remove malta-mtd.c and fix MAINTAINERS
[linux-2.6/zen-sources.git] / drivers / net / via-velocity.c
blob11cb3e504e1cb43e16c4eb5b81dda369ab4c75c1
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
10 * TODO
11 * rx_copybreak/alignment
12 * Scatter gather
13 * More testing
15 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
16 * Additional fixes and clean up: Francois Romieu
18 * This source has not been verified for use in safety critical systems.
20 * Please direct queries about the revamped driver to the linux-kernel
21 * list not VIA.
23 * Original code:
25 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
26 * All rights reserved.
28 * This software may be redistributed and/or modified under
29 * the terms of the GNU General Public License as published by the Free
30 * Software Foundation; either version 2 of the License, or
31 * any later version.
33 * This program is distributed in the hope that it will be useful, but
34 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
35 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
36 * for more details.
38 * Author: Chuang Liang-Shing, AJ Jiang
40 * Date: Jan 24, 2003
42 * MODULE_LICENSE("GPL");
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/init.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <asm/io.h>
65 #include <linux/if.h>
66 #include <asm/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/inetdevice.h>
69 #include <linux/reboot.h>
70 #include <linux/ethtool.h>
71 #include <linux/mii.h>
72 #include <linux/in.h>
73 #include <linux/if_arp.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <linux/udp.h>
78 #include <linux/crc-ccitt.h>
79 #include <linux/crc32.h>
81 #include "via-velocity.h"
84 static int velocity_nics = 0;
85 static int msglevel = MSG_LEVEL_INFO;
87 /**
88 * mac_get_cam_mask - Read a CAM mask
89 * @regs: register block for this velocity
90 * @mask: buffer to store mask
92 * Fetch the mask bits of the selected CAM and store them into the
93 * provided mask buffer.
96 static void mac_get_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
98 int i;
100 /* Select CAM mask */
101 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
103 writeb(0, &regs->CAMADDR);
105 /* read mask */
106 for (i = 0; i < 8; i++)
107 *mask++ = readb(&(regs->MARCAM[i]));
109 /* disable CAMEN */
110 writeb(0, &regs->CAMADDR);
112 /* Select mar */
113 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119 * mac_set_cam_mask - Set a CAM mask
120 * @regs: register block for this velocity
121 * @mask: CAM mask to load
123 * Store a new mask into a CAM
126 static void mac_set_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
128 int i;
129 /* Select CAM mask */
130 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
132 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
134 for (i = 0; i < 8; i++) {
135 writeb(*mask++, &(regs->MARCAM[i]));
137 /* disable CAMEN */
138 writeb(0, &regs->CAMADDR);
140 /* Select mar */
141 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
144 static void mac_set_vlan_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
146 int i;
147 /* Select CAM mask */
148 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
150 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
152 for (i = 0; i < 8; i++) {
153 writeb(*mask++, &(regs->MARCAM[i]));
155 /* disable CAMEN */
156 writeb(0, &regs->CAMADDR);
158 /* Select mar */
159 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163 * mac_set_cam - set CAM data
164 * @regs: register block of this velocity
165 * @idx: Cam index
166 * @addr: 2 or 6 bytes of CAM data
168 * Load an address or vlan tag into a CAM
171 static void mac_set_cam(struct mac_regs __iomem * regs, int idx, const u8 *addr)
173 int i;
175 /* Select CAM mask */
176 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
178 idx &= (64 - 1);
180 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
182 for (i = 0; i < 6; i++) {
183 writeb(*addr++, &(regs->MARCAM[i]));
185 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
187 udelay(10);
189 writeb(0, &regs->CAMADDR);
191 /* Select mar */
192 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
195 static void mac_set_vlan_cam(struct mac_regs __iomem * regs, int idx,
196 const u8 *addr)
199 /* Select CAM mask */
200 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
202 idx &= (64 - 1);
204 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
205 writew(*((u16 *) addr), &regs->MARCAM[0]);
207 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
209 udelay(10);
211 writeb(0, &regs->CAMADDR);
213 /* Select mar */
214 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
219 * mac_wol_reset - reset WOL after exiting low power
220 * @regs: register block of this velocity
222 * Called after we drop out of wake on lan mode in order to
223 * reset the Wake on lan features. This function doesn't restore
224 * the rest of the logic from the result of sleep/wakeup
227 static void mac_wol_reset(struct mac_regs __iomem * regs)
230 /* Turn off SWPTAG right after leaving power mode */
231 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
232 /* clear sticky bits */
233 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
235 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
236 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
237 /* disable force PME-enable */
238 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
239 /* disable power-event config bit */
240 writew(0xFFFF, &regs->WOLCRClr);
241 /* clear power status */
242 writew(0xFFFF, &regs->WOLSRClr);
245 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
246 static const struct ethtool_ops velocity_ethtool_ops;
249 Define module options
252 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
253 MODULE_LICENSE("GPL");
254 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
256 #define VELOCITY_PARAM(N,D) \
257 static int N[MAX_UNITS]=OPTION_DEFAULT;\
258 module_param_array(N, int, NULL, 0); \
259 MODULE_PARM_DESC(N, D);
261 #define RX_DESC_MIN 64
262 #define RX_DESC_MAX 255
263 #define RX_DESC_DEF 64
264 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
266 #define TX_DESC_MIN 16
267 #define TX_DESC_MAX 256
268 #define TX_DESC_DEF 64
269 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
271 #define RX_THRESH_MIN 0
272 #define RX_THRESH_MAX 3
273 #define RX_THRESH_DEF 0
274 /* rx_thresh[] is used for controlling the receive fifo threshold.
275 0: indicate the rxfifo threshold is 128 bytes.
276 1: indicate the rxfifo threshold is 512 bytes.
277 2: indicate the rxfifo threshold is 1024 bytes.
278 3: indicate the rxfifo threshold is store & forward.
280 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
282 #define DMA_LENGTH_MIN 0
283 #define DMA_LENGTH_MAX 7
284 #define DMA_LENGTH_DEF 0
286 /* DMA_length[] is used for controlling the DMA length
287 0: 8 DWORDs
288 1: 16 DWORDs
289 2: 32 DWORDs
290 3: 64 DWORDs
291 4: 128 DWORDs
292 5: 256 DWORDs
293 6: SF(flush till emply)
294 7: SF(flush till emply)
296 VELOCITY_PARAM(DMA_length, "DMA length");
298 #define IP_ALIG_DEF 0
299 /* IP_byte_align[] is used for IP header DWORD byte aligned
300 0: indicate the IP header won't be DWORD byte aligned.(Default) .
301 1: indicate the IP header will be DWORD byte aligned.
302 In some enviroment, the IP header should be DWORD byte aligned,
303 or the packet will be droped when we receive it. (eg: IPVS)
305 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
307 #define TX_CSUM_DEF 1
308 /* txcsum_offload[] is used for setting the checksum offload ability of NIC.
309 (We only support RX checksum offload now)
310 0: disable csum_offload[checksum offload
311 1: enable checksum offload. (Default)
313 VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
315 #define FLOW_CNTL_DEF 1
316 #define FLOW_CNTL_MIN 1
317 #define FLOW_CNTL_MAX 5
319 /* flow_control[] is used for setting the flow control ability of NIC.
320 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
321 2: enable TX flow control.
322 3: enable RX flow control.
323 4: enable RX/TX flow control.
324 5: disable
326 VELOCITY_PARAM(flow_control, "Enable flow control ability");
328 #define MED_LNK_DEF 0
329 #define MED_LNK_MIN 0
330 #define MED_LNK_MAX 4
331 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
332 0: indicate autonegotiation for both speed and duplex mode
333 1: indicate 100Mbps half duplex mode
334 2: indicate 100Mbps full duplex mode
335 3: indicate 10Mbps half duplex mode
336 4: indicate 10Mbps full duplex mode
338 Note:
339 if EEPROM have been set to the force mode, this option is ignored
340 by driver.
342 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
344 #define VAL_PKT_LEN_DEF 0
345 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
346 0: Receive frame with invalid layer 2 length (Default)
347 1: Drop frame with invalid layer 2 length
349 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
351 #define WOL_OPT_DEF 0
352 #define WOL_OPT_MIN 0
353 #define WOL_OPT_MAX 7
354 /* wol_opts[] is used for controlling wake on lan behavior.
355 0: Wake up if recevied a magic packet. (Default)
356 1: Wake up if link status is on/off.
357 2: Wake up if recevied an arp packet.
358 4: Wake up if recevied any unicast packet.
359 Those value can be sumed up to support more than one option.
361 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
363 #define INT_WORKS_DEF 20
364 #define INT_WORKS_MIN 10
365 #define INT_WORKS_MAX 64
367 VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
369 static int rx_copybreak = 200;
370 module_param(rx_copybreak, int, 0644);
371 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
373 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
374 const struct velocity_info_tbl *info);
375 static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
376 static void velocity_print_info(struct velocity_info *vptr);
377 static int velocity_open(struct net_device *dev);
378 static int velocity_change_mtu(struct net_device *dev, int mtu);
379 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
380 static int velocity_intr(int irq, void *dev_instance);
381 static void velocity_set_multi(struct net_device *dev);
382 static struct net_device_stats *velocity_get_stats(struct net_device *dev);
383 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
384 static int velocity_close(struct net_device *dev);
385 static int velocity_receive_frame(struct velocity_info *, int idx);
386 static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
387 static void velocity_free_rd_ring(struct velocity_info *vptr);
388 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
389 static int velocity_soft_reset(struct velocity_info *vptr);
390 static void mii_init(struct velocity_info *vptr, u32 mii_status);
391 static u32 velocity_get_link(struct net_device *dev);
392 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
393 static void velocity_print_link_status(struct velocity_info *vptr);
394 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
395 static void velocity_shutdown(struct velocity_info *vptr);
396 static void enable_flow_control_ability(struct velocity_info *vptr);
397 static void enable_mii_autopoll(struct mac_regs __iomem * regs);
398 static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
399 static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
400 static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
401 static u32 check_connection_type(struct mac_regs __iomem * regs);
402 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
404 #ifdef CONFIG_PM
406 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
407 static int velocity_resume(struct pci_dev *pdev);
409 static DEFINE_SPINLOCK(velocity_dev_list_lock);
410 static LIST_HEAD(velocity_dev_list);
412 #endif
414 #if defined(CONFIG_PM) && defined(CONFIG_INET)
416 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
418 static struct notifier_block velocity_inetaddr_notifier = {
419 .notifier_call = velocity_netdev_event,
422 static void velocity_register_notifier(void)
424 register_inetaddr_notifier(&velocity_inetaddr_notifier);
427 static void velocity_unregister_notifier(void)
429 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
432 #else
434 #define velocity_register_notifier() do {} while (0)
435 #define velocity_unregister_notifier() do {} while (0)
437 #endif
440 * Internal board variants. At the moment we have only one
443 static struct velocity_info_tbl chip_info_table[] = {
444 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
449 * Describe the PCI device identifiers that we support in this
450 * device driver. Used for hotplug autoloading.
