Merge branch 'sched/urgent'
[linux-2.6/x86.git] / drivers / target / target_core_transport.c
blob8d0c58ea6316e5ad079b75c856744362e6aafb33
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
61 static int sub_api_initialized;
63 static struct kmem_cache *se_cmd_cache;
64 static struct kmem_cache *se_sess_cache;
65 struct kmem_cache *se_tmr_req_cache;
66 struct kmem_cache *se_ua_cache;
67 struct kmem_cache *t10_pr_reg_cache;
68 struct kmem_cache *t10_alua_lu_gp_cache;
69 struct kmem_cache *t10_alua_lu_gp_mem_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_cache;
71 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
73 /* Used for transport_dev_get_map_*() */
74 typedef int (*map_func_t)(struct se_task *, u32);
76 static int transport_generic_write_pending(struct se_cmd *);
77 static int transport_processing_thread(void *param);
78 static int __transport_execute_tasks(struct se_device *dev);
79 static void transport_complete_task_attr(struct se_cmd *cmd);
80 static int transport_complete_qf(struct se_cmd *cmd);
81 static void transport_handle_queue_full(struct se_cmd *cmd,
82 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
83 static void transport_direct_request_timeout(struct se_cmd *cmd);
84 static void transport_free_dev_tasks(struct se_cmd *cmd);
85 static u32 transport_allocate_tasks(struct se_cmd *cmd,
86 unsigned long long starting_lba,
87 enum dma_data_direction data_direction,
88 struct scatterlist *sgl, unsigned int nents);
89 static int transport_generic_get_mem(struct se_cmd *cmd);
90 static int transport_generic_remove(struct se_cmd *cmd,
91 int session_reinstatement);
92 static void transport_release_fe_cmd(struct se_cmd *cmd);
93 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
94 struct se_queue_obj *qobj);
95 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
96 static void transport_stop_all_task_timers(struct se_cmd *cmd);
98 int init_se_kmem_caches(void)
100 se_cmd_cache = kmem_cache_create("se_cmd_cache",
101 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
102 if (!se_cmd_cache) {
103 pr_err("kmem_cache_create for struct se_cmd failed\n");
104 goto out;
106 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
107 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
108 0, NULL);
109 if (!se_tmr_req_cache) {
110 pr_err("kmem_cache_create() for struct se_tmr_req"
111 " failed\n");
112 goto out;
114 se_sess_cache = kmem_cache_create("se_sess_cache",
115 sizeof(struct se_session), __alignof__(struct se_session),
116 0, NULL);
117 if (!se_sess_cache) {
118 pr_err("kmem_cache_create() for struct se_session"
119 " failed\n");
120 goto out;
122 se_ua_cache = kmem_cache_create("se_ua_cache",
123 sizeof(struct se_ua), __alignof__(struct se_ua),
124 0, NULL);
125 if (!se_ua_cache) {
126 pr_err("kmem_cache_create() for struct se_ua failed\n");
127 goto out;
129 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
130 sizeof(struct t10_pr_registration),
131 __alignof__(struct t10_pr_registration), 0, NULL);
132 if (!t10_pr_reg_cache) {
133 pr_err("kmem_cache_create() for struct t10_pr_registration"
134 " failed\n");
135 goto out;
137 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
138 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
139 0, NULL);
140 if (!t10_alua_lu_gp_cache) {
141 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
142 " failed\n");
143 goto out;
145 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
146 sizeof(struct t10_alua_lu_gp_member),
147 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
148 if (!t10_alua_lu_gp_mem_cache) {
149 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
150 "cache failed\n");
151 goto out;
153 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
154 sizeof(struct t10_alua_tg_pt_gp),
155 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
156 if (!t10_alua_tg_pt_gp_cache) {
157 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
158 "cache failed\n");
159 goto out;
161 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
162 "t10_alua_tg_pt_gp_mem_cache",
163 sizeof(struct t10_alua_tg_pt_gp_member),
164 __alignof__(struct t10_alua_tg_pt_gp_member),
165 0, NULL);
166 if (!t10_alua_tg_pt_gp_mem_cache) {
167 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
168 "mem_t failed\n");
169 goto out;
172 return 0;
173 out:
174 if (se_cmd_cache)
175 kmem_cache_destroy(se_cmd_cache);
176 if (se_tmr_req_cache)
177 kmem_cache_destroy(se_tmr_req_cache);
178 if (se_sess_cache)
179 kmem_cache_destroy(se_sess_cache);
180 if (se_ua_cache)
181 kmem_cache_destroy(se_ua_cache);
182 if (t10_pr_reg_cache)
183 kmem_cache_destroy(t10_pr_reg_cache);
184 if (t10_alua_lu_gp_cache)
185 kmem_cache_destroy(t10_alua_lu_gp_cache);
186 if (t10_alua_lu_gp_mem_cache)
187 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
188 if (t10_alua_tg_pt_gp_cache)
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 if (t10_alua_tg_pt_gp_mem_cache)
191 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
192 return -ENOMEM;
195 void release_se_kmem_caches(void)
197 kmem_cache_destroy(se_cmd_cache);
198 kmem_cache_destroy(se_tmr_req_cache);
199 kmem_cache_destroy(se_sess_cache);
200 kmem_cache_destroy(se_ua_cache);
201 kmem_cache_destroy(t10_pr_reg_cache);
202 kmem_cache_destroy(t10_alua_lu_gp_cache);
203 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
204 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
205 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
208 /* This code ensures unique mib indexes are handed out. */
209 static DEFINE_SPINLOCK(scsi_mib_index_lock);
210 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
213 * Allocate a new row index for the entry type specified
215 u32 scsi_get_new_index(scsi_index_t type)
217 u32 new_index;
219 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
221 spin_lock(&scsi_mib_index_lock);
222 new_index = ++scsi_mib_index[type];
223 spin_unlock(&scsi_mib_index_lock);
225 return new_index;
228 void transport_init_queue_obj(struct se_queue_obj *qobj)
230 atomic_set(&qobj->queue_cnt, 0);
231 INIT_LIST_HEAD(&qobj->qobj_list);
232 init_waitqueue_head(&qobj->thread_wq);
233 spin_lock_init(&qobj->cmd_queue_lock);
235 EXPORT_SYMBOL(transport_init_queue_obj);
237 static int transport_subsystem_reqmods(void)
239 int ret;
241 ret = request_module("target_core_iblock");
242 if (ret != 0)
243 pr_err("Unable to load target_core_iblock\n");
245 ret = request_module("target_core_file");
246 if (ret != 0)
247 pr_err("Unable to load target_core_file\n");
249 ret = request_module("target_core_pscsi");
250 if (ret != 0)
251 pr_err("Unable to load target_core_pscsi\n");
253 ret = request_module("target_core_stgt");
254 if (ret != 0)
255 pr_err("Unable to load target_core_stgt\n");
257 return 0;
260 int transport_subsystem_check_init(void)
262 int ret;
264 if (sub_api_initialized)
265 return 0;
267 * Request the loading of known TCM subsystem plugins..
269 ret = transport_subsystem_reqmods();
270 if (ret < 0)
271 return ret;
273 sub_api_initialized = 1;
274 return 0;
277 struct se_session *transport_init_session(void)
279 struct se_session *se_sess;
281 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
282 if (!se_sess) {
283 pr_err("Unable to allocate struct se_session from"
284 " se_sess_cache\n");
285 return ERR_PTR(-ENOMEM);
287 INIT_LIST_HEAD(&se_sess->sess_list);
288 INIT_LIST_HEAD(&se_sess->sess_acl_list);
290 return se_sess;
292 EXPORT_SYMBOL(transport_init_session);
295 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
297 void __transport_register_session(
298 struct se_portal_group *se_tpg,
299 struct se_node_acl *se_nacl,
300 struct se_session *se_sess,
301 void *fabric_sess_ptr)
303 unsigned char buf[PR_REG_ISID_LEN];
305 se_sess->se_tpg = se_tpg;
306 se_sess->fabric_sess_ptr = fabric_sess_ptr;
308 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
310 * Only set for struct se_session's that will actually be moving I/O.
