, if any--but risks exhausting DMA zone.
2201 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2203 int j;
2204 struct zonelist *zonelist;
2206 zonelist = &pgdat->node_zonelists[0];
2207 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2209 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2210 MAX_NR_ZONES - 1);
2211 zonelist->_zonerefs[j].zone = NULL;
2212 zonelist->_zonerefs[j].zone_idx = 0;
2216 * Build gfp_thisnode zonelists
2218 static void build_thisnode_zonelists(pg_data_t *pgdat)
2220 int j;
2221 struct zonelist *zonelist;
2223 zonelist = &pgdat->node_zonelists[1];
2224 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2225 zonelist->_zonerefs[j].zone = NULL;
2226 zonelist->_zonerefs[j].zone_idx = 0;
2230 * Build zonelists ordered by zone and nodes within zones.
2231 * This results in conserving DMA zone[s] until all Normal memory is
2232 * exhausted, but results in overflowing to remote node while memory
2233 * may still exist in local DMA zone.
2235 static int node_order[MAX_NUMNODES];
2237 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2239 int pos, j, node;
2240 int zone_type; /* needs to be signed */
2241 struct zone *z;
2242 struct zonelist *zonelist;
2244 zonelist = &pgdat->node_zonelists[0];
2245 pos = 0;
2246 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2247 for (j = 0; j < nr_nodes; j++) {
2248 node = node_order[j];
2249 z = &NODE_DATA(node)->node_zones[zone_type];
2250 if (populated_zone(z)) {
2251 zoneref_set_zone(z,
2252 &zonelist->_zonerefs[pos++]);
2253 check_highest_zone(zone_type);
2257 zonelist->_zonerefs[pos].zone = NULL;
2258 zonelist->_zonerefs[pos].zone_idx = 0;
2261 static int default_zonelist_order(void)
2263 int nid, zone_type;
2264 unsigned long low_kmem_size,total_size;
2265 struct zone *z;
2266 int average_size;
2268 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2269 * If they are really small and used heavily, the system can fall
2270 * into OOM very easily.
2271 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2273 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2274 low_kmem_size = 0;
2275 total_size = 0;
2276 for_each_online_node(nid) {
2277 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2278 z = &NODE_DATA(nid)->node_zones[zone_type];
2279 if (populated_zone(z)) {
2280 if (zone_type < ZONE_NORMAL)
2281 low_kmem_size += z->present_pages;
2282 total_size += z->present_pages;
2286 if (!low_kmem_size || /* there are no DMA area. */
2287 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2288 return ZONELIST_ORDER_NODE;
2290 * look into each node's config.
2291 * If there is a node whose DMA/DMA32 memory is very big area on
2292 * local memory, NODE_ORDER may be suitable.
2294 average_size = total_size /
2295 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2296 for_each_online_node(nid) {
2297 low_kmem_size = 0;
2298 total_size = 0;
2299 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2300 z = &NODE_DATA(nid)->node_zones[zone_type];
2301 if (populated_zone(z)) {
2302 if (zone_type < ZONE_NORMAL)
2303 low_kmem_size += z->present_pages;
2304 total_size += z->present_pages;
2307 if (low_kmem_size &&
2308 total_size > average_size && /* ignore small node */
2309 low_kmem_size > total_size * 70/100)
2310 return ZONELIST_ORDER_NODE;
2312 return ZONELIST_ORDER_ZONE;
2315 static void set_zonelist_order(void)
2317 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2318 current_zonelist_order = default_zonelist_order();
2319 else
2320 current_zonelist_order = user_zonelist_order;
2323 static void build_zonelists(pg_data_t *pgdat)
2325 int j, node, load;
2326 enum zone_type i;
2327 nodemask_t used_mask;
2328 int local_node, prev_node;
2329 struct zonelist *zonelist;
2330 int order = current_zonelist_order;
2332 /* initialize zonelists */
2333 for (i = 0; i < MAX_ZONELISTS; i++) {
2334 zonelist = pgdat->node_zonelists + i;
2335 zonelist->_zonerefs[0].zone = NULL;
2336 zonelist->_zonerefs[0].zone_idx = 0;
2339 /* NUMA-aware ordering of nodes */
2340 local_node = pgdat->node_id;
2341 load = num_online_nodes();
2342 prev_node = local_node;
2343 nodes_clear(used_mask);
2345 memset(node_load, 0, sizeof(node_load));
2346 memset(node_order, 0, sizeof(node_order));
2347 j = 0;
2349 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2350 int distance = node_distance(local_node, node);
2353 * If another node is sufficiently far away then it is better
2354 * to reclaim pages in a zone before going off node.
2356 if (distance > RECLAIM_DISTANCE)
2357 zone_reclaim_mode = 1;
2360 * We don't want to pressure a particular node.
2361 * So adding penalty to the first node in same
2362 * distance group to make it round-robin.
2364 if (distance != node_distance(local_node, prev_node))
2365 node_load[node] = load;
2367 prev_node = node;
2368 load--;
2369 if (order == ZONELIST_ORDER_NODE)
2370 build_zonelists_in_node_order(pgdat, node);
2371 else
2372 node_order[j++] = node; /* remember order */
2375 if (order == ZONELIST_ORDER_ZONE) {
2376 /* calculate node order -- i.e., DMA last! */
2377 build_zonelists_in_zone_order(pgdat, j);
2380 build_thisnode_zonelists(pgdat);
2383 /* Construct the zonelist performance cache - see further mmzone.h */
2384 static void build_zonelist_cache(pg_data_t *pgdat)
2386 struct zonelist *zonelist;
2387 struct zonelist_cache *zlc;
2388 struct zoneref *z;
2390 zonelist = &pgdat->node_zonelists[0];
2391 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2392 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2393 for (z = zonelist->_zonerefs; z->zone; z++)
2394 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2398 #else /* CONFIG_NUMA */
2400 static void set_zonelist_order(void)
2402 current_zonelist_order = ZONELIST_ORDER_ZONE;
2405 static void build_zonelists(pg_data_t *pgdat)
2407 int node, local_node;
2408 enum zone_type j;
2409 struct zonelist *zonelist;
2411 local_node = pgdat->node_id;
2413 zonelist = &pgdat->node_zonelists[0];
2414 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2417 * Now we build the zonelist so that it contains the zones
2418 * of all the other nodes.
2419 * We don't want to pressure a particular node, so when
2420 * building the zones for node N, we make sure that the
2421 * zones coming right after the local ones are those from
2422 * node N+1 (modulo N)
2424 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2425 if (!node_online(node))
2426 continue;
2427 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2428 MAX_NR_ZONES - 1);
2430 for (node = 0; node < local_node; node++) {
2431 if (!node_online(node))
2432 continue;
2433 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2434 MAX_NR_ZONES - 1);
2437 zonelist->_zonerefs[j].zone = NULL;
2438 zonelist->_zonerefs[j].zone_idx = 0;
2441 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2442 static void build_zonelist_cache(pg_data_t *pgdat)
2444 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2447 #endif /* CONFIG_NUMA */
2449 /* return values int ....just for stop_machine() */
2450 static int __build_all_zonelists(void *dummy)
2452 int nid;
2454 for_each_online_node(nid) {
2455 pg_data_t *pgdat = NODE_DATA(nid);
2457 build_zonelists(pgdat);
2458 build_zonelist_cache(pgdat);
2460 return 0;
2463 void build_all_zonelists(void)
2465 set_zonelist_order();
2467 if (system_state == SYSTEM_BOOTING) {
2468 __build_all_zonelists(NULL);
2469 mminit_verify_zonelist();
2470 cpuset_init_current_mems_allowed();
2471 } else {
2472 /* we have to stop all cpus to guarantee there is no user
2473 of zonelist */
2474 stop_machine(__build_all_zonelists, NULL, NULL);
2475 /* cpuset refresh routine should be here */
2477 vm_total_pages = nr_free_pagecache_pages();
2479 * Disable grouping by mobility if the number of pages in the
2480 * system is too low to allow the mechanism to work. It would be
2481 * more accurate, but expensive to check per-zone. This check is
2482 * made on memory-hotadd so a system can start with mobility
2483 * disabled and enable it later
2485 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2486 page_group_by_mobility_disabled = 1;
2487 else
2488 page_group_by_mobility_disabled = 0;
2490 printk("Built %i zonelists in %s order, mobility grouping %s. "
2491 "Total pages: %ld\n",
2492 num_online_nodes(),
2493 zonelist_order_name[current_zonelist_order],
2494 page_group_by_mobility_disabled ? "off" : "on",
2495 vm_total_pages);
2496 #ifdef CONFIG_NUMA
2497 printk("Policy zone: %s\n", zone_names[policy_zone]);
2498 #endif
2502 * Helper functions to size the waitqueue hash table.
2503 * Essentially these want to choose hash table sizes sufficiently
2504 * large so that collisions trying to wait on pages are rare.
2505 * But in fact, the number of active page waitqueues on typical
2506 * systems is ridiculously low, less than 200. So this is even
2507 * conservative, even though it seems large.
2509 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2510 * waitqueues, i.e. the size of the waitq table given the number of pages.