453 static const struct pci_device_id velocity_id_table[] __devinitdata = {
454 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
458 MODULE_DEVICE_TABLE(pci, velocity_id_table);
461 * get_chip_name - identifier to name
462 * @id: chip identifier
464 * Given a chip identifier return a suitable description. Returns
465 * a pointer a static string valid while the driver is loaded.
468 static const char __devinit *get_chip_name(enum chip_type chip_id)
470 int i;
471 for (i = 0; chip_info_table[i].name != NULL; i++)
472 if (chip_info_table[i].chip_id == chip_id)
473 break;
474 return chip_info_table[i].name;
478 * velocity_remove1 - device unplug
479 * @pdev: PCI device being removed
481 * Device unload callback. Called on an unplug or on module
482 * unload for each active device that is present. Disconnects
483 * the device from the network layer and frees all the resources
486 static void __devexit velocity_remove1(struct pci_dev *pdev)
488 struct net_device *dev = pci_get_drvdata(pdev);
489 struct velocity_info *vptr = netdev_priv(dev);
491 #ifdef CONFIG_PM
492 unsigned long flags;
494 spin_lock_irqsave(&velocity_dev_list_lock, flags);
495 if (!list_empty(&velocity_dev_list))
496 list_del(&vptr->list);
497 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
498 #endif
499 unregister_netdev(dev);
500 iounmap(vptr->mac_regs);
501 pci_release_regions(pdev);
502 pci_disable_device(pdev);
503 pci_set_drvdata(pdev, NULL);
504 free_netdev(dev);
506 velocity_nics--;
510 * velocity_set_int_opt - parser for integer options
511 * @opt: pointer to option value
512 * @val: value the user requested (or -1 for default)
513 * @min: lowest value allowed
514 * @max: highest value allowed
515 * @def: default value
516 * @name: property name
517 * @dev: device name
519 * Set an integer property in the module options. This function does
520 * all the verification and checking as well as reporting so that
521 * we don't duplicate code for each option.
524 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
526 if (val == -1)
527 *opt = def;
528 else if (val < min || val > max) {
529 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
530 devname, name, min, max);
531 *opt = def;
532 } else {
533 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
534 devname, name, val);
535 *opt = val;
540 * velocity_set_bool_opt - parser for boolean options
541 * @opt: pointer to option value
542 * @val: value the user requested (or -1 for default)
543 * @def: default value (yes/no)
544 * @flag: numeric value to set for true.
545 * @name: property name
546 * @dev: device name
548 * Set a boolean property in the module options. This function does
549 * all the verification and checking as well as reporting so that
550 * we don't duplicate code for each option.
553 static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, const char *devname)
555 (*opt) &= (~flag);
556 if (val == -1)
557 *opt |= (def ? flag : 0);
558 else if (val < 0 || val > 1) {
559 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
560 devname, name);
561 *opt |= (def ? flag : 0);
562 } else {
563 printk(KERN_INFO "%s: set parameter %s to %s\n",
564 devname, name, val ? "TRUE" : "FALSE");
565 *opt |= (val ? flag : 0);
570 * velocity_get_options - set options on device
571 * @opts: option structure for the device
572 * @index: index of option to use in module options array
573 * @devname: device name
575 * Turn the module and command options into a single structure
576 * for the current device
579 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
582 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
583 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
584 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
585 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
587 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
588 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
589 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
590 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
591 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
592 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
593 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
594 opts->numrx = (opts->numrx & ~3);
598 * velocity_init_cam_filter - initialise CAM
599 * @vptr: velocity to program
601 * Initialize the content addressable memory used for filters. Load
602 * appropriately according to the presence of VLAN
605 static void velocity_init_cam_filter(struct velocity_info *vptr)
607 struct mac_regs __iomem * regs = vptr->mac_regs;
609 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
610 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
611 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
613 /* Disable all CAMs */
614 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
615 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
616 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
617 mac_set_cam_mask(regs, vptr->mCAMmask);
619 /* Enable VCAMs */
620 if (vptr->vlgrp) {
621 unsigned int vid, i = 0;
623 if (!vlan_group_get_device(vptr->vlgrp, 0))
624 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
626 for (vid = 1; (vid < VLAN_VID_MASK); vid++) {
627 if (vlan_group_get_device(vptr->vlgrp, vid)) {
628 mac_set_vlan_cam(regs, i, (u8 *) &vid);
629 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
630 if (++i >= VCAM_SIZE)
631 break;
634 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
638 static void velocity_vlan_rx_register(struct net_device *dev,
639 struct vlan_group *grp)
641 struct velocity_info *vptr = netdev_priv(dev);
643 vptr->vlgrp = grp;
646 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
648 struct velocity_info *vptr = netdev_priv(dev);
650 spin_lock_irq(&vptr->lock);
651 velocity_init_cam_filter(vptr);
652 spin_unlock_irq(&vptr->lock);
655 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
657 struct velocity_info *vptr = netdev_priv(dev);
659 spin_lock_irq(&vptr->lock);
660 vlan_group_set_device(vptr->vlgrp, vid, NULL);
661 velocity_init_cam_filter(vptr);
662 spin_unlock_irq(&vptr->lock);
665 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
667 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
671 * velocity_rx_reset - handle a receive reset
672 * @vptr: velocity we are resetting
674 * Reset the ownership and status for the receive ring side.
675 * Hand all the receive queue to the NIC.
678 static void velocity_rx_reset(struct velocity_info *vptr)
681 struct mac_regs __iomem * regs = vptr->mac_regs;
682 int i;
684 velocity_init_rx_ring_indexes(vptr);
687 * Init state, all RD entries belong to the NIC
689 for (i = 0; i < vptr->options.numrx; ++i)
690 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
692 writew(vptr->options.numrx, &regs->RBRDU);
693 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
694 writew(0, &regs->RDIdx);
695 writew(vptr->options.numrx - 1, &regs->RDCSize);
699 * velocity_init_registers - initialise MAC registers
700 * @vptr: velocity to init
701 * @type: type of initialisation (hot or cold)
703 * Initialise the MAC on a reset or on first set up on the
704 * hardware.
707 static void velocity_init_registers(struct velocity_info *vptr,
708 enum velocity_init_type type)
710 struct mac_regs __iomem * regs = vptr->mac_regs;
711 int i, mii_status;
713 mac_wol_reset(regs);
715 switch (type) {
716 case VELOCITY_INIT_RESET:
717 case VELOCITY_INIT_WOL:
719 netif_stop_queue(vptr->dev);
722 * Reset RX to prevent RX pointer not on the 4X location
724 velocity_rx_reset(vptr);
725 mac_rx_queue_run(regs);
726 mac_rx_queue_wake(regs);
728 mii_status = velocity_get_opt_media_mode(vptr);
729 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
730 velocity_print_link_status(vptr);
731 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
732 netif_wake_queue(vptr->dev);
735 enable_flow_control_ability(vptr);
737 mac_clear_isr(regs);
738 writel(CR0_STOP, &regs->CR0Clr);
739 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
740 &regs->CR0Set);
742 break;
744 case VELOCITY_INIT_COLD:
745 default:
747 * Do reset
749 velocity_soft_reset(vptr);
750 mdelay(5);
752 mac_eeprom_reload(regs);
753 for (i = 0; i < 6; i++) {
754 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
757 * clear Pre_ACPI bit.
759 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
760 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
761 mac_set_dma_length(regs, vptr->options.DMA_length);
763 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
765 * Back off algorithm use original IEEE standard
767 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
770 * Init CAM filter
772 velocity_init_cam_filter(vptr);
775 * Set packet filter: Receive directed and broadcast address
777 velocity_set_multi(vptr->dev);
780 * Enable MII auto-polling
782 enable_mii_autopoll(regs);
784 vptr->int_mask = INT_MASK_DEF;
786 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
787 writew(vptr->options.numrx - 1, &regs->RDCSize);
788 mac_rx_queue_run(regs);
789 mac_rx_queue_wake(regs);
791 writew(vptr->options.numtx - 1, &regs->TDCSize);
793 for (i = 0; i < vptr->tx.numq; i++) {
794 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
795 mac_tx_queue_run(regs, i);
798 init_flow_control_register(vptr);
800 writel(CR0_STOP, &regs->CR0Clr);
801 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
803 mii_status = velocity_get_opt_media_mode(vptr);
804 netif_stop_queue(vptr->dev);
806 mii_init(vptr, mii_status);
808 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
809 velocity_print_link_status(vptr);
810 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
811 netif_wake_queue(vptr->dev);
814 enable_flow_control_ability(vptr);
815 mac_hw_mibs_init(regs);
816 mac_write_int_mask(vptr->int_mask, regs);
817 mac_clear_isr(regs);
823 * velocity_soft_reset - soft reset
824 * @vptr: velocity to reset
826 * Kick off a soft reset of the velocity adapter and then poll
827 * until the reset sequence has completed before returning.
830 static int velocity_soft_reset(struct velocity_info *vptr)
832 struct mac_regs __iomem * regs = vptr->mac_regs;
833 int i = 0;
835 writel(CR0_SFRST, &regs->CR0Set);
837 for (i = 0; i < W_MAX_TIMEOUT; i++) {
838 udelay(5);
839 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
840 break;
843 if (i == W_MAX_TIMEOUT) {
844 writel(CR0_FORSRST, &regs->CR0Set);
845 /* FIXME: PCI POSTING */
846 /* delay 2ms */
847 mdelay(2);
849 return 0;
853 * velocity_found1 - set up discovered velocity card
854 * @pdev: PCI device
855 * @ent: PCI device table entry that matched
857 * Configure a discovered adapter from scratch. Return a negative
858 * errno error code on failure paths.
861 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
863 static int first = 1;
864 struct net_device *dev;
865 int i;
866 const char *drv_string;
867 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
868 struct velocity_info *vptr;
869 struct mac_regs __iomem * regs;
870 int ret = -ENOMEM;
872 /* FIXME: this driver, like almost all other ethernet drivers,
873 * can support more than MAX_UNITS.