311 * eg: *NOT* discovery sessions.
313 if (se_nacl) {
315 * If the fabric module supports an ISID based TransportID,
316 * save this value in binary from the fabric I_T Nexus now.
318 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
319 memset(&buf[0], 0, PR_REG_ISID_LEN);
320 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
321 &buf[0], PR_REG_ISID_LEN);
322 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
324 spin_lock_irq(&se_nacl->nacl_sess_lock);
326 * The se_nacl->nacl_sess pointer will be set to the
327 * last active I_T Nexus for each struct se_node_acl.
329 se_nacl->nacl_sess = se_sess;
331 list_add_tail(&se_sess->sess_acl_list,
332 &se_nacl->acl_sess_list);
333 spin_unlock_irq(&se_nacl->nacl_sess_lock);
335 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
337 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
338 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
340 EXPORT_SYMBOL(__transport_register_session);
342 void transport_register_session(
343 struct se_portal_group *se_tpg,
344 struct se_node_acl *se_nacl,
345 struct se_session *se_sess,
346 void *fabric_sess_ptr)
348 spin_lock_bh(&se_tpg->session_lock);
349 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
350 spin_unlock_bh(&se_tpg->session_lock);
352 EXPORT_SYMBOL(transport_register_session);
354 void transport_deregister_session_configfs(struct se_session *se_sess)
356 struct se_node_acl *se_nacl;
357 unsigned long flags;
359 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
361 se_nacl = se_sess->se_node_acl;
362 if (se_nacl) {
363 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
364 list_del(&se_sess->sess_acl_list);
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
370 if (list_empty(&se_nacl->acl_sess_list))
371 se_nacl->nacl_sess = NULL;
372 else {
373 se_nacl->nacl_sess = container_of(
374 se_nacl->acl_sess_list.prev,
375 struct se_session, sess_acl_list);
377 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
382 void transport_free_session(struct se_session *se_sess)
384 kmem_cache_free(se_sess_cache, se_sess);
386 EXPORT_SYMBOL(transport_free_session);
388 void transport_deregister_session(struct se_session *se_sess)
390 struct se_portal_group *se_tpg = se_sess->se_tpg;
391 struct se_node_acl *se_nacl;
392 unsigned long flags;
394 if (!se_tpg) {
395 transport_free_session(se_sess);
396 return;
399 spin_lock_irqsave(&se_tpg->session_lock, flags);
400 list_del(&se_sess->sess_list);
401 se_sess->se_tpg = NULL;
402 se_sess->fabric_sess_ptr = NULL;
403 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
406 * Determine if we need to do extra work for this initiator node's
407 * struct se_node_acl if it had been previously dynamically generated.
409 se_nacl = se_sess->se_node_acl;
410 if (se_nacl) {
411 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
412 if (se_nacl->dynamic_node_acl) {
413 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
414 se_tpg)) {
415 list_del(&se_nacl->acl_list);
416 se_tpg->num_node_acls--;
417 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
419 core_tpg_wait_for_nacl_pr_ref(se_nacl);
420 core_free_device_list_for_node(se_nacl, se_tpg);
421 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
422 se_nacl);
423 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
426 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
429 transport_free_session(se_sess);
431 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
432 se_tpg->se_tpg_tfo->get_fabric_name());
434 EXPORT_SYMBOL(transport_deregister_session);
437 * Called with cmd->t_state_lock held.
439 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
441 struct se_device *dev;
442 struct se_task *task;
443 unsigned long flags;
445 list_for_each_entry(task, &cmd->t_task_list, t_list) {
446 dev = task->se_dev;
447 if (!dev)
448 continue;
450 if (atomic_read(&task->task_active))
451 continue;
453 if (!atomic_read(&task->task_state_active))
454 continue;
456 spin_lock_irqsave(&dev->execute_task_lock, flags);
457 list_del(&task->t_state_list);
458 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
459 cmd->se_tfo->get_task_tag(cmd), dev, task);
460 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
462 atomic_set(&task->task_state_active, 0);
463 atomic_dec(&cmd->t_task_cdbs_ex_left);
467 /* transport_cmd_check_stop():
469 * 'transport_off = 1' determines if t_transport_active should be cleared.
470 * 'transport_off = 2' determines if task_dev_state should be removed.
472 * A non-zero u8 t_state sets cmd->t_state.
473 * Returns 1 when command is stopped, else 0.
475 static int transport_cmd_check_stop(
476 struct se_cmd *cmd,
477 int transport_off,
478 u8 t_state)
480 unsigned long flags;
482 spin_lock_irqsave(&cmd->t_state_lock, flags);
484 * Determine if IOCTL context caller in requesting the stopping of this
485 * command for LUN shutdown purposes.
487 if (atomic_read(&cmd->transport_lun_stop)) {
488 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
489 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
490 cmd->se_tfo->get_task_tag(cmd));
492 cmd->deferred_t_state = cmd->t_state;
493 cmd->t_state = TRANSPORT_DEFERRED_CMD;
494 atomic_set(&cmd->t_transport_active, 0);
495 if (transport_off == 2)
496 transport_all_task_dev_remove_state(cmd);
497 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
499 complete(&cmd->transport_lun_stop_comp);
500 return 1;
503 * Determine if frontend context caller is requesting the stopping of
504 * this command for frontend exceptions.
506 if (atomic_read(&cmd->t_transport_stop)) {
507 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
508 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
509 cmd->se_tfo->get_task_tag(cmd));
511 cmd->deferred_t_state = cmd->t_state;
512 cmd->t_state = TRANSPORT_DEFERRED_CMD;
513 if (transport_off == 2)
514 transport_all_task_dev_remove_state(cmd);
517 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
518 * to FE.
520 if (transport_off == 2)
521 cmd->se_lun = NULL;
522 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
524 complete(&cmd->t_transport_stop_comp);
525 return 1;
527 if (transport_off) {
528 atomic_set(&cmd->t_transport_active, 0);
529 if (transport_off == 2) {
530 transport_all_task_dev_remove_state(cmd);
532 * Clear struct se_cmd->se_lun before the transport_off == 2
533 * handoff to fabric module.
535 cmd->se_lun = NULL;
537 * Some fabric modules like tcm_loop can release
538 * their internally allocated I/O reference now and
539 * struct se_cmd now.
