add zen patches
[linux-2.6/zen-sources.git] / fs / namei.c
blob6880f28b736c2e56bc93c0a186cd56d7b8337a85
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/uaccess.h>
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
38 /* [Feb-1997 T. Schoebel-Theuer]
39 * Fundamental changes in the pathname lookup mechanisms (namei)
40 * were necessary because of omirr. The reason is that omirr needs
41 * to know the _real_ pathname, not the user-supplied one, in case
42 * of symlinks (and also when transname replacements occur).
44 * The new code replaces the old recursive symlink resolution with
45 * an iterative one (in case of non-nested symlink chains). It does
46 * this with calls to <fs>_follow_link().
47 * As a side effect, dir_namei(), _namei() and follow_link() are now
48 * replaced with a single function lookup_dentry() that can handle all
49 * the special cases of the former code.
51 * With the new dcache, the pathname is stored at each inode, at least as
52 * long as the refcount of the inode is positive. As a side effect, the
53 * size of the dcache depends on the inode cache and thus is dynamic.
55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56 * resolution to correspond with current state of the code.
58 * Note that the symlink resolution is not *completely* iterative.
59 * There is still a significant amount of tail- and mid- recursion in
60 * the algorithm. Also, note that <fs>_readlink() is not used in
61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62 * may return different results than <fs>_follow_link(). Many virtual
63 * filesystems (including /proc) exhibit this behavior.
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68 * and the name already exists in form of a symlink, try to create the new
69 * name indicated by the symlink. The old code always complained that the
70 * name already exists, due to not following the symlink even if its target
71 * is nonexistent. The new semantics affects also mknod() and link() when
72 * the name is a symlink pointing to a non-existant name.
74 * I don't know which semantics is the right one, since I have no access
75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77 * "old" one. Personally, I think the new semantics is much more logical.
78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79 * file does succeed in both HP-UX and SunOs, but not in Solaris
80 * and in the old Linux semantics.
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84 * semantics. See the comments in "open_namei" and "do_link" below.
86 * [10-Sep-98 Alan Modra] Another symlink change.
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90 * inside the path - always follow.
91 * in the last component in creation/removal/renaming - never follow.
92 * if LOOKUP_FOLLOW passed - follow.
93 * if the pathname has trailing slashes - follow.
94 * otherwise - don't follow.
95 * (applied in that order).
97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99 * During the 2.4 we need to fix the userland stuff depending on it -
100 * hopefully we will be able to get rid of that wart in 2.5. So far only
101 * XEmacs seems to be relying on it...
104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
106 * any extra contention...
109 static int __link_path_walk(const char *name, struct nameidata *nd);
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
118 static int do_getname(const char __user *filename, char *page)
120 int retval;
121 unsigned long len = PATH_MAX;
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
140 char * getname(const char __user * filename)
142 char *tmp, *result;
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
155 audit_getname(result);
156 return result;
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
167 EXPORT_SYMBOL(putname);
168 #endif
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
185 umode_t mode = inode->i_mode;
187 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
189 if (current->fsuid == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask);
194 if (error == -EACCES)
195 goto check_capabilities;
196 else if (error != -EAGAIN)
197 return error;
200 if (in_group_p(inode->i_gid))
201 mode >>= 3;
205 * If the DACs are ok we don't need any capability check.
207 if ((mask & ~mode) == 0)
208 return 0;
210 check_capabilities:
212 * Read/write DACs are always overridable.
213 * Executable DACs are overridable if at least one exec bit is set.
215 if (!(mask & MAY_EXEC) || execute_ok(inode))
216 if (capable(CAP_DAC_OVERRIDE))
217 return 0;
220 * Searching includes executable on directories, else just read.
222 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
223 if (capable(CAP_DAC_READ_SEARCH))
224 return 0;
226 return -EACCES;
229 int inode_permission(struct inode *inode, int mask)
231 int retval;
233 if (mask & MAY_WRITE) {
234 umode_t mode = inode->i_mode;
237 * Nobody gets write access to a read-only fs.
239 if (IS_RDONLY(inode) &&
240 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
241 return -EROFS;
244 * Nobody gets write access to an immutable file.
246 if (IS_IMMUTABLE(inode))
247 return -EACCES;
250 /* Ordinary permission routines do not understand MAY_APPEND. */
251 if (inode->i_op && inode->i_op->permission)
252 retval = inode->i_op->permission(inode, mask);
253 else
254 retval = generic_permission(inode, mask, NULL);
256 if (retval)
257 return retval;
259 retval = devcgroup_inode_permission(inode, mask);
260 if (retval)
261 return retval;
263 return security_inode_permission(inode,
264 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
268 * vfs_permission - check for access rights to a given path
269 * @nd: lookup result that describes the path
270 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
272 * Used to check for read/write/execute permissions on a path.
273 * We use "fsuid" for this, letting us set arbitrary permissions
274 * for filesystem access without changing the "normal" uids which
275 * are used for other things.
277 int vfs_permission(struct nameidata *nd, int mask)
279 return inode_permission(nd->path.dentry->d_inode, mask);
283 * file_permission - check for additional access rights to a given file
284 * @file: file to check access rights for
285 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
287 * Used to check for read/write/execute permissions on an already opened
288 * file.
290 * Note:
291 * Do not use this function in new code. All access checks should
292 * be done using vfs_permission().
294 int file_permission(struct file *file, int mask)
296 return inode_permission(file->f_path.dentry->d_inode, mask);
300 * get_write_access() gets write permission for a file.
301 * put_write_access() releases this write permission.
302 * This is used for regular files.
303 * We cannot support write (and maybe mmap read-write shared) accesses and
304 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
305 * can have the following values:
306 * 0: no writers, no VM_DENYWRITE mappings
307 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
308 * > 0: (i_writecount) users are writing to the file.
310 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
311 * except for the cases where we don't hold i_writecount yet. Then we need to
312 * use {get,deny}_write_access() - these functions check the sign and refuse
313 * to do the change if sign is wrong. Exclusion between them is provided by
314 * the inode->i_lock spinlock.
317 int get_write_access(struct inode * inode)
319 spin_lock(&inode->i_lock);
320 if (atomic_read(&inode->i_writecount) < 0) {
321 spin_unlock(&inode->i_lock);
322 return -ETXTBSY;
324 atomic_inc(&inode->i_writecount);
325 spin_unlock(&inode->i_lock);
327 return 0;
330 int deny_write_access(struct file * file)
332 struct inode *inode = file->f_path.dentry->d_inode;
334 spin_lock(&inode->i_lock);
335 if (atomic_read(&inode->i_writecount) > 0) {
336 spin_unlock(&inode->i_lock);
337 return -ETXTBSY;
339 atomic_dec(&inode->i_writecount);
340 spin_unlock(&inode->i_lock);
342 return 0;
346 * path_get - get a reference to a path
347 * @path: path to get the reference to
349 * Given a path increment the reference count to the dentry and the vfsmount.
351 void path_get(struct path *path)
353 mntget(path->mnt);
354 dget(path->dentry);
356 EXPORT_SYMBOL(path_get);
359 * path_put - put a reference to a path
360 * @path: path to put the reference to
362 * Given a path decrement the reference count to the dentry and the vfsmount.
364 void path_put(struct path *path)
366 dput(path->dentry);
367 mntput(path->mnt);
369 EXPORT_SYMBOL(path_put);
372 * release_open_intent - free up open intent resources
373 * @nd: pointer to nameidata
375 void release_open_intent(struct nameidata *nd)
377 if (nd->intent.open.file->f_path.dentry == NULL)
378 put_filp(nd->intent.open.file);
379 else
380 fput(nd->intent.open.file);
382 EXPORT_SYMBOL_GPL(release_open_intent);
384 static inline struct dentry *
385 do_revalidate(struct dentry *dentry, struct nameidata *nd)
387 int status = dentry->d_op->d_revalidate(dentry, nd);
388 if (unlikely(status <= 0)) {
390 * The dentry failed validation.
391 * If d_revalidate returned 0 attempt to invalidate
392 * the dentry otherwise d_revalidate is asking us
393 * to return a fail status.
395 if (!status) {
396 if (!d_invalidate(dentry)) {
397 dput(dentry);
398 dentry = NULL;
400 } else {
401 dput(dentry);
402 dentry = ERR_PTR(status);
405 return dentry;
409 * Internal lookup() using the new generic dcache.
410 * SMP-safe
412 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
414 struct dentry * dentry = __d_lookup(parent, name);
416 /* lockess __d_lookup may fail due to concurrent d_move()
417 * in some unrelated directory, so try with d_lookup
419 if (!dentry)
420 dentry = d_lookup(parent, name);
422 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
423 dentry = do_revalidate(dentry, nd);
425 return dentry;
429 * Short-cut version of permission(), for calling by
430 * path_walk(), when dcache lock is held. Combines parts
431 * of permission() and generic_permission(), and tests ONLY for
432 * MAY_EXEC permission.
434 * If appropriate, check DAC only. If not appropriate, or
435 * short-cut DAC fails, then call permission() to do more
436 * complete permission check.