875 if (velocity_nics >= MAX_UNITS) {
876 dev_notice(&pdev->dev, "already found %d NICs.\n",
877 velocity_nics);
878 return -ENODEV;
881 dev = alloc_etherdev(sizeof(struct velocity_info));
882 if (!dev) {
883 dev_err(&pdev->dev, "allocate net device failed.\n");
884 goto out;
887 /* Chain it all together */
889 SET_NETDEV_DEV(dev, &pdev->dev);
890 vptr = netdev_priv(dev);
893 if (first) {
894 printk(KERN_INFO "%s Ver. %s\n",
895 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
896 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
897 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
898 first = 0;
901 velocity_init_info(pdev, vptr, info);
903 vptr->dev = dev;
905 dev->irq = pdev->irq;
907 ret = pci_enable_device(pdev);
908 if (ret < 0)
909 goto err_free_dev;
911 ret = velocity_get_pci_info(vptr, pdev);
912 if (ret < 0) {
913 /* error message already printed */
914 goto err_disable;
917 ret = pci_request_regions(pdev, VELOCITY_NAME);
918 if (ret < 0) {
919 dev_err(&pdev->dev, "No PCI resources.\n");
920 goto err_disable;
923 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
924 if (regs == NULL) {
925 ret = -EIO;
926 goto err_release_res;
929 vptr->mac_regs = regs;
931 mac_wol_reset(regs);
933 dev->base_addr = vptr->ioaddr;
935 for (i = 0; i < 6; i++)
936 dev->dev_addr[i] = readb(&regs->PAR[i]);
939 drv_string = dev_driver_string(&pdev->dev);
941 velocity_get_options(&vptr->options, velocity_nics, drv_string);
944 * Mask out the options cannot be set to the chip
947 vptr->options.flags &= info->flags;
950 * Enable the chip specified capbilities
953 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
955 vptr->wol_opts = vptr->options.wol_opts;
956 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
958 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
960 dev->irq = pdev->irq;
961 dev->open = velocity_open;
962 dev->hard_start_xmit = velocity_xmit;
963 dev->stop = velocity_close;
964 dev->get_stats = velocity_get_stats;
965 dev->set_multicast_list = velocity_set_multi;
966 dev->do_ioctl = velocity_ioctl;
967 dev->ethtool_ops = &velocity_ethtool_ops;
968 dev->change_mtu = velocity_change_mtu;
970 dev->vlan_rx_add_vid = velocity_vlan_rx_add_vid;
971 dev->vlan_rx_kill_vid = velocity_vlan_rx_kill_vid;
972 dev->vlan_rx_register = velocity_vlan_rx_register;
974 #ifdef VELOCITY_ZERO_COPY_SUPPORT
975 dev->features |= NETIF_F_SG;
976 #endif
977 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
978 NETIF_F_HW_VLAN_RX;
980 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM)
981 dev->features |= NETIF_F_IP_CSUM;
983 ret = register_netdev(dev);
984 if (ret < 0)
985 goto err_iounmap;
987 if (velocity_get_link(dev))
988 netif_carrier_off(dev);
990 velocity_print_info(vptr);
991 pci_set_drvdata(pdev, dev);
993 /* and leave the chip powered down */
995 pci_set_power_state(pdev, PCI_D3hot);
996 #ifdef CONFIG_PM
998 unsigned long flags;
1000 spin_lock_irqsave(&velocity_dev_list_lock, flags);
1001 list_add(&vptr->list, &velocity_dev_list);
1002 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
1004 #endif
1005 velocity_nics++;
1006 out:
1007 return ret;
1009 err_iounmap:
1010 iounmap(regs);
1011 err_release_res:
1012 pci_release_regions(pdev);
1013 err_disable:
1014 pci_disable_device(pdev);
1015 err_free_dev:
1016 free_netdev(dev);
1017 goto out;
1021 * velocity_print_info - per driver data
1022 * @vptr: velocity
1024 * Print per driver data as the kernel driver finds Velocity
1025 * hardware
1028 static void __devinit velocity_print_info(struct velocity_info *vptr)
1030 struct net_device *dev = vptr->dev;
1032 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
1033 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
1034 dev->name,
1035 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1036 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1040 * velocity_init_info - init private data
1041 * @pdev: PCI device
1042 * @vptr: Velocity info
1043 * @info: Board type
1045 * Set up the initial velocity_info struct for the device that has been
1046 * discovered.
1049 static void __devinit velocity_init_info(struct pci_dev *pdev,
1050 struct velocity_info *vptr,
1051 const struct velocity_info_tbl *info)
1053 memset(vptr, 0, sizeof(struct velocity_info));
1055 vptr->pdev = pdev;
1056 vptr->chip_id = info->chip_id;
1057 vptr->tx.numq = info->txqueue;
1058 vptr->multicast_limit = MCAM_SIZE;
1059 spin_lock_init(&vptr->lock);
1060 INIT_LIST_HEAD(&vptr->list);
1064 * velocity_get_pci_info - retrieve PCI info for device
1065 * @vptr: velocity device
1066 * @pdev: PCI device it matches
1068 * Retrieve the PCI configuration space data that interests us from
1069 * the kernel PCI layer
1072 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
1074 vptr->rev_id = pdev->revision;
1076 pci_set_master(pdev);
1078 vptr->ioaddr = pci_resource_start(pdev, 0);
1079 vptr->memaddr = pci_resource_start(pdev, 1);
1081 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
1082 dev_err(&pdev->dev,
1083 "region #0 is not an I/O resource, aborting.\n");
1084 return -EINVAL;
1087 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
1088 dev_err(&pdev->dev,
1089 "region #1 is an I/O resource, aborting.\n");
1090 return -EINVAL;
1093 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
1094 dev_err(&pdev->dev, "region #1 is too small.\n");
1095 return -EINVAL;
1097 vptr->pdev = pdev;
1099 return 0;
1103 * velocity_init_dma_rings - set up DMA rings
1104 * @vptr: Velocity to set up
1106 * Allocate PCI mapped DMA rings for the receive and transmit layer
1107 * to use.
1110 static int velocity_init_dma_rings(struct velocity_info *vptr)
1112 struct velocity_opt *opt = &vptr->options;
1113 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1114 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1115 struct pci_dev *pdev = vptr->pdev;
1116 dma_addr_t pool_dma;
1117 void *pool;
1118 unsigned int i;
1121 * Allocate all RD/TD rings a single pool.
1123 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1124 * alignment
1126 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1127 rx_ring_size, &pool_dma);
1128 if (!pool) {
1129 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1130 vptr->dev->name);
1131 return -ENOMEM;
1134 vptr->rx.ring = pool;
1135 vptr->rx.pool_dma = pool_dma;
1137 pool += rx_ring_size;
1138 pool_dma += rx_ring_size;
1140 for (i = 0; i < vptr->tx.numq; i++) {
1141 vptr->tx.rings[i] = pool;
1142 vptr->tx.pool_dma[i] = pool_dma;
1143 pool += tx_ring_size;
1144 pool_dma += tx_ring_size;
1147 return 0;
1151 * velocity_free_dma_rings - free PCI ring pointers
1152 * @vptr: Velocity to free from
1154 * Clean up the PCI ring buffers allocated to this velocity.
1157 static void velocity_free_dma_rings(struct velocity_info *vptr)
1159 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1160 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1162 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1165 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1167 struct mac_regs __iomem *regs = vptr->mac_regs;
1168 int avail, dirty, unusable;
1171 * RD number must be equal to 4X per hardware spec
1172 * (programming guide rev 1.20, p.13)
1174 if (vptr->rx.filled < 4)
1175 return;
1177 wmb();
1179 unusable = vptr->rx.filled & 0x0003;
1180 dirty = vptr->rx.dirty - unusable;
1181 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1182 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1183 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1186 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1187 vptr->rx.filled = unusable;
1190 static int velocity_rx_refill(struct velocity_info *vptr)
1192 int dirty = vptr->rx.dirty, done = 0;
1194 do {
1195 struct rx_desc *rd = vptr->rx.ring + dirty;
1197 /* Fine for an all zero Rx desc at init time as well */
1198 if (rd->rdesc0.len & OWNED_BY_NIC)
1199 break;
1201 if (!vptr->rx.info[dirty].skb) {
1202 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1203 break;
1205 done++;
1206 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1207 } while (dirty != vptr->rx.curr);
1209 if (done) {
1210 vptr->rx.dirty = dirty;
1211 vptr->rx.filled += done;
1214 return done;
1217 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1219 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1223 * velocity_init_rd_ring - set up receive ring
1224 * @vptr: velocity to configure
1226 * Allocate and set up the receive buffers for each ring slot and
1227 * assign them to the network adapter.
1230 static int velocity_init_rd_ring(struct velocity_info *vptr)
1232 int ret = -ENOMEM;
1234 vptr->rx.info = kcalloc(vptr->options.numrx,
1235 sizeof(struct velocity_rd_info), GFP_KERNEL);
1236 if (!vptr->rx.info)
1237 goto out;
1239 velocity_init_rx_ring_indexes(vptr);
1241 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1242 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1243 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1244 velocity_free_rd_ring(vptr);
1245 goto out;
1248 ret = 0;
1249 out:
1250 return ret;
1254 * velocity_free_rd_ring - free receive ring
1255 * @vptr: velocity to clean up
1257 * Free the receive buffers for each ring slot and any
1258 * attached socket buffers that need to go away.
1261 static void velocity_free_rd_ring(struct velocity_info *vptr)
1263 int i;
1265 if (vptr->rx.info == NULL)
1266 return;
1268 for (i = 0; i < vptr->options.numrx; i++) {
1269 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1270 struct rx_desc *rd = vptr->rx.ring + i;
1272 memset(rd, 0, sizeof(*rd));
1274 if (!rd_info->skb)
1275 continue;
1276 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1277 PCI_DMA_FROMDEVICE);
1278 rd_info->skb_dma = 0;
1280 dev_kfree_skb(rd_info->skb);
1281 rd_info->skb = NULL;
1284 kfree(vptr->rx.info);
1285 vptr->rx.info = NULL;
1289 * velocity_init_td_ring - set up transmit ring
1290 * @vptr: velocity
1292 * Set up the transmit ring and chain the ring pointers together.
1293 * Returns zero on success or a negative posix errno code for
1294 * failure.
1297 static int velocity_init_td_ring(struct velocity_info *vptr)
1299 dma_addr_t curr;
1300 unsigned int j;
1302 /* Init the TD ring entries */
1303 for (j = 0; j < vptr->tx.numq; j++) {
1304 curr = vptr->tx.pool_dma[j];
1306 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1307 sizeof(struct velocity_td_info),
1308 GFP_KERNEL);
1309 if (!vptr->tx.infos[j]) {
1310 while(--j >= 0)
1311 kfree(vptr->tx.infos[j]);
1312 return -ENOMEM;
1315 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1317 return 0;
1321 * FIXME: could we merge this with velocity_free_tx_buf ?