541 if (cmd->se_tfo->check_stop_free != NULL) {
542 spin_unlock_irqrestore(
543 &cmd->t_state_lock, flags);
545 cmd->se_tfo->check_stop_free(cmd);
546 return 1;
549 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
551 return 0;
552 } else if (t_state)
553 cmd->t_state = t_state;
554 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
556 return 0;
559 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
561 return transport_cmd_check_stop(cmd, 2, 0);
564 static void transport_lun_remove_cmd(struct se_cmd *cmd)
566 struct se_lun *lun = cmd->se_lun;
567 unsigned long flags;
569 if (!lun)
570 return;
572 spin_lock_irqsave(&cmd->t_state_lock, flags);
573 if (!atomic_read(&cmd->transport_dev_active)) {
574 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
575 goto check_lun;
577 atomic_set(&cmd->transport_dev_active, 0);
578 transport_all_task_dev_remove_state(cmd);
579 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
582 check_lun:
583 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
584 if (atomic_read(&cmd->transport_lun_active)) {
585 list_del(&cmd->se_lun_node);
586 atomic_set(&cmd->transport_lun_active, 0);
587 #if 0
588 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
589 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
590 #endif
592 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
595 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
597 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
598 transport_lun_remove_cmd(cmd);
600 if (transport_cmd_check_stop_to_fabric(cmd))
601 return;
602 if (remove)
603 transport_generic_remove(cmd, 0);
606 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
608 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
610 if (transport_cmd_check_stop_to_fabric(cmd))
611 return;
613 transport_generic_remove(cmd, 0);
616 static void transport_add_cmd_to_queue(
617 struct se_cmd *cmd,
618 int t_state)
620 struct se_device *dev = cmd->se_dev;
621 struct se_queue_obj *qobj = &dev->dev_queue_obj;
622 unsigned long flags;
624 INIT_LIST_HEAD(&cmd->se_queue_node);
626 if (t_state) {
627 spin_lock_irqsave(&cmd->t_state_lock, flags);
628 cmd->t_state = t_state;
629 atomic_set(&cmd->t_transport_active, 1);
630 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
633 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
634 if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
635 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
636 list_add(&cmd->se_queue_node, &qobj->qobj_list);
637 } else
638 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
639 atomic_inc(&cmd->t_transport_queue_active);
640 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
642 atomic_inc(&qobj->queue_cnt);
643 wake_up_interruptible(&qobj->thread_wq);
646 static struct se_cmd *
647 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
649 struct se_cmd *cmd;
650 unsigned long flags;
652 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
653 if (list_empty(&qobj->qobj_list)) {
654 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
655 return NULL;
657 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
659 atomic_dec(&cmd->t_transport_queue_active);
661 list_del(&cmd->se_queue_node);
662 atomic_dec(&qobj->queue_cnt);
663 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
665 return cmd;
668 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
669 struct se_queue_obj *qobj)
671 struct se_cmd *t;
672 unsigned long flags;
674 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
675 if (!atomic_read(&cmd->t_transport_queue_active)) {
676 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
677 return;
680 list_for_each_entry(t, &qobj->qobj_list, se_queue_node)
681 if (t == cmd) {
682 atomic_dec(&cmd->t_transport_queue_active);
683 atomic_dec(&qobj->queue_cnt);
684 list_del(&cmd->se_queue_node);
685 break;
687 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
689 if (atomic_read(&cmd->t_transport_queue_active)) {
690 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
691 cmd->se_tfo->get_task_tag(cmd),
692 atomic_read(&cmd->t_transport_queue_active));
697 * Completion function used by TCM subsystem plugins (such as FILEIO)
698 * for queueing up response from struct se_subsystem_api->do_task()
700 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
702 struct se_task *task = list_entry(cmd->t_task_list.next,
703 struct se_task, t_list);
705 if (good) {
706 cmd->scsi_status = SAM_STAT_GOOD;
707 task->task_scsi_status = GOOD;
708 } else {
709 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
710 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
711 task->task_se_cmd->transport_error_status =
712 PYX_TRANSPORT_ILLEGAL_REQUEST;
715 transport_complete_task(task, good);
717 EXPORT_SYMBOL(transport_complete_sync_cache);
719 /* transport_complete_task():
721 * Called from interrupt and non interrupt context depending
722 * on the transport plugin.
724 void transport_complete_task(struct se_task *task, int success)
726 struct se_cmd *cmd = task->task_se_cmd;
727 struct se_device *dev = task->se_dev;
728 int t_state;
729 unsigned long flags;
730 #if 0
731 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
732 cmd->t_task_cdb[0], dev);
733 #endif
734 if (dev)
735 atomic_inc(&dev->depth_left);
737 spin_lock_irqsave(&cmd->t_state_lock, flags);
738 atomic_set(&task->task_active, 0);
741 * See if any sense data exists, if so set the TASK_SENSE flag.
742 * Also check for any other post completion work that needs to be
743 * done by the plugins.
745 if (dev && dev->transport->transport_complete) {
746 if (dev->transport->transport_complete(task) != 0) {
747 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
748 task->task_sense = 1;
749 success = 1;
754 * See if we are waiting for outstanding struct se_task
755 * to complete for an exception condition
757 if (atomic_read(&task->task_stop)) {
759 * Decrement cmd->t_se_count if this task had
760 * previously thrown its timeout exception handler.
762 if (atomic_read(&task->task_timeout)) {
763 atomic_dec(&cmd->t_se_count);
764 atomic_set(&task->task_timeout, 0);
766 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
768 complete(&task->task_stop_comp);
769 return;
772 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
773 * left counter to determine when the struct se_cmd is ready to be queued to
774 * the processing thread.
776 if (atomic_read(&task->task_timeout)) {
777 if (!atomic_dec_and_test(
778 &cmd->t_task_cdbs_timeout_left)) {
779 spin_unlock_irqrestore(&cmd->t_state_lock,
780 flags);
781 return;
783 t_state = TRANSPORT_COMPLETE_TIMEOUT;
784 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
786 transport_add_cmd_to_queue(cmd, t_state);
787 return;
789 atomic_dec(&cmd->t_task_cdbs_timeout_left);
792 * Decrement the outstanding t_task_cdbs_left count. The last
793 * struct se_task from struct se_cmd will complete itself into the
794 * device queue depending upon int success.
796 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
797 if (!success)
798 cmd->t_tasks_failed = 1;
800 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
801 return;
804 if (!success || cmd->t_tasks_failed) {
805 t_state = TRANSPORT_COMPLETE_FAILURE;
806 if (!task->task_error_status) {
807 task->task_error_status =
808 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
809 cmd->transport_error_status =
810 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
812 } else {
813 atomic_set(&cmd->t_transport_complete, 1);
814 t_state = TRANSPORT_COMPLETE_OK;
816 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
818 transport_add_cmd_to_queue(cmd, t_state);
820 EXPORT_SYMBOL(transport_complete_task);
823 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
824 * struct se_task list are ready to be added to the active execution list
825 * struct se_device
827 * Called with se_dev_t->execute_task_lock called.
829 static inline int transport_add_task_check_sam_attr(
830 struct se_task *task,
831 struct se_task *task_prev,
832 struct se_device *dev)
835 * No SAM Task attribute emulation enabled, add to tail of
836 * execution queue
838 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
839 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
840 return 0;
843 * HEAD_OF_QUEUE attribute for received CDB, which means
844 * the first task that is associated with a struct se_cmd goes to
845 * head of the struct se_device->execute_task_list, and task_prev
846 * after that for each subsequent task
848 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
849 list_add(&task->t_execute_list,
850 (task_prev != NULL) ?
851 &task_prev->t_execute_list :
852 &dev->execute_task_list);
854 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
855 " in execution queue\n",
856 task->task_se_cmd->t_task_cdb[0]);
857 return 1;
860 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
861 * transitioned from Dermant -> Active state, and are added to the end
862 * of the struct se_device->execute_task_list
864 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
865 return 0;
868 /* __transport_add_task_to_execute_queue():
870 * Called with se_dev_t->execute_task_lock called.
872 static void __transport_add_task_to_execute_queue(
873 struct se_task *task,
874 struct se_task *task_prev,
875 struct se_device *dev)
877 int head_of_queue;
879 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
880 atomic_inc(&dev->execute_tasks);
882 if (atomic_read(&task->task_state_active))
883 return;
885 * Determine if this task needs to go to HEAD_OF_QUEUE for the
886 * state list as well. Running with SAM Task Attribute emulation
887 * will always return head_of_queue == 0 here
889 if (head_of_queue)
890 list_add(&task->t_state_list, (task_prev) ?
