remove malta-mtd.c and fix MAINTAINERS
[linux-2.6/zen-sources.git] / drivers / net / dl2k.c
blobf8037110a522e3eb2616414908cacdaafa363c8f
1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
19 static char version[] __devinitdata =
20 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
21 #define MAX_UNITS 8
22 static int mtu[MAX_UNITS];
23 static int vlan[MAX_UNITS];
24 static int jumbo[MAX_UNITS];
25 static char *media[MAX_UNITS];
26 static int tx_flow=-1;
27 static int rx_flow=-1;
28 static int copy_thresh;
29 static int rx_coalesce=10; /* Rx frame count each interrupt */
30 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu, int, NULL, 0);
38 module_param_array(media, charp, NULL, 0);
39 module_param_array(vlan, int, NULL, 0);
40 module_param_array(jumbo, int, NULL, 0);
41 module_param(tx_flow, int, 0);
42 module_param(rx_flow, int, 0);
43 module_param(copy_thresh, int, 0);
44 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
52 #define EnableInt() \
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
55 static const int max_intrloop = 50;
56 static const int multicast_filter_limit = 0x40;
58 static int rio_open (struct net_device *dev);
59 static void rio_timer (unsigned long data);
60 static void rio_tx_timeout (struct net_device *dev);
61 static void alloc_list (struct net_device *dev);
62 static int start_xmit (struct sk_buff *skb, struct net_device *dev);
63 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
64 static void rio_free_tx (struct net_device *dev, int irq);
65 static void tx_error (struct net_device *dev, int tx_status);
66 static int receive_packet (struct net_device *dev);
67 static void rio_error (struct net_device *dev, int int_status);
68 static int change_mtu (struct net_device *dev, int new_mtu);
69 static void set_multicast (struct net_device *dev);
70 static struct net_device_stats *get_stats (struct net_device *dev);
71 static int clear_stats (struct net_device *dev);
72 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
73 static int rio_close (struct net_device *dev);
74 static int find_miiphy (struct net_device *dev);
75 static int parse_eeprom (struct net_device *dev);
76 static int read_eeprom (long ioaddr, int eep_addr);
77 static int mii_wait_link (struct net_device *dev, int wait);
78 static int mii_set_media (struct net_device *dev);
79 static int mii_get_media (struct net_device *dev);
80 static int mii_set_media_pcs (struct net_device *dev);
81 static int mii_get_media_pcs (struct net_device *dev);
82 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
83 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
84 u16 data);
86 static const struct ethtool_ops ethtool_ops;
88 static int __devinit
89 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
91 struct net_device *dev;
92 struct netdev_private *np;
93 static int card_idx;
94 int chip_idx = ent->driver_data;
95 int err, irq;
96 long ioaddr;
97 static int version_printed;
98 void *ring_space;
99 dma_addr_t ring_dma;
100 DECLARE_MAC_BUF(mac);
102 if (!version_printed++)
103 printk ("%s", version);
105 err = pci_enable_device (pdev);
106 if (err)
107 return err;
109 irq = pdev->irq;
110 err = pci_request_regions (pdev, "dl2k");
111 if (err)
112 goto err_out_disable;
114 pci_set_master (pdev);
115 dev = alloc_etherdev (sizeof (*np));
116 if (!dev) {
117 err = -ENOMEM;
118 goto err_out_res;
120 SET_NETDEV_DEV(dev, &pdev->dev);
122 #ifdef MEM_MAPPING
123 ioaddr = pci_resource_start (pdev, 1);
124 ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
125 if (!ioaddr) {
126 err = -ENOMEM;
127 goto err_out_dev;
129 #else
130 ioaddr = pci_resource_start (pdev, 0);
131 #endif
132 dev->base_addr = ioaddr;
133 dev->irq = irq;
134 np = netdev_priv(dev);
135 np->chip_id = chip_idx;
136 np->pdev = pdev;
137 spin_lock_init (&np->tx_lock);
138 spin_lock_init (&np->rx_lock);
140 /* Parse manual configuration */
141 np->an_enable = 1;
142 np->tx_coalesce = 1;
143 if (card_idx < MAX_UNITS) {
144 if (media[card_idx] != NULL) {
145 np->an_enable = 0;
146 if (strcmp (media[card_idx], "auto") == 0 ||
147 strcmp (media[card_idx], "autosense") == 0 ||
148 strcmp (media[card_idx], "0") == 0 ) {
149 np->an_enable = 2;
150 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
151 strcmp (media[card_idx], "4") == 0) {
152 np->speed = 100;
153 np->full_duplex = 1;
154 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
155 || strcmp (media[card_idx], "3") == 0) {
156 np->speed = 100;
157 np->full_duplex = 0;
158 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
159 strcmp (media[card_idx], "2") == 0) {
160 np->speed = 10;
161 np->full_duplex = 1;
162 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
163 strcmp (media[card_idx], "1") == 0) {
164 np->speed = 10;
165 np->full_duplex = 0;
166 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
167 strcmp (media[card_idx], "6") == 0) {
168 np->speed=1000;
169 np->full_duplex=1;
170 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
171 strcmp (media[card_idx], "5") == 0) {
172 np->speed = 1000;
173 np->full_duplex = 0;
174 } else {
175 np->an_enable = 1;
178 if (jumbo[card_idx] != 0) {
179 np->jumbo = 1;
180 dev->mtu = MAX_JUMBO;
181 } else {
182 np->jumbo = 0;
183 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
184 dev->mtu = mtu[card_idx];
186 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
187 vlan[card_idx] : 0;
188 if (rx_coalesce > 0 && rx_timeout > 0) {
189 np->rx_coalesce = rx_coalesce;
190 np->rx_timeout = rx_timeout;
191 np->coalesce = 1;
193 np->tx_flow = (tx_flow == 0) ? 0 : 1;
194 np->rx_flow = (rx_flow == 0) ? 0 : 1;
196 if (tx_coalesce < 1)
197 tx_coalesce = 1;
198 else if (tx_coalesce > TX_RING_SIZE-1)
199 tx_coalesce = TX_RING_SIZE - 1;
201 dev->open = &rio_open;
202 dev->hard_start_xmit = &start_xmit;
203 dev->stop = &rio_close;
204 dev->get_stats = &get_stats;
205 dev->set_multicast_list = &set_multicast;
206 dev->do_ioctl = &rio_ioctl;
207 dev->tx_timeout = &rio_tx_timeout;
208 dev->watchdog_timeo = TX_TIMEOUT;
209 dev->change_mtu = &change_mtu;
210 SET_ETHTOOL_OPS(dev, &ethtool_ops);
211 #if 0
212 dev->features = NETIF_F_IP_CSUM;
213 #endif
214 pci_set_drvdata (pdev, dev);
216 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
217 if (!ring_space)
218 goto err_out_iounmap;
219 np->tx_ring = (struct netdev_desc *) ring_space;
220 np->tx_ring_dma = ring_dma;
222 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
223 if (!ring_space)
224 goto err_out_unmap_tx;
225 np->rx_ring = (struct netdev_desc *) ring_space;