2512 #define PAGES_PER_WAITQUEUE 256
2514 #ifndef CONFIG_MEMORY_HOTPLUG
2515 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2517 unsigned long size = 1;
2519 pages /= PAGES_PER_WAITQUEUE;
2521 while (size < pages)
2522 size <<= 1;
2525 * Once we have dozens or even hundreds of threads sleeping
2526 * on IO we've got bigger problems than wait queue collision.
2527 * Limit the size of the wait table to a reasonable size.
2529 size = min(size, 4096UL);
2531 return max(size, 4UL);
2533 #else
2535 * A zone's size might be changed by hot-add, so it is not possible to determine
2536 * a suitable size for its wait_table. So we use the maximum size now.
2538 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2540 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2541 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2542 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2544 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2545 * or more by the traditional way. (See above). It equals:
2547 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2548 * ia64(16K page size) : = ( 8G + 4M)byte.
2549 * powerpc (64K page size) : = (32G +16M)byte.
2551 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2553 return 4096UL;
2555 #endif
2558 * This is an integer logarithm so that shifts can be used later
2559 * to extract the more random high bits from the multiplicative
2560 * hash function before the remainder is taken.
2562 static inline unsigned long wait_table_bits(unsigned long size)
2564 return ffz(~size);
2567 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2570 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2571 * of blocks reserved is based on zone->pages_min. The memory within the
2572 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2573 * higher will lead to a bigger reserve which will get freed as contiguous
2574 * blocks as reclaim kicks in
2576 static void setup_zone_migrate_reserve(struct zone *zone)
2578 unsigned long start_pfn, pfn, end_pfn;
2579 struct page *page;
2580 unsigned long reserve, block_migratetype;
2582 /* Get the start pfn, end pfn and the number of blocks to reserve */
2583 start_pfn = zone->zone_start_pfn;
2584 end_pfn = start_pfn + zone->spanned_pages;
2585 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2586 pageblock_order;
2588 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2589 if (!pfn_valid(pfn))
2590 continue;
2591 page = pfn_to_page(pfn);
2593 /* Watch out for overlapping nodes */
2594 if (page_to_nid(page) != zone_to_nid(zone))
2595 continue;
2597 /* Blocks with reserved pages will never free, skip them. */
2598 if (PageReserved(page))
2599 continue;
2601 block_migratetype = get_pageblock_migratetype(page);
2603 /* If this block is reserved, account for it */
2604 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2605 reserve--;
2606 continue;
2609 /* Suitable for reserving if this block is movable */
2610 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2611 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2612 move_freepages_block(zone, page, MIGRATE_RESERVE);
2613 reserve--;
2614 continue;
2618 * If the reserve is met and this is a previous reserved block,
2619 * take it back
2621 if (block_migratetype == MIGRATE_RESERVE) {
2622 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2623 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2629 * Initially all pages are reserved - free ones are freed
2630 * up by free_all_bootmem() once the early boot process is
2631 * done. Non-atomic initialization, single-pass.
2633 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2634 unsigned long start_pfn, enum memmap_context context)
2636 struct page *page;
2637 unsigned long end_pfn = start_pfn + size;
2638 unsigned long pfn;
2639 struct zone *z;
2641 z = &NODE_DATA(nid)->node_zones[zone];
2642 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2644 * There can be holes in boot-time mem_map[]s
2645 * handed to this function. They do not
2646 * exist on hotplugged memory.
2648 if (context == MEMMAP_EARLY) {
2649 if (!early_pfn_valid(pfn))
2650 continue;
2651 if (!early_pfn_in_nid(pfn, nid))
2652 continue;
2654 page = pfn_to_page(pfn);
2655 set_page_links(page, zone, nid, pfn);
2656 mminit_verify_page_links(page, zone, nid, pfn);
2657 init_page_count(page);
2658 reset_page_mapcount(page);
2659 SetPageReserved(page);
2661 * Mark the block movable so that blocks are reserved for
2662 * movable at startup. This will force kernel allocations
2663 * to reserve their blocks rather than leaking throughout
2664 * the address space during boot when many long-lived
2665 * kernel allocations are made. Later some blocks near
2666 * the start are marked MIGRATE_RESERVE by
2667 * setup_zone_migrate_reserve()
2669 * bitmap is created for zone's valid pfn range. but memmap
2670 * can be created for invalid pages (for alignment)
2671 * check here not to call set_pageblock_migratetype() against
2672 * pfn out of zone.
2674 if ((z->zone_start_pfn <= pfn)
2675 && (pfn < z->zone_start_pfn + z->spanned_pages)
2676 && !(pfn & (pageblock_nr_pages - 1)))
2677 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2679 INIT_LIST_HEAD(&page->lru);
2680 #ifdef WANT_PAGE_VIRTUAL
2681 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2682 if (!is_highmem_idx(zone))
2683 set_page_address(page, __va(pfn << PAGE_SHIFT));
2684 #endif
2688 static void __meminit zone_init_free_lists(struct zone *zone)
2690 int order, t;
2691 for_each_migratetype_order(order, t) {
2692 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2693 zone->free_area[order].nr_free = 0;
2697 #ifndef __HAVE_ARCH_MEMMAP_INIT
2698 #define memmap_init(size, nid, zone, start_pfn) \
2699 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2700 #endif
2702 static int zone_batchsize(struct zone *zone)
2704 int batch;
2707 * The per-cpu-pages pools are set to around 1000th of the
2708 * size of the zone. But no more than 1/2 of a meg.
2710 * OK, so we don't know how big the cache is. So guess.
2712 batch = zone->present_pages / 1024;
2713 if (batch * PAGE_SIZE > 512 * 1024)
2714 batch = (512 * 1024) / PAGE_SIZE;
2715 batch /= 4; /* We effectively *= 4 below */
2716 if (batch < 1)
2717 batch = 1;
2720 * Clamp the batch to a 2^n - 1 value. Having a power
2721 * of 2 value was found to be more likely to have
2722 * suboptimal cache aliasing properties in some cases.
2724 * For example if 2 tasks are alternately allocating
2725 * batches of pages, one task can end up with a lot
2726 * of pages of one half of the possible page colors
2727 * and the other with pages of the other colors.
2729 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2731 return batch;
2734 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2736 struct per_cpu_pages *pcp;
2738 memset(p, 0, sizeof(*p));
2740 pcp = &p->pcp;
2741 pcp->count = 0;
2742 pcp->high = 6 * batch;
2743 pcp->batch = max(1UL, 1 * batch);
2744 INIT_LIST_HEAD(&pcp->list);
2748 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2749 * to the value high for the pageset p.
2752 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2753 unsigned long high)
2755 struct per_cpu_pages *pcp;
2757 pcp = &p->pcp;
2758 pcp->high = high;
2759 pcp->batch = max(1UL, high/4);
2760 if ((high/4) > (PAGE_SHIFT * 8))
2761 pcp->batch = PAGE_SHIFT * 8;
2765 #ifdef CONFIG_NUMA
2767 * Boot pageset table. One per cpu which is going to be used for all
2768 * zones and all nodes. The parameters will be set in such a way
2769 * that an item put on a list will immediately be handed over to
2770 * the buddy list. This is safe since pageset manipulation is done
2771 * with interrupts disabled.
2773 * Some NUMA counter updates may also be caught by the boot pagesets.
2775 * The boot_pagesets must be kept even after bootup is complete for
2776 * unused processors and/or zones. They do play a role for bootstrapping
2777 * hotplugged processors.
2779 * zoneinfo_show() and maybe other functions do
2780 * not check if the processor is online before following the pageset pointer.
2781 * Other parts of the kernel may not check if the zone is available.
2783 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2786 * Dynamically allocate memory for the
2787 * per cpu pageset array in struct zone.
2789 static int __cpuinit process_zones(int cpu)
2791 struct zone *zone, *dzone;
2792 int node = cpu_to_node(cpu);
2794 node_set_state(node, N_CPU); /* this node has a cpu */
2796 for_each_zone(zone) {
2798 if (!populated_zone(zone))
2799 continue;
2801 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2802 GFP_KERNEL, node);
2803 if (!zone_pcp(zone, cpu))
2804 goto bad;
2806 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2808 if (percpu_pagelist_fraction)
2809 setup_pagelist_highmark(zone_pcp(zone, cpu),
2810 (zone->present_pages / percpu_pagelist_fraction));
2813 return 0;
2814 bad:
2815 for_each_zone(dzone) {
2816 if (!populated_zone(dzone))
2817 continue;
2818 if (dzone == zone)
2819 break;
2820 kfree(zone_pcp(dzone, cpu));
2821 zone_pcp(dzone, cpu) = NULL;
2823 return -ENOMEM;
2826 static inline void free_zone_pagesets(int cpu)
2828 struct zone *zone;
2830 for_each_zone(zone) {
2831 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2833 /* Free per_cpu_pageset if it is slab allocated */
2834 if (pset != &boot_pageset[cpu])
2835 kfree(pset);
2836 zone_pcp(zone, cpu) = NULL;
2840 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2841 unsigned long action,
2842 void *hcpu)
2844 int cpu = (long)hcpu;
2845 int ret = NOTIFY_OK;
2847 switch (action) {
2848 case CPU_UP_PREPARE:
2849 case CPU_UP_PREPARE_FROZEN:
2850 if (process_zones(cpu))
2851 ret = NOTIFY_BAD;
2852 break;
2853 case CPU_UP_CANCELED:
2854 case CPU_UP_CANCELED_FROZEN:
2855 case CPU_DEAD:
2856 case CPU_DEAD_FROZEN:
2857 free_zone_pagesets(cpu);
2858 break;
2859 default:
2860 break;
2862 return ret;
2865 static struct notifier_block __cpuinitdata pageset_notifier =
2866 { &pageset_cpuup_callback, NULL, 0 };
2868 void __init setup_per_cpu_pageset(void)
2870 int err;
2872 /* Initialize per_cpu_pageset for cpu 0.