891 &task_prev->t_state_list :
892 &dev->state_task_list);
893 else
894 list_add_tail(&task->t_state_list, &dev->state_task_list);
896 atomic_set(&task->task_state_active, 1);
898 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
899 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
900 task, dev);
903 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
905 struct se_device *dev;
906 struct se_task *task;
907 unsigned long flags;
909 spin_lock_irqsave(&cmd->t_state_lock, flags);
910 list_for_each_entry(task, &cmd->t_task_list, t_list) {
911 dev = task->se_dev;
913 if (atomic_read(&task->task_state_active))
914 continue;
916 spin_lock(&dev->execute_task_lock);
917 list_add_tail(&task->t_state_list, &dev->state_task_list);
918 atomic_set(&task->task_state_active, 1);
920 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
921 task->task_se_cmd->se_tfo->get_task_tag(
922 task->task_se_cmd), task, dev);
924 spin_unlock(&dev->execute_task_lock);
926 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
929 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
931 struct se_device *dev = cmd->se_dev;
932 struct se_task *task, *task_prev = NULL;
933 unsigned long flags;
935 spin_lock_irqsave(&dev->execute_task_lock, flags);
936 list_for_each_entry(task, &cmd->t_task_list, t_list) {
937 if (atomic_read(&task->task_execute_queue))
938 continue;
940 * __transport_add_task_to_execute_queue() handles the
941 * SAM Task Attribute emulation if enabled
943 __transport_add_task_to_execute_queue(task, task_prev, dev);
944 atomic_set(&task->task_execute_queue, 1);
945 task_prev = task;
947 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
950 /* transport_remove_task_from_execute_queue():
954 void transport_remove_task_from_execute_queue(
955 struct se_task *task,
956 struct se_device *dev)
958 unsigned long flags;
960 if (atomic_read(&task->task_execute_queue) == 0) {
961 dump_stack();
962 return;
965 spin_lock_irqsave(&dev->execute_task_lock, flags);
966 list_del(&task->t_execute_list);
967 atomic_set(&task->task_execute_queue, 0);
968 atomic_dec(&dev->execute_tasks);
969 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
973 * Handle QUEUE_FULL / -EAGAIN status
976 static void target_qf_do_work(struct work_struct *work)
978 struct se_device *dev = container_of(work, struct se_device,
979 qf_work_queue);
980 struct se_cmd *cmd, *cmd_tmp;
982 spin_lock_irq(&dev->qf_cmd_lock);
983 list_for_each_entry_safe(cmd, cmd_tmp, &dev->qf_cmd_list, se_qf_node) {
985 list_del(&cmd->se_qf_node);
986 atomic_dec(&dev->dev_qf_count);
987 smp_mb__after_atomic_dec();
988 spin_unlock_irq(&dev->qf_cmd_lock);
990 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
991 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
992 (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
993 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
994 : "UNKNOWN");
996 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
997 * has been added to head of queue
999 transport_add_cmd_to_queue(cmd, cmd->t_state);
1001 spin_lock_irq(&dev->qf_cmd_lock);
1003 spin_unlock_irq(&dev->qf_cmd_lock);
1006 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1008 switch (cmd->data_direction) {
1009 case DMA_NONE:
1010 return "NONE";
1011 case DMA_FROM_DEVICE:
1012 return "READ";
1013 case DMA_TO_DEVICE:
1014 return "WRITE";
1015 case DMA_BIDIRECTIONAL:
1016 return "BIDI";
1017 default:
1018 break;
1021 return "UNKNOWN";
1024 void transport_dump_dev_state(
1025 struct se_device *dev,
1026 char *b,
1027 int *bl)
1029 *bl += sprintf(b + *bl, "Status: ");
1030 switch (dev->dev_status) {
1031 case TRANSPORT_DEVICE_ACTIVATED:
1032 *bl += sprintf(b + *bl, "ACTIVATED");
1033 break;
1034 case TRANSPORT_DEVICE_DEACTIVATED:
1035 *bl += sprintf(b + *bl, "DEACTIVATED");
1036 break;
1037 case TRANSPORT_DEVICE_SHUTDOWN:
1038 *bl += sprintf(b + *bl, "SHUTDOWN");
1039 break;
1040 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1041 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1042 *bl += sprintf(b + *bl, "OFFLINE");
1043 break;
1044 default:
1045 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1046 break;
1049 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1050 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1051 dev->queue_depth);
1052 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1053 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1054 *bl += sprintf(b + *bl, " ");
1057 /* transport_release_all_cmds():
1061 static void transport_release_all_cmds(struct se_device *dev)
1063 struct se_cmd *cmd, *tcmd;
1064 int bug_out = 0, t_state;
1065 unsigned long flags;
1067 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1068 list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1069 se_queue_node) {
1070 t_state = cmd->t_state;
1071 list_del(&cmd->se_queue_node);
1072 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1073 flags);
1075 pr_err("Releasing ITT: 0x%08x, i_state: %u,"
1076 " t_state: %u directly\n",
1077 cmd->se_tfo->get_task_tag(cmd),
1078 cmd->se_tfo->get_cmd_state(cmd), t_state);
1080 transport_release_fe_cmd(cmd);
1081 bug_out = 1;
1083 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1085 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1086 #if 0
1087 if (bug_out)
1088 BUG();
1089 #endif
1092 void transport_dump_vpd_proto_id(
1093 struct t10_vpd *vpd,
1094 unsigned char *p_buf,
1095 int p_buf_len)
1097 unsigned char buf[VPD_TMP_BUF_SIZE];
1098 int len;
1100 memset(buf, 0, VPD_TMP_BUF_SIZE);
1101 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1103 switch (vpd->protocol_identifier) {
1104 case 0x00:
1105 sprintf(buf+len, "Fibre Channel\n");
1106 break;
1107 case 0x10:
1108 sprintf(buf+len, "Parallel SCSI\n");
1109 break;
1110 case 0x20:
1111 sprintf(buf+len, "SSA\n");
1112 break;
1113 case 0x30:
1114 sprintf(buf+len, "IEEE 1394\n");
1115 break;
1116 case 0x40:
1117 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1118 " Protocol\n");
1119 break;
1120 case 0x50:
1121 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1122 break;
1123 case 0x60:
1124 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1125 break;
1126 case 0x70:
1127 sprintf(buf+len, "Automation/Drive Interface Transport"
1128 " Protocol\n");
1129 break;
1130 case 0x80:
1131 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1132 break;
1133 default:
1134 sprintf(buf+len, "Unknown 0x%02x\n",
1135 vpd->protocol_identifier);
1136 break;
1139 if (p_buf)
1140 strncpy(p_buf, buf, p_buf_len);
1141 else
1142 pr_debug("%s", buf);
1145 void
1146 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1149 * Check if the Protocol Identifier Valid (PIV) bit is set..