1324 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1325 int q, int n)
1327 struct velocity_td_info * td_info = &(vptr->tx.infos[q][n]);
1328 int i;
1330 if (td_info == NULL)
1331 return;
1333 if (td_info->skb) {
1334 for (i = 0; i < td_info->nskb_dma; i++)
1336 if (td_info->skb_dma[i]) {
1337 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1338 td_info->skb->len, PCI_DMA_TODEVICE);
1339 td_info->skb_dma[i] = 0;
1342 dev_kfree_skb(td_info->skb);
1343 td_info->skb = NULL;
1348 * velocity_free_td_ring - free td ring
1349 * @vptr: velocity
1351 * Free up the transmit ring for this particular velocity adapter.
1352 * We free the ring contents but not the ring itself.
1355 static void velocity_free_td_ring(struct velocity_info *vptr)
1357 int i, j;
1359 for (j = 0; j < vptr->tx.numq; j++) {
1360 if (vptr->tx.infos[j] == NULL)
1361 continue;
1362 for (i = 0; i < vptr->options.numtx; i++) {
1363 velocity_free_td_ring_entry(vptr, j, i);
1366 kfree(vptr->tx.infos[j]);
1367 vptr->tx.infos[j] = NULL;
1372 * velocity_rx_srv - service RX interrupt
1373 * @vptr: velocity
1374 * @status: adapter status (unused)
1376 * Walk the receive ring of the velocity adapter and remove
1377 * any received packets from the receive queue. Hand the ring
1378 * slots back to the adapter for reuse.
1381 static int velocity_rx_srv(struct velocity_info *vptr, int status)
1383 struct net_device_stats *stats = &vptr->stats;
1384 int rd_curr = vptr->rx.curr;
1385 int works = 0;
1387 do {
1388 struct rx_desc *rd = vptr->rx.ring + rd_curr;
1390 if (!vptr->rx.info[rd_curr].skb)
1391 break;
1393 if (rd->rdesc0.len & OWNED_BY_NIC)
1394 break;
1396 rmb();
1399 * Don't drop CE or RL error frame although RXOK is off
1401 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
1402 if (velocity_receive_frame(vptr, rd_curr) < 0)
1403 stats->rx_dropped++;
1404 } else {
1405 if (rd->rdesc0.RSR & RSR_CRC)
1406 stats->rx_crc_errors++;
1407 if (rd->rdesc0.RSR & RSR_FAE)
1408 stats->rx_frame_errors++;
1410 stats->rx_dropped++;
1413 rd->size |= RX_INTEN;
1415 vptr->dev->last_rx = jiffies;
1417 rd_curr++;
1418 if (rd_curr >= vptr->options.numrx)
1419 rd_curr = 0;
1420 } while (++works <= 15);
1422 vptr->rx.curr = rd_curr;
1424 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
1425 velocity_give_many_rx_descs(vptr);
1427 VAR_USED(stats);
1428 return works;
1432 * velocity_rx_csum - checksum process
1433 * @rd: receive packet descriptor
1434 * @skb: network layer packet buffer
1436 * Process the status bits for the received packet and determine
1437 * if the checksum was computed and verified by the hardware
1440 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1442 skb->ip_summed = CHECKSUM_NONE;
1444 if (rd->rdesc1.CSM & CSM_IPKT) {
1445 if (rd->rdesc1.CSM & CSM_IPOK) {
1446 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1447 (rd->rdesc1.CSM & CSM_UDPKT)) {
1448 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1449 return;
1452 skb->ip_summed = CHECKSUM_UNNECESSARY;
1458 * velocity_rx_copy - in place Rx copy for small packets
1459 * @rx_skb: network layer packet buffer candidate
1460 * @pkt_size: received data size
1461 * @rd: receive packet descriptor
1462 * @dev: network device
1464 * Replace the current skb that is scheduled for Rx processing by a
1465 * shorter, immediatly allocated skb, if the received packet is small
1466 * enough. This function returns a negative value if the received
1467 * packet is too big or if memory is exhausted.
1469 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1470 struct velocity_info *vptr)
1472 int ret = -1;
1473 if (pkt_size < rx_copybreak) {
1474 struct sk_buff *new_skb;
1476 new_skb = netdev_alloc_skb(vptr->dev, pkt_size + 2);
1477 if (new_skb) {
1478 new_skb->ip_summed = rx_skb[0]->ip_summed;
1479 skb_reserve(new_skb, 2);
1480 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1481 *rx_skb = new_skb;
1482 ret = 0;
1486 return ret;
1490 * velocity_iph_realign - IP header alignment
1491 * @vptr: velocity we are handling
1492 * @skb: network layer packet buffer
1493 * @pkt_size: received data size
1495 * Align IP header on a 2 bytes boundary. This behavior can be
1496 * configured by the user.
1498 static inline void velocity_iph_realign(struct velocity_info *vptr,
1499 struct sk_buff *skb, int pkt_size)
1501 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1502 memmove(skb->data + 2, skb->data, pkt_size);
1503 skb_reserve(skb, 2);
1508 * velocity_receive_frame - received packet processor
1509 * @vptr: velocity we are handling
1510 * @idx: ring index
1512 * A packet has arrived. We process the packet and if appropriate
1513 * pass the frame up the network stack
1516 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1518 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1519 struct net_device_stats *stats = &vptr->stats;
1520 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1521 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1522 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
1523 struct sk_buff *skb;
1525 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1526 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1527 stats->rx_length_errors++;
1528 return -EINVAL;
1531 if (rd->rdesc0.RSR & RSR_MAR)
1532 vptr->stats.multicast++;
1534 skb = rd_info->skb;
1536 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1537 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1540 * Drop frame not meeting IEEE 802.3
1543 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1544 if (rd->rdesc0.RSR & RSR_RL) {
1545 stats->rx_length_errors++;
1546 return -EINVAL;
1550 pci_action = pci_dma_sync_single_for_device;
1552 velocity_rx_csum(rd, skb);
1554 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1555 velocity_iph_realign(vptr, skb, pkt_len);
1556 pci_action = pci_unmap_single;
1557 rd_info->skb = NULL;
1560 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1561 PCI_DMA_FROMDEVICE);
1563 skb_put(skb, pkt_len - 4);
1564 skb->protocol = eth_type_trans(skb, vptr->dev);
1566 if (vptr->vlgrp && (rd->rdesc0.RSR & RSR_DETAG)) {
1567 vlan_hwaccel_rx(skb, vptr->vlgrp,
1568 swab16(le16_to_cpu(rd->rdesc1.PQTAG)));
1569 } else
1570 netif_rx(skb);
1572 stats->rx_bytes += pkt_len;
1574 return 0;
1578 * velocity_alloc_rx_buf - allocate aligned receive buffer
1579 * @vptr: velocity
1580 * @idx: ring index
1582 * Allocate a new full sized buffer for the reception of a frame and
1583 * map it into PCI space for the hardware to use. The hardware
1584 * requires *64* byte alignment of the buffer which makes life
1585 * less fun than would be ideal.
1588 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1590 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1591 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1593 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1594 if (rd_info->skb == NULL)
1595 return -ENOMEM;
1598 * Do the gymnastics to get the buffer head for data at
1599 * 64byte alignment.
1601 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1602 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1603 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1606 * Fill in the descriptor to match
1609 *((u32 *) & (rd->rdesc0)) = 0;
1610 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1611 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1612 rd->pa_high = 0;
1613 return 0;
1617 * tx_srv - transmit interrupt service
1618 * @vptr; Velocity
1619 * @status:
1621 * Scan the queues looking for transmitted packets that
1622 * we can complete and clean up. Update any statistics as
1623 * necessary/
1626 static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1628 struct tx_desc *td;
1629 int qnum;
1630 int full = 0;
1631 int idx;
1632 int works = 0;
1633 struct velocity_td_info *tdinfo;
1634 struct net_device_stats *stats = &vptr->stats;
1636 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1637 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1638 idx = (idx + 1) % vptr->options.numtx) {
1641 * Get Tx Descriptor
1643 td = &(vptr->tx.rings[qnum][idx]);
1644 tdinfo = &(vptr->tx.infos[qnum][idx]);
1646 if (td->tdesc0.len & OWNED_BY_NIC)
1647 break;
1649 if ((works++ > 15))
1650 break;
1652 if (td->tdesc0.TSR & TSR0_TERR) {
1653 stats->tx_errors++;
1654 stats->tx_dropped++;
1655 if (td->tdesc0.TSR & TSR0_CDH)
1656 stats->tx_heartbeat_errors++;
1657 if (td->tdesc0.TSR & TSR0_CRS)
1658 stats->tx_carrier_errors++;
1659 if (td->tdesc0.TSR & TSR0_ABT)
1660 stats->tx_aborted_errors++;
1661 if (td->tdesc0.TSR & TSR0_OWC)
1662 stats->tx_window_errors++;
1663 } else {
1664 stats->tx_packets++;
1665 stats->tx_bytes += tdinfo->skb->len;
1667 velocity_free_tx_buf(vptr, tdinfo);
1668 vptr->tx.used[qnum]--;
1670 vptr->tx.tail[qnum] = idx;
1672 if (AVAIL_TD(vptr, qnum) < 1) {
1673 full = 1;
1677 * Look to see if we should kick the transmit network
1678 * layer for more work.