438 static int exec_permission_lite(struct inode *inode)
440 umode_t mode = inode->i_mode;
442 if (inode->i_op && inode->i_op->permission)
443 return -EAGAIN;
445 if (current->fsuid == inode->i_uid)
446 mode >>= 6;
447 else if (in_group_p(inode->i_gid))
448 mode >>= 3;
450 if (mode & MAY_EXEC)
451 goto ok;
453 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
454 goto ok;
456 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
457 goto ok;
459 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
460 goto ok;
462 return -EACCES;
464 return security_inode_permission(inode, MAY_EXEC);
468 * This is called when everything else fails, and we actually have
469 * to go to the low-level filesystem to find out what we should do..
471 * We get the directory semaphore, and after getting that we also
472 * make sure that nobody added the entry to the dcache in the meantime..
473 * SMP-safe
475 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
477 struct dentry * result;
478 struct inode *dir = parent->d_inode;
480 mutex_lock(&dir->i_mutex);
482 * First re-do the cached lookup just in case it was created
483 * while we waited for the directory semaphore..
485 * FIXME! This could use version numbering or similar to
486 * avoid unnecessary cache lookups.
488 * The "dcache_lock" is purely to protect the RCU list walker
489 * from concurrent renames at this point (we mustn't get false
490 * negatives from the RCU list walk here, unlike the optimistic
491 * fast walk).
493 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
495 result = d_lookup(parent, name);
496 if (!result) {
497 struct dentry *dentry;
499 /* Don't create child dentry for a dead directory. */
500 result = ERR_PTR(-ENOENT);
501 if (IS_DEADDIR(dir))
502 goto out_unlock;
504 dentry = d_alloc(parent, name);
505 result = ERR_PTR(-ENOMEM);
506 if (dentry) {
507 result = dir->i_op->lookup(dir, dentry, nd);
508 if (result)
509 dput(dentry);
510 else
511 result = dentry;
513 out_unlock:
514 mutex_unlock(&dir->i_mutex);
515 return result;
519 * Uhhuh! Nasty case: the cache was re-populated while
520 * we waited on the semaphore. Need to revalidate.
522 mutex_unlock(&dir->i_mutex);
523 if (result->d_op && result->d_op->d_revalidate) {
524 result = do_revalidate(result, nd);
525 if (!result)
526 result = ERR_PTR(-ENOENT);
528 return result;
531 /* SMP-safe */
532 static __always_inline void
533 walk_init_root(const char *name, struct nameidata *nd)
535 struct fs_struct *fs = current->fs;
537 read_lock(&fs->lock);
538 nd->path = fs->root;
539 path_get(&fs->root);
540 read_unlock(&fs->lock);
544 * Wrapper to retry pathname resolution whenever the underlying
545 * file system returns an ESTALE.
547 * Retry the whole path once, forcing real lookup requests
548 * instead of relying on the dcache.
550 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
552 struct path save = nd->path;
553 int result;
555 /* make sure the stuff we saved doesn't go away */
556 path_get(&save);
558 result = __link_path_walk(name, nd);
559 if (result == -ESTALE) {
560 /* nd->path had been dropped */
561 nd->path = save;
562 path_get(&nd->path);
563 nd->flags |= LOOKUP_REVAL;
564 result = __link_path_walk(name, nd);
567 path_put(&save);
569 return result;
572 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
574 int res = 0;
575 char *name;
576 if (IS_ERR(link))
577 goto fail;
579 if (*link == '/') {
580 path_put(&nd->path);
581 walk_init_root(link, nd);
583 res = link_path_walk(link, nd);
584 if (nd->depth || res || nd->last_type!=LAST_NORM)
585 return res;
587 * If it is an iterative symlinks resolution in open_namei() we
588 * have to copy the last component. And all that crap because of
589 * bloody create() on broken symlinks. Furrfu...
591 name = __getname();
592 if (unlikely(!name)) {
593 path_put(&nd->path);
594 return -ENOMEM;
596 strcpy(name, nd->last.name);
597 nd->last.name = name;
598 return 0;
599 fail:
600 path_put(&nd->path);
601 return PTR_ERR(link);
604 static void path_put_conditional(struct path *path, struct nameidata *nd)
606 dput(path->dentry);
607 if (path->mnt != nd->path.mnt)
608 mntput(path->mnt);
611 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
613 dput(nd->path.dentry);
614 if (nd->path.mnt != path->mnt)
615 mntput(nd->path.mnt);
616 nd->path.mnt = path->mnt;
617 nd->path.dentry = path->dentry;
620 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
622 int error;
623 void *cookie;
624 struct dentry *dentry = path->dentry;
626 touch_atime(path->mnt, dentry);
627 nd_set_link(nd, NULL);
629 if (path->mnt != nd->path.mnt) {
630 path_to_nameidata(path, nd);
631 dget(dentry);
633 mntget(path->mnt);
634 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
635 error = PTR_ERR(cookie);
636 if (!IS_ERR(cookie)) {
637 char *s = nd_get_link(nd);
638 error = 0;
639 if (s)
640 error = __vfs_follow_link(nd, s);
641 if (dentry->d_inode->i_op->put_link)
642 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
644 path_put(path);
646 return error;
650 * This limits recursive symlink follows to 8, while
651 * limiting consecutive symlinks to 40.
653 * Without that kind of total limit, nasty chains of consecutive
654 * symlinks can cause almost arbitrarily long lookups.
656 static inline int do_follow_link(struct path *path, struct nameidata *nd)
658 int err = -ELOOP;
659 if (current->link_count >= MAX_NESTED_LINKS)
660 goto loop;
661 if (current->total_link_count >= 40)
662 goto loop;
663 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
664 cond_resched();
665 err = security_inode_follow_link(path->dentry, nd);
666 if (err)
667 goto loop;
668 current->link_count++;
669 current->total_link_count++;
670 nd->depth++;
671 err = __do_follow_link(path, nd);
672 current->link_count--;
673 nd->depth--;
674 return err;
675 loop:
676 path_put_conditional(path, nd);
677 path_put(&nd->path);
678 return err;
681 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
683 struct vfsmount *parent;
684 struct dentry *mountpoint;
685 spin_lock(&vfsmount_lock);
686 parent=(*mnt)->mnt_parent;
687 if (parent == *mnt) {
688 spin_unlock(&vfsmount_lock);
689 return 0;
691 mntget(parent);
692 mountpoint=dget((*mnt)->mnt_mountpoint);
693 spin_unlock(&vfsmount_lock);
694 dput(*dentry);
695 *dentry = mountpoint;
696 mntput(*mnt);
697 *mnt = parent;
698 return 1;
701 /* no need for dcache_lock, as serialization is taken care in
702 * namespace.c
704 static int __follow_mount(struct path *path)
706 int res = 0;
707 while (d_mountpoint(path->dentry)) {
708 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
709 if (!mounted)
710 break;
711 dput(path->dentry);
712 if (res)
713 mntput(path->mnt);
714 path->mnt = mounted;
715 path->dentry = dget(mounted->mnt_root);
716 res = 1;
718 return res;
721 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
723 while (d_mountpoint(*dentry)) {
724 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
725 if (!mounted)
726 break;
727 dput(*dentry);
728 mntput(*mnt);
729 *mnt = mounted;
730 *dentry = dget(mounted->mnt_root);
734 /* no need for dcache_lock, as serialization is taken care in
735 * namespace.c
737 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
739 struct vfsmount *mounted;
741 mounted = lookup_mnt(*mnt, *dentry);
742 if (mounted) {
743 dput(*dentry);
744 mntput(*mnt);
745 *mnt = mounted;
746 *dentry = dget(mounted->mnt_root);
747 return 1;
749 return 0;
752 static __always_inline void follow_dotdot(struct nameidata *nd)
754 struct fs_struct *fs = current->fs;
756 while(1) {
757 struct vfsmount *parent;
758 struct dentry *old = nd->path.dentry;
760 read_lock(&fs->lock);
761 if (nd->path.dentry == fs->root.dentry &&
762 nd->path.mnt == fs->root.mnt) {
763 read_unlock(&fs->lock);
764 break;
766 read_unlock(&fs->lock);
767 spin_lock(&dcache_lock);
768 if (nd->path.dentry != nd->path.mnt->mnt_root) {
769 nd->path.dentry = dget(nd->path.dentry->d_parent);
770 spin_unlock(&dcache_lock);
771 dput(old);
772 break;
774 spin_unlock(&dcache_lock);
775 spin_lock(&vfsmount_lock);
776 parent = nd->path.mnt->mnt_parent;
777 if (parent == nd->path.mnt) {
778 spin_unlock(&vfsmount_lock);
779 break;
781 mntget(parent);
782 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
783 spin_unlock(&vfsmount_lock);
784 dput(old);
785 mntput(nd->path.mnt);
786 nd->path.mnt = parent;
788 follow_mount(&nd->path.mnt, &nd->path.dentry);
792 * It's more convoluted than I'd like it to be, but... it's still fairly
793 * small and for now I'd prefer to have fast path as straight as possible.
794 * It _is_ time-critical.
796 static int do_lookup(struct nameidata *nd, struct qstr *name,
797 struct path *path)
799 struct vfsmount *mnt = nd->path.mnt;
800 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
802 if (!dentry)
803 goto need_lookup;
804 if (dentry->d_op && dentry->d_op->d_revalidate)
805 goto need_revalidate;
806 done:
807 path->mnt = mnt;
808 path->dentry = dentry;
809 __follow_mount(path);
810 return 0;
812 need_lookup:
813 dentry = real_lookup(nd->path.dentry, name, nd);
814 if (IS_ERR(dentry))
815 goto fail;
816 goto done;
818 need_revalidate:
819 dentry = do_revalidate(dentry, nd);
820 if (!dentry)
821 goto need_lookup;
822 if (IS_ERR(dentry))
823 goto fail;
824 goto done;
826 fail:
827 return PTR_ERR(dentry);
831 * Name resolution.