1151 * from spc3r23.pdf section 7.5.1
1153 if (page_83[1] & 0x80) {
1154 vpd->protocol_identifier = (page_83[0] & 0xf0);
1155 vpd->protocol_identifier_set = 1;
1156 transport_dump_vpd_proto_id(vpd, NULL, 0);
1159 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1161 int transport_dump_vpd_assoc(
1162 struct t10_vpd *vpd,
1163 unsigned char *p_buf,
1164 int p_buf_len)
1166 unsigned char buf[VPD_TMP_BUF_SIZE];
1167 int ret = 0;
1168 int len;
1170 memset(buf, 0, VPD_TMP_BUF_SIZE);
1171 len = sprintf(buf, "T10 VPD Identifier Association: ");
1173 switch (vpd->association) {
1174 case 0x00:
1175 sprintf(buf+len, "addressed logical unit\n");
1176 break;
1177 case 0x10:
1178 sprintf(buf+len, "target port\n");
1179 break;
1180 case 0x20:
1181 sprintf(buf+len, "SCSI target device\n");
1182 break;
1183 default:
1184 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1185 ret = -EINVAL;
1186 break;
1189 if (p_buf)
1190 strncpy(p_buf, buf, p_buf_len);
1191 else
1192 pr_debug("%s", buf);
1194 return ret;
1197 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1200 * The VPD identification association..
1202 * from spc3r23.pdf Section 7.6.3.1 Table 297
1204 vpd->association = (page_83[1] & 0x30);
1205 return transport_dump_vpd_assoc(vpd, NULL, 0);
1207 EXPORT_SYMBOL(transport_set_vpd_assoc);
1209 int transport_dump_vpd_ident_type(
1210 struct t10_vpd *vpd,
1211 unsigned char *p_buf,
1212 int p_buf_len)
1214 unsigned char buf[VPD_TMP_BUF_SIZE];
1215 int ret = 0;
1216 int len;
1218 memset(buf, 0, VPD_TMP_BUF_SIZE);
1219 len = sprintf(buf, "T10 VPD Identifier Type: ");
1221 switch (vpd->device_identifier_type) {
1222 case 0x00:
1223 sprintf(buf+len, "Vendor specific\n");
1224 break;
1225 case 0x01:
1226 sprintf(buf+len, "T10 Vendor ID based\n");
1227 break;
1228 case 0x02:
1229 sprintf(buf+len, "EUI-64 based\n");
1230 break;
1231 case 0x03:
1232 sprintf(buf+len, "NAA\n");
1233 break;
1234 case 0x04:
1235 sprintf(buf+len, "Relative target port identifier\n");
1236 break;
1237 case 0x08:
1238 sprintf(buf+len, "SCSI name string\n");
1239 break;
1240 default:
1241 sprintf(buf+len, "Unsupported: 0x%02x\n",
1242 vpd->device_identifier_type);
1243 ret = -EINVAL;
1244 break;
1247 if (p_buf) {
1248 if (p_buf_len < strlen(buf)+1)
1249 return -EINVAL;
1250 strncpy(p_buf, buf, p_buf_len);
1251 } else {
1252 pr_debug("%s", buf);
1255 return ret;
1258 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1261 * The VPD identifier type..
1263 * from spc3r23.pdf Section 7.6.3.1 Table 298
1265 vpd->device_identifier_type = (page_83[1] & 0x0f);
1266 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1268 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1270 int transport_dump_vpd_ident(
1271 struct t10_vpd *vpd,
1272 unsigned char *p_buf,
1273 int p_buf_len)
1275 unsigned char buf[VPD_TMP_BUF_SIZE];
1276 int ret = 0;
1278 memset(buf, 0, VPD_TMP_BUF_SIZE);
1280 switch (vpd->device_identifier_code_set) {
1281 case 0x01: /* Binary */
1282 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1283 &vpd->device_identifier[0]);
1284 break;
1285 case 0x02: /* ASCII */
1286 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1287 &vpd->device_identifier[0]);
1288 break;
1289 case 0x03: /* UTF-8 */
1290 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1291 &vpd->device_identifier[0]);
1292 break;
1293 default:
1294 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1295 " 0x%02x", vpd->device_identifier_code_set);
1296 ret = -EINVAL;
1297 break;
1300 if (p_buf)
1301 strncpy(p_buf, buf, p_buf_len);
1302 else
1303 pr_debug("%s", buf);
1305 return ret;
1309 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1311 static const char hex_str[] = "0123456789abcdef";
1312 int j = 0, i = 4; /* offset to start of the identifer */
1315 * The VPD Code Set (encoding)
1317 * from spc3r23.pdf Section 7.6.3.1 Table 296
1319 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1320 switch (vpd->device_identifier_code_set) {
1321 case 0x01: /* Binary */
1322 vpd->device_identifier[j++] =
1323 hex_str[vpd->device_identifier_type];
1324 while (i < (4 + page_83[3])) {
1325 vpd->device_identifier[j++] =
1326 hex_str[(page_83[i] & 0xf0) >> 4];
1327 vpd->device_identifier[j++] =
1328 hex_str[page_83[i] & 0x0f];
1329 i++;
1331 break;
1332 case 0x02: /* ASCII */
1333 case 0x03: /* UTF-8 */
1334 while (i < (4 + page_83[3]))
1335 vpd->device_identifier[j++] = page_83[i++];
1336 break;
1337 default:
1338 break;
1341 return transport_dump_vpd_ident(vpd, NULL, 0);
1343 EXPORT_SYMBOL(transport_set_vpd_ident);
1345 static void core_setup_task_attr_emulation(struct se_device *dev)
1348 * If this device is from Target_Core_Mod/pSCSI, disable the
1349 * SAM Task Attribute emulation.
1351 * This is currently not available in upsream Linux/SCSI Target
1352 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1354 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1355 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1356 return;
1359 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1360 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1361 " device\n", dev->transport->name,
1362 dev->transport->get_device_rev(dev));
1365 static void scsi_dump_inquiry(struct se_device *dev)
1367 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1368 int i, device_type;
1370 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1372 pr_debug(" Vendor: ");
1373 for (i = 0; i < 8; i++)
1374 if (wwn->vendor[i] >= 0x20)
1375 pr_debug("%c", wwn->vendor[i]);
1376 else
1377 pr_debug(" ");
1379 pr_debug(" Model: ");
1380 for (i = 0; i < 16; i++)
1381 if (wwn->model[i] >= 0x20)
1382 pr_debug("%c", wwn->model[i]);
1383 else
1384 pr_debug(" ");
1386 pr_debug(" Revision: ");
1387 for (i = 0; i < 4; i++)
1388 if (wwn->revision[i] >= 0x20)
1389 pr_debug("%c", wwn->revision[i]);
1390 else
1391 pr_debug(" ");
1393 pr_debug("\n");
1395 device_type = dev->transport->get_device_type(dev);
1396 pr_debug(" Type: %s ", scsi_device_type(device_type));
1397 pr_debug(" ANSI SCSI revision: %02x\n",
1398 dev->transport->get_device_rev(dev));
1401 struct se_device *transport_add_device_to_core_hba(
1402 struct se_hba *hba,
1403 struct se_subsystem_api *transport,
1404 struct se_subsystem_dev *se_dev,
1405 u32 device_flags,
1406 void *transport_dev,
1407 struct se_dev_limits *dev_limits,
1408 const char *inquiry_prod,
1409 const char *inquiry_rev)
1411 int force_pt;
1412 struct se_device *dev;
1414 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1415 if (!dev) {
1416 pr_err("Unable to allocate memory for se_dev_t\n");
1417 return NULL;
1420 transport_init_queue_obj(&dev->dev_queue_obj);
1421 dev->dev_flags = device_flags;
1422 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1423 dev->dev_ptr = transport_dev;
1424 dev->se_hba = hba;
1425 dev->se_sub_dev = se_dev;
1426 dev->transport = transport;
1427 atomic_set(&dev->active_cmds, 0);
1428 INIT_LIST_HEAD(&dev->dev_list);
1429 INIT_LIST_HEAD(&dev->dev_sep_list);
1430 INIT_LIST_HEAD(&dev->dev_tmr_list);
1431 INIT_LIST_HEAD(&dev->execute_task_list);
1432 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1433 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1434 INIT_LIST_HEAD(&dev->state_task_list);
1435 INIT_LIST_HEAD(&dev->qf_cmd_list);
1436 spin_lock_init(&dev->execute_task_lock);
1437 spin_lock_init(&dev->delayed_cmd_lock);
1438 spin_lock_init(&dev->ordered_cmd_lock);
1439 spin_lock_init(&dev->state_task_lock);
1440 spin_lock_init(&dev->dev_alua_lock);
1441 spin_lock_init(&dev->dev_reservation_lock);
1442 spin_lock_init(&dev->dev_status_lock);
1443 spin_lock_init(&dev->dev_status_thr_lock);
1444 spin_lock_init(&dev->se_port_lock);
1445 spin_lock_init(&dev->se_tmr_lock);
1446 spin_lock_init(&dev->qf_cmd_lock);
1448 dev->queue_depth = dev_limits->queue_depth;
1449 atomic_set(&dev->depth_left, dev->queue_depth);
1450 atomic_set(&dev->dev_ordered_id, 0);
1452 se_dev_set_default_attribs(dev, dev_limits);
1454 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1455 dev->creation_time = get_jiffies_64();
1456 spin_lock_init(&dev->stats_lock);
1458 spin_lock(&hba->device_lock);
1459 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1460 hba->dev_count++;
1461 spin_unlock(&hba->device_lock);
1463 * Setup the SAM Task Attribute emulation for struct se_device
1465 core_setup_task_attr_emulation(dev);
1467 * Force PR and ALUA passthrough emulation with internal object use.