2873 * A cpuup callback will do this for every cpu
2874 * as it comes online
2876 err = process_zones(smp_processor_id());
2877 BUG_ON(err);
2878 register_cpu_notifier(&pageset_notifier);
2881 #endif
2883 static noinline __init_refok
2884 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2886 int i;
2887 struct pglist_data *pgdat = zone->zone_pgdat;
2888 size_t alloc_size;
2891 * The per-page waitqueue mechanism uses hashed waitqueues
2892 * per zone.
2894 zone->wait_table_hash_nr_entries =
2895 wait_table_hash_nr_entries(zone_size_pages);
2896 zone->wait_table_bits =
2897 wait_table_bits(zone->wait_table_hash_nr_entries);
2898 alloc_size = zone->wait_table_hash_nr_entries
2899 * sizeof(wait_queue_head_t);
2901 if (!slab_is_available()) {
2902 zone->wait_table = (wait_queue_head_t *)
2903 alloc_bootmem_node(pgdat, alloc_size);
2904 } else {
2906 * This case means that a zone whose size was 0 gets new memory
2907 * via memory hot-add.
2908 * But it may be the case that a new node was hot-added. In
2909 * this case vmalloc() will not be able to use this new node's
2910 * memory - this wait_table must be initialized to use this new
2911 * node itself as well.
2912 * To use this new node's memory, further consideration will be
2913 * necessary.
2915 zone->wait_table = vmalloc(alloc_size);
2917 if (!zone->wait_table)
2918 return -ENOMEM;
2920 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2921 init_waitqueue_head(zone->wait_table + i);
2923 return 0;
2926 static __meminit void zone_pcp_init(struct zone *zone)
2928 int cpu;
2929 unsigned long batch = zone_batchsize(zone);
2931 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2932 #ifdef CONFIG_NUMA
2933 /* Early boot. Slab allocator not functional yet */
2934 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2935 setup_pageset(&boot_pageset[cpu],0);
2936 #else
2937 setup_pageset(zone_pcp(zone,cpu), batch);
2938 #endif
2940 if (zone->present_pages)
2941 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2942 zone->name, zone->present_pages, batch);
2945 __meminit int init_currently_empty_zone(struct zone *zone,
2946 unsigned long zone_start_pfn,
2947 unsigned long size,
2948 enum memmap_context context)
2950 struct pglist_data *pgdat = zone->zone_pgdat;
2951 int ret;
2952 ret = zone_wait_table_init(zone, size);
2953 if (ret)
2954 return ret;
2955 pgdat->nr_zones = zone_idx(zone) + 1;
2957 zone->zone_start_pfn = zone_start_pfn;
2959 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2960 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2961 pgdat->node_id,
2962 (unsigned long)zone_idx(zone),
2963 zone_start_pfn, (zone_start_pfn + size));
2965 zone_init_free_lists(zone);
2967 return 0;
2970 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2972 * Basic iterator support. Return the first range of PFNs for a node
2973 * Note: nid == MAX_NUMNODES returns first region regardless of node
2975 static int __meminit first_active_region_index_in_nid(int nid)
2977 int i;
2979 for (i = 0; i < nr_nodemap_entries; i++)
2980 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2981 return i;
2983 return -1;
2987 * Basic iterator support. Return the next active range of PFNs for a node
2988 * Note: nid == MAX_NUMNODES returns next region regardless of node
2990 static int __meminit next_active_region_index_in_nid(int index, int nid)
2992 for (index = index + 1; index < nr_nodemap_entries; index++)
2993 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2994 return index;
2996 return -1;
2999 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3001 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3002 * Architectures may implement their own version but if add_active_range()
3003 * was used and there are no special requirements, this is a convenient
3004 * alternative
3006 int __meminit early_pfn_to_nid(unsigned long pfn)
3008 int i;
3010 for (i = 0; i < nr_nodemap_entries; i++) {
3011 unsigned long start_pfn = early_node_map[i].start_pfn;
3012 unsigned long end_pfn = early_node_map[i].end_pfn;
3014 if (start_pfn <= pfn && pfn < end_pfn)
3015 return early_node_map[i].nid;
3018 return 0;
3020 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3022 /* Basic iterator support to walk early_node_map[] */
3023 #define for_each_active_range_index_in_nid(i, nid) \
3024 for (i = first_active_region_index_in_nid(nid); i != -1; \
3025 i = next_active_region_index_in_nid(i, nid))
3028 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3029 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3030 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3032 * If an architecture guarantees that all ranges registered with
3033 * add_active_ranges() contain no holes and may be freed, this
3034 * this function may be used instead of calling free_bootmem() manually.
3036 void __init free_bootmem_with_active_regions(int nid,
3037 unsigned long max_low_pfn)
3039 int i;
3041 for_each_active_range_index_in_nid(i, nid) {
3042 unsigned long size_pages = 0;
3043 unsigned long end_pfn = early_node_map[i].end_pfn;
3045 if (early_node_map[i].start_pfn >= max_low_pfn)
3046 continue;
3048 if (end_pfn > max_low_pfn)
3049 end_pfn = max_low_pfn;
3051 size_pages = end_pfn - early_node_map[i].start_pfn;
3052 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3053 PFN_PHYS(early_node_map[i].start_pfn),
3054 size_pages << PAGE_SHIFT);
3058 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3060 int i;
3061 int ret;
3063 for_each_active_range_index_in_nid(i, nid) {
3064 ret = work_fn(early_node_map[i].start_pfn,
3065 early_node_map[i].end_pfn, data);
3066 if (ret)
3067 break;
3071 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3072 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3074 * If an architecture guarantees that all ranges registered with
3075 * add_active_ranges() contain no holes and may be freed, this
3076 * function may be used instead of calling memory_present() manually.
3078 void __init sparse_memory_present_with_active_regions(int nid)
3080 int i;
3082 for_each_active_range_index_in_nid(i, nid)
3083 memory_present(early_node_map[i].nid,
3084 early_node_map[i].start_pfn,
3085 early_node_map[i].end_pfn);
3089 * push_node_boundaries - Push node boundaries to at least the requested boundary
3090 * @nid: The nid of the node to push the boundary for
3091 * @start_pfn: The start pfn of the node
3092 * @end_pfn: The end pfn of the node
3094 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3095 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3096 * be hotplugged even though no physical memory exists. This function allows
3097 * an arch to push out the node boundaries so mem_map is allocated that can
3098 * be used later.
3100 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3101 void __init push_node_boundaries(unsigned int nid,
3102 unsigned long start_pfn, unsigned long end_pfn)
3104 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3105 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3106 nid, start_pfn, end_pfn);
3108 /* Initialise the boundary for this node if necessary */
3109 if (node_boundary_end_pfn[nid] == 0)
3110 node_boundary_start_pfn[nid] = -1UL;
3112 /* Update the boundaries */
3113 if (node_boundary_start_pfn[nid] > start_pfn)
3114 node_boundary_start_pfn[nid] = start_pfn;
3115 if (node_boundary_end_pfn[nid] < end_pfn)
3116 node_boundary_end_pfn[nid] = end_pfn;
3119 /* If necessary, push the node boundary out for reserve hotadd */
3120 static void __meminit account_node_boundary(unsigned int nid,
3121 unsigned long *start_pfn, unsigned long *end_pfn)
3123 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3124 "Entering account_node_boundary(%u, %lu, %lu)\n",
3125 nid, *start_pfn, *end_pfn);
3127 /* Return if boundary information has not been provided */
3128 if (node_boundary_end_pfn[nid] == 0)
3129 return;
3131 /* Check the boundaries and update if necessary */
3132 if (node_boundary_start_pfn[nid] < *start_pfn)
3133 *start_pfn = node_boundary_start_pfn[nid];
3134 if (node_boundary_end_pfn[nid] > *end_pfn)
3135 *end_pfn = node_boundary_end_pfn[nid];
3137 #else
3138 void __init push_node_boundaries(unsigned int nid,
3139 unsigned long start_pfn, unsigned long end_pfn) {}
3141 static void __meminit account_node_boundary(unsigned int nid,
3142 unsigned long *start_pfn, unsigned long *end_pfn) {}
3143 #endif
3147 * get_pfn_range_for_nid - Return the start and end page frames for a node
3148 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3149 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3150 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3152 * It returns the start and end page frame of a node based on information
3153 * provided by an arch calling add_active_range(). If called for a node
3154 * with no available memory, a warning is printed and the start and end
3155 * PFNs will be 0.