226 np->rx_ring_dma = ring_dma;
228 /* Parse eeprom data */
229 parse_eeprom (dev);
231 /* Find PHY address */
232 err = find_miiphy (dev);
233 if (err)
234 goto err_out_unmap_rx;
236 /* Fiber device? */
237 np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
238 np->link_status = 0;
239 /* Set media and reset PHY */
240 if (np->phy_media) {
241 /* default Auto-Negotiation for fiber deivices */
242 if (np->an_enable == 2) {
243 np->an_enable = 1;
245 mii_set_media_pcs (dev);
246 } else {
247 /* Auto-Negotiation is mandatory for 1000BASE-T,
248 IEEE 802.3ab Annex 28D page 14 */
249 if (np->speed == 1000)
250 np->an_enable = 1;
251 mii_set_media (dev);
254 err = register_netdev (dev);
255 if (err)
256 goto err_out_unmap_rx;
258 card_idx++;
260 printk (KERN_INFO "%s: %s, %s, IRQ %d\n",
261 dev->name, np->name, print_mac(mac, dev->dev_addr), irq);
262 if (tx_coalesce > 1)
263 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
264 tx_coalesce);
265 if (np->coalesce)
266 printk(KERN_INFO "rx_coalesce:\t%d packets\n"
267 KERN_INFO "rx_timeout: \t%d ns\n",
268 np->rx_coalesce, np->rx_timeout*640);
269 if (np->vlan)
270 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
271 return 0;
273 err_out_unmap_rx:
274 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
275 err_out_unmap_tx:
276 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
277 err_out_iounmap:
278 #ifdef MEM_MAPPING
279 iounmap ((void *) ioaddr);
281 err_out_dev:
282 #endif
283 free_netdev (dev);
285 err_out_res:
286 pci_release_regions (pdev);
288 err_out_disable:
289 pci_disable_device (pdev);
290 return err;
293 static int
294 find_miiphy (struct net_device *dev)
296 int i, phy_found = 0;
297 struct netdev_private *np;
298 long ioaddr;
299 np = netdev_priv(dev);
300 ioaddr = dev->base_addr;
301 np->phy_addr = 1;
303 for (i = 31; i >= 0; i--) {
304 int mii_status = mii_read (dev, i, 1);
305 if (mii_status != 0xffff && mii_status != 0x0000) {
306 np->phy_addr = i;
307 phy_found++;
310 if (!phy_found) {
311 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
312 return -ENODEV;
314 return 0;
317 static int
318 parse_eeprom (struct net_device *dev)
320 int i, j;
321 long ioaddr = dev->base_addr;
322 u8 sromdata[256];
323 u8 *psib;
324 u32 crc;
325 PSROM_t psrom = (PSROM_t) sromdata;
326 struct netdev_private *np = netdev_priv(dev);
328 int cid, next;
330 #ifdef MEM_MAPPING
331 ioaddr = pci_resource_start (np->pdev, 0);
332 #endif
333 /* Read eeprom */
334 for (i = 0; i < 128; i++) {
335 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
337 #ifdef MEM_MAPPING
338 ioaddr = dev->base_addr;
339 #endif
340 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
341 /* Check CRC */
342 crc = ~ether_crc_le (256 - 4, sromdata);
343 if (psrom->crc != crc) {
344 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
345 dev->name);
346 return -1;
350 /* Set MAC address */
351 for (i = 0; i < 6; i++)
352 dev->dev_addr[i] = psrom->mac_addr[i];
354 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
355 return 0;
358 /* Parse Software Information Block */
359 i = 0x30;
360 psib = (u8 *) sromdata;
361 do {
362 cid = psib[i++];
363 next = psib[i++];
364 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
365 printk (KERN_ERR "Cell data error\n");
366 return -1;
368 switch (cid) {
369 case 0: /* Format version */
370 break;
371 case 1: /* End of cell */
372 return 0;
373 case 2: /* Duplex Polarity */
374 np->duplex_polarity = psib[i];
375 writeb (readb (ioaddr + PhyCtrl) | psib[i],
376 ioaddr + PhyCtrl);
377 break;
378 case 3: /* Wake Polarity */
379 np->wake_polarity = psib[i];
380 break;
381 case 9: /* Adapter description */
382 j = (next - i > 255) ? 255 : next - i;
383 memcpy (np->name, &(psib[i]), j);
384 break;
385 case 4:
386 case 5:
387 case 6:
388 case 7:
389 case 8: /* Reversed */
390 break;
391 default: /* Unknown cell */
392 return -1;
394 i = next;
395 } while (1);
397 return 0;
400 static int
401 rio_open (struct net_device *dev)
403 struct netdev_private *np = netdev_priv(dev);
404 long ioaddr = dev->base_addr;
405 int i;
406 u16 macctrl;
408 i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
409 if (i)
410 return i;
412 /* Reset all logic functions */
413 writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
414 ioaddr + ASICCtrl + 2);
415 mdelay(10);
417 /* DebugCtrl bit 4, 5, 9 must set */
418 writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
420 /* Jumbo frame */
421 if (np->jumbo != 0)
422 writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
424 alloc_list (dev);
426 /* Get station address */
427 for (i = 0; i < 6; i++)
428 writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
430 set_multicast (dev);
431 if (np->coalesce) {
432 writel (np->rx_coalesce | np->rx_timeout << 16,
433 ioaddr + RxDMAIntCtrl);
435 /* Set RIO to poll every N*320nsec. */
436 writeb (0x20, ioaddr + RxDMAPollPeriod);
437 writeb (0xff, ioaddr + TxDMAPollPeriod);
438 writeb (0x30, ioaddr + RxDMABurstThresh);
439 writeb (0x30, ioaddr + RxDMAUrgentThresh);
440 writel (0x0007ffff, ioaddr + RmonStatMask);
441 /* clear statistics */
442 clear_stats (dev);
444 /* VLAN supported */
445 if (np->vlan) {
446 /* priority field in RxDMAIntCtrl */
447 writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
448 ioaddr + RxDMAIntCtrl);
449 /* VLANId */
450 writew (np->vlan, ioaddr + VLANId);
451 /* Length/Type should be 0x8100 */
452 writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
453 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
454 VLAN information tagged by TFC' VID, CFI fields. */
455 writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
456 ioaddr + MACCtrl);
459 init_timer (&np->timer);
460 np->timer.expires = jiffies + 1*HZ;
461 np->timer.data = (unsigned long) dev;
462 np->timer.function = &rio_timer;
463 add_timer (&np->timer);
465 /* Start Tx/Rx */
466 writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
467 ioaddr + MACCtrl);
469 macctrl = 0;
470 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
471 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
472 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
473 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
474 writew(macctrl, ioaddr + MACCtrl);
476 netif_start_queue (dev);
478 /* Enable default interrupts */
479 EnableInt ();
480 return 0;
483 static void
484 rio_timer (unsigned long data)
486 struct net_device *dev = (struct net_device *)data;
487 struct netdev_private *np = netdev_priv(dev);
488 unsigned int entry;
489 int next_tick = 1*HZ;
490 unsigned long flags;