832 * This is the basic name resolution function, turning a pathname into
833 * the final dentry. We expect 'base' to be positive and a directory.
835 * Returns 0 and nd will have valid dentry and mnt on success.
836 * Returns error and drops reference to input namei data on failure.
838 static int __link_path_walk(const char *name, struct nameidata *nd)
840 struct path next;
841 struct inode *inode;
842 int err;
843 unsigned int lookup_flags = nd->flags;
845 while (*name=='/')
846 name++;
847 if (!*name)
848 goto return_reval;
850 inode = nd->path.dentry->d_inode;
851 if (nd->depth)
852 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
854 /* At this point we know we have a real path component. */
855 for(;;) {
856 unsigned long hash;
857 struct qstr this;
858 unsigned int c;
860 nd->flags |= LOOKUP_CONTINUE;
861 err = exec_permission_lite(inode);
862 if (err == -EAGAIN)
863 err = vfs_permission(nd, MAY_EXEC);
864 if (err)
865 break;
867 this.name = name;
868 c = *(const unsigned char *)name;
870 hash = init_name_hash();
871 do {
872 name++;
873 hash = partial_name_hash(c, hash);
874 c = *(const unsigned char *)name;
875 } while (c && (c != '/'));
876 this.len = name - (const char *) this.name;
877 this.hash = end_name_hash(hash);
879 /* remove trailing slashes? */
880 if (!c)
881 goto last_component;
882 while (*++name == '/');
883 if (!*name)
884 goto last_with_slashes;
887 * "." and ".." are special - ".." especially so because it has
888 * to be able to know about the current root directory and
889 * parent relationships.
891 if (this.name[0] == '.') switch (this.len) {
892 default:
893 break;
894 case 2:
895 if (this.name[1] != '.')
896 break;
897 follow_dotdot(nd);
898 inode = nd->path.dentry->d_inode;
899 /* fallthrough */
900 case 1:
901 continue;
904 * See if the low-level filesystem might want
905 * to use its own hash..
907 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
908 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
909 &this);
910 if (err < 0)
911 break;
913 /* This does the actual lookups.. */
914 err = do_lookup(nd, &this, &next);
915 if (err)
916 break;
918 err = -ENOENT;
919 inode = next.dentry->d_inode;
920 if (!inode)
921 goto out_dput;
922 err = -ENOTDIR;
923 if (!inode->i_op)
924 goto out_dput;
926 if (inode->i_op->follow_link) {
927 err = do_follow_link(&next, nd);
928 if (err)
929 goto return_err;
930 err = -ENOENT;
931 inode = nd->path.dentry->d_inode;
932 if (!inode)
933 break;
934 err = -ENOTDIR;
935 if (!inode->i_op)
936 break;
937 } else
938 path_to_nameidata(&next, nd);
939 err = -ENOTDIR;
940 if (!inode->i_op->lookup)
941 break;
942 continue;
943 /* here ends the main loop */
945 last_with_slashes:
946 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
947 last_component:
948 /* Clear LOOKUP_CONTINUE iff it was previously unset */
949 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
950 if (lookup_flags & LOOKUP_PARENT)
951 goto lookup_parent;
952 if (this.name[0] == '.') switch (this.len) {
953 default:
954 break;
955 case 2:
956 if (this.name[1] != '.')
957 break;
958 follow_dotdot(nd);
959 inode = nd->path.dentry->d_inode;
960 /* fallthrough */
961 case 1:
962 goto return_reval;
964 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
965 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
966 &this);
967 if (err < 0)
968 break;
970 err = do_lookup(nd, &this, &next);
971 if (err)
972 break;
973 inode = next.dentry->d_inode;
974 if ((lookup_flags & LOOKUP_FOLLOW)
975 && inode && inode->i_op && inode->i_op->follow_link) {
976 err = do_follow_link(&next, nd);
977 if (err)
978 goto return_err;
979 inode = nd->path.dentry->d_inode;
980 } else
981 path_to_nameidata(&next, nd);
982 err = -ENOENT;
983 if (!inode)
984 break;
985 if (lookup_flags & LOOKUP_DIRECTORY) {
986 err = -ENOTDIR;
987 if (!inode->i_op || !inode->i_op->lookup)
988 break;
990 goto return_base;
991 lookup_parent:
992 nd->last = this;
993 nd->last_type = LAST_NORM;
994 if (this.name[0] != '.')
995 goto return_base;
996 if (this.len == 1)
997 nd->last_type = LAST_DOT;
998 else if (this.len == 2 && this.name[1] == '.')
999 nd->last_type = LAST_DOTDOT;
1000 else
1001 goto return_base;
1002 return_reval:
1004 * We bypassed the ordinary revalidation routines.
1005 * We may need to check the cached dentry for staleness.
1007 if (nd->path.dentry && nd->path.dentry->d_sb &&
1008 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1009 err = -ESTALE;
1010 /* Note: we do not d_invalidate() */
1011 if (!nd->path.dentry->d_op->d_revalidate(
1012 nd->path.dentry, nd))
1013 break;
1015 return_base:
1016 return 0;
1017 out_dput:
1018 path_put_conditional(&next, nd);
1019 break;
1021 path_put(&nd->path);
1022 return_err:
1023 return err;
1026 static int path_walk(const char *name, struct nameidata *nd)
1028 current->total_link_count = 0;
1029 return link_path_walk(name, nd);
1032 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1033 static int do_path_lookup(int dfd, const char *name,
1034 unsigned int flags, struct nameidata *nd)
1036 int retval = 0;
1037 int fput_needed;
1038 struct file *file;
1039 struct fs_struct *fs = current->fs;
1041 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1042 nd->flags = flags;
1043 nd->depth = 0;
1045 if (*name=='/') {
1046 read_lock(&fs->lock);
1047 nd->path = fs->root;
1048 path_get(&fs->root);
1049 read_unlock(&fs->lock);
1050 } else if (dfd == AT_FDCWD) {
1051 read_lock(&fs->lock);
1052 nd->path = fs->pwd;
1053 path_get(&fs->pwd);
1054 read_unlock(&fs->lock);
1055 } else {
1056 struct dentry *dentry;
1058 file = fget_light(dfd, &fput_needed);
1059 retval = -EBADF;
1060 if (!file)
1061 goto out_fail;
1063 dentry = file->f_path.dentry;
1065 retval = -ENOTDIR;
1066 if (!S_ISDIR(dentry->d_inode->i_mode))
1067 goto fput_fail;
1069 retval = file_permission(file, MAY_EXEC);
1070 if (retval)
1071 goto fput_fail;
1073 nd->path = file->f_path;
1074 path_get(&file->f_path);
1076 fput_light(file, fput_needed);
1079 retval = path_walk(name, nd);
1080 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1081 nd->path.dentry->d_inode))
1082 audit_inode(name, nd->path.dentry);
1083 out_fail:
1084 return retval;
1086 fput_fail:
1087 fput_light(file, fput_needed);
1088 goto out_fail;
1091 int path_lookup(const char *name, unsigned int flags,
1092 struct nameidata *nd)
1094 return do_path_lookup(AT_FDCWD, name, flags, nd);
1097 int kern_path(const char *name, unsigned int flags, struct path *path)
1099 struct nameidata nd;
1100 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1101 if (!res)
1102 *path = nd.path;
1103 return res;
1107 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1108 * @dentry: pointer to dentry of the base directory
1109 * @mnt: pointer to vfs mount of the base directory
1110 * @name: pointer to file name
1111 * @flags: lookup flags
1112 * @nd: pointer to nameidata
1114 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1115 const char *name, unsigned int flags,
1116 struct nameidata *nd)
1118 int retval;
1120 /* same as do_path_lookup */
1121 nd->last_type = LAST_ROOT;
1122 nd->flags = flags;
1123 nd->depth = 0;
1125 nd->path.dentry = dentry;
1126 nd->path.mnt = mnt;
1127 path_get(&nd->path);
1129 retval = path_walk(name, nd);
1130 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1131 nd->path.dentry->d_inode))
1132 audit_inode(name, nd->path.dentry);
1134 return retval;
1139 * path_lookup_open - lookup a file path with open intent
1140 * @dfd: the directory to use as base, or AT_FDCWD
1141 * @name: pointer to file name
1142 * @lookup_flags: lookup intent flags
1143 * @nd: pointer to nameidata
1144 * @open_flags: open intent flags
1146 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1147 struct nameidata *nd, int open_flags)
1149 struct file *filp = get_empty_filp();
1150 int err;
1152 if (filp == NULL)
1153 return -ENFILE;
1154 nd->intent.open.file = filp;
1155 nd->intent.open.flags = open_flags;
1156 nd->intent.open.create_mode = 0;
1157 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1158 if (IS_ERR(nd->intent.open.file)) {
1159 if (err == 0) {
1160 err = PTR_ERR(nd->intent.open.file);
1161 path_put(&nd->path);
1163 } else if (err != 0)
1164 release_open_intent(nd);
1165 return err;
1168 struct dentry *__lookup_hash(struct qstr *name, struct dentry *base, struct nameidata *nd)
1170 struct dentry *dentry;
1171 struct inode *inode;
1172 int err;
1174 inode = base->d_inode;
1177 * See if the low-level filesystem might want
1178 * to use its own hash..