1469 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1471 * Setup the Reservations infrastructure for struct se_device
1473 core_setup_reservations(dev, force_pt);
1475 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1477 if (core_setup_alua(dev, force_pt) < 0)
1478 goto out;
1481 * Startup the struct se_device processing thread
1483 dev->process_thread = kthread_run(transport_processing_thread, dev,
1484 "LIO_%s", dev->transport->name);
1485 if (IS_ERR(dev->process_thread)) {
1486 pr_err("Unable to create kthread: LIO_%s\n",
1487 dev->transport->name);
1488 goto out;
1491 * Setup work_queue for QUEUE_FULL
1493 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1495 * Preload the initial INQUIRY const values if we are doing
1496 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1497 * passthrough because this is being provided by the backend LLD.
1498 * This is required so that transport_get_inquiry() copies these
1499 * originals once back into DEV_T10_WWN(dev) for the virtual device
1500 * setup.
1502 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1503 if (!inquiry_prod || !inquiry_rev) {
1504 pr_err("All non TCM/pSCSI plugins require"
1505 " INQUIRY consts\n");
1506 goto out;
1509 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1510 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1511 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1513 scsi_dump_inquiry(dev);
1515 return dev;
1516 out:
1517 kthread_stop(dev->process_thread);
1519 spin_lock(&hba->device_lock);
1520 list_del(&dev->dev_list);
1521 hba->dev_count--;
1522 spin_unlock(&hba->device_lock);
1524 se_release_vpd_for_dev(dev);
1526 kfree(dev);
1528 return NULL;
1530 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1532 /* transport_generic_prepare_cdb():
1534 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1535 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1536 * The point of this is since we are mapping iSCSI LUNs to
1537 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1538 * devices and HBAs for a loop.
1540 static inline void transport_generic_prepare_cdb(
1541 unsigned char *cdb)
1543 switch (cdb[0]) {
1544 case READ_10: /* SBC - RDProtect */
1545 case READ_12: /* SBC - RDProtect */
1546 case READ_16: /* SBC - RDProtect */
1547 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1548 case VERIFY: /* SBC - VRProtect */
1549 case VERIFY_16: /* SBC - VRProtect */
1550 case WRITE_VERIFY: /* SBC - VRProtect */
1551 case WRITE_VERIFY_12: /* SBC - VRProtect */
1552 break;
1553 default:
1554 cdb[1] &= 0x1f; /* clear logical unit number */
1555 break;
1559 static struct se_task *
1560 transport_generic_get_task(struct se_cmd *cmd,
1561 enum dma_data_direction data_direction)
1563 struct se_task *task;
1564 struct se_device *dev = cmd->se_dev;
1566 task = dev->transport->alloc_task(cmd->t_task_cdb);
1567 if (!task) {
1568 pr_err("Unable to allocate struct se_task\n");
1569 return NULL;
1572 INIT_LIST_HEAD(&task->t_list);
1573 INIT_LIST_HEAD(&task->t_execute_list);
1574 INIT_LIST_HEAD(&task->t_state_list);
1575 init_completion(&task->task_stop_comp);
1576 task->task_se_cmd = cmd;
1577 task->se_dev = dev;
1578 task->task_data_direction = data_direction;
1580 return task;
1583 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1586 * Used by fabric modules containing a local struct se_cmd within their
1587 * fabric dependent per I/O descriptor.
1589 void transport_init_se_cmd(
1590 struct se_cmd *cmd,
1591 struct target_core_fabric_ops *tfo,
1592 struct se_session *se_sess,
1593 u32 data_length,
1594 int data_direction,
1595 int task_attr,
1596 unsigned char *sense_buffer)
1598 INIT_LIST_HEAD(&cmd->se_lun_node);
1599 INIT_LIST_HEAD(&cmd->se_delayed_node);
1600 INIT_LIST_HEAD(&cmd->se_ordered_node);
1601 INIT_LIST_HEAD(&cmd->se_qf_node);
1603 INIT_LIST_HEAD(&cmd->t_task_list);
1604 init_completion(&cmd->transport_lun_fe_stop_comp);
1605 init_completion(&cmd->transport_lun_stop_comp);
1606 init_completion(&cmd->t_transport_stop_comp);
1607 spin_lock_init(&cmd->t_state_lock);
1608 atomic_set(&cmd->transport_dev_active, 1);
1610 cmd->se_tfo = tfo;
1611 cmd->se_sess = se_sess;
1612 cmd->data_length = data_length;
1613 cmd->data_direction = data_direction;
1614 cmd->sam_task_attr = task_attr;
1615 cmd->sense_buffer = sense_buffer;
1617 EXPORT_SYMBOL(transport_init_se_cmd);
1619 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1622 * Check if SAM Task Attribute emulation is enabled for this
1623 * struct se_device storage object
1625 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1626 return 0;
1628 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1629 pr_debug("SAM Task Attribute ACA"
1630 " emulation is not supported\n");
1631 return -EINVAL;
1634 * Used to determine when ORDERED commands should go from
1635 * Dormant to Active status.
1637 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1638 smp_mb__after_atomic_inc();
1639 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1640 cmd->se_ordered_id, cmd->sam_task_attr,
1641 cmd->se_dev->transport->name);
1642 return 0;
1645 void transport_free_se_cmd(
1646 struct se_cmd *se_cmd)
1648 if (se_cmd->se_tmr_req)
1649 core_tmr_release_req(se_cmd->se_tmr_req);
1651 * Check and free any extended CDB buffer that was allocated
1653 if (se_cmd->t_task_cdb != se_cmd->__t_task_cdb)
1654 kfree(se_cmd->t_task_cdb);
1656 EXPORT_SYMBOL(transport_free_se_cmd);
1658 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1660 /* transport_generic_allocate_tasks():
1662 * Called from fabric RX Thread.
1664 int transport_generic_allocate_tasks(
1665 struct se_cmd *cmd,
1666 unsigned char *cdb)
1668 int ret;
1670 transport_generic_prepare_cdb(cdb);
1673 * This is needed for early exceptions.