492 spin_lock_irqsave(&np->rx_lock, flags);
493 /* Recover rx ring exhausted error */
494 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
495 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
496 /* Re-allocate skbuffs to fill the descriptor ring */
497 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
498 struct sk_buff *skb;
499 entry = np->old_rx % RX_RING_SIZE;
500 /* Dropped packets don't need to re-allocate */
501 if (np->rx_skbuff[entry] == NULL) {
502 skb = netdev_alloc_skb (dev, np->rx_buf_sz);
503 if (skb == NULL) {
504 np->rx_ring[entry].fraginfo = 0;
505 printk (KERN_INFO
506 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
507 dev->name, entry);
508 break;
510 np->rx_skbuff[entry] = skb;
511 /* 16 byte align the IP header */
512 skb_reserve (skb, 2);
513 np->rx_ring[entry].fraginfo =
514 cpu_to_le64 (pci_map_single
515 (np->pdev, skb->data, np->rx_buf_sz,
516 PCI_DMA_FROMDEVICE));
518 np->rx_ring[entry].fraginfo |=
519 cpu_to_le64((u64)np->rx_buf_sz << 48);
520 np->rx_ring[entry].status = 0;
521 } /* end for */
522 } /* end if */
523 spin_unlock_irqrestore (&np->rx_lock, flags);
524 np->timer.expires = jiffies + next_tick;
525 add_timer(&np->timer);
528 static void
529 rio_tx_timeout (struct net_device *dev)
531 long ioaddr = dev->base_addr;
533 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
534 dev->name, readl (ioaddr + TxStatus));
535 rio_free_tx(dev, 0);
536 dev->if_port = 0;
537 dev->trans_start = jiffies;
540 /* allocate and initialize Tx and Rx descriptors */
541 static void
542 alloc_list (struct net_device *dev)
544 struct netdev_private *np = netdev_priv(dev);
545 int i;
547 np->cur_rx = np->cur_tx = 0;
548 np->old_rx = np->old_tx = 0;
549 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
551 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
552 for (i = 0; i < TX_RING_SIZE; i++) {
553 np->tx_skbuff[i] = NULL;
554 np->tx_ring[i].status = cpu_to_le64 (TFDDone);
555 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
556 ((i+1)%TX_RING_SIZE) *
557 sizeof (struct netdev_desc));
560 /* Initialize Rx descriptors */
561 for (i = 0; i < RX_RING_SIZE; i++) {
562 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
563 ((i + 1) % RX_RING_SIZE) *
564 sizeof (struct netdev_desc));
565 np->rx_ring[i].status = 0;
566 np->rx_ring[i].fraginfo = 0;
567 np->rx_skbuff[i] = NULL;
570 /* Allocate the rx buffers */
571 for (i = 0; i < RX_RING_SIZE; i++) {
572 /* Allocated fixed size of skbuff */
573 struct sk_buff *skb = netdev_alloc_skb (dev, np->rx_buf_sz);
574 np->rx_skbuff[i] = skb;
575 if (skb == NULL) {
576 printk (KERN_ERR
577 "%s: alloc_list: allocate Rx buffer error! ",
578 dev->name);
579 break;
581 skb_reserve (skb, 2); /* 16 byte align the IP header. */
582 /* Rubicon now supports 40 bits of addressing space. */
583 np->rx_ring[i].fraginfo =
584 cpu_to_le64 ( pci_map_single (
585 np->pdev, skb->data, np->rx_buf_sz,
586 PCI_DMA_FROMDEVICE));
587 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
590 /* Set RFDListPtr */
591 writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
592 writel (0, dev->base_addr + RFDListPtr1);
594 return;
597 static int
598 start_xmit (struct sk_buff *skb, struct net_device *dev)
600 struct netdev_private *np = netdev_priv(dev);
601 struct netdev_desc *txdesc;
602 unsigned entry;
603 u32 ioaddr;
604 u64 tfc_vlan_tag = 0;
606 if (np->link_status == 0) { /* Link Down */
607 dev_kfree_skb(skb);
608 return 0;
610 ioaddr = dev->base_addr;
611 entry = np->cur_tx % TX_RING_SIZE;
612 np->tx_skbuff[entry] = skb;
613 txdesc = &np->tx_ring[entry];
615 #if 0
616 if (skb->ip_summed == CHECKSUM_PARTIAL) {
617 txdesc->status |=
618 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
619 IPChecksumEnable);
621 #endif
622 if (np->vlan) {
623 tfc_vlan_tag = VLANTagInsert |
624 ((u64)np->vlan << 32) |
625 ((u64)skb->priority << 45);
627 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
628 skb->len,
629 PCI_DMA_TODEVICE));
630 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
632 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
633 * Work around: Always use 1 descriptor in 10Mbps mode */
634 if (entry % np->tx_coalesce == 0 || np->speed == 10)
635 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
636 WordAlignDisable |
637 TxDMAIndicate |
638 (1 << FragCountShift));
639 else
640 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
641 WordAlignDisable |
642 (1 << FragCountShift));
644 /* TxDMAPollNow */
645 writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
646 /* Schedule ISR */
647 writel(10000, ioaddr + CountDown);
648 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
649 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
650 < TX_QUEUE_LEN - 1 && np->speed != 10) {
651 /* do nothing */
652 } else if (!netif_queue_stopped(dev)) {
653 netif_stop_queue (dev);
656 /* The first TFDListPtr */
657 if (readl (dev->base_addr + TFDListPtr0) == 0) {
658 writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
659 dev->base_addr + TFDListPtr0);
660 writel (0, dev->base_addr + TFDListPtr1);
663 /* NETDEV WATCHDOG timer */
664 dev->trans_start = jiffies;
665 return 0;
668 static irqreturn_t
669 rio_interrupt (int irq, void *dev_instance)
671 struct net_device *dev = dev_instance;
672 struct netdev_private *np;
673 unsigned int_status;
674 long ioaddr;
675 int cnt = max_intrloop;
676 int handled = 0;
678 ioaddr = dev->base_addr;
679 np = netdev_priv(dev);
680 while (1) {
681 int_status = readw (ioaddr + IntStatus);
682 writew (int_status, ioaddr + IntStatus);
683 int_status &= DEFAULT_INTR;
684 if (int_status == 0 || --cnt < 0)
685 break;
686 handled = 1;
687 /* Processing received packets */
688 if (int_status & RxDMAComplete)
689 receive_packet (dev);
690 /* TxDMAComplete interrupt */
691 if ((int_status & (TxDMAComplete|IntRequested))) {
692 int tx_status;
693 tx_status = readl (ioaddr + TxStatus);
694 if (tx_status & 0x01)
695 tx_error (dev, tx_status);
696 /* Free used tx skbuffs */
697 rio_free_tx (dev, 1);
700 /* Handle uncommon events */
701 if (int_status &
702 (HostError | LinkEvent | UpdateStats))
703 rio_error (dev, int_status);
705 if (np->cur_tx != np->old_tx)
706 writel (100, ioaddr + CountDown);
707 return IRQ_RETVAL(handled);
710 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
712 return le64_to_cpu(desc->fraginfo) & DMA_48BIT_MASK;
715 static void
716 rio_free_tx (struct net_device *dev, int irq)
718 struct netdev_private *np = netdev_priv(dev);
719 int entry = np->old_tx % TX_RING_SIZE;