1180 if (base->d_op && base->d_op->d_hash) {
1181 err = base->d_op->d_hash(base, name);
1182 dentry = ERR_PTR(err);
1183 if (err < 0)
1184 goto out;
1187 dentry = cached_lookup(base, name, nd);
1188 if (!dentry) {
1189 struct dentry *new;
1191 /* Don't create child dentry for a dead directory. */
1192 dentry = ERR_PTR(-ENOENT);
1193 if (IS_DEADDIR(inode))
1194 goto out;
1196 new = d_alloc(base, name);
1197 dentry = ERR_PTR(-ENOMEM);
1198 if (!new)
1199 goto out;
1200 dentry = inode->i_op->lookup(inode, new, nd);
1201 if (!dentry)
1202 dentry = new;
1203 else
1204 dput(new);
1206 out:
1207 return dentry;
1211 * Restricted form of lookup. Doesn't follow links, single-component only,
1212 * needs parent already locked. Doesn't follow mounts.
1213 * SMP-safe.
1215 static struct dentry *lookup_hash(struct nameidata *nd)
1217 int err;
1219 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1220 if (err)
1221 return ERR_PTR(err);
1222 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1225 static int __lookup_one_len(const char *name, struct qstr *this,
1226 struct dentry *base, int len)
1228 unsigned long hash;
1229 unsigned int c;
1231 this->name = name;
1232 this->len = len;
1233 if (!len)
1234 return -EACCES;
1236 hash = init_name_hash();
1237 while (len--) {
1238 c = *(const unsigned char *)name++;
1239 if (c == '/' || c == '\0')
1240 return -EACCES;
1241 hash = partial_name_hash(c, hash);
1243 this->hash = end_name_hash(hash);
1244 return 0;
1248 * lookup_one_len - filesystem helper to lookup single pathname component
1249 * @name: pathname component to lookup
1250 * @base: base directory to lookup from
1251 * @len: maximum length @len should be interpreted to
1253 * Note that this routine is purely a helper for filesystem usage and should
1254 * not be called by generic code. Also note that by using this function the
1255 * nameidata argument is passed to the filesystem methods and a filesystem
1256 * using this helper needs to be prepared for that.
1258 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1260 int err;
1261 struct qstr this;
1263 err = __lookup_one_len(name, &this, base, len);
1264 if (err)
1265 return ERR_PTR(err);
1267 err = inode_permission(base->d_inode, MAY_EXEC);
1268 if (err)
1269 return ERR_PTR(err);
1270 return __lookup_hash(&this, base, NULL);
1274 * lookup_one_noperm - bad hack for sysfs
1275 * @name: pathname component to lookup
1276 * @base: base directory to lookup from
1278 * This is a variant of lookup_one_len that doesn't perform any permission
1279 * checks. It's a horrible hack to work around the braindead sysfs
1280 * architecture and should not be used anywhere else.
1282 * DON'T USE THIS FUNCTION EVER, thanks.
1284 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1286 int err;
1287 struct qstr this;
1289 err = __lookup_one_len(name, &this, base, strlen(name));
1290 if (err)
1291 return ERR_PTR(err);
1292 return __lookup_hash(&this, base, NULL);
1295 int user_path_at(int dfd, const char __user *name, unsigned flags,
1296 struct path *path)
1298 struct nameidata nd;
1299 char *tmp = getname(name);
1300 int err = PTR_ERR(tmp);
1301 if (!IS_ERR(tmp)) {
1303 BUG_ON(flags & LOOKUP_PARENT);
1305 err = do_path_lookup(dfd, tmp, flags, &nd);
1306 putname(tmp);
1307 if (!err)
1308 *path = nd.path;
1310 return err;
1313 static int user_path_parent(int dfd, const char __user *path,
1314 struct nameidata *nd, char **name)
1316 char *s = getname(path);
1317 int error;
1319 if (IS_ERR(s))
1320 return PTR_ERR(s);
1322 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1323 if (error)
1324 putname(s);
1325 else
1326 *name = s;
1328 return error;
1332 * It's inline, so penalty for filesystems that don't use sticky bit is
1333 * minimal.
1335 static inline int check_sticky(struct inode *dir, struct inode *inode)
1337 if (!(dir->i_mode & S_ISVTX))
1338 return 0;
1339 if (inode->i_uid == current->fsuid)
1340 return 0;
1341 if (dir->i_uid == current->fsuid)
1342 return 0;
1343 return !capable(CAP_FOWNER);
1347 * Check whether we can remove a link victim from directory dir, check
1348 * whether the type of victim is right.
1349 * 1. We can't do it if dir is read-only (done in permission())
1350 * 2. We should have write and exec permissions on dir
1351 * 3. We can't remove anything from append-only dir
1352 * 4. We can't do anything with immutable dir (done in permission())
1353 * 5. If the sticky bit on dir is set we should either
1354 * a. be owner of dir, or
1355 * b. be owner of victim, or
1356 * c. have CAP_FOWNER capability
1357 * 6. If the victim is append-only or immutable we can't do antyhing with
1358 * links pointing to it.
1359 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1360 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1361 * 9. We can't remove a root or mountpoint.
1362 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1363 * nfs_async_unlink().
1365 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1367 int error;
1369 if (!victim->d_inode)
1370 return -ENOENT;
1372 BUG_ON(victim->d_parent->d_inode != dir);
1373 audit_inode_child(victim->d_name.name, victim, dir);
1375 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1376 if (error)
1377 return error;
1378 if (IS_APPEND(dir))
1379 return -EPERM;
1380 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1381 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1382 return -EPERM;
1383 if (isdir) {
1384 if (!S_ISDIR(victim->d_inode->i_mode))
1385 return -ENOTDIR;
1386 if (IS_ROOT(victim))
1387 return -EBUSY;
1388 } else if (S_ISDIR(victim->d_inode->i_mode))
1389 return -EISDIR;
1390 if (IS_DEADDIR(dir))
1391 return -ENOENT;
1392 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1393 return -EBUSY;
1394 return 0;
1397 /* Check whether we can create an object with dentry child in directory
1398 * dir.
1399 * 1. We can't do it if child already exists (open has special treatment for
1400 * this case, but since we are inlined it's OK)
1401 * 2. We can't do it if dir is read-only (done in permission())
1402 * 3. We should have write and exec permissions on dir
1403 * 4. We can't do it if dir is immutable (done in permission())
1405 static inline int may_create(struct inode *dir, struct dentry *child)
1407 if (child->d_inode)
1408 return -EEXIST;
1409 if (IS_DEADDIR(dir))
1410 return -ENOENT;
1411 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1415 * O_DIRECTORY translates into forcing a directory lookup.
1417 static inline int lookup_flags(unsigned int f)
1419 unsigned long retval = LOOKUP_FOLLOW;
1421 if (f & O_NOFOLLOW)
1422 retval &= ~LOOKUP_FOLLOW;
1424 if (f & O_DIRECTORY)
1425 retval |= LOOKUP_DIRECTORY;
1427 return retval;
1431 * p1 and p2 should be directories on the same fs.
1433 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1435 struct dentry *p;
1437 if (p1 == p2) {
1438 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1439 return NULL;
1442 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1444 p = d_ancestor(p2, p1);
1445 if (p) {
1446 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1447 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1448 return p;
1451 p = d_ancestor(p1, p2);
1452 if (p) {
1453 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1454 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1455 return p;
1458 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1459 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1460 return NULL;
1463 void unlock_rename(struct dentry *p1, struct dentry *p2)
1465 mutex_unlock(&p1->d_inode->i_mutex);
1466 if (p1 != p2) {
1467 mutex_unlock(&p2->d_inode->i_mutex);
1468 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1472 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1473 struct nameidata *nd)
1475 int error = may_create(dir, dentry);
1477 if (error)
1478 return error;
1480 if (!dir->i_op || !dir->i_op->create)
1481 return -EACCES; /* shouldn't it be ENOSYS? */
1482 mode &= S_IALLUGO;
1483 mode |= S_IFREG;
1484 error = security_inode_create(dir, dentry, mode);
1485 if (error)
1486 return error;
1487 DQUOT_INIT(dir);
1488 error = dir->i_op->create(dir, dentry, mode, nd);
1489 if (!error)
1490 fsnotify_create(dir, dentry);
1491 return error;
1494 int may_open(struct nameidata *nd, int acc_mode, int flag)
1496 struct dentry *dentry = nd->path.dentry;
1497 struct inode *inode = dentry->d_inode;
1498 int error;
1500 if (!inode)
1501 return -ENOENT;
1503 if (S_ISLNK(inode->i_mode))
1504 return -ELOOP;
1506 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1507 return -EISDIR;
1510 * FIFO's, sockets and device files are special: they don't
1511 * actually live on the filesystem itself, and as such you
1512 * can write to them even if the filesystem is read-only.
1514 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1515 flag &= ~O_TRUNC;
1516 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1517 if (nd->path.mnt->mnt_flags & MNT_NODEV)
1518 return -EACCES;
1520 flag &= ~O_TRUNC;
1523 error = vfs_permission(nd, acc_mode);
1524 if (error)
1525 return error;
1527 * An append-only file must be opened in append mode for writing.