3157 void __meminit get_pfn_range_for_nid(unsigned int nid,
3158 unsigned long *start_pfn, unsigned long *end_pfn)
3160 int i;
3161 *start_pfn = -1UL;
3162 *end_pfn = 0;
3164 for_each_active_range_index_in_nid(i, nid) {
3165 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3166 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3169 if (*start_pfn == -1UL)
3170 *start_pfn = 0;
3172 /* Push the node boundaries out if requested */
3173 account_node_boundary(nid, start_pfn, end_pfn);
3177 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3178 * assumption is made that zones within a node are ordered in monotonic
3179 * increasing memory addresses so that the "highest" populated zone is used
3181 static void __init find_usable_zone_for_movable(void)
3183 int zone_index;
3184 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3185 if (zone_index == ZONE_MOVABLE)
3186 continue;
3188 if (arch_zone_highest_possible_pfn[zone_index] >
3189 arch_zone_lowest_possible_pfn[zone_index])
3190 break;
3193 VM_BUG_ON(zone_index == -1);
3194 movable_zone = zone_index;
3198 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3199 * because it is sized independant of architecture. Unlike the other zones,
3200 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3201 * in each node depending on the size of each node and how evenly kernelcore
3202 * is distributed. This helper function adjusts the zone ranges
3203 * provided by the architecture for a given node by using the end of the
3204 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3205 * zones within a node are in order of monotonic increases memory addresses
3207 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3208 unsigned long zone_type,
3209 unsigned long node_start_pfn,
3210 unsigned long node_end_pfn,
3211 unsigned long *zone_start_pfn,
3212 unsigned long *zone_end_pfn)
3214 /* Only adjust if ZONE_MOVABLE is on this node */
3215 if (zone_movable_pfn[nid]) {
3216 /* Size ZONE_MOVABLE */
3217 if (zone_type == ZONE_MOVABLE) {
3218 *zone_start_pfn = zone_movable_pfn[nid];
3219 *zone_end_pfn = min(node_end_pfn,
3220 arch_zone_highest_possible_pfn[movable_zone]);
3222 /* Adjust for ZONE_MOVABLE starting within this range */
3223 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3224 *zone_end_pfn > zone_movable_pfn[nid]) {
3225 *zone_end_pfn = zone_movable_pfn[nid];
3227 /* Check if this whole range is within ZONE_MOVABLE */
3228 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3229 *zone_start_pfn = *zone_end_pfn;
3234 * Return the number of pages a zone spans in a node, including holes
3235 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3237 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3238 unsigned long zone_type,
3239 unsigned long *ignored)
3241 unsigned long node_start_pfn, node_end_pfn;
3242 unsigned long zone_start_pfn, zone_end_pfn;
3244 /* Get the start and end of the node and zone */
3245 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3246 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3247 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3248 adjust_zone_range_for_zone_movable(nid, zone_type,
3249 node_start_pfn, node_end_pfn,
3250 &zone_start_pfn, &zone_end_pfn);
3252 /* Check that this node has pages within the zone's required range */
3253 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3254 return 0;
3256 /* Move the zone boundaries inside the node if necessary */
3257 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3258 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3260 /* Return the spanned pages */
3261 return zone_end_pfn - zone_start_pfn;
3265 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3266 * then all holes in the requested range will be accounted for.
3268 static unsigned long __meminit __absent_pages_in_range(int nid,
3269 unsigned long range_start_pfn,
3270 unsigned long range_end_pfn)
3272 int i = 0;
3273 unsigned long prev_end_pfn = 0, hole_pages = 0;
3274 unsigned long start_pfn;
3276 /* Find the end_pfn of the first active range of pfns in the node */
3277 i = first_active_region_index_in_nid(nid);
3278 if (i == -1)
3279 return 0;
3281 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3283 /* Account for ranges before physical memory on this node */
3284 if (early_node_map[i].start_pfn > range_start_pfn)
3285 hole_pages = prev_end_pfn - range_start_pfn;
3287 /* Find all holes for the zone within the node */
3288 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3290 /* No need to continue if prev_end_pfn is outside the zone */
3291 if (prev_end_pfn >= range_end_pfn)
3292 break;
3294 /* Make sure the end of the zone is not within the hole */
3295 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3296 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3298 /* Update the hole size cound and move on */
3299 if (start_pfn > range_start_pfn) {
3300 BUG_ON(prev_end_pfn > start_pfn);
3301 hole_pages += start_pfn - prev_end_pfn;
3303 prev_end_pfn = early_node_map[i].end_pfn;
3306 /* Account for ranges past physical memory on this node */
3307 if (range_end_pfn > prev_end_pfn)
3308 hole_pages += range_end_pfn -
3309 max(range_start_pfn, prev_end_pfn);
3311 return hole_pages;
3315 * absent_pages_in_range - Return number of page frames in holes within a range
3316 * @start_pfn: The start PFN to start searching for holes
3317 * @end_pfn: The end PFN to stop searching for holes
3319 * It returns the number of pages frames in memory holes within a range.
3321 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3322 unsigned long end_pfn)
3324 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3327 /* Return the number of page frames in holes in a zone on a node */
3328 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3329 unsigned long zone_type,
3330 unsigned long *ignored)
3332 unsigned long node_start_pfn, node_end_pfn;
3333 unsigned long zone_start_pfn, zone_end_pfn;
3335 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3336 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3337 node_start_pfn);
3338 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3339 node_end_pfn);
3341 adjust_zone_range_for_zone_movable(nid, zone_type,
3342 node_start_pfn, node_end_pfn,
3343 &zone_start_pfn, &zone_end_pfn);
3344 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3347 #else
3348 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3349 unsigned long zone_type,
3350 unsigned long *zones_size)
3352 return zones_size[zone_type];
3355 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3356 unsigned long zone_type,
3357 unsigned long *zholes_size)
3359 if (!zholes_size)
3360 return 0;
3362 return zholes_size[zone_type];
3365 #endif
3367 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3368 unsigned long *zones_size, unsigned long *zholes_size)
3370 unsigned long realtotalpages, totalpages = 0;
3371 enum zone_type i;
3373 for (i = 0; i < MAX_NR_ZONES; i++)
3374 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3375 zones_size);
3376 pgdat->node_spanned_pages = totalpages;
3378 realtotalpages = totalpages;
3379 for (i = 0; i < MAX_NR_ZONES; i++)
3380 realtotalpages -=
3381 zone_absent_pages_in_node(pgdat->node_id, i,
3382 zholes_size);
3383 pgdat->node_present_pages = realtotalpages;
3384 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3385 realtotalpages);
3388 #ifndef CONFIG_SPARSEMEM
3390 * Calculate the size of the zone->blockflags rounded to an unsigned long
3391 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3392 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3393 * round what is now in bits to nearest long in bits, then return it in
3394 * bytes.
3396 static unsigned long __init usemap_size(unsigned long zonesize)
3398 unsigned long usemapsize;
3400 usemapsize = roundup(zonesize, pageblock_nr_pages);
3401 usemapsize = usemapsize >> pageblock_order;
3402 usemapsize *= NR_PAGEBLOCK_BITS;
3403 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3405 return usemapsize / 8;
3408 static void __init setup_usemap(struct pglist_data *pgdat,
3409 struct zone *zone, unsigned long zonesize)
3411 unsigned long usemapsize = usemap_size(zonesize);
3412 zone->pageblock_flags = NULL;
3413 if (usemapsize) {
3414 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3415 memset(zone->pageblock_flags, 0, usemapsize);
3418 #else
3419 static void inline setup_usemap(struct pglist_data *pgdat,
3420 struct zone *zone, unsigned long zonesize) {}
3421 #endif /* CONFIG_SPARSEMEM */
3423 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3425 /* Return a sensible default order for the pageblock size. */
3426 static inline int pageblock_default_order(void)
3428 if (HPAGE_SHIFT > PAGE_SHIFT)
3429 return HUGETLB_PAGE_ORDER;
3431 return MAX_ORDER-1;
3434 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3435 static inline void __init set_pageblock_order(unsigned int order)
3437 /* Check that pageblock_nr_pages has not already been setup */
3438 if (pageblock_order)
3439 return;
3442 * Assume the largest contiguous order of interest is a huge page.