1675 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1678 * Ensure that the received CDB is less than the max (252 + 8) bytes
1679 * for VARIABLE_LENGTH_CMD
1681 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1682 pr_err("Received SCSI CDB with command_size: %d that"
1683 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1684 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1685 return -EINVAL;
1688 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1689 * allocate the additional extended CDB buffer now.. Otherwise
1690 * setup the pointer from __t_task_cdb to t_task_cdb.
1692 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1693 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1694 GFP_KERNEL);
1695 if (!cmd->t_task_cdb) {
1696 pr_err("Unable to allocate cmd->t_task_cdb"
1697 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1698 scsi_command_size(cdb),
1699 (unsigned long)sizeof(cmd->__t_task_cdb));
1700 return -ENOMEM;
1702 } else
1703 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1705 * Copy the original CDB into cmd->
1707 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1709 * Setup the received CDB based on SCSI defined opcodes and
1710 * perform unit attention, persistent reservations and ALUA
1711 * checks for virtual device backends. The cmd->t_task_cdb
1712 * pointer is expected to be setup before we reach this point.
1714 ret = transport_generic_cmd_sequencer(cmd, cdb);
1715 if (ret < 0)
1716 return ret;
1718 * Check for SAM Task Attribute Emulation
1720 if (transport_check_alloc_task_attr(cmd) < 0) {
1721 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1722 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1723 return -EINVAL;
1725 spin_lock(&cmd->se_lun->lun_sep_lock);
1726 if (cmd->se_lun->lun_sep)
1727 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1728 spin_unlock(&cmd->se_lun->lun_sep_lock);
1729 return 0;
1731 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1734 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1735 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1737 int transport_generic_handle_cdb(
1738 struct se_cmd *cmd)
1740 if (!cmd->se_lun) {
1741 dump_stack();
1742 pr_err("cmd->se_lun is NULL\n");
1743 return -EINVAL;
1746 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1747 return 0;
1749 EXPORT_SYMBOL(transport_generic_handle_cdb);
1751 static void transport_generic_request_failure(struct se_cmd *,
1752 struct se_device *, int, int);
1754 * Used by fabric module frontends to queue tasks directly.
1755 * Many only be used from process context only
1757 int transport_handle_cdb_direct(
1758 struct se_cmd *cmd)
1760 int ret;
1762 if (!cmd->se_lun) {
1763 dump_stack();
1764 pr_err("cmd->se_lun is NULL\n");
1765 return -EINVAL;
1767 if (in_interrupt()) {
1768 dump_stack();
1769 pr_err("transport_generic_handle_cdb cannot be called"
1770 " from interrupt context\n");
1771 return -EINVAL;
1774 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1775 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1776 * in existing usage to ensure that outstanding descriptors are handled
1777 * correctly during shutdown via transport_generic_wait_for_tasks()
1779 * Also, we don't take cmd->t_state_lock here as we only expect
1780 * this to be called for initial descriptor submission.
1782 cmd->t_state = TRANSPORT_NEW_CMD;
1783 atomic_set(&cmd->t_transport_active, 1);
1785 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1786 * so follow TRANSPORT_NEW_CMD processing thread context usage
1787 * and call transport_generic_request_failure() if necessary..
1789 ret = transport_generic_new_cmd(cmd);
1790 if (ret == -EAGAIN)
1791 return 0;
1792 else if (ret < 0) {
1793 cmd->transport_error_status = ret;
1794 transport_generic_request_failure(cmd, NULL, 0,
1795 (cmd->data_direction != DMA_TO_DEVICE));
1797 return 0;
1799 EXPORT_SYMBOL(transport_handle_cdb_direct);
1802 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1803 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1804 * complete setup in TCM process context w/ TFO->new_cmd_map().
1806 int transport_generic_handle_cdb_map(
1807 struct se_cmd *cmd)
1809 if (!cmd->se_lun) {
1810 dump_stack();
1811 pr_err("cmd->se_lun is NULL\n");
1812 return -EINVAL;
1815 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1816 return 0;
1818 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1820 /* transport_generic_handle_data():
1824 int transport_generic_handle_data(
1825 struct se_cmd *cmd)
1828 * For the software fabric case, then we assume the nexus is being
1829 * failed/shutdown when signals are pending from the kthread context
1830 * caller, so we return a failure. For the HW target mode case running
1831 * in interrupt code, the signal_pending() check is skipped.
1833 if (!in_interrupt() && signal_pending(current))
1834 return -EPERM;
1836 * If the received CDB has aleady been ABORTED by the generic
1837 * target engine, we now call transport_check_aborted_status()
1838 * to queue any delated TASK_ABORTED status for the received CDB to the
1839 * fabric module as we are expecting no further incoming DATA OUT
1840 * sequences at this point.
1842 if (transport_check_aborted_status(cmd, 1) != 0)
1843 return 0;
1845 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1846 return 0;
1848 EXPORT_SYMBOL(transport_generic_handle_data);
1850 /* transport_generic_handle_tmr():
1854 int transport_generic_handle_tmr(
1855 struct se_cmd *cmd)
1858 * This is needed for early exceptions.
1860 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1862 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1863 return 0;
1865 EXPORT_SYMBOL(transport_generic_handle_tmr);
1867 void transport_generic_free_cmd_intr(
1868 struct se_cmd *cmd)
1870 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1872 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1874 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1876 struct se_task *task, *task_tmp;
1877 unsigned long flags;
1878 int ret = 0;
1880 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1881 cmd->se_tfo->get_task_tag(cmd));
1884 * No tasks remain in the execution queue
1886 spin_lock_irqsave(&cmd->t_state_lock, flags);
1887 list_for_each_entry_safe(task, task_tmp,
1888 &cmd->t_task_list, t_list) {
1889 pr_debug("task_no[%d] - Processing task %p\n",
1890 task->task_no, task);
1892 * If the struct se_task has not been sent and is not active,
1893 * remove the struct se_task from the execution queue.
1895 if (!atomic_read(&task->task_sent) &&
1896 !atomic_read(&task->task_active)) {
1897 spin_unlock_irqrestore(&cmd->t_state_lock,
1898 flags);
1899 transport_remove_task_from_execute_queue(task,
1900 task->se_dev);
1902 pr_debug("task_no[%d] - Removed from execute queue\n",
1903 task->task_no);
1904 spin_lock_irqsave(&cmd->t_state_lock, flags);
1905 continue;
1909 * If the struct se_task is active, sleep until it is returned
1910 * from the plugin.
1912 if (atomic_read(&task->task_active)) {
1913 atomic_set(&task->task_stop, 1);
1914 spin_unlock_irqrestore(&cmd->t_state_lock,
1915 flags);
1917 pr_debug("task_no[%d] - Waiting to complete\n",
1918 task->task_no);
1919 wait_for_completion(&task->task_stop_comp);
1920 pr_debug("task_no[%d] - Stopped successfully\n",
1921 task->task_no);
1923 spin_lock_irqsave(&cmd->t_state_lock, flags);
1924 atomic_dec(&cmd->t_task_cdbs_left);
1926 atomic_set(&task->task_active, 0);
1927 atomic_set(&task->task_stop, 0);
1928 } else {
1929 pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1930 ret++;
1933 __transport_stop_task_timer(task, &flags);
1935 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1937 return ret;
1941 * Handle SAM-esque emulation for generic transport request failures.