1529 if (IS_APPEND(inode)) {
1530 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1531 return -EPERM;
1532 if (flag & O_TRUNC)
1533 return -EPERM;
1536 /* O_NOATIME can only be set by the owner or superuser */
1537 if (flag & O_NOATIME)
1538 if (!is_owner_or_cap(inode))
1539 return -EPERM;
1542 * Ensure there are no outstanding leases on the file.
1544 error = break_lease(inode, flag);
1545 if (error)
1546 return error;
1548 if (flag & O_TRUNC) {
1549 error = get_write_access(inode);
1550 if (error)
1551 return error;
1554 * Refuse to truncate files with mandatory locks held on them.
1556 error = locks_verify_locked(inode);
1557 if (!error) {
1558 DQUOT_INIT(inode);
1560 error = do_truncate(dentry, 0,
1561 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1562 NULL);
1564 put_write_access(inode);
1565 if (error)
1566 return error;
1567 } else
1568 if (flag & FMODE_WRITE)
1569 DQUOT_INIT(inode);
1571 return 0;
1575 * Be careful about ever adding any more callers of this
1576 * function. Its flags must be in the namei format, not
1577 * what get passed to sys_open().
1579 static int __open_namei_create(struct nameidata *nd, struct path *path,
1580 int flag, int mode)
1582 int error;
1583 struct dentry *dir = nd->path.dentry;
1585 if (!IS_POSIXACL(dir->d_inode))
1586 mode &= ~current->fs->umask;
1587 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1588 mutex_unlock(&dir->d_inode->i_mutex);
1589 dput(nd->path.dentry);
1590 nd->path.dentry = path->dentry;
1591 if (error)
1592 return error;
1593 /* Don't check for write permission, don't truncate */
1594 return may_open(nd, 0, flag & ~O_TRUNC);
1598 * Note that while the flag value (low two bits) for sys_open means:
1599 * 00 - read-only
1600 * 01 - write-only
1601 * 10 - read-write
1602 * 11 - special
1603 * it is changed into
1604 * 00 - no permissions needed
1605 * 01 - read-permission
1606 * 10 - write-permission
1607 * 11 - read-write
1608 * for the internal routines (ie open_namei()/follow_link() etc)
1609 * This is more logical, and also allows the 00 "no perm needed"
1610 * to be used for symlinks (where the permissions are checked
1611 * later).
1614 static inline int open_to_namei_flags(int flag)
1616 if ((flag+1) & O_ACCMODE)
1617 flag++;
1618 return flag;
1621 static int open_will_write_to_fs(int flag, struct inode *inode)
1624 * We'll never write to the fs underlying
1625 * a device file.
1627 if (special_file(inode->i_mode))
1628 return 0;
1629 return (flag & O_TRUNC);
1633 * Note that the low bits of the passed in "open_flag"
1634 * are not the same as in the local variable "flag". See
1635 * open_to_namei_flags() for more details.
1637 struct file *do_filp_open(int dfd, const char *pathname,
1638 int open_flag, int mode)
1640 struct file *filp;
1641 struct nameidata nd;
1642 int acc_mode, error;
1643 struct path path;
1644 struct dentry *dir;
1645 int count = 0;
1646 int will_write;
1647 int flag = open_to_namei_flags(open_flag);
1649 acc_mode = MAY_OPEN | ACC_MODE(flag);
1651 /* O_TRUNC implies we need access checks for write permissions */
1652 if (flag & O_TRUNC)
1653 acc_mode |= MAY_WRITE;
1655 /* Allow the LSM permission hook to distinguish append
1656 access from general write access. */
1657 if (flag & O_APPEND)
1658 acc_mode |= MAY_APPEND;
1661 * The simplest case - just a plain lookup.
1663 if (!(flag & O_CREAT)) {
1664 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1665 &nd, flag);
1666 if (error)
1667 return ERR_PTR(error);
1668 goto ok;
1672 * Create - we need to know the parent.
1674 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1675 if (error)
1676 return ERR_PTR(error);
1679 * We have the parent and last component. First of all, check
1680 * that we are not asked to creat(2) an obvious directory - that
1681 * will not do.
1683 error = -EISDIR;
1684 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1685 goto exit_parent;
1687 error = -ENFILE;
1688 filp = get_empty_filp();
1689 if (filp == NULL)
1690 goto exit_parent;
1691 nd.intent.open.file = filp;
1692 nd.intent.open.flags = flag;
1693 nd.intent.open.create_mode = mode;
1694 dir = nd.path.dentry;
1695 nd.flags &= ~LOOKUP_PARENT;
1696 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1697 if (flag & O_EXCL)
1698 nd.flags |= LOOKUP_EXCL;
1699 mutex_lock(&dir->d_inode->i_mutex);
1700 path.dentry = lookup_hash(&nd);
1701 path.mnt = nd.path.mnt;
1703 do_last:
1704 error = PTR_ERR(path.dentry);
1705 if (IS_ERR(path.dentry)) {
1706 mutex_unlock(&dir->d_inode->i_mutex);
1707 goto exit;
1710 if (IS_ERR(nd.intent.open.file)) {
1711 error = PTR_ERR(nd.intent.open.file);
1712 goto exit_mutex_unlock;
1715 /* Negative dentry, just create the file */
1716 if (!path.dentry->d_inode) {
1718 * This write is needed to ensure that a
1719 * ro->rw transition does not occur between
1720 * the time when the file is created and when
1721 * a permanent write count is taken through
1722 * the 'struct file' in nameidata_to_filp().
1724 error = mnt_want_write(nd.path.mnt);
1725 if (error)
1726 goto exit_mutex_unlock;
1727 error = __open_namei_create(&nd, &path, flag, mode);
1728 if (error) {
1729 mnt_drop_write(nd.path.mnt);
1730 goto exit;
1732 filp = nameidata_to_filp(&nd, open_flag);
1733 mnt_drop_write(nd.path.mnt);
1734 return filp;
1738 * It already exists.
1740 mutex_unlock(&dir->d_inode->i_mutex);
1741 audit_inode(pathname, path.dentry);
1743 error = -EEXIST;
1744 if (flag & O_EXCL)
1745 goto exit_dput;
1747 if (__follow_mount(&path)) {
1748 error = -ELOOP;
1749 if (flag & O_NOFOLLOW)
1750 goto exit_dput;
1753 error = -ENOENT;
1754 if (!path.dentry->d_inode)
1755 goto exit_dput;
1756 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1757 goto do_link;
1759 path_to_nameidata(&path, &nd);
1760 error = -EISDIR;
1761 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1762 goto exit;
1765 * Consider:
1766 * 1. may_open() truncates a file
1767 * 2. a rw->ro mount transition occurs
1768 * 3. nameidata_to_filp() fails due to
1769 * the ro mount.
1770 * That would be inconsistent, and should
1771 * be avoided. Taking this mnt write here
1772 * ensures that (2) can not occur.
1774 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1775 if (will_write) {
1776 error = mnt_want_write(nd.path.mnt);
1777 if (error)
1778 goto exit;
1780 error = may_open(&nd, acc_mode, flag);
1781 if (error) {
1782 if (will_write)
1783 mnt_drop_write(nd.path.mnt);
1784 goto exit;
1786 filp = nameidata_to_filp(&nd, open_flag);
1788 * It is now safe to drop the mnt write
1789 * because the filp has had a write taken
1790 * on its behalf.
1792 if (will_write)
1793 mnt_drop_write(nd.path.mnt);
1794 return filp;
1796 exit_mutex_unlock:
1797 mutex_unlock(&dir->d_inode->i_mutex);
1798 exit_dput:
1799 path_put_conditional(&path, &nd);
1800 exit:
1801 if (!IS_ERR(nd.intent.open.file))
1802 release_open_intent(&nd);
1803 exit_parent:
1804 path_put(&nd.path);
1805 return ERR_PTR(error);
1807 do_link:
1808 error = -ELOOP;
1809 if (flag & O_NOFOLLOW)
1810 goto exit_dput;
1812 * This is subtle. Instead of calling do_follow_link() we do the
1813 * thing by hands. The reason is that this way we have zero link_count
1814 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1815 * After that we have the parent and last component, i.e.
1816 * we are in the same situation as after the first path_walk().
1817 * Well, almost - if the last component is normal we get its copy
1818 * stored in nd->last.name and we will have to putname() it when we
1819 * are done. Procfs-like symlinks just set LAST_BIND.
1821 nd.flags |= LOOKUP_PARENT;
1822 error = security_inode_follow_link(path.dentry, &nd);
1823 if (error)
1824 goto exit_dput;
1825 error = __do_follow_link(&path, &nd);
1826 if (error) {
1827 /* Does someone understand code flow here? Or it is only
1828 * me so stupid? Anathema to whoever designed this non-sense
1829 * with "intent.open".