1680 if (netif_queue_stopped(vptr->dev) && (full == 0)
1681 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1682 netif_wake_queue(vptr->dev);
1684 return works;
1688 * velocity_print_link_status - link status reporting
1689 * @vptr: velocity to report on
1691 * Turn the link status of the velocity card into a kernel log
1692 * description of the new link state, detailing speed and duplex
1693 * status
1696 static void velocity_print_link_status(struct velocity_info *vptr)
1699 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1700 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1701 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1702 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1704 if (vptr->mii_status & VELOCITY_SPEED_1000)
1705 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1706 else if (vptr->mii_status & VELOCITY_SPEED_100)
1707 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1708 else
1709 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1711 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1712 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1713 else
1714 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1715 } else {
1716 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1717 switch (vptr->options.spd_dpx) {
1718 case SPD_DPX_100_HALF:
1719 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1720 break;
1721 case SPD_DPX_100_FULL:
1722 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1723 break;
1724 case SPD_DPX_10_HALF:
1725 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1726 break;
1727 case SPD_DPX_10_FULL:
1728 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1729 break;
1730 default:
1731 break;
1737 * velocity_error - handle error from controller
1738 * @vptr: velocity
1739 * @status: card status
1741 * Process an error report from the hardware and attempt to recover
1742 * the card itself. At the moment we cannot recover from some
1743 * theoretically impossible errors but this could be fixed using
1744 * the pci_device_failed logic to bounce the hardware
1748 static void velocity_error(struct velocity_info *vptr, int status)
1751 if (status & ISR_TXSTLI) {
1752 struct mac_regs __iomem * regs = vptr->mac_regs;
1754 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1755 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1756 writew(TRDCSR_RUN, &regs->TDCSRClr);
1757 netif_stop_queue(vptr->dev);
1759 /* FIXME: port over the pci_device_failed code and use it
1760 here */
1763 if (status & ISR_SRCI) {
1764 struct mac_regs __iomem * regs = vptr->mac_regs;
1765 int linked;
1767 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1768 vptr->mii_status = check_connection_type(regs);
1771 * If it is a 3119, disable frame bursting in
1772 * halfduplex mode and enable it in fullduplex
1773 * mode
1775 if (vptr->rev_id < REV_ID_VT3216_A0) {
1776 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1777 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1778 else
1779 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1782 * Only enable CD heart beat counter in 10HD mode
1784 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1785 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1786 } else {
1787 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1791 * Get link status from PHYSR0
1793 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1795 if (linked) {
1796 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1797 netif_carrier_on(vptr->dev);
1798 } else {
1799 vptr->mii_status |= VELOCITY_LINK_FAIL;
1800 netif_carrier_off(vptr->dev);
1803 velocity_print_link_status(vptr);
1804 enable_flow_control_ability(vptr);
1807 * Re-enable auto-polling because SRCI will disable
1808 * auto-polling
1811 enable_mii_autopoll(regs);
1813 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1814 netif_stop_queue(vptr->dev);
1815 else
1816 netif_wake_queue(vptr->dev);
1819 if (status & ISR_MIBFI)
1820 velocity_update_hw_mibs(vptr);
1821 if (status & ISR_LSTEI)
1822 mac_rx_queue_wake(vptr->mac_regs);
1826 * velocity_free_tx_buf - free transmit buffer
1827 * @vptr: velocity
1828 * @tdinfo: buffer
1830 * Release an transmit buffer. If the buffer was preallocated then
1831 * recycle it, if not then unmap the buffer.
1834 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1836 struct sk_buff *skb = tdinfo->skb;
1837 int i;
1840 * Don't unmap the pre-allocated tx_bufs
1842 if (tdinfo->skb_dma) {
1844 for (i = 0; i < tdinfo->nskb_dma; i++) {
1845 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1846 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], le16_to_cpu(td->tdesc1.len), PCI_DMA_TODEVICE);
1847 #else
1848 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1849 #endif
1850 tdinfo->skb_dma[i] = 0;
1853 dev_kfree_skb_irq(skb);
1854 tdinfo->skb = NULL;
1857 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1859 int ret;
1861 velocity_set_rxbufsize(vptr, mtu);
1863 ret = velocity_init_dma_rings(vptr);
1864 if (ret < 0)
1865 goto out;
1867 ret = velocity_init_rd_ring(vptr);
1868 if (ret < 0)
1869 goto err_free_dma_rings_0;
1871 ret = velocity_init_td_ring(vptr);
1872 if (ret < 0)
1873 goto err_free_rd_ring_1;
1874 out:
1875 return ret;
1877 err_free_rd_ring_1:
1878 velocity_free_rd_ring(vptr);
1879 err_free_dma_rings_0:
1880 velocity_free_dma_rings(vptr);
1881 goto out;
1884 static void velocity_free_rings(struct velocity_info *vptr)
1886 velocity_free_td_ring(vptr);
1887 velocity_free_rd_ring(vptr);
1888 velocity_free_dma_rings(vptr);
1892 * velocity_open - interface activation callback
1893 * @dev: network layer device to open
1895 * Called when the network layer brings the interface up. Returns
1896 * a negative posix error code on failure, or zero on success.
1898 * All the ring allocation and set up is done on open for this
1899 * adapter to minimise memory usage when inactive
1902 static int velocity_open(struct net_device *dev)
1904 struct velocity_info *vptr = netdev_priv(dev);
1905 int ret;
1907 ret = velocity_init_rings(vptr, dev->mtu);
1908 if (ret < 0)
1909 goto out;
1911 /* Ensure chip is running */
1912 pci_set_power_state(vptr->pdev, PCI_D0);
1914 velocity_give_many_rx_descs(vptr);
1916 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1918 ret = request_irq(vptr->pdev->irq, &velocity_intr, IRQF_SHARED,
1919 dev->name, dev);
1920 if (ret < 0) {
1921 /* Power down the chip */
1922 pci_set_power_state(vptr->pdev, PCI_D3hot);
1923 velocity_free_rings(vptr);
1924 goto out;
1927 mac_enable_int(vptr->mac_regs);
1928 netif_start_queue(dev);
1929 vptr->flags |= VELOCITY_FLAGS_OPENED;
1930 out:
1931 return ret;
1935 * velocity_change_mtu - MTU change callback
1936 * @dev: network device
1937 * @new_mtu: desired MTU
1939 * Handle requests from the networking layer for MTU change on
1940 * this interface. It gets called on a change by the network layer.
1941 * Return zero for success or negative posix error code.
1944 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1946 struct velocity_info *vptr = netdev_priv(dev);
1947 int ret = 0;
1949 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1950 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1951 vptr->dev->name);
1952 ret = -EINVAL;
1953 goto out_0;
1956 if (!netif_running(dev)) {
1957 dev->mtu = new_mtu;
1958 goto out_0;
1961 if (dev->mtu != new_mtu) {
1962 struct velocity_info *tmp_vptr;
1963 unsigned long flags;
1964 struct rx_info rx;
1965 struct tx_info tx;
1967 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
1968 if (!tmp_vptr) {
1969 ret = -ENOMEM;
1970 goto out_0;
1973 tmp_vptr->dev = dev;
1974 tmp_vptr->pdev = vptr->pdev;
1975 tmp_vptr->options = vptr->options;
1976 tmp_vptr->tx.numq = vptr->tx.numq;
1978 ret = velocity_init_rings(tmp_vptr, new_mtu);
1979 if (ret < 0)
1980 goto out_free_tmp_vptr_1;
1982 spin_lock_irqsave(&vptr->lock, flags);
1984 netif_stop_queue(dev);
1985 velocity_shutdown(vptr);
1987 rx = vptr->rx;
1988 tx = vptr->tx;
1990 vptr->rx = tmp_vptr->rx;
1991 vptr->tx = tmp_vptr->tx;
1993 tmp_vptr->rx = rx;
1994 tmp_vptr->tx = tx;
1996 dev->mtu = new_mtu;
1998 velocity_give_many_rx_descs(vptr);
2000 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2002 mac_enable_int(vptr->mac_regs);
2003 netif_start_queue(dev);
2005 spin_unlock_irqrestore(&vptr->lock, flags);
2007 velocity_free_rings(tmp_vptr);
2009 out_free_tmp_vptr_1:
2010 kfree(tmp_vptr);
2012 out_0:
2013 return ret;
2017 * velocity_shutdown - shut down the chip
2018 * @vptr: velocity to deactivate
2020 * Shuts down the internal operations of the velocity and
2021 * disables interrupts, autopolling, transmit and receive
2024 static void velocity_shutdown(struct velocity_info *vptr)
2026 struct mac_regs __iomem * regs = vptr->mac_regs;
2027 mac_disable_int(regs);
2028 writel(CR0_STOP, &regs->CR0Set);
2029 writew(0xFFFF, &regs->TDCSRClr);
2030 writeb(0xFF, &regs->RDCSRClr);
2031 safe_disable_mii_autopoll(regs);
2032 mac_clear_isr(regs);
2036 * velocity_close - close adapter callback
2037 * @dev: network device
2039 * Callback from the network layer when the velocity is being
2040 * deactivated by the network layer
2043 static int velocity_close(struct net_device *dev)
2045 struct velocity_info *vptr = netdev_priv(dev);
2047 netif_stop_queue(dev);
2048 velocity_shutdown(vptr);
2050 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2051 velocity_get_ip(vptr);
2052 if (dev->irq != 0)
2053 free_irq(dev->irq, dev);
2055 /* Power down the chip */
2056 pci_set_power_state(vptr->pdev, PCI_D3hot);
2058 velocity_free_rings(vptr);
2060 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2061 return 0;
2065 * velocity_xmit - transmit packet callback
2066 * @skb: buffer to transmit
2067 * @dev: network device
2069 * Called by the networ layer to request a packet is queued to
2070 * the velocity. Returns zero on success.
2073 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
2075 struct velocity_info *vptr = netdev_priv(dev);
2076 int qnum = 0;
2077 struct tx_desc *td_ptr;
2078 struct velocity_td_info *tdinfo;
2079 unsigned long flags;
2080 int pktlen = skb->len;
2081 __le16 len;
2082 int index;
2086 if (skb->len < ETH_ZLEN) {
2087 if (skb_padto(skb, ETH_ZLEN))
2088 goto out;
2089 pktlen = ETH_ZLEN;
2092 len = cpu_to_le16(pktlen);
2094 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2095 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2096 kfree_skb(skb);
2097 return 0;
2099 #endif
2101 spin_lock_irqsave(&vptr->lock, flags);
2103 index = vptr->tx.curr[qnum];
2104 td_ptr = &(vptr->tx.rings[qnum][index]);
2105 tdinfo = &(vptr->tx.infos[qnum][index]);
2107 td_ptr->tdesc1.TCR = TCR0_TIC;
2108 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2110 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2111 if (skb_shinfo(skb)->nr_frags > 0) {
2112 int nfrags = skb_shinfo(skb)->nr_frags;
2113 tdinfo->skb = skb;
2114 if (nfrags > 6) {
2115 skb_copy_from_linear_data(skb, tdinfo->buf, skb->len);
2116 tdinfo->skb_dma[0] = tdinfo->buf_dma;
2117 td_ptr->tdesc0.len = len;
2118 td_ptr->tx.buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2119 td_ptr->tx.buf[0].pa_high = 0;
2120 td_ptr->tx.buf[0].size = len; /* queue is 0 anyway */
2121 tdinfo->nskb_dma = 1;
2122 } else {
2123 int i = 0;
2124 tdinfo->nskb_dma = 0;
2125 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data,
2126 skb_headlen(skb), PCI_DMA_TODEVICE);
2128 td_ptr->tdesc0.len = len;
2130 /* FIXME: support 48bit DMA later */
2131 td_ptr->tx.buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
2132 td_ptr->tx.buf[i].pa_high = 0;
2133 td_ptr->tx.buf[i].size = cpu_to_le16(skb_headlen(skb));
2135 for (i = 0; i < nfrags; i++) {
2136 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2137 void *addr = (void *)page_address(frag->page) + frag->page_offset;
2139 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
2141 td_ptr->tx.buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2142 td_ptr->tx.buf[i + 1].pa_high = 0;
2143 td_ptr->tx.buf[i + 1].size = cpu_to_le16(frag->size);
2145 tdinfo->nskb_dma = i - 1;
2148 } else
2149 #endif
2152 * Map the linear network buffer into PCI space and
2153 * add it to the transmit ring.