3443 * This value may be variable depending on boot parameters on IA64
3445 pageblock_order = order;
3447 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3450 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3451 * and pageblock_default_order() are unused as pageblock_order is set
3452 * at compile-time. See include/linux/pageblock-flags.h for the values of
3453 * pageblock_order based on the kernel config
3455 static inline int pageblock_default_order(unsigned int order)
3457 return MAX_ORDER-1;
3459 #define set_pageblock_order(x) do {} while (0)
3461 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3464 * Set up the zone data structures:
3465 * - mark all pages reserved
3466 * - mark all memory queues empty
3467 * - clear the memory bitmaps
3469 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3470 unsigned long *zones_size, unsigned long *zholes_size)
3472 enum zone_type j;
3473 int nid = pgdat->node_id;
3474 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3475 int ret;
3477 pgdat_resize_init(pgdat);
3478 pgdat->nr_zones = 0;
3479 init_waitqueue_head(&pgdat->kswapd_wait);
3480 pgdat->kswapd_max_order = 0;
3481 pgdat_page_cgroup_init(pgdat);
3483 for (j = 0; j < MAX_NR_ZONES; j++) {
3484 struct zone *zone = pgdat->node_zones + j;
3485 unsigned long size, realsize, memmap_pages;
3486 enum lru_list l;
3488 size = zone_spanned_pages_in_node(nid, j, zones_size);
3489 realsize = size - zone_absent_pages_in_node(nid, j,
3490 zholes_size);
3493 * Adjust realsize so that it accounts for how much memory
3494 * is used by this zone for memmap. This affects the watermark
3495 * and per-cpu initialisations
3497 memmap_pages =
3498 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3499 if (realsize >= memmap_pages) {
3500 realsize -= memmap_pages;
3501 printk(KERN_DEBUG
3502 " %s zone: %lu pages used for memmap\n",
3503 zone_names[j], memmap_pages);
3504 } else
3505 printk(KERN_WARNING
3506 " %s zone: %lu pages exceeds realsize %lu\n",
3507 zone_names[j], memmap_pages, realsize);
3509 /* Account for reserved pages */
3510 if (j == 0 && realsize > dma_reserve) {
3511 realsize -= dma_reserve;
3512 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3513 zone_names[0], dma_reserve);
3516 if (!is_highmem_idx(j))
3517 nr_kernel_pages += realsize;
3518 nr_all_pages += realsize;
3520 zone->spanned_pages = size;
3521 zone->present_pages = realsize;
3522 #ifdef CONFIG_NUMA
3523 zone->node = nid;
3524 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3525 / 100;
3526 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3527 #endif
3528 zone->name = zone_names[j];
3529 spin_lock_init(&zone->lock);
3530 spin_lock_init(&zone->lru_lock);
3531 zone_seqlock_init(zone);
3532 zone->zone_pgdat = pgdat;
3534 zone->prev_priority = DEF_PRIORITY;
3536 zone_pcp_init(zone);
3537 for_each_lru(l) {
3538 INIT_LIST_HEAD(&zone->lru[l].list);
3539 zone->lru[l].nr_scan = 0;
3541 zone->recent_rotated[0] = 0;
3542 zone->recent_rotated[1] = 0;
3543 zone->recent_scanned[0] = 0;
3544 zone->recent_scanned[1] = 0;
3545 zap_zone_vm_stats(zone);
3546 zone->flags = 0;
3547 if (!size)
3548 continue;
3550 set_pageblock_order(pageblock_default_order());
3551 setup_usemap(pgdat, zone, size);
3552 ret = init_currently_empty_zone(zone, zone_start_pfn,
3553 size, MEMMAP_EARLY);
3554 BUG_ON(ret);
3555 memmap_init(size, nid, j, zone_start_pfn);
3556 zone_start_pfn += size;
3560 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3562 /* Skip empty nodes */
3563 if (!pgdat->node_spanned_pages)
3564 return;
3566 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3567 /* ia64 gets its own node_mem_map, before this, without bootmem */
3568 if (!pgdat->node_mem_map) {
3569 unsigned long size, start, end;
3570 struct page *map;
3573 * The zone's endpoints aren't required to be MAX_ORDER
3574 * aligned but the node_mem_map endpoints must be in order
3575 * for the buddy allocator to function correctly.
3577 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3578 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3579 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3580 size = (end - start) * sizeof(struct page);
3581 map = alloc_remap(pgdat->node_id, size);
3582 if (!map)
3583 map = alloc_bootmem_node(pgdat, size);
3584 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3586 #ifndef CONFIG_NEED_MULTIPLE_NODES
3588 * With no DISCONTIG, the global mem_map is just set as node 0's
3590 if (pgdat == NODE_DATA(0)) {
3591 mem_map = NODE_DATA(0)->node_mem_map;
3592 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3593 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3594 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3595 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3597 #endif
3598 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3601 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3602 unsigned long node_start_pfn, unsigned long *zholes_size)
3604 pg_data_t *pgdat = NODE_DATA(nid);
3606 pgdat->node_id = nid;
3607 pgdat->node_start_pfn = node_start_pfn;
3608 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3610 alloc_node_mem_map(pgdat);
3611 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3612 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3613 nid, (unsigned long)pgdat,
3614 (unsigned long)pgdat->node_mem_map);
3615 #endif
3617 free_area_init_core(pgdat, zones_size, zholes_size);
3620 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3622 #if MAX_NUMNODES > 1
3624 * Figure out the number of possible node ids.
3626 static void __init setup_nr_node_ids(void)
3628 unsigned int node;
3629 unsigned int highest = 0;
3631 for_each_node_mask(node, node_possible_map)
3632 highest = node;
3633 nr_node_ids = highest + 1;
3635 #else
3636 static inline void setup_nr_node_ids(void)
3639 #endif
3642 * add_active_range - Register a range of PFNs backed by physical memory
3643 * @nid: The node ID the range resides on
3644 * @start_pfn: The start PFN of the available physical memory
3645 * @end_pfn: The end PFN of the available physical memory
3647 * These ranges are stored in an early_node_map[] and later used by
3648 * free_area_init_nodes() to calculate zone sizes and holes. If the
3649 * range spans a memory hole, it is up to the architecture to ensure
3650 * the memory is not freed by the bootmem allocator. If possible
3651 * the range being registered will be merged with existing ranges.
3653 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3654 unsigned long end_pfn)
3656 int i;
3658 mminit_dprintk(MMINIT_TRACE, "memory_register",
3659 "Entering add_active_range(%d, %#lx, %#lx) "
3660 "%d entries of %d used\n",
3661 nid, start_pfn, end_pfn,
3662 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3664 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3666 /* Merge with existing active regions if possible */
3667 for (i = 0; i < nr_nodemap_entries; i++) {
3668 if (early_node_map[i].nid != nid)
3669 continue;
3671 /* Skip if an existing region covers this new one */
3672 if (start_pfn >= early_node_map[i].start_pfn &&
3673 end_pfn <= early_node_map[i].end_pfn)
3674 return;
3676 /* Merge forward if suitable */
3677 if (start_pfn <= early_node_map[i].end_pfn &&
3678 end_pfn > early_node_map[i].end_pfn) {
3679 early_node_map[i].end_pfn = end_pfn;
3680 return;
3683 /* Merge backward if suitable */
3684 if (start_pfn < early_node_map[i].end_pfn &&
3685 end_pfn >= early_node_map[i].start_pfn) {
3686 early_node_map[i].start_pfn = start_pfn;
3687 return;
3691 /* Check that early_node_map is large enough */
3692 if (i >= MAX_ACTIVE_REGIONS) {
3693 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3694 MAX_ACTIVE_REGIONS);
3695 return;
3698 early_node_map[i].nid = nid;
3699 early_node_map[i].start_pfn = start_pfn;
3700 early_node_map[i].end_pfn = end_pfn;
3701 nr_nodemap_entries = i + 1;
3705 * remove_active_range - Shrink an existing registered range of PFNs
3706 * @nid: The node id the range is on that should be shrunk
3707 * @start_pfn: The new PFN of the range
3708 * @end_pfn: The new PFN of the range
3710 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3711 * The map is kept near the end physical page range that has already been
3712 * registered. This function allows an arch to shrink an existing registered
3713 * range.
3715 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3716 unsigned long end_pfn)
3718 int i, j;
3719 int removed = 0;
3721 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3722 nid, start_pfn, end_pfn);
3724 /* Find the old active region end and shrink */
3725 for_each_active_range_index_in_nid(i, nid) {
3726 if (early_node_map[i].start_pfn >= start_pfn &&
3727 early_node_map[i].end_pfn <= end_pfn) {
3728 /* clear it */
3729 early_node_map[i].start_pfn = 0;
3730 early_node_map[i].end_pfn = 0;
3731 removed = 1;
3732 continue;
3734 if (early_node_map[i].start_pfn < start_pfn &&
3735 early_node_map[i].end_pfn > start_pfn) {
3736 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3737 early_node_map[i].end_pfn = start_pfn;
3738 if (temp_end_pfn > end_pfn)
3739 add_active_range(nid, end_pfn, temp_end_pfn);
3740 continue;
3742 if (early_node_map[i].start_pfn >= start_pfn &&
3743 early_node_map[i].end_pfn > end_pfn &&
3744 early_node_map[i].start_pfn < end_pfn) {
3745 early_node_map[i].start_pfn = end_pfn;
3746 continue;
3750 if (!removed)
3751 return;
3753 /* remove the blank ones */
3754 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3755 if (early_node_map[i].nid != nid)
3756 continue;
3757 if (early_node_map[i].end_pfn)
3758 continue;
3759 /* we found it, get rid of it */
3760 for (j = i; j < nr_nodemap_entries - 1; j++)
3761 memcpy(&early_node_map[j], &early_node_map[j+1],
3762 sizeof(early_node_map[j]));
3763 j = nr_nodemap_entries - 1;
3764 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3765 nr_nodemap_entries--;
3770 * remove_all_active_ranges - Remove all currently registered regions
3772 * During discovery, it may be found that a table like SRAT is invalid
3773 * and an alternative discovery method must be used. This function removes
3774 * all currently registered regions.