1831 release_open_intent(&nd);
1832 return ERR_PTR(error);
1834 nd.flags &= ~LOOKUP_PARENT;
1835 if (nd.last_type == LAST_BIND)
1836 goto ok;
1837 error = -EISDIR;
1838 if (nd.last_type != LAST_NORM)
1839 goto exit;
1840 if (nd.last.name[nd.last.len]) {
1841 __putname(nd.last.name);
1842 goto exit;
1844 error = -ELOOP;
1845 if (count++==32) {
1846 __putname(nd.last.name);
1847 goto exit;
1849 dir = nd.path.dentry;
1850 mutex_lock(&dir->d_inode->i_mutex);
1851 path.dentry = lookup_hash(&nd);
1852 path.mnt = nd.path.mnt;
1853 __putname(nd.last.name);
1854 goto do_last;
1858 * filp_open - open file and return file pointer
1860 * @filename: path to open
1861 * @flags: open flags as per the open(2) second argument
1862 * @mode: mode for the new file if O_CREAT is set, else ignored
1864 * This is the helper to open a file from kernelspace if you really
1865 * have to. But in generally you should not do this, so please move
1866 * along, nothing to see here..
1868 struct file *filp_open(const char *filename, int flags, int mode)
1870 return do_filp_open(AT_FDCWD, filename, flags, mode);
1872 EXPORT_SYMBOL(filp_open);
1875 * lookup_create - lookup a dentry, creating it if it doesn't exist
1876 * @nd: nameidata info
1877 * @is_dir: directory flag
1879 * Simple function to lookup and return a dentry and create it
1880 * if it doesn't exist. Is SMP-safe.
1882 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1884 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1886 struct dentry *dentry = ERR_PTR(-EEXIST);
1888 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1890 * Yucky last component or no last component at all?
1891 * (foo/., foo/.., /////)
1893 if (nd->last_type != LAST_NORM)
1894 goto fail;
1895 nd->flags &= ~LOOKUP_PARENT;
1896 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1897 nd->intent.open.flags = O_EXCL;
1900 * Do the final lookup.
1902 dentry = lookup_hash(nd);
1903 if (IS_ERR(dentry))
1904 goto fail;
1906 if (dentry->d_inode)
1907 goto eexist;
1909 * Special case - lookup gave negative, but... we had foo/bar/
1910 * From the vfs_mknod() POV we just have a negative dentry -
1911 * all is fine. Let's be bastards - you had / on the end, you've
1912 * been asking for (non-existent) directory. -ENOENT for you.
1914 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1915 dput(dentry);
1916 dentry = ERR_PTR(-ENOENT);
1918 return dentry;
1919 eexist:
1920 dput(dentry);
1921 dentry = ERR_PTR(-EEXIST);
1922 fail:
1923 return dentry;
1925 EXPORT_SYMBOL_GPL(lookup_create);
1927 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1929 int error = may_create(dir, dentry);
1931 if (error)
1932 return error;
1934 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1935 return -EPERM;
1937 if (!dir->i_op || !dir->i_op->mknod)
1938 return -EPERM;
1940 error = devcgroup_inode_mknod(mode, dev);
1941 if (error)
1942 return error;
1944 error = security_inode_mknod(dir, dentry, mode, dev);
1945 if (error)
1946 return error;
1948 DQUOT_INIT(dir);
1949 error = dir->i_op->mknod(dir, dentry, mode, dev);
1950 if (!error)
1951 fsnotify_create(dir, dentry);
1952 return error;
1955 static int may_mknod(mode_t mode)
1957 switch (mode & S_IFMT) {
1958 case S_IFREG:
1959 case S_IFCHR:
1960 case S_IFBLK:
1961 case S_IFIFO:
1962 case S_IFSOCK:
1963 case 0: /* zero mode translates to S_IFREG */
1964 return 0;
1965 case S_IFDIR:
1966 return -EPERM;
1967 default:
1968 return -EINVAL;
1972 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1973 unsigned dev)
1975 int error;
1976 char *tmp;
1977 struct dentry *dentry;
1978 struct nameidata nd;
1980 if (S_ISDIR(mode))
1981 return -EPERM;
1983 error = user_path_parent(dfd, filename, &nd, &tmp);
1984 if (error)
1985 return error;
1987 dentry = lookup_create(&nd, 0);
1988 if (IS_ERR(dentry)) {
1989 error = PTR_ERR(dentry);
1990 goto out_unlock;
1992 if (!IS_POSIXACL(nd.path.dentry->d_inode))
1993 mode &= ~current->fs->umask;
1994 error = may_mknod(mode);
1995 if (error)
1996 goto out_dput;
1997 error = mnt_want_write(nd.path.mnt);
1998 if (error)
1999 goto out_dput;
2000 switch (mode & S_IFMT) {
2001 case 0: case S_IFREG:
2002 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2003 break;
2004 case S_IFCHR: case S_IFBLK:
2005 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2006 new_decode_dev(dev));
2007 break;
2008 case S_IFIFO: case S_IFSOCK:
2009 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2010 break;
2012 mnt_drop_write(nd.path.mnt);
2013 out_dput:
2014 dput(dentry);
2015 out_unlock:
2016 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2017 path_put(&nd.path);
2018 putname(tmp);
2020 return error;
2023 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2025 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2028 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2030 int error = may_create(dir, dentry);
2032 if (error)
2033 return error;
2035 if (!dir->i_op || !dir->i_op->mkdir)
2036 return -EPERM;
2038 mode &= (S_IRWXUGO|S_ISVTX);
2039 error = security_inode_mkdir(dir, dentry, mode);
2040 if (error)
2041 return error;
2043 DQUOT_INIT(dir);
2044 error = dir->i_op->mkdir(dir, dentry, mode);
2045 if (!error)
2046 fsnotify_mkdir(dir, dentry);
2047 return error;
2050 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2052 int error = 0;
2053 char * tmp;
2054 struct dentry *dentry;
2055 struct nameidata nd;
2057 error = user_path_parent(dfd, pathname, &nd, &tmp);
2058 if (error)
2059 goto out_err;
2061 dentry = lookup_create(&nd, 1);
2062 error = PTR_ERR(dentry);
2063 if (IS_ERR(dentry))
2064 goto out_unlock;
2066 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2067 mode &= ~current->fs->umask;
2068 error = mnt_want_write(nd.path.mnt);
2069 if (error)
2070 goto out_dput;
2071 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2072 mnt_drop_write(nd.path.mnt);
2073 out_dput:
2074 dput(dentry);
2075 out_unlock:
2076 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2077 path_put(&nd.path);
2078 putname(tmp);
2079 out_err:
2080 return error;
2083 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2085 return sys_mkdirat(AT_FDCWD, pathname, mode);
2089 * We try to drop the dentry early: we should have
2090 * a usage count of 2 if we're the only user of this
2091 * dentry, and if that is true (possibly after pruning
2092 * the dcache), then we drop the dentry now.
2094 * A low-level filesystem can, if it choses, legally
2095 * do a
2097 * if (!d_unhashed(dentry))
2098 * return -EBUSY;
2100 * if it cannot handle the case of removing a directory
2101 * that is still in use by something else..
2103 void dentry_unhash(struct dentry *dentry)
2105 dget(dentry);
2106 shrink_dcache_parent(dentry);
2107 spin_lock(&dcache_lock);
2108 spin_lock(&dentry->d_lock);
2109 if (atomic_read(&dentry->d_count) == 2)
2110 __d_drop(dentry);
2111 spin_unlock(&dentry->d_lock);
2112 spin_unlock(&dcache_lock);
2115 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2117 int error = may_delete(dir, dentry, 1);
2119 if (error)
2120 return error;
2122 if (!dir->i_op || !dir->i_op->rmdir)
2123 return -EPERM;
2125 DQUOT_INIT(dir);
2127 mutex_lock(&dentry->d_inode->i_mutex);
2128 dentry_unhash(dentry);
2129 if (d_mountpoint(dentry))
2130 error = -EBUSY;
2131 else {
2132 error = security_inode_rmdir(dir, dentry);
2133 if (!error) {
2134 error = dir->i_op->rmdir(dir, dentry);
2135 if (!error)
2136 dentry->d_inode->i_flags |= S_DEAD;
2139 mutex_unlock(&dentry->d_inode->i_mutex);
2140 if (!error) {
2141 d_delete(dentry);
2143 dput(dentry);
2145 return error;
2148 static long do_rmdir(int dfd, const char __user *pathname)
2150 int error = 0;
2151 char * name;
2152 struct dentry *dentry;
2153 struct nameidata nd;
2155 error = user_path_parent(dfd, pathname, &nd, &name);
2156 if (error)
2157 return error;
2159 switch(nd.last_type) {
2160 case LAST_DOTDOT:
2161 error = -ENOTEMPTY;
2162 goto exit1;
2163 case LAST_DOT:
2164 error = -EINVAL;
2165 goto exit1;
2166 case LAST_ROOT:
2167 error = -EBUSY;
2168 goto exit1;
2171 nd.flags &= ~LOOKUP_PARENT;
2173 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2174 dentry = lookup_hash(&nd);
2175 error = PTR_ERR(dentry);
2176 if (IS_ERR(dentry))
2177 goto exit2;
2178 error = mnt_want_write(nd.path.mnt);
2179 if (error)
2180 goto exit3;
2181 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2182 mnt_drop_write(nd.path.mnt);
2183 exit3:
2184 dput(dentry);
2185 exit2:
2186 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2187 exit1:
2188 path_put(&nd.path);
2189 putname(name);
2190 return error;
2193 asmlinkage long sys_rmdir(const char __user *pathname)
2195 return do_rmdir(AT_FDCWD, pathname);
2198 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2200 int error = may_delete(dir, dentry, 0);
2202 if (error)
2203 return error;
2205 if (!dir->i_op || !dir->i_op->unlink)
2206 return -EPERM;
2208 vfs_check_frozen(dir->i_sb, SB_FREEZE_WRITE);
2210 DQUOT_INIT(dir);
2212 mutex_lock(&dentry->d_inode->i_mutex);
2213 if (d_mountpoint(dentry))
2214 error = -EBUSY;
2215 else {
2216 error = security_inode_unlink(dir, dentry);
2217 if (!error)
2218 error = dir->i_op->unlink(dir, dentry);
2220 mutex_unlock(&dentry->d_inode->i_mutex);
2222 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2223 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2224 fsnotify_link_count(dentry->d_inode);
2225 d_delete(dentry);
2228 return error;
2232 * Make sure that the actual truncation of the file will occur outside its
2233 * directory's i_mutex. Truncate can take a long time if there is a lot of
2234 * writeout happening, and we don't want to prevent access to the directory
2235 * while waiting on the I/O.