720 int tx_use = 0;
721 unsigned long flag = 0;
723 if (irq)
724 spin_lock(&np->tx_lock);
725 else
726 spin_lock_irqsave(&np->tx_lock, flag);
728 /* Free used tx skbuffs */
729 while (entry != np->cur_tx) {
730 struct sk_buff *skb;
732 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
733 break;
734 skb = np->tx_skbuff[entry];
735 pci_unmap_single (np->pdev,
736 desc_to_dma(&np->tx_ring[entry]),
737 skb->len, PCI_DMA_TODEVICE);
738 if (irq)
739 dev_kfree_skb_irq (skb);
740 else
741 dev_kfree_skb (skb);
743 np->tx_skbuff[entry] = NULL;
744 entry = (entry + 1) % TX_RING_SIZE;
745 tx_use++;
747 if (irq)
748 spin_unlock(&np->tx_lock);
749 else
750 spin_unlock_irqrestore(&np->tx_lock, flag);
751 np->old_tx = entry;
753 /* If the ring is no longer full, clear tx_full and
754 call netif_wake_queue() */
756 if (netif_queue_stopped(dev) &&
757 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
758 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
759 netif_wake_queue (dev);
763 static void
764 tx_error (struct net_device *dev, int tx_status)
766 struct netdev_private *np;
767 long ioaddr = dev->base_addr;
768 int frame_id;
769 int i;
771 np = netdev_priv(dev);
773 frame_id = (tx_status & 0xffff0000);
774 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
775 dev->name, tx_status, frame_id);
776 np->stats.tx_errors++;
777 /* Ttransmit Underrun */
778 if (tx_status & 0x10) {
779 np->stats.tx_fifo_errors++;
780 writew (readw (ioaddr + TxStartThresh) + 0x10,
781 ioaddr + TxStartThresh);
782 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
783 writew (TxReset | DMAReset | FIFOReset | NetworkReset,
784 ioaddr + ASICCtrl + 2);
785 /* Wait for ResetBusy bit clear */
786 for (i = 50; i > 0; i--) {
787 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
788 break;
789 mdelay (1);
791 rio_free_tx (dev, 1);
792 /* Reset TFDListPtr */
793 writel (np->tx_ring_dma +
794 np->old_tx * sizeof (struct netdev_desc),
795 dev->base_addr + TFDListPtr0);
796 writel (0, dev->base_addr + TFDListPtr1);
798 /* Let TxStartThresh stay default value */
800 /* Late Collision */
801 if (tx_status & 0x04) {
802 np->stats.tx_fifo_errors++;
803 /* TxReset and clear FIFO */
804 writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
805 /* Wait reset done */
806 for (i = 50; i > 0; i--) {
807 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
808 break;
809 mdelay (1);
811 /* Let TxStartThresh stay default value */
813 /* Maximum Collisions */
814 #ifdef ETHER_STATS
815 if (tx_status & 0x08)
816 np->stats.collisions16++;
817 #else
818 if (tx_status & 0x08)
819 np->stats.collisions++;
820 #endif
821 /* Restart the Tx */
822 writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
825 static int
826 receive_packet (struct net_device *dev)
828 struct netdev_private *np = netdev_priv(dev);
829 int entry = np->cur_rx % RX_RING_SIZE;
830 int cnt = 30;
832 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
833 while (1) {
834 struct netdev_desc *desc = &np->rx_ring[entry];
835 int pkt_len;
836 u64 frame_status;
838 if (!(desc->status & cpu_to_le64(RFDDone)) ||
839 !(desc->status & cpu_to_le64(FrameStart)) ||
840 !(desc->status & cpu_to_le64(FrameEnd)))
841 break;
843 /* Chip omits the CRC. */
844 frame_status = le64_to_cpu(desc->status);
845 pkt_len = frame_status & 0xffff;
846 if (--cnt < 0)
847 break;
848 /* Update rx error statistics, drop packet. */
849 if (frame_status & RFS_Errors) {
850 np->stats.rx_errors++;
851 if (frame_status & (RxRuntFrame | RxLengthError))
852 np->stats.rx_length_errors++;
853 if (frame_status & RxFCSError)
854 np->stats.rx_crc_errors++;
855 if (frame_status & RxAlignmentError && np->speed != 1000)
856 np->stats.rx_frame_errors++;
857 if (frame_status & RxFIFOOverrun)
858 np->stats.rx_fifo_errors++;
859 } else {
860 struct sk_buff *skb;
862 /* Small skbuffs for short packets */
863 if (pkt_len > copy_thresh) {
864 pci_unmap_single (np->pdev,
865 desc_to_dma(desc),
866 np->rx_buf_sz,
867 PCI_DMA_FROMDEVICE);
868 skb_put (skb = np->rx_skbuff[entry], pkt_len);
869 np->rx_skbuff[entry] = NULL;
870 } else if ((skb = netdev_alloc_skb(dev, pkt_len + 2))) {
871 pci_dma_sync_single_for_cpu(np->pdev,
872 desc_to_dma(desc),
873 np->rx_buf_sz,
874 PCI_DMA_FROMDEVICE);
875 /* 16 byte align the IP header */
876 skb_reserve (skb, 2);
877 skb_copy_to_linear_data (skb,
878 np->rx_skbuff[entry]->data,
879 pkt_len);
880 skb_put (skb, pkt_len);
881 pci_dma_sync_single_for_device(np->pdev,
882 desc_to_dma(desc),
883 np->rx_buf_sz,
884 PCI_DMA_FROMDEVICE);
886 skb->protocol = eth_type_trans (skb, dev);
887 #if 0
888 /* Checksum done by hw, but csum value unavailable. */
889 if (np->pdev->pci_rev_id >= 0x0c &&
890 !(frame_status & (TCPError | UDPError | IPError))) {
891 skb->ip_summed = CHECKSUM_UNNECESSARY;
893 #endif
894 netif_rx (skb);
895 dev->last_rx = jiffies;
897 entry = (entry + 1) % RX_RING_SIZE;
899 spin_lock(&np->rx_lock);
900 np->cur_rx = entry;
901 /* Re-allocate skbuffs to fill the descriptor ring */
902 entry = np->old_rx;
903 while (entry != np->cur_rx) {
904 struct sk_buff *skb;
905 /* Dropped packets don't need to re-allocate */
906 if (np->rx_skbuff[entry] == NULL) {
907 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
908 if (skb == NULL) {
909 np->rx_ring[entry].fraginfo = 0;
910 printk (KERN_INFO
911 "%s: receive_packet: "
912 "Unable to re-allocate Rx skbuff.#%d\n",
913 dev->name, entry);
914 break;
916 np->rx_skbuff[entry] = skb;
917 /* 16 byte align the IP header */
918 skb_reserve (skb, 2);
919 np->rx_ring[entry].fraginfo =
920 cpu_to_le64 (pci_map_single
921 (np->pdev, skb->data, np->rx_buf_sz,
922 PCI_DMA_FROMDEVICE));
924 np->rx_ring[entry].fraginfo |=
925 cpu_to_le64((u64)np->rx_buf_sz << 48);
926 np->rx_ring[entry].status = 0;
927 entry = (entry + 1) % RX_RING_SIZE;
929 np->old_rx = entry;
930 spin_unlock(&np->rx_lock);
931 return 0;
934 static void
935 rio_error (struct net_device *dev, int int_status)
937 long ioaddr = dev->base_addr;
938 struct netdev_private *np = netdev_priv(dev);
939 u16 macctrl;
941 /* Link change event */
942 if (int_status & LinkEvent) {
943 if (mii_wait_link (dev, 10) == 0) {
944 printk (KERN_INFO "%s: Link up\n", dev->name);
945 if (np->phy_media)
946 mii_get_media_pcs (dev);
947 else
948 mii_get_media (dev);
949 if (np->speed == 1000)
950 np->tx_coalesce = tx_coalesce;
951 else
952 np->tx_coalesce = 1;
953 macctrl = 0;
954 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
955 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
956 macctrl |= (np->tx_flow) ?