3776 void __init remove_all_active_ranges(void)
3778 memset(early_node_map, 0, sizeof(early_node_map));
3779 nr_nodemap_entries = 0;
3780 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3781 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3782 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3783 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3786 /* Compare two active node_active_regions */
3787 static int __init cmp_node_active_region(const void *a, const void *b)
3789 struct node_active_region *arange = (struct node_active_region *)a;
3790 struct node_active_region *brange = (struct node_active_region *)b;
3792 /* Done this way to avoid overflows */
3793 if (arange->start_pfn > brange->start_pfn)
3794 return 1;
3795 if (arange->start_pfn < brange->start_pfn)
3796 return -1;
3798 return 0;
3801 /* sort the node_map by start_pfn */
3802 static void __init sort_node_map(void)
3804 sort(early_node_map, (size_t)nr_nodemap_entries,
3805 sizeof(struct node_active_region),
3806 cmp_node_active_region, NULL);
3809 /* Find the lowest pfn for a node */
3810 static unsigned long __init find_min_pfn_for_node(int nid)
3812 int i;
3813 unsigned long min_pfn = ULONG_MAX;
3815 /* Assuming a sorted map, the first range found has the starting pfn */
3816 for_each_active_range_index_in_nid(i, nid)
3817 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3819 if (min_pfn == ULONG_MAX) {
3820 printk(KERN_WARNING
3821 "Could not find start_pfn for node %d\n", nid);
3822 return 0;
3825 return min_pfn;
3829 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3831 * It returns the minimum PFN based on information provided via
3832 * add_active_range().
3834 unsigned long __init find_min_pfn_with_active_regions(void)
3836 return find_min_pfn_for_node(MAX_NUMNODES);
3840 * early_calculate_totalpages()
3841 * Sum pages in active regions for movable zone.
3842 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3844 static unsigned long __init early_calculate_totalpages(void)
3846 int i;
3847 unsigned long totalpages = 0;
3849 for (i = 0; i < nr_nodemap_entries; i++) {
3850 unsigned long pages = early_node_map[i].end_pfn -
3851 early_node_map[i].start_pfn;
3852 totalpages += pages;
3853 if (pages)
3854 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3856 return totalpages;
3860 * Find the PFN the Movable zone begins in each node. Kernel memory
3861 * is spread evenly between nodes as long as the nodes have enough
3862 * memory. When they don't, some nodes will have more kernelcore than
3863 * others
3865 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3867 int i, nid;
3868 unsigned long usable_startpfn;
3869 unsigned long kernelcore_node, kernelcore_remaining;
3870 unsigned long totalpages = early_calculate_totalpages();
3871 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3874 * If movablecore was specified, calculate what size of
3875 * kernelcore that corresponds so that memory usable for
3876 * any allocation type is evenly spread. If both kernelcore
3877 * and movablecore are specified, then the value of kernelcore
3878 * will be used for required_kernelcore if it's greater than
3879 * what movablecore would have allowed.
3881 if (required_movablecore) {
3882 unsigned long corepages;
3885 * Round-up so that ZONE_MOVABLE is at least as large as what
3886 * was requested by the user
3888 required_movablecore =
3889 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3890 corepages = totalpages - required_movablecore;
3892 required_kernelcore = max(required_kernelcore, corepages);
3895 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3896 if (!required_kernelcore)
3897 return;
3899 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3900 find_usable_zone_for_movable();
3901 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3903 restart:
3904 /* Spread kernelcore memory as evenly as possible throughout nodes */
3905 kernelcore_node = required_kernelcore / usable_nodes;
3906 for_each_node_state(nid, N_HIGH_MEMORY) {
3908 * Recalculate kernelcore_node if the division per node
3909 * now exceeds what is necessary to satisfy the requested
3910 * amount of memory for the kernel
3912 if (required_kernelcore < kernelcore_node)
3913 kernelcore_node = required_kernelcore / usable_nodes;
3916 * As the map is walked, we track how much memory is usable
3917 * by the kernel using kernelcore_remaining. When it is
3918 * 0, the rest of the node is usable by ZONE_MOVABLE
3920 kernelcore_remaining = kernelcore_node;
3922 /* Go through each range of PFNs within this node */
3923 for_each_active_range_index_in_nid(i, nid) {
3924 unsigned long start_pfn, end_pfn;
3925 unsigned long size_pages;
3927 start_pfn = max(early_node_map[i].start_pfn,
3928 zone_movable_pfn[nid]);
3929 end_pfn = early_node_map[i].end_pfn;
3930 if (start_pfn >= end_pfn)
3931 continue;
3933 /* Account for what is only usable for kernelcore */
3934 if (start_pfn < usable_startpfn) {
3935 unsigned long kernel_pages;
3936 kernel_pages = min(end_pfn, usable_startpfn)
3937 - start_pfn;
3939 kernelcore_remaining -= min(kernel_pages,
3940 kernelcore_remaining);
3941 required_kernelcore -= min(kernel_pages,
3942 required_kernelcore);
3944 /* Continue if range is now fully accounted */
3945 if (end_pfn <= usable_startpfn) {
3948 * Push zone_movable_pfn to the end so
3949 * that if we have to rebalance
3950 * kernelcore across nodes, we will
3951 * not double account here
3953 zone_movable_pfn[nid] = end_pfn;
3954 continue;
3956 start_pfn = usable_startpfn;
3960 * The usable PFN range for ZONE_MOVABLE is from
3961 * start_pfn->end_pfn. Calculate size_pages as the
3962 * number of pages used as kernelcore
3964 size_pages = end_pfn - start_pfn;
3965 if (size_pages > kernelcore_remaining)
3966 size_pages = kernelcore_remaining;
3967 zone_movable_pfn[nid] = start_pfn + size_pages;
3970 * Some kernelcore has been met, update counts and
3971 * break if the kernelcore for this node has been
3972 * satisified
3974 required_kernelcore -= min(required_kernelcore,
3975 size_pages);
3976 kernelcore_remaining -= size_pages;
3977 if (!kernelcore_remaining)
3978 break;
3983 * If there is still required_kernelcore, we do another pass with one
3984 * less node in the count. This will push zone_movable_pfn[nid] further
3985 * along on the nodes that still have memory until kernelcore is
3986 * satisified
3988 usable_nodes--;
3989 if (usable_nodes && required_kernelcore > usable_nodes)
3990 goto restart;
3992 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3993 for (nid = 0; nid < MAX_NUMNODES; nid++)
3994 zone_movable_pfn[nid] =
3995 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3998 /* Any regular memory on that node ? */
3999 static void check_for_regular_memory(pg_data_t *pgdat)
4001 #ifdef CONFIG_HIGHMEM
4002 enum zone_type zone_type;
4004 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4005 struct zone *zone = &pgdat->node_zones[zone_type];
4006 if (zone->present_pages)
4007 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4009 #endif
4013 * free_area_init_nodes - Initialise all pg_data_t and zone data
4014 * @max_zone_pfn: an array of max PFNs for each zone
4016 * This will call free_area_init_node() for each active node in the system.
4017 * Using the page ranges provided by add_active_range(), the size of each
4018 * zone in each node and their holes is calculated. If the maximum PFN
4019 * between two adjacent zones match, it is assumed that the zone is empty.
4020 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4021 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4022 * starts where the previous one ended. For example, ZONE_DMA32 starts
4023 * at arch_max_dma_pfn.
4025 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4027 unsigned long nid;
4028 int i;
4030 /* Sort early_node_map as initialisation assumes it is sorted */
4031 sort_node_map();
4033 /* Record where the zone boundaries are */
4034 memset(arch_zone_lowest_possible_pfn, 0,
4035 sizeof(arch_zone_lowest_possible_pfn));
4036 memset(arch_zone_highest_possible_pfn, 0,
4037 sizeof(arch_zone_highest_possible_pfn));
4038 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4039 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4040 for (i = 1; i < MAX_NR_ZONES; i++) {
4041 if (i == ZONE_MOVABLE)
4042 continue;
4043 arch_zone_lowest_possible_pfn[i] =
4044 arch_zone_highest_possible_pfn[i-1];
4045 arch_zone_highest_possible_pfn[i] =
4046 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4048 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4049 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4051 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4052 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4053 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4055 /* Print out the zone ranges */
4056 printk("Zone PFN ranges:\n");
4057 for (i = 0; i < MAX_NR_ZONES; i++) {
4058 if (i == ZONE_MOVABLE)
4059 continue;
4060 printk(" %-8s %0#10lx -> %0#10lx\n",
4061 zone_names[i],
4062 arch_zone_lowest_possible_pfn[i],
4063 arch_zone_highest_possible_pfn[i]);
4066 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4067 printk("Movable zone start PFN for each node\n");
4068 for (i = 0; i < MAX_NUMNODES; i++) {
4069 if (zone_movable_pfn[i])
4070 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4073 /* Print out the early_node_map[] */
4074 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4075 for (i = 0; i < nr_nodemap_entries; i++)
4076 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4077 early_node_map[i].start_pfn,
4078 early_node_map[i].end_pfn);
4080 /* Initialise every node */
4081 mminit_verify_pageflags_layout();
4082 setup_nr_node_ids();
4083 for_each_online_node(nid) {
4084 pg_data_t *pgdat = NODE_DATA(nid);
4085 free_area_init_node(nid, NULL,
4086 find_min_pfn_for_node(nid), NULL);
4088 /* Any memory on that node */
4089 if (pgdat->node_present_pages)
4090 node_set_state(nid, N_HIGH_MEMORY);
4091 check_for_regular_memory(pgdat);
4095 static int __init cmdline_parse_core(char *p, unsigned long *core)
4097 unsigned long long coremem;
4098 if (!p)
4099 return -EINVAL;
4101 coremem = memparse(p, &p);
4102 *core = coremem >> PAGE_SHIFT;
4104 /* Paranoid check that UL is enough for the coremem value */
4105 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4107 return 0;
4111 * kernelcore=size sets the amount of memory for use for allocations that
4112 * cannot be reclaimed or migrated.