2155 tdinfo->skb = skb;
2156 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2157 td_ptr->tdesc0.len = len;
2158 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2159 td_ptr->td_buf[0].pa_high = 0;
2160 td_ptr->td_buf[0].size = len;
2161 tdinfo->nskb_dma = 1;
2163 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2165 if (vptr->vlgrp && vlan_tx_tag_present(skb)) {
2166 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2167 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2171 * Handle hardware checksum
2173 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2174 && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2175 const struct iphdr *ip = ip_hdr(skb);
2176 if (ip->protocol == IPPROTO_TCP)
2177 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2178 else if (ip->protocol == IPPROTO_UDP)
2179 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2180 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2184 int prev = index - 1;
2186 if (prev < 0)
2187 prev = vptr->options.numtx - 1;
2188 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2189 vptr->tx.used[qnum]++;
2190 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2192 if (AVAIL_TD(vptr, qnum) < 1)
2193 netif_stop_queue(dev);
2195 td_ptr = &(vptr->tx.rings[qnum][prev]);
2196 td_ptr->td_buf[0].size |= TD_QUEUE;
2197 mac_tx_queue_wake(vptr->mac_regs, qnum);
2199 dev->trans_start = jiffies;
2200 spin_unlock_irqrestore(&vptr->lock, flags);
2201 out:
2202 return NETDEV_TX_OK;
2206 * velocity_intr - interrupt callback
2207 * @irq: interrupt number
2208 * @dev_instance: interrupting device
2210 * Called whenever an interrupt is generated by the velocity
2211 * adapter IRQ line. We may not be the source of the interrupt
2212 * and need to identify initially if we are, and if not exit as
2213 * efficiently as possible.
2216 static int velocity_intr(int irq, void *dev_instance)
2218 struct net_device *dev = dev_instance;
2219 struct velocity_info *vptr = netdev_priv(dev);
2220 u32 isr_status;
2221 int max_count = 0;
2224 spin_lock(&vptr->lock);
2225 isr_status = mac_read_isr(vptr->mac_regs);
2227 /* Not us ? */
2228 if (isr_status == 0) {
2229 spin_unlock(&vptr->lock);
2230 return IRQ_NONE;
2233 mac_disable_int(vptr->mac_regs);
2236 * Keep processing the ISR until we have completed
2237 * processing and the isr_status becomes zero
2240 while (isr_status != 0) {
2241 mac_write_isr(vptr->mac_regs, isr_status);
2242 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2243 velocity_error(vptr, isr_status);
2244 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2245 max_count += velocity_rx_srv(vptr, isr_status);
2246 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2247 max_count += velocity_tx_srv(vptr, isr_status);
2248 isr_status = mac_read_isr(vptr->mac_regs);
2249 if (max_count > vptr->options.int_works)
2251 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2252 dev->name);
2253 max_count = 0;
2256 spin_unlock(&vptr->lock);
2257 mac_enable_int(vptr->mac_regs);
2258 return IRQ_HANDLED;
2264 * velocity_set_multi - filter list change callback
2265 * @dev: network device
2267 * Called by the network layer when the filter lists need to change
2268 * for a velocity adapter. Reload the CAMs with the new address
2269 * filter ruleset.
2272 static void velocity_set_multi(struct net_device *dev)
2274 struct velocity_info *vptr = netdev_priv(dev);
2275 struct mac_regs __iomem * regs = vptr->mac_regs;
2276 u8 rx_mode;
2277 int i;
2278 struct dev_mc_list *mclist;
2280 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2281 writel(0xffffffff, &regs->MARCAM[0]);
2282 writel(0xffffffff, &regs->MARCAM[4]);
2283 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2284 } else if ((dev->mc_count > vptr->multicast_limit)
2285 || (dev->flags & IFF_ALLMULTI)) {
2286 writel(0xffffffff, &regs->MARCAM[0]);
2287 writel(0xffffffff, &regs->MARCAM[4]);
2288 rx_mode = (RCR_AM | RCR_AB);
2289 } else {
2290 int offset = MCAM_SIZE - vptr->multicast_limit;
2291 mac_get_cam_mask(regs, vptr->mCAMmask);
2293 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2294 mac_set_cam(regs, i + offset, mclist->dmi_addr);
2295 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2298 mac_set_cam_mask(regs, vptr->mCAMmask);
2299 rx_mode = RCR_AM | RCR_AB | RCR_AP;
2301 if (dev->mtu > 1500)
2302 rx_mode |= RCR_AL;
2304 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2309 * velocity_get_status - statistics callback
2310 * @dev: network device
2312 * Callback from the network layer to allow driver statistics
2313 * to be resynchronized with hardware collected state. In the
2314 * case of the velocity we need to pull the MIB counters from
2315 * the hardware into the counters before letting the network
2316 * layer display them.
2319 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2321 struct velocity_info *vptr = netdev_priv(dev);
2323 /* If the hardware is down, don't touch MII */
2324 if(!netif_running(dev))
2325 return &vptr->stats;
2327 spin_lock_irq(&vptr->lock);
2328 velocity_update_hw_mibs(vptr);
2329 spin_unlock_irq(&vptr->lock);
2331 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2332 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2333 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2335 // unsigned long rx_dropped; /* no space in linux buffers */
2336 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2337 /* detailed rx_errors: */
2338 // unsigned long rx_length_errors;
2339 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2340 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2341 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2342 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2343 // unsigned long rx_missed_errors; /* receiver missed packet */
2345 /* detailed tx_errors */
2346 // unsigned long tx_fifo_errors;
2348 return &vptr->stats;
2353 * velocity_ioctl - ioctl entry point
2354 * @dev: network device
2355 * @rq: interface request ioctl
2356 * @cmd: command code
2358 * Called when the user issues an ioctl request to the network
2359 * device in question. The velocity interface supports MII.
2362 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2364 struct velocity_info *vptr = netdev_priv(dev);
2365 int ret;
2367 /* If we are asked for information and the device is power
2368 saving then we need to bring the device back up to talk to it */
2370 if (!netif_running(dev))
2371 pci_set_power_state(vptr->pdev, PCI_D0);
2373 switch (cmd) {
2374 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2375 case SIOCGMIIREG: /* Read MII PHY register. */
2376 case SIOCSMIIREG: /* Write to MII PHY register. */
2377 ret = velocity_mii_ioctl(dev, rq, cmd);
2378 break;
2380 default:
2381 ret = -EOPNOTSUPP;
2383 if (!netif_running(dev))
2384 pci_set_power_state(vptr->pdev, PCI_D3hot);
2387 return ret;
2391 * Definition for our device driver. The PCI layer interface
2392 * uses this to handle all our card discover and plugging
2395 static struct pci_driver velocity_driver = {
2396 .name = VELOCITY_NAME,
2397 .id_table = velocity_id_table,
2398 .probe = velocity_found1,
2399 .remove = __devexit_p(velocity_remove1),
2400 #ifdef CONFIG_PM
2401 .suspend = velocity_suspend,
2402 .resume = velocity_resume,
2403 #endif
2407 * velocity_init_module - load time function
2409 * Called when the velocity module is loaded. The PCI driver
2410 * is registered with the PCI layer, and in turn will call
2411 * the probe functions for each velocity adapter installed
2412 * in the system.
2415 static int __init velocity_init_module(void)
2417 int ret;
2419 velocity_register_notifier();
2420 ret = pci_register_driver(&velocity_driver);
2421 if (ret < 0)
2422 velocity_unregister_notifier();
2423 return ret;
2427 * velocity_cleanup - module unload
2429 * When the velocity hardware is unloaded this function is called.
2430 * It will clean up the notifiers and the unregister the PCI
2431 * driver interface for this hardware. This in turn cleans up
2432 * all discovered interfaces before returning from the function
2435 static void __exit velocity_cleanup_module(void)
2437 velocity_unregister_notifier();
2438 pci_unregister_driver(&velocity_driver);
2441 module_init(velocity_init_module);
2442 module_exit(velocity_cleanup_module);
2446 * MII access , media link mode setting functions
2451 * mii_init - set up MII
2452 * @vptr: velocity adapter
2453 * @mii_status: links tatus
2455 * Set up the PHY for the current link state.
2458 static void mii_init(struct velocity_info *vptr, u32 mii_status)
2460 u16 BMCR;
2462 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2463 case PHYID_CICADA_CS8201:
2465 * Reset to hardware default
2467 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2469 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2470 * off it in NWay-forced half mode for NWay-forced v.s.
2471 * legacy-forced issue.
2473 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2474 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2475 else
2476 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2478 * Turn on Link/Activity LED enable bit for CIS8201
2480 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2481 break;
2482 case PHYID_VT3216_32BIT:
2483 case PHYID_VT3216_64BIT:
2485 * Reset to hardware default
2487 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2489 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2490 * off it in NWay-forced half mode for NWay-forced v.s.
2491 * legacy-forced issue
2493 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2494 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2495 else
2496 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2497 break;
2499 case PHYID_MARVELL_1000:
2500 case PHYID_MARVELL_1000S:
2502 * Assert CRS on Transmit
2504 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2506 * Reset to hardware default
2508 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2509 break;
2510 default:
2513 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2514 if (BMCR & BMCR_ISO) {
2515 BMCR &= ~BMCR_ISO;
2516 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2521 * safe_disable_mii_autopoll - autopoll off
2522 * @regs: velocity registers
2524 * Turn off the autopoll and wait for it to disable on the chip
2527 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2529 u16 ww;
2531 /* turn off MAUTO */
2532 writeb(0, &regs->MIICR);
2533 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2534 udelay(1);
2535 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2536 break;
2541 * enable_mii_autopoll - turn on autopolling
2542 * @regs: velocity registers
2544 * Enable the MII link status autopoll feature on the Velocity
2545 * hardware. Wait for it to enable.
2548 static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2550 int ii;
2552 writeb(0, &(regs->MIICR));
2553 writeb(MIIADR_SWMPL, &regs->MIIADR);
2555 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2556 udelay(1);
2557 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2558 break;
2561 writeb(MIICR_MAUTO, &regs->MIICR);
2563 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2564 udelay(1);
2565 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2566 break;
2572 * velocity_mii_read - read MII data
2573 * @regs: velocity registers
2574 * @index: MII register index
2575 * @data: buffer for received data
2577 * Perform a single read of an MII 16bit register. Returns zero
2578 * on success or -ETIMEDOUT if the PHY did not respond.