957 TxFlowControlEnable : 0;
958 macctrl |= (np->rx_flow) ?
959 RxFlowControlEnable : 0;
960 writew(macctrl, ioaddr + MACCtrl);
961 np->link_status = 1;
962 netif_carrier_on(dev);
963 } else {
964 printk (KERN_INFO "%s: Link off\n", dev->name);
965 np->link_status = 0;
966 netif_carrier_off(dev);
970 /* UpdateStats statistics registers */
971 if (int_status & UpdateStats) {
972 get_stats (dev);
975 /* PCI Error, a catastronphic error related to the bus interface
976 occurs, set GlobalReset and HostReset to reset. */
977 if (int_status & HostError) {
978 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
979 dev->name, int_status);
980 writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
981 mdelay (500);
985 static struct net_device_stats *
986 get_stats (struct net_device *dev)
988 long ioaddr = dev->base_addr;
989 struct netdev_private *np = netdev_priv(dev);
990 #ifdef MEM_MAPPING
991 int i;
992 #endif
993 unsigned int stat_reg;
995 /* All statistics registers need to be acknowledged,
996 else statistic overflow could cause problems */
998 np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
999 np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
1000 np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
1001 np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
1003 np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1004 np->stats.collisions += readl (ioaddr + SingleColFrames)
1005 + readl (ioaddr + MultiColFrames);
1007 /* detailed tx errors */
1008 stat_reg = readw (ioaddr + FramesAbortXSColls);
1009 np->stats.tx_aborted_errors += stat_reg;
1010 np->stats.tx_errors += stat_reg;
1012 stat_reg = readw (ioaddr + CarrierSenseErrors);
1013 np->stats.tx_carrier_errors += stat_reg;
1014 np->stats.tx_errors += stat_reg;
1016 /* Clear all other statistic register. */
1017 readl (ioaddr + McstOctetXmtOk);
1018 readw (ioaddr + BcstFramesXmtdOk);
1019 readl (ioaddr + McstFramesXmtdOk);
1020 readw (ioaddr + BcstFramesRcvdOk);
1021 readw (ioaddr + MacControlFramesRcvd);
1022 readw (ioaddr + FrameTooLongErrors);
1023 readw (ioaddr + InRangeLengthErrors);
1024 readw (ioaddr + FramesCheckSeqErrors);
1025 readw (ioaddr + FramesLostRxErrors);
1026 readl (ioaddr + McstOctetXmtOk);
1027 readl (ioaddr + BcstOctetXmtOk);
1028 readl (ioaddr + McstFramesXmtdOk);
1029 readl (ioaddr + FramesWDeferredXmt);
1030 readl (ioaddr + LateCollisions);
1031 readw (ioaddr + BcstFramesXmtdOk);
1032 readw (ioaddr + MacControlFramesXmtd);
1033 readw (ioaddr + FramesWEXDeferal);
1035 #ifdef MEM_MAPPING
1036 for (i = 0x100; i <= 0x150; i += 4)
1037 readl (ioaddr + i);
1038 #endif
1039 readw (ioaddr + TxJumboFrames);
1040 readw (ioaddr + RxJumboFrames);
1041 readw (ioaddr + TCPCheckSumErrors);
1042 readw (ioaddr + UDPCheckSumErrors);
1043 readw (ioaddr + IPCheckSumErrors);
1044 return &np->stats;
1047 static int
1048 clear_stats (struct net_device *dev)
1050 long ioaddr = dev->base_addr;
1051 #ifdef MEM_MAPPING
1052 int i;
1053 #endif
1055 /* All statistics registers need to be acknowledged,
1056 else statistic overflow could cause problems */
1057 readl (ioaddr + FramesRcvOk);
1058 readl (ioaddr + FramesXmtOk);
1059 readl (ioaddr + OctetRcvOk);
1060 readl (ioaddr + OctetXmtOk);
1062 readl (ioaddr + McstFramesRcvdOk);
1063 readl (ioaddr + SingleColFrames);
1064 readl (ioaddr + MultiColFrames);
1065 readl (ioaddr + LateCollisions);
1066 /* detailed rx errors */
1067 readw (ioaddr + FrameTooLongErrors);
1068 readw (ioaddr + InRangeLengthErrors);
1069 readw (ioaddr + FramesCheckSeqErrors);
1070 readw (ioaddr + FramesLostRxErrors);
1072 /* detailed tx errors */
1073 readw (ioaddr + FramesAbortXSColls);
1074 readw (ioaddr + CarrierSenseErrors);
1076 /* Clear all other statistic register. */
1077 readl (ioaddr + McstOctetXmtOk);
1078 readw (ioaddr + BcstFramesXmtdOk);
1079 readl (ioaddr + McstFramesXmtdOk);
1080 readw (ioaddr + BcstFramesRcvdOk);
1081 readw (ioaddr + MacControlFramesRcvd);
1082 readl (ioaddr + McstOctetXmtOk);
1083 readl (ioaddr + BcstOctetXmtOk);
1084 readl (ioaddr + McstFramesXmtdOk);
1085 readl (ioaddr + FramesWDeferredXmt);
1086 readw (ioaddr + BcstFramesXmtdOk);
1087 readw (ioaddr + MacControlFramesXmtd);
1088 readw (ioaddr + FramesWEXDeferal);
1089 #ifdef MEM_MAPPING
1090 for (i = 0x100; i <= 0x150; i += 4)
1091 readl (ioaddr + i);
1092 #endif
1093 readw (ioaddr + TxJumboFrames);
1094 readw (ioaddr + RxJumboFrames);
1095 readw (ioaddr + TCPCheckSumErrors);
1096 readw (ioaddr + UDPCheckSumErrors);
1097 readw (ioaddr + IPCheckSumErrors);
1098 return 0;
1102 static int
1103 change_mtu (struct net_device *dev, int new_mtu)
1105 struct netdev_private *np = netdev_priv(dev);
1106 int max = (np->jumbo) ? MAX_JUMBO : 1536;
1108 if ((new_mtu < 68) || (new_mtu > max)) {
1109 return -EINVAL;
1112 dev->mtu = new_mtu;
1114 return 0;
1117 static void
1118 set_multicast (struct net_device *dev)
1120 long ioaddr = dev->base_addr;
1121 u32 hash_table[2];
1122 u16 rx_mode = 0;
1123 struct netdev_private *np = netdev_priv(dev);
1125 hash_table[0] = hash_table[1] = 0;
1126 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1127 hash_table[1] |= 0x02000000;
1128 if (dev->flags & IFF_PROMISC) {
1129 /* Receive all frames promiscuously. */
1130 rx_mode = ReceiveAllFrames;
1131 } else if ((dev->flags & IFF_ALLMULTI) ||
1132 (dev->mc_count > multicast_filter_limit)) {
1133 /* Receive broadcast and multicast frames */
1134 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1135 } else if (dev->mc_count > 0) {
1136 int i;
1137 struct dev_mc_list *mclist;
1138 /* Receive broadcast frames and multicast frames filtering
1139 by Hashtable */
1140 rx_mode =
1141 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1142 for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1143 i++, mclist=mclist->next)
1145 int bit, index = 0;
1146 int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1147 /* The inverted high significant 6 bits of CRC are
1148 used as an index to hashtable */
1149 for (bit = 0; bit < 6; bit++)
1150 if (crc & (1 << (31 - bit)))