2237 static long do_unlinkat(int dfd, const char __user *pathname)
2239 int error;
2240 char *name;
2241 struct dentry *dentry;
2242 struct nameidata nd;
2243 struct inode *inode = NULL;
2245 error = user_path_parent(dfd, pathname, &nd, &name);
2246 if (error)
2247 return error;
2249 error = -EISDIR;
2250 if (nd.last_type != LAST_NORM)
2251 goto exit1;
2253 nd.flags &= ~LOOKUP_PARENT;
2255 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2256 dentry = lookup_hash(&nd);
2257 error = PTR_ERR(dentry);
2258 if (!IS_ERR(dentry)) {
2259 /* Why not before? Because we want correct error value */
2260 if (nd.last.name[nd.last.len])
2261 goto slashes;
2262 inode = dentry->d_inode;
2263 if (inode)
2264 atomic_inc(&inode->i_count);
2265 error = mnt_want_write(nd.path.mnt);
2266 if (error)
2267 goto exit2;
2268 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2269 mnt_drop_write(nd.path.mnt);
2270 exit2:
2271 dput(dentry);
2273 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2274 if (inode)
2275 iput(inode); /* truncate the inode here */
2276 exit1:
2277 path_put(&nd.path);
2278 putname(name);
2279 return error;
2281 slashes:
2282 error = !dentry->d_inode ? -ENOENT :
2283 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2284 goto exit2;
2287 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2289 if ((flag & ~AT_REMOVEDIR) != 0)
2290 return -EINVAL;
2292 if (flag & AT_REMOVEDIR)
2293 return do_rmdir(dfd, pathname);
2295 return do_unlinkat(dfd, pathname);
2298 asmlinkage long sys_unlink(const char __user *pathname)
2300 return do_unlinkat(AT_FDCWD, pathname);
2303 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2305 int error = may_create(dir, dentry);
2307 if (error)
2308 return error;
2310 if (!dir->i_op || !dir->i_op->symlink)
2311 return -EPERM;
2313 error = security_inode_symlink(dir, dentry, oldname);
2314 if (error)
2315 return error;
2317 DQUOT_INIT(dir);
2318 error = dir->i_op->symlink(dir, dentry, oldname);
2319 if (!error)
2320 fsnotify_create(dir, dentry);
2321 return error;
2324 asmlinkage long sys_symlinkat(const char __user *oldname,
2325 int newdfd, const char __user *newname)
2327 int error;
2328 char *from;
2329 char *to;
2330 struct dentry *dentry;
2331 struct nameidata nd;
2333 from = getname(oldname);
2334 if (IS_ERR(from))
2335 return PTR_ERR(from);
2337 error = user_path_parent(newdfd, newname, &nd, &to);
2338 if (error)
2339 goto out_putname;
2341 dentry = lookup_create(&nd, 0);
2342 error = PTR_ERR(dentry);
2343 if (IS_ERR(dentry))
2344 goto out_unlock;
2346 error = mnt_want_write(nd.path.mnt);
2347 if (error)
2348 goto out_dput;
2349 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2350 mnt_drop_write(nd.path.mnt);
2351 out_dput:
2352 dput(dentry);
2353 out_unlock:
2354 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2355 path_put(&nd.path);
2356 putname(to);
2357 out_putname:
2358 putname(from);
2359 return error;
2362 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2364 return sys_symlinkat(oldname, AT_FDCWD, newname);
2367 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2369 struct inode *inode = old_dentry->d_inode;
2370 int error;
2372 if (!inode)
2373 return -ENOENT;
2375 error = may_create(dir, new_dentry);
2376 if (error)
2377 return error;
2379 if (dir->i_sb != inode->i_sb)
2380 return -EXDEV;
2383 * A link to an append-only or immutable file cannot be created.
2385 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2386 return -EPERM;
2387 if (!dir->i_op || !dir->i_op->link)
2388 return -EPERM;
2389 if (S_ISDIR(inode->i_mode))
2390 return -EPERM;
2392 error = security_inode_link(old_dentry, dir, new_dentry);
2393 if (error)
2394 return error;
2396 mutex_lock(&inode->i_mutex);
2397 DQUOT_INIT(dir);
2398 error = dir->i_op->link(old_dentry, dir, new_dentry);
2399 mutex_unlock(&inode->i_mutex);
2400 if (!error)
2401 fsnotify_link(dir, inode, new_dentry);
2402 return error;
2406 * Hardlinks are often used in delicate situations. We avoid
2407 * security-related surprises by not following symlinks on the
2408 * newname. --KAB
2410 * We don't follow them on the oldname either to be compatible
2411 * with linux 2.0, and to avoid hard-linking to directories
2412 * and other special files. --ADM
2414 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2415 int newdfd, const char __user *newname,
2416 int flags)
2418 struct dentry *new_dentry;
2419 struct nameidata nd;
2420 struct path old_path;
2421 int error;
2422 char *to;
2424 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2425 return -EINVAL;
2427 error = user_path_at(olddfd, oldname,
2428 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2429 &old_path);
2430 if (error)
2431 return error;
2433 error = user_path_parent(newdfd, newname, &nd, &to);
2434 if (error)
2435 goto out;
2436 error = -EXDEV;
2437 if (old_path.mnt != nd.path.mnt)
2438 goto out_release;
2439 new_dentry = lookup_create(&nd, 0);
2440 error = PTR_ERR(new_dentry);
2441 if (IS_ERR(new_dentry))
2442 goto out_unlock;
2443 error = mnt_want_write(nd.path.mnt);
2444 if (error)
2445 goto out_dput;
2446 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2447 mnt_drop_write(nd.path.mnt);
2448 out_dput:
2449 dput(new_dentry);
2450 out_unlock:
2451 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2452 out_release:
2453 path_put(&nd.path);
2454 putname(to);
2455 out:
2456 path_put(&old_path);
2458 return error;
2461 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2463 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2467 * The worst of all namespace operations - renaming directory. "Perverted"
2468 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2469 * Problems:
2470 * a) we can get into loop creation. Check is done in is_subdir().
2471 * b) race potential - two innocent renames can create a loop together.
2472 * That's where 4.4 screws up. Current fix: serialization on
2473 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2474 * story.
2475 * c) we have to lock _three_ objects - parents and victim (if it exists).
2476 * And that - after we got ->i_mutex on parents (until then we don't know
2477 * whether the target exists). Solution: try to be smart with locking
2478 * order for inodes. We rely on the fact that tree topology may change
2479 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2480 * move will be locked. Thus we can rank directories by the tree
2481 * (ancestors first) and rank all non-directories after them.
2482 * That works since everybody except rename does "lock parent, lookup,
2483 * lock child" and rename is under ->s_vfs_rename_mutex.
2484 * HOWEVER, it relies on the assumption that any object with ->lookup()
2485 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2486 * we'd better make sure that there's no link(2) for them.
2487 * d) some filesystems don't support opened-but-unlinked directories,
2488 * either because of layout or because they are not ready to deal with
2489 * all cases correctly. The latter will be fixed (taking this sort of
2490 * stuff into VFS), but the former is not going away. Solution: the same
2491 * trick as in rmdir().
2492 * e) conversion from fhandle to dentry may come in the wrong moment - when
2493 * we are removing the target. Solution: we will have to grab ->i_mutex
2494 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2495 * ->i_mutex on parents, which works but leads to some truely excessive
2496 * locking].
2498 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2499 struct inode *new_dir, struct dentry *new_dentry)
2501 int error = 0;
2502 struct inode *target;
2505 * If we are going to change the parent - check write permissions,
2506 * we'll need to flip '..'.