2581 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2583 u16 ww;
2586 * Disable MIICR_MAUTO, so that mii addr can be set normally
2588 safe_disable_mii_autopoll(regs);
2590 writeb(index, &regs->MIIADR);
2592 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2594 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2595 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2596 break;
2599 *data = readw(&regs->MIIDATA);
2601 enable_mii_autopoll(regs);
2602 if (ww == W_MAX_TIMEOUT)
2603 return -ETIMEDOUT;
2604 return 0;
2608 * velocity_mii_write - write MII data
2609 * @regs: velocity registers
2610 * @index: MII register index
2611 * @data: 16bit data for the MII register
2613 * Perform a single write to an MII 16bit register. Returns zero
2614 * on success or -ETIMEDOUT if the PHY did not respond.
2617 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2619 u16 ww;
2622 * Disable MIICR_MAUTO, so that mii addr can be set normally
2624 safe_disable_mii_autopoll(regs);
2626 /* MII reg offset */
2627 writeb(mii_addr, &regs->MIIADR);
2628 /* set MII data */
2629 writew(data, &regs->MIIDATA);
2631 /* turn on MIICR_WCMD */
2632 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2634 /* W_MAX_TIMEOUT is the timeout period */
2635 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2636 udelay(5);
2637 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2638 break;
2640 enable_mii_autopoll(regs);
2642 if (ww == W_MAX_TIMEOUT)
2643 return -ETIMEDOUT;
2644 return 0;
2648 * velocity_get_opt_media_mode - get media selection
2649 * @vptr: velocity adapter
2651 * Get the media mode stored in EEPROM or module options and load
2652 * mii_status accordingly. The requested link state information
2653 * is also returned.
2656 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2658 u32 status = 0;
2660 switch (vptr->options.spd_dpx) {
2661 case SPD_DPX_AUTO:
2662 status = VELOCITY_AUTONEG_ENABLE;
2663 break;
2664 case SPD_DPX_100_FULL:
2665 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2666 break;
2667 case SPD_DPX_10_FULL:
2668 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2669 break;
2670 case SPD_DPX_100_HALF:
2671 status = VELOCITY_SPEED_100;
2672 break;
2673 case SPD_DPX_10_HALF:
2674 status = VELOCITY_SPEED_10;
2675 break;
2677 vptr->mii_status = status;
2678 return status;
2682 * mii_set_auto_on - autonegotiate on
2683 * @vptr: velocity
2685 * Enable autonegotation on this interface
2688 static void mii_set_auto_on(struct velocity_info *vptr)
2690 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2691 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2692 else
2693 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2698 static void mii_set_auto_off(struct velocity_info * vptr)
2700 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2705 * set_mii_flow_control - flow control setup
2706 * @vptr: velocity interface
2708 * Set up the flow control on this interface according to
2709 * the supplied user/eeprom options.
2712 static void set_mii_flow_control(struct velocity_info *vptr)
2714 /*Enable or Disable PAUSE in ANAR */
2715 switch (vptr->options.flow_cntl) {
2716 case FLOW_CNTL_TX:
2717 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2718 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2719 break;
2721 case FLOW_CNTL_RX:
2722 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2723 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2724 break;
2726 case FLOW_CNTL_TX_RX:
2727 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2728 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2729 break;
2731 case FLOW_CNTL_DISABLE:
2732 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2733 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2734 break;
2735 default:
2736 break;
2741 * velocity_set_media_mode - set media mode
2742 * @mii_status: old MII link state
2744 * Check the media link state and configure the flow control
2745 * PHY and also velocity hardware setup accordingly. In particular
2746 * we need to set up CD polling and frame bursting.
2749 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2751 u32 curr_status;
2752 struct mac_regs __iomem * regs = vptr->mac_regs;
2754 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2755 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2757 /* Set mii link status */
2758 set_mii_flow_control(vptr);
2761 Check if new status is consisent with current status
2762 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2763 || (mii_status==curr_status)) {
2764 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2765 vptr->mii_status=check_connection_type(vptr->mac_regs);
2766 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2767 return 0;
2771 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2772 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2776 * If connection type is AUTO
2778 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2779 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2780 /* clear force MAC mode bit */
2781 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2782 /* set duplex mode of MAC according to duplex mode of MII */
2783 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2784 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2785 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2787 /* enable AUTO-NEGO mode */
2788 mii_set_auto_on(vptr);
2789 } else {
2790 u16 ANAR;
2791 u8 CHIPGCR;
2794 * 1. if it's 3119, disable frame bursting in halfduplex mode
2795 * and enable it in fullduplex mode
2796 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2797 * 3. only enable CD heart beat counter in 10HD mode
2800 /* set force MAC mode bit */
2801 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2803 CHIPGCR = readb(&regs->CHIPGCR);
2804 CHIPGCR &= ~CHIPGCR_FCGMII;
2806 if (mii_status & VELOCITY_DUPLEX_FULL) {
2807 CHIPGCR |= CHIPGCR_FCFDX;
2808 writeb(CHIPGCR, &regs->CHIPGCR);
2809 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2810 if (vptr->rev_id < REV_ID_VT3216_A0)
2811 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2812 } else {
2813 CHIPGCR &= ~CHIPGCR_FCFDX;
2814 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2815 writeb(CHIPGCR, &regs->CHIPGCR);
2816 if (vptr->rev_id < REV_ID_VT3216_A0)
2817 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2820 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2822 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2823 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2824 } else {
2825 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2827 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2828 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2829 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2830 if (mii_status & VELOCITY_SPEED_100) {
2831 if (mii_status & VELOCITY_DUPLEX_FULL)
2832 ANAR |= ANAR_TXFD;
2833 else
2834 ANAR |= ANAR_TX;
2835 } else {
2836 if (mii_status & VELOCITY_DUPLEX_FULL)
2837 ANAR |= ANAR_10FD;
2838 else
2839 ANAR |= ANAR_10;
2841 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2842 /* enable AUTO-NEGO mode */
2843 mii_set_auto_on(vptr);
2844 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2846 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2847 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2848 return VELOCITY_LINK_CHANGE;
2852 * mii_check_media_mode - check media state
2853 * @regs: velocity registers
2855 * Check the current MII status and determine the link status
2856 * accordingly
2859 static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2861 u32 status = 0;
2862 u16 ANAR;
2864 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2865 status |= VELOCITY_LINK_FAIL;
2867 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2868 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2869 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2870 status |= (VELOCITY_SPEED_1000);
2871 else {
2872 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2873 if (ANAR & ANAR_TXFD)
2874 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2875 else if (ANAR & ANAR_TX)
2876 status |= VELOCITY_SPEED_100;
2877 else if (ANAR & ANAR_10FD)
2878 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2879 else
2880 status |= (VELOCITY_SPEED_10);
2883 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2884 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2885 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2886 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2887 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2888 status |= VELOCITY_AUTONEG_ENABLE;
2892 return status;
2895 static u32 check_connection_type(struct mac_regs __iomem * regs)
2897 u32 status = 0;
2898 u8 PHYSR0;
2899 u16 ANAR;
2900 PHYSR0 = readb(&regs->PHYSR0);
2903 if (!(PHYSR0 & PHYSR0_LINKGD))
2904 status|=VELOCITY_LINK_FAIL;
2907 if (PHYSR0 & PHYSR0_FDPX)
2908 status |= VELOCITY_DUPLEX_FULL;
2910 if (PHYSR0 & PHYSR0_SPDG)
2911 status |= VELOCITY_SPEED_1000;
2912 else if (PHYSR0 & PHYSR0_SPD10)
2913 status |= VELOCITY_SPEED_10;
2914 else
2915 status |= VELOCITY_SPEED_100;
2917 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2918 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2919 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2920 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2921 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2922 status |= VELOCITY_AUTONEG_ENABLE;
2926 return status;
2930 * enable_flow_control_ability - flow control
2931 * @vptr: veloity to configure
2933 * Set up flow control according to the flow control options
2934 * determined by the eeprom/configuration.
2937 static void enable_flow_control_ability(struct velocity_info *vptr)
2940 struct mac_regs __iomem * regs = vptr->mac_regs;
2942 switch (vptr->options.flow_cntl) {
2944 case FLOW_CNTL_DEFAULT:
2945 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2946 writel(CR0_FDXRFCEN, &regs->CR0Set);
2947 else
2948 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2950 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2951 writel(CR0_FDXTFCEN, &regs->CR0Set);
2952 else
2953 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2954 break;
2956 case FLOW_CNTL_TX:
2957 writel(CR0_FDXTFCEN, &regs->CR0Set);
2958 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2959 break;
2961 case FLOW_CNTL_RX:
2962 writel(CR0_FDXRFCEN, &regs->CR0Set);
2963 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2964 break;
2966 case FLOW_CNTL_TX_RX:
2967 writel(CR0_FDXTFCEN, &regs->CR0Set);
2968 writel(CR0_FDXRFCEN, &regs->CR0Set);
2969 break;
2971 case FLOW_CNTL_DISABLE:
2972 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2973 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2974 break;
2976 default:
2977 break;
2984 * velocity_ethtool_up - pre hook for ethtool
2985 * @dev: network device
2987 * Called before an ethtool operation. We need to make sure the
2988 * chip is out of D3 state before we poke at it.
2991 static int velocity_ethtool_up(struct net_device *dev)
2993 struct velocity_info *vptr = netdev_priv(dev);
2994 if (!netif_running(dev))
2995 pci_set_power_state(vptr->pdev, PCI_D0);
2996 return 0;
3000 * velocity_ethtool_down - post hook for ethtool
3001 * @dev: network device
3003 * Called after an ethtool operation. Restore the chip back to D3
3004 * state if it isn't running.