1151 index |= (1 << bit);
1152 hash_table[index / 32] |= (1 << (index % 32));
1154 } else {
1155 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1157 if (np->vlan) {
1158 /* ReceiveVLANMatch field in ReceiveMode */
1159 rx_mode |= ReceiveVLANMatch;
1162 writel (hash_table[0], ioaddr + HashTable0);
1163 writel (hash_table[1], ioaddr + HashTable1);
1164 writew (rx_mode, ioaddr + ReceiveMode);
1167 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1169 struct netdev_private *np = netdev_priv(dev);
1170 strcpy(info->driver, "dl2k");
1171 strcpy(info->version, DRV_VERSION);
1172 strcpy(info->bus_info, pci_name(np->pdev));
1175 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1177 struct netdev_private *np = netdev_priv(dev);
1178 if (np->phy_media) {
1179 /* fiber device */
1180 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1181 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1182 cmd->port = PORT_FIBRE;
1183 cmd->transceiver = XCVR_INTERNAL;
1184 } else {
1185 /* copper device */
1186 cmd->supported = SUPPORTED_10baseT_Half |
1187 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1188 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1189 SUPPORTED_Autoneg | SUPPORTED_MII;
1190 cmd->advertising = ADVERTISED_10baseT_Half |
1191 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1192 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1193 ADVERTISED_Autoneg | ADVERTISED_MII;
1194 cmd->port = PORT_MII;
1195 cmd->transceiver = XCVR_INTERNAL;
1197 if ( np->link_status ) {
1198 cmd->speed = np->speed;
1199 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1200 } else {
1201 cmd->speed = -1;
1202 cmd->duplex = -1;
1204 if ( np->an_enable)
1205 cmd->autoneg = AUTONEG_ENABLE;
1206 else
1207 cmd->autoneg = AUTONEG_DISABLE;
1209 cmd->phy_address = np->phy_addr;
1210 return 0;
1213 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1215 struct netdev_private *np = netdev_priv(dev);
1216 netif_carrier_off(dev);
1217 if (cmd->autoneg == AUTONEG_ENABLE) {
1218 if (np->an_enable)
1219 return 0;
1220 else {
1221 np->an_enable = 1;
1222 mii_set_media(dev);
1223 return 0;
1225 } else {
1226 np->an_enable = 0;
1227 if (np->speed == 1000) {
1228 cmd->speed = SPEED_100;
1229 cmd->duplex = DUPLEX_FULL;
1230 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1232 switch(cmd->speed + cmd->duplex) {
1234 case SPEED_10 + DUPLEX_HALF:
1235 np->speed = 10;
1236 np->full_duplex = 0;
1237 break;
1239 case SPEED_10 + DUPLEX_FULL:
1240 np->speed = 10;
1241 np->full_duplex = 1;
1242 break;
1243 case SPEED_100 + DUPLEX_HALF:
1244 np->speed = 100;
1245 np->full_duplex = 0;
1246 break;
1247 case SPEED_100 + DUPLEX_FULL:
1248 np->speed = 100;
1249 np->full_duplex = 1;
1250 break;
1251 case SPEED_1000 + DUPLEX_HALF:/* not supported */
1252 case SPEED_1000 + DUPLEX_FULL:/* not supported */
1253 default:
1254 return -EINVAL;
1256 mii_set_media(dev);
1258 return 0;
1261 static u32 rio_get_link(struct net_device *dev)
1263 struct netdev_private *np = netdev_priv(dev);
1264 return np->link_status;
1267 static const struct ethtool_ops ethtool_ops = {
1268 .get_drvinfo = rio_get_drvinfo,
1269 .get_settings = rio_get_settings,
1270 .set_settings = rio_set_settings,
1271 .get_link = rio_get_link,
1274 static int
1275 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1277 int phy_addr;
1278 struct netdev_private *np = netdev_priv(dev);
1279 struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1281 struct netdev_desc *desc;
1282 int i;
1284 phy_addr = np->phy_addr;
1285 switch (cmd) {
1286 case SIOCDEVPRIVATE:
1287 break;
1289 case SIOCDEVPRIVATE + 1:
1290 miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1291 break;
1292 case SIOCDEVPRIVATE + 2:
1293 mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1294 break;
1295 case SIOCDEVPRIVATE + 3:
1296 break;
1297 case SIOCDEVPRIVATE + 4:
1298 break;
1299 case SIOCDEVPRIVATE + 5:
1300 netif_stop_queue (dev);
1301 break;
1302 case SIOCDEVPRIVATE + 6:
1303 netif_wake_queue (dev);
1304 break;
1305 case SIOCDEVPRIVATE + 7:
1306 printk
1307 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1308 netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1309 np->old_rx);
1310 break;
1311 case SIOCDEVPRIVATE + 8:
1312 printk("TX ring:\n");
1313 for (i = 0; i < TX_RING_SIZE; i++) {
1314 desc = &np->tx_ring[i];
1315 printk
1316 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1318 (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1319 (u32)le64_to_cpu(desc->next_desc),
1320 (u32)le64_to_cpu(desc->status),
1321 (u32)(le64_to_cpu(desc->fraginfo) >> 32),
1322 (u32)le64_to_cpu(desc->fraginfo));
1323 printk ("\n");
1325 printk ("\n");
1326 break;
1328 default:
1329 return -EOPNOTSUPP;
1331 return 0;
1334 #define EEP_READ 0x0200
1335 #define EEP_BUSY 0x8000
1336 /* Read the EEPROM word */
1337 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1338 static int
1339 read_eeprom (long ioaddr, int eep_addr)
1341 int i = 1000;
1342 outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1343 while (i-- > 0) {
1344 if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1345 return inw (ioaddr + EepromData);
1348 return 0;
1351 enum phy_ctrl_bits {
1352 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1353 MII_DUPLEX = 0x08,
1356 #define mii_delay() readb(ioaddr)
1357 static void
1358 mii_sendbit (struct net_device *dev, u32 data)
1360 long ioaddr = dev->base_addr + PhyCtrl;
1361 data = (data) ? MII_DATA1 : 0;
1362 data |= MII_WRITE;
1363 data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1364 writeb (data, ioaddr);
1365 mii_delay ();
1366 writeb (data | MII_CLK, ioaddr);
1367 mii_delay ();
1370 static int
1371 mii_getbit (struct net_device *dev)
1373 long ioaddr = dev->base_addr + PhyCtrl;
1374 u8 data;
1376 data = (readb (ioaddr) & 0xf8) | MII_READ;
1377 writeb (data, ioaddr);
1378 mii_delay ();
1379 writeb (data | MII_CLK, ioaddr);
1380 mii_delay ();
1381 return ((readb (ioaddr) >> 1) & 1);
1384 static void
1385 mii_send_bits (struct net_device *dev, u32 data, int len)
1387 int i;