4114 static int __init cmdline_parse_kernelcore(char *p)
4116 return cmdline_parse_core(p, &required_kernelcore);
4120 * movablecore=size sets the amount of memory for use for allocations that
4121 * can be reclaimed or migrated.
4123 static int __init cmdline_parse_movablecore(char *p)
4125 return cmdline_parse_core(p, &required_movablecore);
4128 early_param("kernelcore", cmdline_parse_kernelcore);
4129 early_param("movablecore", cmdline_parse_movablecore);
4131 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4134 * set_dma_reserve - set the specified number of pages reserved in the first zone
4135 * @new_dma_reserve: The number of pages to mark reserved
4137 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4138 * In the DMA zone, a significant percentage may be consumed by kernel image
4139 * and other unfreeable allocations which can skew the watermarks badly. This
4140 * function may optionally be used to account for unfreeable pages in the
4141 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4142 * smaller per-cpu batchsize.
4144 void __init set_dma_reserve(unsigned long new_dma_reserve)
4146 dma_reserve = new_dma_reserve;
4149 #ifndef CONFIG_NEED_MULTIPLE_NODES
4150 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4151 EXPORT_SYMBOL(contig_page_data);
4152 #endif
4154 void __init free_area_init(unsigned long *zones_size)
4156 free_area_init_node(0, zones_size,
4157 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4160 static int page_alloc_cpu_notify(struct notifier_block *self,
4161 unsigned long action, void *hcpu)
4163 int cpu = (unsigned long)hcpu;
4165 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4166 drain_pages(cpu);
4169 * Spill the event counters of the dead processor
4170 * into the current processors event counters.
4171 * This artificially elevates the count of the current
4172 * processor.
4174 vm_events_fold_cpu(cpu);
4177 * Zero the differential counters of the dead processor
4178 * so that the vm statistics are consistent.
4180 * This is only okay since the processor is dead and cannot
4181 * race with what we are doing.
4183 refresh_cpu_vm_stats(cpu);
4185 return NOTIFY_OK;
4188 void __init page_alloc_init(void)
4190 hotcpu_notifier(page_alloc_cpu_notify, 0);
4194 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4195 * or min_free_kbytes changes.
4197 static void calculate_totalreserve_pages(void)
4199 struct pglist_data *pgdat;
4200 unsigned long reserve_pages = 0;
4201 enum zone_type i, j;
4203 for_each_online_pgdat(pgdat) {
4204 for (i = 0; i < MAX_NR_ZONES; i++) {
4205 struct zone *zone = pgdat->node_zones + i;
4206 unsigned long max = 0;
4208 /* Find valid and maximum lowmem_reserve in the zone */
4209 for (j = i; j < MAX_NR_ZONES; j++) {
4210 if (zone->lowmem_reserve[j] > max)
4211 max = zone->lowmem_reserve[j];
4214 /* we treat pages_high as reserved pages. */
4215 max += zone->pages_high;
4217 if (max > zone->present_pages)
4218 max = zone->present_pages;
4219 reserve_pages += max;
4222 totalreserve_pages = reserve_pages;
4226 * setup_per_zone_lowmem_reserve - called whenever
4227 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4228 * has a correct pages reserved value, so an adequate number of
4229 * pages are left in the zone after a successful __alloc_pages().
4231 static void setup_per_zone_lowmem_reserve(void)
4233 struct pglist_data *pgdat;
4234 enum zone_type j, idx;
4236 for_each_online_pgdat(pgdat) {
4237 for (j = 0; j < MAX_NR_ZONES; j++) {
4238 struct zone *zone = pgdat->node_zones + j;
4239 unsigned long present_pages = zone->present_pages;
4241 zone->lowmem_reserve[j] = 0;
4243 idx = j;
4244 while (idx) {
4245 struct zone *lower_zone;
4247 idx--;
4249 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4250 sysctl_lowmem_reserve_ratio[idx] = 1;
4252 lower_zone = pgdat->node_zones + idx;
4253 lower_zone->lowmem_reserve[j] = present_pages /
4254 sysctl_lowmem_reserve_ratio[idx];
4255 present_pages += lower_zone->present_pages;
4260 /* update totalreserve_pages */
4261 calculate_totalreserve_pages();
4265 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4267 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4268 * with respect to min_free_kbytes.
4270 void setup_per_zone_pages_min(void)
4272 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4273 unsigned long lowmem_pages = 0;
4274 struct zone *zone;
4275 unsigned long flags;
4277 /* Calculate total number of !ZONE_HIGHMEM pages */
4278 for_each_zone(zone) {
4279 if (!is_highmem(zone))
4280 lowmem_pages += zone->present_pages;
4283 for_each_zone(zone) {
4284 u64 tmp;
4286 spin_lock_irqsave(&zone->lock, flags);
4287 tmp = (u64)pages_min * zone->present_pages;
4288 do_div(tmp, lowmem_pages);
4289 if (is_highmem(zone)) {
4291 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4292 * need highmem pages, so cap pages_min to a small
4293 * value here.
4295 * The (pages_high-pages_low) and (pages_low-pages_min)
4296 * deltas controls asynch page reclaim, and so should
4297 * not be capped for highmem.
4299 int min_pages;
4301 min_pages = zone->present_pages / 1024;
4302 if (min_pages < SWAP_CLUSTER_MAX)
4303 min_pages = SWAP_CLUSTER_MAX;
4304 if (min_pages > 128)
4305 min_pages = 128;
4306 zone->pages_min = min_pages;
4307 } else {
4309 * If it's a lowmem zone, reserve a number of pages
4310 * proportionate to the zone's size.
4312 zone->pages_min = tmp;
4315 zone->pages_low = zone->pages_min + (tmp >> 2);
4316 zone->pages_high = zone->pages_min + (tmp >> 1);
4317 setup_zone_migrate_reserve(zone);
4318 spin_unlock_irqrestore(&zone->lock, flags);
4321 /* update totalreserve_pages */
4322 calculate_totalreserve_pages();
4326 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4328 * The inactive anon list should be small enough that the VM never has to
4329 * do too much work, but large enough that each inactive page has a chance
4330 * to be referenced again before it is swapped out.
4332 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4333 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4334 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4335 * the anonymous pages are kept on the inactive list.
4337 * total target max
4338 * memory ratio inactive anon
4339 * -------------------------------------
4340 * 10MB 1 5MB
4341 * 100MB 1 50MB
4342 * 1GB 3 250MB
4343 * 10GB 10 0.9GB
4344 * 100GB 31 3GB
4345 * 1TB 101 10GB
4346 * 10TB 320 32GB
4348 void setup_per_zone_inactive_ratio(void)
4350 struct zone *zone;
4352 for_each_zone(zone) {
4353 unsigned int gb, ratio;
4355 /* Zone size in gigabytes */
4356 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4357 ratio = int_sqrt(10 * gb);
4358 if (!ratio)
4359 ratio = 1;
4361 zone->inactive_ratio = ratio;
4366 * Initialise min_free_kbytes.
4368 * For small machines we want it small (128k min). For large machines
4369 * we want it large (64MB max). But it is not linear, because network
4370 * bandwidth does not increase linearly with machine size. We use
4372 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4373 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4375 * which yields
4377 * 16MB: 512k
4378 * 32MB: 724k
4379 * 64MB: 1024k
4380 * 128MB: 1448k
4381 * 256MB: 2048k
4382 * 512MB: 2896k
4383 * 1024MB: 4096k
4384 * 2048MB: 5792k
4385 * 4096MB: 8192k
4386 * 8192MB: 11584k
4387 * 16384MB: 16384k
4389 static int __init init_per_zone_pages_min(void)
4391 unsigned long lowmem_kbytes;
4393 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4395 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4396 if (min_free_kbytes < 128)
4397 min_free_kbytes = 128;
4398 if (min_free_kbytes > 65536)
4399 min_free_kbytes = 65536;
4400 setup_per_zone_pages_min();
4401 setup_per_zone_lowmem_reserve();
4402 setup_per_zone_inactive_ratio();
4403 return 0;
4405 module_init(init_per_zone_pages_min)
4408 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4409 * that we can call two helper functions whenever min_free_kbytes
4410 * changes.
4412 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4413 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4415 proc_dointvec(table, write, file, buffer, length, ppos);
4416 if (write)
4417 setup_per_zone_pages_min();
4418 return 0;
4421 #ifdef CONFIG_NUMA
4422 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4423 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4425 struct zone *zone;
4426 int rc;
4428 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4429 if (rc)
4430 return rc;
4432 for_each_zone(zone)
4433 zone->min_unmapped_pages = (zone->present_pages *
4434 sysctl_min_unmapped_ratio) / 100;
4435 return 0;
4438 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4439 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4441 struct zone *zone;
4442 int rc;
4444 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4445 if (rc)
4446 return rc;
4448 for_each_zone(zone)
4449 zone->min_slab_pages = (zone->present_pages *
4450 sysctl_min_slab_ratio) / 100;
4451 return 0;
4453 #endif
4456 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4457 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4458 * whenever sysctl_lowmem_reserve_ratio changes.