3007 static void velocity_ethtool_down(struct net_device *dev)
3009 struct velocity_info *vptr = netdev_priv(dev);
3010 if (!netif_running(dev))
3011 pci_set_power_state(vptr->pdev, PCI_D3hot);
3014 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3016 struct velocity_info *vptr = netdev_priv(dev);
3017 struct mac_regs __iomem * regs = vptr->mac_regs;
3018 u32 status;
3019 status = check_connection_type(vptr->mac_regs);
3021 cmd->supported = SUPPORTED_TP |
3022 SUPPORTED_Autoneg |
3023 SUPPORTED_10baseT_Half |
3024 SUPPORTED_10baseT_Full |
3025 SUPPORTED_100baseT_Half |
3026 SUPPORTED_100baseT_Full |
3027 SUPPORTED_1000baseT_Half |
3028 SUPPORTED_1000baseT_Full;
3029 if (status & VELOCITY_SPEED_1000)
3030 cmd->speed = SPEED_1000;
3031 else if (status & VELOCITY_SPEED_100)
3032 cmd->speed = SPEED_100;
3033 else
3034 cmd->speed = SPEED_10;
3035 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3036 cmd->port = PORT_TP;
3037 cmd->transceiver = XCVR_INTERNAL;
3038 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3040 if (status & VELOCITY_DUPLEX_FULL)
3041 cmd->duplex = DUPLEX_FULL;
3042 else
3043 cmd->duplex = DUPLEX_HALF;
3045 return 0;
3048 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3050 struct velocity_info *vptr = netdev_priv(dev);
3051 u32 curr_status;
3052 u32 new_status = 0;
3053 int ret = 0;
3055 curr_status = check_connection_type(vptr->mac_regs);
3056 curr_status &= (~VELOCITY_LINK_FAIL);
3058 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3059 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3060 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3061 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3063 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
3064 ret = -EINVAL;
3065 else
3066 velocity_set_media_mode(vptr, new_status);
3068 return ret;
3071 static u32 velocity_get_link(struct net_device *dev)
3073 struct velocity_info *vptr = netdev_priv(dev);
3074 struct mac_regs __iomem * regs = vptr->mac_regs;
3075 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
3078 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3080 struct velocity_info *vptr = netdev_priv(dev);
3081 strcpy(info->driver, VELOCITY_NAME);
3082 strcpy(info->version, VELOCITY_VERSION);
3083 strcpy(info->bus_info, pci_name(vptr->pdev));
3086 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3088 struct velocity_info *vptr = netdev_priv(dev);
3089 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3090 wol->wolopts |= WAKE_MAGIC;
3092 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3093 wol.wolopts|=WAKE_PHY;
3095 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3096 wol->wolopts |= WAKE_UCAST;
3097 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3098 wol->wolopts |= WAKE_ARP;
3099 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3102 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3104 struct velocity_info *vptr = netdev_priv(dev);
3106 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3107 return -EFAULT;
3108 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3111 if (wol.wolopts & WAKE_PHY) {
3112 vptr->wol_opts|=VELOCITY_WOL_PHY;
3113 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3117 if (wol->wolopts & WAKE_MAGIC) {
3118 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3119 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3121 if (wol->wolopts & WAKE_UCAST) {
3122 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3123 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3125 if (wol->wolopts & WAKE_ARP) {
3126 vptr->wol_opts |= VELOCITY_WOL_ARP;
3127 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3129 memcpy(vptr->wol_passwd, wol->sopass, 6);
3130 return 0;
3133 static u32 velocity_get_msglevel(struct net_device *dev)
3135 return msglevel;
3138 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3140 msglevel = value;
3143 static const struct ethtool_ops velocity_ethtool_ops = {
3144 .get_settings = velocity_get_settings,
3145 .set_settings = velocity_set_settings,
3146 .get_drvinfo = velocity_get_drvinfo,
3147 .get_wol = velocity_ethtool_get_wol,
3148 .set_wol = velocity_ethtool_set_wol,
3149 .get_msglevel = velocity_get_msglevel,
3150 .set_msglevel = velocity_set_msglevel,
3151 .get_link = velocity_get_link,
3152 .begin = velocity_ethtool_up,
3153 .complete = velocity_ethtool_down
3157 * velocity_mii_ioctl - MII ioctl handler
3158 * @dev: network device
3159 * @ifr: the ifreq block for the ioctl
3160 * @cmd: the command
3162 * Process MII requests made via ioctl from the network layer. These
3163 * are used by tools like kudzu to interrogate the link state of the
3164 * hardware
3167 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3169 struct velocity_info *vptr = netdev_priv(dev);
3170 struct mac_regs __iomem * regs = vptr->mac_regs;
3171 unsigned long flags;
3172 struct mii_ioctl_data *miidata = if_mii(ifr);
3173 int err;
3175 switch (cmd) {
3176 case SIOCGMIIPHY:
3177 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3178 break;
3179 case SIOCGMIIREG:
3180 if (!capable(CAP_NET_ADMIN))
3181 return -EPERM;
3182 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3183 return -ETIMEDOUT;
3184 break;
3185 case SIOCSMIIREG:
3186 if (!capable(CAP_NET_ADMIN))
3187 return -EPERM;
3188 spin_lock_irqsave(&vptr->lock, flags);
3189 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3190 spin_unlock_irqrestore(&vptr->lock, flags);
3191 check_connection_type(vptr->mac_regs);
3192 if(err)
3193 return err;
3194 break;
3195 default:
3196 return -EOPNOTSUPP;
3198 return 0;
3201 #ifdef CONFIG_PM
3204 * velocity_save_context - save registers
3205 * @vptr: velocity
3206 * @context: buffer for stored context
3208 * Retrieve the current configuration from the velocity hardware
3209 * and stash it in the context structure, for use by the context
3210 * restore functions. This allows us to save things we need across
3211 * power down states
3214 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3216 struct mac_regs __iomem * regs = vptr->mac_regs;
3217 u16 i;
3218 u8 __iomem *ptr = (u8 __iomem *)regs;
3220 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3221 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3223 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3224 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3226 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3227 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3232 * velocity_restore_context - restore registers
3233 * @vptr: velocity
3234 * @context: buffer for stored context
3236 * Reload the register configuration from the velocity context
3237 * created by velocity_save_context.
3240 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3242 struct mac_regs __iomem * regs = vptr->mac_regs;
3243 int i;
3244 u8 __iomem *ptr = (u8 __iomem *)regs;
3246 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3247 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3250 /* Just skip cr0 */
3251 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3252 /* Clear */
3253 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3254 /* Set */
3255 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3258 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3259 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3262 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3263 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3266 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3267 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3273 * wol_calc_crc - WOL CRC
3274 * @pattern: data pattern
3275 * @mask_pattern: mask
3277 * Compute the wake on lan crc hashes for the packet header
3278 * we are interested in.
3281 static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3283 u16 crc = 0xFFFF;
3284 u8 mask;
3285 int i, j;
3287 for (i = 0; i < size; i++) {
3288 mask = mask_pattern[i];
3290 /* Skip this loop if the mask equals to zero */
3291 if (mask == 0x00)
3292 continue;
3294 for (j = 0; j < 8; j++) {
3295 if ((mask & 0x01) == 0) {
3296 mask >>= 1;
3297 continue;
3299 mask >>= 1;
3300 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3303 /* Finally, invert the result once to get the correct data */
3304 crc = ~crc;
3305 return bitrev32(crc) >> 16;
3309 * velocity_set_wol - set up for wake on lan
3310 * @vptr: velocity to set WOL status on
3312 * Set a card up for wake on lan either by unicast or by
3313 * ARP packet.
3315 * FIXME: check static buffer is safe here
3318 static int velocity_set_wol(struct velocity_info *vptr)
3320 struct mac_regs __iomem * regs = vptr->mac_regs;
3321 static u8 buf[256];
3322 int i;
3324 static u32 mask_pattern[2][4] = {
3325 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3326 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3329 writew(0xFFFF, &regs->WOLCRClr);
3330 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3331 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3334 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3335 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3338 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3339 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3342 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3343 struct arp_packet *arp = (struct arp_packet *) buf;
3344 u16 crc;
3345 memset(buf, 0, sizeof(struct arp_packet) + 7);
3347 for (i = 0; i < 4; i++)
3348 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3350 arp->type = htons(ETH_P_ARP);
3351 arp->ar_op = htons(1);
3353 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3355 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3356 (u8 *) & mask_pattern[0][0]);
3358 writew(crc, &regs->PatternCRC[0]);
3359 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3362 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3363 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3365 writew(0x0FFF, &regs->WOLSRClr);
3367 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3368 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3369 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3371 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3374 if (vptr->mii_status & VELOCITY_SPEED_1000)
3375 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3377 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3380 u8 GCR;
3381 GCR = readb(&regs->CHIPGCR);
3382 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3383 writeb(GCR, &regs->CHIPGCR);
3386 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3387 /* Turn on SWPTAG just before entering power mode */
3388 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3389 /* Go to bed ..... */
3390 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3392 return 0;
3395 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3397 struct net_device *dev = pci_get_drvdata(pdev);
3398 struct velocity_info *vptr = netdev_priv(dev);
3399 unsigned long flags;
3401 if(!netif_running(vptr->dev))
3402 return 0;
3404 netif_device_detach(vptr->dev);
3406 spin_lock_irqsave(&vptr->lock, flags);
3407 pci_save_state(pdev);
3408 #ifdef ETHTOOL_GWOL
3409 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3410 velocity_get_ip(vptr);
3411 velocity_save_context(vptr, &vptr->context);
3412 velocity_shutdown(vptr);
3413 velocity_set_wol(vptr);
3414 pci_enable_wake(pdev, PCI_D3hot, 1);
3415 pci_set_power_state(pdev, PCI_D3hot);
3416 } else {
3417 velocity_save_context(vptr, &vptr->context);
3418 velocity_shutdown(vptr);
3419 pci_disable_device(pdev);
3420 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3422 #else
3423 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3424 #endif
3425 spin_unlock_irqrestore(&vptr->lock, flags);
3426 return 0;
3429 static int velocity_resume(struct pci_dev *pdev)
3431 struct net_device *dev = pci_get_drvdata(pdev);
3432 struct velocity_info *vptr = netdev_priv(dev);
3433 unsigned long flags;
3434 int i;
3436 if(!netif_running(vptr->dev))
3437 return 0;
3439 pci_set_power_state(pdev, PCI_D0);
3440 pci_enable_wake(pdev, 0, 0);
3441 pci_restore_state(pdev);
3443 mac_wol_reset(vptr->mac_regs);
3445 spin_lock_irqsave(&vptr->lock, flags);
3446 velocity_restore_context(vptr, &vptr->context);
3447 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3448 mac_disable_int(vptr->mac_regs);
3450 velocity_tx_srv(vptr, 0);
3452 for (i = 0; i < vptr->tx.numq; i++) {
3453 if (vptr->tx.used[i]) {
3454 mac_tx_queue_wake(vptr->mac_regs, i);
3458 mac_enable_int(vptr->mac_regs);
3459 spin_unlock_irqrestore(&vptr->lock, flags);
3460 netif_device_attach(vptr->dev);
3462 return 0;
3465 #ifdef CONFIG_INET
3467 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3469 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3470 struct net_device *dev = ifa->ifa_dev->dev;
3471 struct velocity_info *vptr;
3472 unsigned long flags;
3474 if (dev_net(dev) != &init_net)
3475 return NOTIFY_DONE;
3477 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3478 list_for_each_entry(vptr, &velocity_dev_list, list) {
3479 if (vptr->dev == dev) {
3480 velocity_get_ip(vptr);
3481 break;
3484 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3486 return NOTIFY_DONE;
3489 #endif
3490 #endif