1388 for (i = len - 1; i >= 0; i--) {
1389 mii_sendbit (dev, data & (1 << i));
1393 static int
1394 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1396 u32 cmd;
1397 int i;
1398 u32 retval = 0;
1400 /* Preamble */
1401 mii_send_bits (dev, 0xffffffff, 32);
1402 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1403 /* ST,OP = 0110'b for read operation */
1404 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1405 mii_send_bits (dev, cmd, 14);
1406 /* Turnaround */
1407 if (mii_getbit (dev))
1408 goto err_out;
1409 /* Read data */
1410 for (i = 0; i < 16; i++) {
1411 retval |= mii_getbit (dev);
1412 retval <<= 1;
1414 /* End cycle */
1415 mii_getbit (dev);
1416 return (retval >> 1) & 0xffff;
1418 err_out:
1419 return 0;
1421 static int
1422 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1424 u32 cmd;
1426 /* Preamble */
1427 mii_send_bits (dev, 0xffffffff, 32);
1428 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1429 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1430 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1431 mii_send_bits (dev, cmd, 32);
1432 /* End cycle */
1433 mii_getbit (dev);
1434 return 0;
1436 static int
1437 mii_wait_link (struct net_device *dev, int wait)
1439 __u16 bmsr;
1440 int phy_addr;
1441 struct netdev_private *np;
1443 np = netdev_priv(dev);
1444 phy_addr = np->phy_addr;
1446 do {
1447 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1448 if (bmsr & MII_BMSR_LINK_STATUS)
1449 return 0;
1450 mdelay (1);
1451 } while (--wait > 0);
1452 return -1;
1454 static int
1455 mii_get_media (struct net_device *dev)
1457 __u16 negotiate;
1458 __u16 bmsr;
1459 __u16 mscr;
1460 __u16 mssr;
1461 int phy_addr;
1462 struct netdev_private *np;
1464 np = netdev_priv(dev);
1465 phy_addr = np->phy_addr;
1467 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1468 if (np->an_enable) {
1469 if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1470 /* Auto-Negotiation not completed */
1471 return -1;
1473 negotiate = mii_read (dev, phy_addr, MII_ANAR) &
1474 mii_read (dev, phy_addr, MII_ANLPAR);
1475 mscr = mii_read (dev, phy_addr, MII_MSCR);
1476 mssr = mii_read (dev, phy_addr, MII_MSSR);
1477 if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) {
1478 np->speed = 1000;
1479 np->full_duplex = 1;
1480 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1481 } else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) {
1482 np->speed = 1000;
1483 np->full_duplex = 0;
1484 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1485 } else if (negotiate & MII_ANAR_100BX_FD) {
1486 np->speed = 100;
1487 np->full_duplex = 1;
1488 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1489 } else if (negotiate & MII_ANAR_100BX_HD) {
1490 np->speed = 100;
1491 np->full_duplex = 0;
1492 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1493 } else if (negotiate & MII_ANAR_10BT_FD) {
1494 np->speed = 10;
1495 np->full_duplex = 1;
1496 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1497 } else if (negotiate & MII_ANAR_10BT_HD) {
1498 np->speed = 10;
1499 np->full_duplex = 0;
1500 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1502 if (negotiate & MII_ANAR_PAUSE) {
1503 np->tx_flow &= 1;
1504 np->rx_flow &= 1;
1505 } else if (negotiate & MII_ANAR_ASYMMETRIC) {
1506 np->tx_flow = 0;
1507 np->rx_flow &= 1;
1509 /* else tx_flow, rx_flow = user select */
1510 } else {
1511 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1512 switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
1513 case MII_BMCR_SPEED_1000:
1514 printk (KERN_INFO "Operating at 1000 Mbps, ");
1515 break;
1516 case MII_BMCR_SPEED_100:
1517 printk (KERN_INFO "Operating at 100 Mbps, ");
1518 break;
1519 case 0:
1520 printk (KERN_INFO "Operating at 10 Mbps, ");
1522 if (bmcr & MII_BMCR_DUPLEX_MODE) {
1523 printk ("Full duplex\n");
1524 } else {
1525 printk ("Half duplex\n");
1528 if (np->tx_flow)
1529 printk(KERN_INFO "Enable Tx Flow Control\n");
1530 else
1531 printk(KERN_INFO "Disable Tx Flow Control\n");
1532 if (np->rx_flow)
1533 printk(KERN_INFO "Enable Rx Flow Control\n");
1534 else
1535 printk(KERN_INFO "Disable Rx Flow Control\n");
1537 return 0;
1540 static int
1541 mii_set_media (struct net_device *dev)
1543 __u16 pscr;
1544 __u16 bmcr;
1545 __u16 bmsr;
1546 __u16 anar;
1547 int phy_addr;
1548 struct netdev_private *np;
1549 np = netdev_priv(dev);
1550 phy_addr = np->phy_addr;
1552 /* Does user set speed? */
1553 if (np->an_enable) {
1554 /* Advertise capabilities */
1555 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1556 anar = mii_read (dev, phy_addr, MII_ANAR) &
1557 ~MII_ANAR_100BX_FD &
1558 ~MII_ANAR_100BX_HD &
1559 ~MII_ANAR_100BT4 &
1560 ~MII_ANAR_10BT_FD &
1561 ~MII_ANAR_10BT_HD;
1562 if (bmsr & MII_BMSR_100BX_FD)
1563 anar |= MII_ANAR_100BX_FD;
1564 if (bmsr & MII_BMSR_100BX_HD)
1565 anar |= MII_ANAR_100BX_HD;
1566 if (bmsr & MII_BMSR_100BT4)
1567 anar |= MII_ANAR_100BT4;
1568 if (bmsr & MII_BMSR_10BT_FD)
1569 anar |= MII_ANAR_10BT_FD;
1570 if (bmsr & MII_BMSR_10BT_HD)
1571 anar |= MII_ANAR_10BT_HD;
1572 anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
1573 mii_write (dev, phy_addr, MII_ANAR, anar);
1575 /* Enable Auto crossover */
1576 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1577 pscr |= 3 << 5; /* 11'b */
1578 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1580 /* Soft reset PHY */
1581 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1582 bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
1583 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1584 mdelay(1);
1585 } else {
1586 /* Force speed setting */
1587 /* 1) Disable Auto crossover */
1588 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1589 pscr &= ~(3 << 5);
1590 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1592 /* 2) PHY Reset */
1593 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1594 bmcr |= MII_BMCR_RESET;
1595 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1597 /* 3) Power Down */
1598 bmcr = 0x1940; /* must be 0x1940 */