2508 if (new_dir != old_dir) {
2509 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2510 if (error)
2511 return error;
2514 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2515 if (error)
2516 return error;
2518 target = new_dentry->d_inode;
2519 if (target) {
2520 mutex_lock(&target->i_mutex);
2521 dentry_unhash(new_dentry);
2523 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2524 error = -EBUSY;
2525 else
2526 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2527 if (target) {
2528 if (!error)
2529 target->i_flags |= S_DEAD;
2530 mutex_unlock(&target->i_mutex);
2531 if (d_unhashed(new_dentry))
2532 d_rehash(new_dentry);
2533 dput(new_dentry);
2535 if (!error)
2536 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2537 d_move(old_dentry,new_dentry);
2538 return error;
2541 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2542 struct inode *new_dir, struct dentry *new_dentry)
2544 struct inode *target;
2545 int error;
2547 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2548 if (error)
2549 return error;
2551 dget(new_dentry);
2552 target = new_dentry->d_inode;
2553 if (target)
2554 mutex_lock(&target->i_mutex);
2555 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2556 error = -EBUSY;
2557 else
2558 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2559 if (!error) {
2560 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2561 d_move(old_dentry, new_dentry);
2563 if (target)
2564 mutex_unlock(&target->i_mutex);
2565 dput(new_dentry);
2566 return error;
2569 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2570 struct inode *new_dir, struct dentry *new_dentry)
2572 int error;
2573 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2574 const char *old_name;
2576 if (old_dentry->d_inode == new_dentry->d_inode)
2577 return 0;
2579 error = may_delete(old_dir, old_dentry, is_dir);
2580 if (error)
2581 return error;
2583 if (!new_dentry->d_inode)
2584 error = may_create(new_dir, new_dentry);
2585 else
2586 error = may_delete(new_dir, new_dentry, is_dir);
2587 if (error)
2588 return error;
2590 if (!old_dir->i_op || !old_dir->i_op->rename)
2591 return -EPERM;
2593 DQUOT_INIT(old_dir);
2594 DQUOT_INIT(new_dir);
2596 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2598 if (is_dir)
2599 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2600 else
2601 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2602 if (!error) {
2603 const char *new_name = old_dentry->d_name.name;
2604 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2605 new_dentry->d_inode, old_dentry);
2607 fsnotify_oldname_free(old_name);
2609 return error;
2612 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2613 int newdfd, const char __user *newname)
2615 struct dentry *old_dir, *new_dir;
2616 struct dentry *old_dentry, *new_dentry;
2617 struct dentry *trap;
2618 struct nameidata oldnd, newnd;
2619 char *from;
2620 char *to;
2621 int error;
2623 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2624 if (error)
2625 goto exit;
2627 error = user_path_parent(newdfd, newname, &newnd, &to);
2628 if (error)
2629 goto exit1;
2631 error = -EXDEV;
2632 if (oldnd.path.mnt != newnd.path.mnt)
2633 goto exit2;
2635 old_dir = oldnd.path.dentry;
2636 error = -EBUSY;
2637 if (oldnd.last_type != LAST_NORM)
2638 goto exit2;
2640 new_dir = newnd.path.dentry;
2641 if (newnd.last_type != LAST_NORM)
2642 goto exit2;
2644 oldnd.flags &= ~LOOKUP_PARENT;
2645 newnd.flags &= ~LOOKUP_PARENT;
2646 newnd.flags |= LOOKUP_RENAME_TARGET;
2648 trap = lock_rename(new_dir, old_dir);
2650 old_dentry = lookup_hash(&oldnd);
2651 error = PTR_ERR(old_dentry);
2652 if (IS_ERR(old_dentry))
2653 goto exit3;
2654 /* source must exist */
2655 error = -ENOENT;
2656 if (!old_dentry->d_inode)
2657 goto exit4;
2658 /* unless the source is a directory trailing slashes give -ENOTDIR */
2659 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2660 error = -ENOTDIR;
2661 if (oldnd.last.name[oldnd.last.len])
2662 goto exit4;
2663 if (newnd.last.name[newnd.last.len])
2664 goto exit4;
2666 /* source should not be ancestor of target */
2667 error = -EINVAL;
2668 if (old_dentry == trap)
2669 goto exit4;
2670 new_dentry = lookup_hash(&newnd);
2671 error = PTR_ERR(new_dentry);
2672 if (IS_ERR(new_dentry))
2673 goto exit4;
2674 /* target should not be an ancestor of source */
2675 error = -ENOTEMPTY;
2676 if (new_dentry == trap)
2677 goto exit5;
2679 error = mnt_want_write(oldnd.path.mnt);
2680 if (error)
2681 goto exit5;
2682 error = vfs_rename(old_dir->d_inode, old_dentry,
2683 new_dir->d_inode, new_dentry);
2684 mnt_drop_write(oldnd.path.mnt);
2685 exit5:
2686 dput(new_dentry);
2687 exit4:
2688 dput(old_dentry);
2689 exit3:
2690 unlock_rename(new_dir, old_dir);
2691 exit2:
2692 path_put(&newnd.path);
2693 putname(to);
2694 exit1:
2695 path_put(&oldnd.path);
2696 putname(from);
2697 exit:
2698 return error;
2701 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2703 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2706 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2708 int len;
2710 len = PTR_ERR(link);
2711 if (IS_ERR(link))
2712 goto out;
2714 len = strlen(link);
2715 if (len > (unsigned) buflen)
2716 len = buflen;
2717 if (copy_to_user(buffer, link, len))
2718 len = -EFAULT;
2719 out:
2720 return len;
2724 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2725 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2726 * using) it for any given inode is up to filesystem.
2728 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2730 struct nameidata nd;
2731 void *cookie;
2732 int res;
2734 nd.depth = 0;
2735 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2736 if (IS_ERR(cookie))
2737 return PTR_ERR(cookie);
2739 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2740 if (dentry->d_inode->i_op->put_link)
2741 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2742 return res;
2745 int vfs_follow_link(struct nameidata *nd, const char *link)
2747 return __vfs_follow_link(nd, link);
2750 /* get the link contents into pagecache */
2751 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2753 struct page * page;
2754 struct address_space *mapping = dentry->d_inode->i_mapping;
2755 page = read_mapping_page(mapping, 0, NULL);
2756 if (IS_ERR(page))
2757 return (char*)page;
2758 *ppage = page;
2759 return kmap(page);
2762 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2764 struct page *page = NULL;
2765 char *s = page_getlink(dentry, &page);
2766 int res = vfs_readlink(dentry,buffer,buflen,s);
2767 if (page) {
2768 kunmap(page);
2769 page_cache_release(page);
2771 return res;
2774 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2776 struct page *page = NULL;
2777 nd_set_link(nd, page_getlink(dentry, &page));
2778 return page;
2781 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2783 struct page *page = cookie;
2785 if (page) {
2786 kunmap(page);
2787 page_cache_release(page);
2791 int __page_symlink(struct inode *inode, const char *symname, int len,
2792 gfp_t gfp_mask)
2794 struct address_space *mapping = inode->i_mapping;
2795 struct page *page;
2796 void *fsdata;
2797 int err;
2798 char *kaddr;
2800 retry:
2801 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2802 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2803 if (err)
2804 goto fail;
2806 kaddr = kmap_atomic(page, KM_USER0);
2807 memcpy(kaddr, symname, len-1);
2808 kunmap_atomic(kaddr, KM_USER0);
2810 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2811 page, fsdata);
2812 if (err < 0)
2813 goto fail;
2814 if (err < len-1)
2815 goto retry;
2817 mark_inode_dirty(inode);
2818 return 0;
2819 fail:
2820 return err;
2823 int page_symlink(struct inode *inode, const char *symname, int len)
2825 return __page_symlink(inode, symname, len,
2826 mapping_gfp_mask(inode->i_mapping));
2829 const struct inode_operations page_symlink_inode_operations = {
2830 .readlink = generic_readlink,
2831 .follow_link = page_follow_link_light,
2832 .put_link = page_put_link,
2835 EXPORT_SYMBOL(user_path_at);
2836 EXPORT_SYMBOL(follow_down);
2837 EXPORT_SYMBOL(follow_up);
2838 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2839 EXPORT_SYMBOL(getname);
2840 EXPORT_SYMBOL(lock_rename);
2841 EXPORT_SYMBOL(__lookup_hash);
2842 EXPORT_SYMBOL(lookup_one_len);
2843 EXPORT_SYMBOL(page_follow_link_light);
2844 EXPORT_SYMBOL(page_put_link);
2845 EXPORT_SYMBOL(page_readlink);
2846 EXPORT_SYMBOL(__page_symlink);
2847 EXPORT_SYMBOL(page_symlink);
2848 EXPORT_SYMBOL(page_symlink_inode_operations);
2849 EXPORT_SYMBOL(path_lookup);
2850 EXPORT_SYMBOL(kern_path);
2851 EXPORT_SYMBOL(vfs_path_lookup);
2852 EXPORT_SYMBOL(inode_permission);
2853 EXPORT_SYMBOL(vfs_permission);
2854 EXPORT_SYMBOL(file_permission);
2855 EXPORT_SYMBOL(unlock_rename);
2856 EXPORT_SYMBOL(vfs_create);
2857 EXPORT_SYMBOL(vfs_follow_link);
2858 EXPORT_SYMBOL(vfs_link);
2859 EXPORT_SYMBOL(vfs_mkdir);
2860 EXPORT_SYMBOL(vfs_mknod);
2861 EXPORT_SYMBOL(generic_permission);
2862 EXPORT_SYMBOL(vfs_readlink);
2863 EXPORT_SYMBOL(vfs_rename);
2864 EXPORT_SYMBOL(vfs_rmdir);
2865 EXPORT_SYMBOL(vfs_symlink);
2866 EXPORT_SYMBOL(vfs_unlink);
2867 EXPORT_SYMBOL(dentry_unhash);
2868 EXPORT_SYMBOL(generic_readlink);
2869 EXPORT_SYMBOL(deny_write_access);