4460 * The reserve ratio obviously has absolutely no relation with the
4461 * pages_min watermarks. The lowmem reserve ratio can only make sense
4462 * if in function of the boot time zone sizes.
4464 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4465 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4467 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4468 setup_per_zone_lowmem_reserve();
4469 return 0;
4473 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4474 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4475 * can have before it gets flushed back to buddy allocator.
4478 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4479 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4481 struct zone *zone;
4482 unsigned int cpu;
4483 int ret;
4485 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4486 if (!write || (ret == -EINVAL))
4487 return ret;
4488 for_each_zone(zone) {
4489 for_each_online_cpu(cpu) {
4490 unsigned long high;
4491 high = zone->present_pages / percpu_pagelist_fraction;
4492 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4495 return 0;
4498 int hashdist = HASHDIST_DEFAULT;
4500 #ifdef CONFIG_NUMA
4501 static int __init set_hashdist(char *str)
4503 if (!str)
4504 return 0;
4505 hashdist = simple_strtoul(str, &str, 0);
4506 return 1;
4508 __setup("hashdist=", set_hashdist);
4509 #endif
4512 * allocate a large system hash table from bootmem
4513 * - it is assumed that the hash table must contain an exact power-of-2
4514 * quantity of entries
4515 * - limit is the number of hash buckets, not the total allocation size
4517 void *__init alloc_large_system_hash(const char *tablename,
4518 unsigned long bucketsize,
4519 unsigned long numentries,
4520 int scale,
4521 int flags,
4522 unsigned int *_hash_shift,
4523 unsigned int *_hash_mask,
4524 unsigned long limit)
4526 unsigned long long max = limit;
4527 unsigned long log2qty, size;
4528 void *table = NULL;
4530 /* allow the kernel cmdline to have a say */
4531 if (!numentries) {
4532 /* round applicable memory size up to nearest megabyte */
4533 numentries = nr_kernel_pages;
4534 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4535 numentries >>= 20 - PAGE_SHIFT;
4536 numentries <<= 20 - PAGE_SHIFT;
4538 /* limit to 1 bucket per 2^scale bytes of low memory */
4539 if (scale > PAGE_SHIFT)
4540 numentries >>= (scale - PAGE_SHIFT);
4541 else
4542 numentries <<= (PAGE_SHIFT - scale);
4544 /* Make sure we've got at least a 0-order allocation.. */
4545 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4546 numentries = PAGE_SIZE / bucketsize;
4548 numentries = roundup_pow_of_two(numentries);
4550 /* limit allocation size to 1/16 total memory by default */
4551 if (max == 0) {
4552 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4553 do_div(max, bucketsize);
4556 if (numentries > max)
4557 numentries = max;
4559 log2qty = ilog2(numentries);
4561 do {
4562 size = bucketsize << log2qty;
4563 if (flags & HASH_EARLY)
4564 table = alloc_bootmem_nopanic(size);
4565 else if (hashdist)
4566 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4567 else {
4568 unsigned long order = get_order(size);
4569 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4571 * If bucketsize is not a power-of-two, we may free
4572 * some pages at the end of hash table.
4574 if (table) {
4575 unsigned long alloc_end = (unsigned long)table +
4576 (PAGE_SIZE << order);
4577 unsigned long used = (unsigned long)table +
4578 PAGE_ALIGN(size);
4579 split_page(virt_to_page(table), order);
4580 while (used < alloc_end) {
4581 free_page(used);
4582 used += PAGE_SIZE;
4586 } while (!table && size > PAGE_SIZE && --log2qty);
4588 if (!table)
4589 panic("Failed to allocate %s hash table\n", tablename);
4591 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4592 tablename,
4593 (1U << log2qty),
4594 ilog2(size) - PAGE_SHIFT,
4595 size);
4597 if (_hash_shift)
4598 *_hash_shift = log2qty;
4599 if (_hash_mask)
4600 *_hash_mask = (1 << log2qty) - 1;
4602 return table;
4605 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4606 struct page *pfn_to_page(unsigned long pfn)
4608 return __pfn_to_page(pfn);
4610 unsigned long page_to_pfn(struct page *page)
4612 return __page_to_pfn(page);
4614 EXPORT_SYMBOL(pfn_to_page);
4615 EXPORT_SYMBOL(page_to_pfn);
4616 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4618 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4619 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4620 unsigned long pfn)
4622 #ifdef CONFIG_SPARSEMEM
4623 return __pfn_to_section(pfn)->pageblock_flags;
4624 #else
4625 return zone->pageblock_flags;
4626 #endif /* CONFIG_SPARSEMEM */
4629 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4631 #ifdef CONFIG_SPARSEMEM
4632 pfn &= (PAGES_PER_SECTION-1);
4633 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4634 #else
4635 pfn = pfn - zone->zone_start_pfn;
4636 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4637 #endif /* CONFIG_SPARSEMEM */
4641 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4642 * @page: The page within the block of interest
4643 * @start_bitidx: The first bit of interest to retrieve
4644 * @end_bitidx: The last bit of interest
4645 * returns pageblock_bits flags
4647 unsigned long get_pageblock_flags_group(struct page *page,
4648 int start_bitidx, int end_bitidx)
4650 struct zone *zone;
4651 unsigned long *bitmap;
4652 unsigned long pfn, bitidx;
4653 unsigned long flags = 0;
4654 unsigned long value = 1;
4656 zone = page_zone(page);
4657 pfn = page_to_pfn(page);
4658 bitmap = get_pageblock_bitmap(zone, pfn);
4659 bitidx = pfn_to_bitidx(zone, pfn);
4661 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4662 if (test_bit(bitidx + start_bitidx, bitmap))
4663 flags |= value;
4665 return flags;
4669 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4670 * @page: The page within the block of interest
4671 * @start_bitidx: The first bit of interest
4672 * @end_bitidx: The last bit of interest
4673 * @flags: The flags to set
4675 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4676 int start_bitidx, int end_bitidx)
4678 struct zone *zone;
4679 unsigned long *bitmap;
4680 unsigned long pfn, bitidx;
4681 unsigned long value = 1;
4683 zone = page_zone(page);
4684 pfn = page_to_pfn(page);
4685 bitmap = get_pageblock_bitmap(zone, pfn);
4686 bitidx = pfn_to_bitidx(zone, pfn);
4687 VM_BUG_ON(pfn < zone->zone_start_pfn);
4688 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4690 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4691 if (flags & value)
4692 __set_bit(bitidx + start_bitidx, bitmap);
4693 else
4694 __clear_bit(bitidx + start_bitidx, bitmap);
4698 * This is designed as sub function...plz see page_isolation.c also.
4699 * set/clear page block's type to be ISOLATE.
4700 * page allocater never alloc memory from ISOLATE block.
4703 int set_migratetype_isolate(struct page *page)
4705 struct zone *zone;
4706 unsigned long flags;
4707 int ret = -EBUSY;
4709 zone = page_zone(page);
4710 spin_lock_irqsave(&zone->lock, flags);
4712 * In future, more migrate types will be able to be isolation target.
4714 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4715 goto out;
4716 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4717 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4718 ret = 0;
4719 out:
4720 spin_unlock_irqrestore(&zone->lock, flags);
4721 if (!ret)
4722 drain_all_pages();
4723 return ret;
4726 void unset_migratetype_isolate(struct page *page)
4728 struct zone *zone;
4729 unsigned long flags;
4730 zone = page_zone(page);
4731 spin_lock_irqsave(&zone->lock, flags);
4732 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4733 goto out;
4734 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4735 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4736 out:
4737 spin_unlock_irqrestore(&zone->lock, flags);
4740 #ifdef CONFIG_MEMORY_HOTREMOVE
4742 * All pages in the range must be isolated before calling this.
4744 void
4745 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4747 struct page *page;
4748 struct zone *zone;
4749 int order, i;
4750 unsigned long pfn;
4751 unsigned long flags;
4752 /* find the first valid pfn */
4753 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4754 if (pfn_valid(pfn))
4755 break;
4756 if (pfn == end_pfn)
4757 return;
4758 zone = page_zone(pfn_to_page(pfn));
4759 spin_lock_irqsave(&zone->lock, flags);
4760 pfn = start_pfn;
4761 while (pfn < end_pfn) {
4762 if (!pfn_valid(pfn)) {
4763 pfn++;
4764 continue;
4766 page = pfn_to_page(pfn);
4767 BUG_ON(page_count(page));
4768 BUG_ON(!PageBuddy(page));
4769 order = page_order(page);
4770 #ifdef CONFIG_DEBUG_VM
4771 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4772 pfn, 1 << order, end_pfn);
4773 #endif
4774 list_del(&page->lru);
4775 rmv_page_order(page);
4776 zone->free_area[order].nr_free--;
4777 __mod_zone_page_state(zone, NR_FREE_PAGES,
4778 - (1UL << order));
4779 for (i = 0; i < (1 << order); i++)
4780 SetPageReserved((page+i));
4781 pfn += (1 << order);
4783 spin_unlock_irqrestore(&zone->lock, flags);
4785 #endif