1599 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1600 mdelay (100); /* wait a certain time */
1602 /* 4) Advertise nothing */
1603 mii_write (dev, phy_addr, MII_ANAR, 0);
1605 /* 5) Set media and Power Up */
1606 bmcr = MII_BMCR_POWER_DOWN;
1607 if (np->speed == 100) {
1608 bmcr |= MII_BMCR_SPEED_100;
1609 printk (KERN_INFO "Manual 100 Mbps, ");
1610 } else if (np->speed == 10) {
1611 printk (KERN_INFO "Manual 10 Mbps, ");
1613 if (np->full_duplex) {
1614 bmcr |= MII_BMCR_DUPLEX_MODE;
1615 printk ("Full duplex\n");
1616 } else {
1617 printk ("Half duplex\n");
1619 #if 0
1620 /* Set 1000BaseT Master/Slave setting */
1621 mscr = mii_read (dev, phy_addr, MII_MSCR);
1622 mscr |= MII_MSCR_CFG_ENABLE;
1623 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1624 #endif
1625 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1626 mdelay(10);
1628 return 0;
1631 static int
1632 mii_get_media_pcs (struct net_device *dev)
1634 __u16 negotiate;
1635 __u16 bmsr;
1636 int phy_addr;
1637 struct netdev_private *np;
1639 np = netdev_priv(dev);
1640 phy_addr = np->phy_addr;
1642 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1643 if (np->an_enable) {
1644 if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1645 /* Auto-Negotiation not completed */
1646 return -1;
1648 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1649 mii_read (dev, phy_addr, PCS_ANLPAR);
1650 np->speed = 1000;
1651 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1652 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1653 np->full_duplex = 1;
1654 } else {
1655 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1656 np->full_duplex = 0;
1658 if (negotiate & PCS_ANAR_PAUSE) {
1659 np->tx_flow &= 1;
1660 np->rx_flow &= 1;
1661 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1662 np->tx_flow = 0;
1663 np->rx_flow &= 1;
1665 /* else tx_flow, rx_flow = user select */
1666 } else {
1667 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1668 printk (KERN_INFO "Operating at 1000 Mbps, ");
1669 if (bmcr & MII_BMCR_DUPLEX_MODE) {
1670 printk ("Full duplex\n");
1671 } else {
1672 printk ("Half duplex\n");
1675 if (np->tx_flow)
1676 printk(KERN_INFO "Enable Tx Flow Control\n");
1677 else
1678 printk(KERN_INFO "Disable Tx Flow Control\n");
1679 if (np->rx_flow)
1680 printk(KERN_INFO "Enable Rx Flow Control\n");
1681 else
1682 printk(KERN_INFO "Disable Rx Flow Control\n");
1684 return 0;
1687 static int
1688 mii_set_media_pcs (struct net_device *dev)
1690 __u16 bmcr;
1691 __u16 esr;
1692 __u16 anar;
1693 int phy_addr;
1694 struct netdev_private *np;
1695 np = netdev_priv(dev);
1696 phy_addr = np->phy_addr;
1698 /* Auto-Negotiation? */
1699 if (np->an_enable) {
1700 /* Advertise capabilities */
1701 esr = mii_read (dev, phy_addr, PCS_ESR);
1702 anar = mii_read (dev, phy_addr, MII_ANAR) &
1703 ~PCS_ANAR_HALF_DUPLEX &
1704 ~PCS_ANAR_FULL_DUPLEX;
1705 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1706 anar |= PCS_ANAR_HALF_DUPLEX;
1707 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1708 anar |= PCS_ANAR_FULL_DUPLEX;
1709 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1710 mii_write (dev, phy_addr, MII_ANAR, anar);
1712 /* Soft reset PHY */
1713 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1714 bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
1715 MII_BMCR_RESET;
1716 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1717 mdelay(1);
1718 } else {
1719 /* Force speed setting */
1720 /* PHY Reset */
1721 bmcr = MII_BMCR_RESET;
1722 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1723 mdelay(10);
1724 if (np->full_duplex) {
1725 bmcr = MII_BMCR_DUPLEX_MODE;
1726 printk (KERN_INFO "Manual full duplex\n");
1727 } else {
1728 bmcr = 0;
1729 printk (KERN_INFO "Manual half duplex\n");
1731 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1732 mdelay(10);
1734 /* Advertise nothing */
1735 mii_write (dev, phy_addr, MII_ANAR, 0);
1737 return 0;
1741 static int
1742 rio_close (struct net_device *dev)
1744 long ioaddr = dev->base_addr;
1745 struct netdev_private *np = netdev_priv(dev);
1746 struct sk_buff *skb;
1747 int i;
1749 netif_stop_queue (dev);
1751 /* Disable interrupts */
1752 writew (0, ioaddr + IntEnable);
1754 /* Stop Tx and Rx logics */
1755 writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1757 free_irq (dev->irq, dev);
1758 del_timer_sync (&np->timer);
1760 /* Free all the skbuffs in the queue. */
1761 for (i = 0; i < RX_RING_SIZE; i++) {
1762 np->rx_ring[i].status = 0;
1763 np->rx_ring[i].fraginfo = 0;
1764 skb = np->rx_skbuff[i];
1765 if (skb) {
1766 pci_unmap_single(np->pdev,
1767 desc_to_dma(&np->rx_ring[i]),
1768 skb->len, PCI_DMA_FROMDEVICE);
1769 dev_kfree_skb (skb);
1770 np->rx_skbuff[i] = NULL;
1773 for (i = 0; i < TX_RING_SIZE; i++) {
1774 skb = np->tx_skbuff[i];
1775 if (skb) {
1776 pci_unmap_single(np->pdev,
1777 desc_to_dma(&np->tx_ring[i]),
1778 skb->len, PCI_DMA_TODEVICE);
1779 dev_kfree_skb (skb);
1780 np->tx_skbuff[i] = NULL;
1784 return 0;
1787 static void __devexit
1788 rio_remove1 (struct pci_dev *pdev)
1790 struct net_device *dev = pci_get_drvdata (pdev);
1792 if (dev) {
1793 struct netdev_private *np = netdev_priv(dev);
1795 unregister_netdev (dev);
1796 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1797 np->rx_ring_dma);
1798 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1799 np->tx_ring_dma);
1800 #ifdef MEM_MAPPING
1801 iounmap ((char *) (dev->base_addr));
1802 #endif
1803 free_netdev (dev);
1804 pci_release_regions (pdev);
1805 pci_disable_device (pdev);
1807 pci_set_drvdata (pdev, NULL);
1810 static struct pci_driver rio_driver = {
1811 .name = "dl2k",
1812 .id_table = rio_pci_tbl,
1813 .probe = rio_probe1,
1814 .remove = __devexit_p(rio_remove1),
1817 static int __init
1818 rio_init (void)
1820 return pci_register_driver(&rio_driver);
1823 static void __exit
1824 rio_exit (void)
1826 pci_unregister_driver (&rio_driver);
1829 module_init (rio_init);
1830 module_exit (rio_exit);
1834 Compile command:
1836 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1838 Read Documentation/networking/dl2k.txt for details.