1943 static void transport_generic_request_failure(
1944 struct se_cmd *cmd,
1945 struct se_device *dev,
1946 int complete,
1947 int sc)
1949 int ret = 0;
1951 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1952 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1953 cmd->t_task_cdb[0]);
1954 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1955 " %d/%d transport_error_status: %d\n",
1956 cmd->se_tfo->get_cmd_state(cmd),
1957 cmd->t_state, cmd->deferred_t_state,
1958 cmd->transport_error_status);
1959 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1960 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1961 " t_transport_active: %d t_transport_stop: %d"
1962 " t_transport_sent: %d\n", cmd->t_task_list_num,
1963 atomic_read(&cmd->t_task_cdbs_left),
1964 atomic_read(&cmd->t_task_cdbs_sent),
1965 atomic_read(&cmd->t_task_cdbs_ex_left),
1966 atomic_read(&cmd->t_transport_active),
1967 atomic_read(&cmd->t_transport_stop),
1968 atomic_read(&cmd->t_transport_sent));
1970 transport_stop_all_task_timers(cmd);
1972 if (dev)
1973 atomic_inc(&dev->depth_left);
1975 * For SAM Task Attribute emulation for failed struct se_cmd
1977 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1978 transport_complete_task_attr(cmd);
1980 if (complete) {
1981 transport_direct_request_timeout(cmd);
1982 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1985 switch (cmd->transport_error_status) {
1986 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1987 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1988 break;
1989 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1990 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1991 break;
1992 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1993 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1994 break;
1995 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1996 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1997 break;
1998 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1999 if (!sc)
2000 transport_new_cmd_failure(cmd);
2002 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2003 * we force this session to fall back to session
2004 * recovery.
2006 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
2007 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
2009 goto check_stop;
2010 case PYX_TRANSPORT_LU_COMM_FAILURE:
2011 case PYX_TRANSPORT_ILLEGAL_REQUEST:
2012 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2013 break;
2014 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2015 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2016 break;
2017 case PYX_TRANSPORT_WRITE_PROTECTED:
2018 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2019 break;
2020 case PYX_TRANSPORT_RESERVATION_CONFLICT:
2022 * No SENSE Data payload for this case, set SCSI Status
2023 * and queue the response to $FABRIC_MOD.
2025 * Uses linux/include/scsi/scsi.h SAM status codes defs
2027 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2029 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2030 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2031 * CONFLICT STATUS.
2033 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2035 if (cmd->se_sess &&
2036 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2037 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2038 cmd->orig_fe_lun, 0x2C,
2039 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2041 ret = cmd->se_tfo->queue_status(cmd);
2042 if (ret == -EAGAIN)
2043 goto queue_full;
2044 goto check_stop;
2045 case PYX_TRANSPORT_USE_SENSE_REASON:
2047 * struct se_cmd->scsi_sense_reason already set
2049 break;
2050 default:
2051 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2052 cmd->t_task_cdb[0],
2053 cmd->transport_error_status);
2054 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2055 break;
2058 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2059 * make the call to transport_send_check_condition_and_sense()
2060 * directly. Otherwise expect the fabric to make the call to
2061 * transport_send_check_condition_and_sense() after handling
2062 * possible unsoliticied write data payloads.
2064 if (!sc && !cmd->se_tfo->new_cmd_map)
2065 transport_new_cmd_failure(cmd);
2066 else {
2067 ret = transport_send_check_condition_and_sense(cmd,
2068 cmd->scsi_sense_reason, 0);
2069 if (ret == -EAGAIN)
2070 goto queue_full;
2073 check_stop:
2074 transport_lun_remove_cmd(cmd);
2075 if (!transport_cmd_check_stop_to_fabric(cmd))
2077 return;
2079 queue_full:
2080 cmd->t_state = TRANSPORT_COMPLETE_OK;
2081 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
2084 static void transport_direct_request_timeout(struct se_cmd *cmd)
2086 unsigned long flags;
2088 spin_lock_irqsave(&cmd->t_state_lock, flags);
2089 if (!atomic_read(&cmd->t_transport_timeout)) {
2090 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2091 return;
2093 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2094 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2095 return;
2098 atomic_sub(atomic_read(&cmd->t_transport_timeout),
2099 &cmd->t_se_count);
2100 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2103 static void transport_generic_request_timeout(struct se_cmd *cmd)
2105 unsigned long flags;
2108 * Reset cmd->t_se_count to allow transport_generic_remove()
2109 * to allow last call to free memory resources.
2111 spin_lock_irqsave(&cmd->t_state_lock, flags);
2112 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2113 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2115 atomic_sub(tmp, &cmd->t_se_count);
2117 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2119 transport_generic_remove(cmd, 0);
2122 static inline u32 transport_lba_21(unsigned char *cdb)
2124 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2127 static inline u32 transport_lba_32(unsigned char *cdb)
2129 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2132 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2134 unsigned int __v1, __v2;
2136 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2137 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2139 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2143 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2145 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2147 unsigned int __v1, __v2;
2149 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2150 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2152 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2155 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2157 unsigned long flags;
2159 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2160 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2161 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2165 * Called from interrupt context.
2167 static void transport_task_timeout_handler(unsigned long data)
2169 struct se_task *task = (struct se_task *)data;
2170 struct se_cmd *cmd = task->task_se_cmd;
2171 unsigned long flags;
2173 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2175 spin_lock_irqsave(&cmd->t_state_lock, flags);
2176 if (task->task_flags & TF_STOP) {
2177 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2178 return;
2180 task->task_flags &= ~TF_RUNNING;
2183 * Determine if transport_complete_task() has already been called.
2185 if (!atomic_read(&task->task_active)) {
2186 pr_debug("transport task: %p cmd: %p timeout task_active"
2187 " == 0\n", task, cmd);
2188 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2189 return;
2192 atomic_inc(&cmd->t_se_count);
2193 atomic_inc(&cmd->t_transport_timeout);
2194 cmd->t_tasks_failed = 1;
2196 atomic_set(&task->task_timeout, 1);
2197 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2198 task->task_scsi_status = 1;
2200 if (atomic_read(&task->task_stop)) {
2201 pr_debug("transport task: %p cmd: %p timeout task_stop"
2202 " == 1\n", task, cmd);
2203 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2204 complete(&task->task_stop_comp);
2205 return;
2208 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2209 pr_debug("transport task: %p cmd: %p timeout non zero"
2210 " t_task_cdbs_left\n", task, cmd);
2211 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2212 return;
2214 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2215 task, cmd);
2217 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2218 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2220 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2224 * Called with cmd->t_state_lock held.
2226 static void transport_start_task_timer(struct se_task *task)
2228 struct se_device *dev = task->se_dev;
2229 int timeout;
2231 if (task->task_flags & TF_RUNNING)
2232 return;
2234 * If the task_timeout is disabled, exit now.
2236 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2237 if (!timeout)
2238 return;
2240 init_timer(&task->task_timer);
2241 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2242 task->task_timer.data = (unsigned long) task;
2243 task->task_timer.function = transport_task_timeout_handler;
2245 task->task_flags |= TF_RUNNING;
2246 add_timer(&task->task_timer);
2247 #if 0
2248 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2249 " %d\n", task->task_se_cmd, task, timeout);
2250 #endif
2254 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2256 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2258 struct se_cmd *cmd = task->task_se_cmd;
2260 if (!task->task_flags & TF_RUNNING)
2261 return;
2263 task->task_flags |= TF_STOP;
2264 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2266 del_timer_sync(&task->task_timer);
2268 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2269 task->task_flags &= ~TF_RUNNING;
2270 task->task_flags &= ~TF_STOP;
2273 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2275 struct se_task *task = NULL, *task_tmp;
2276 unsigned long flags;
2278 spin_lock_irqsave(&cmd->t_state_lock, flags);
2279 list_for_each_entry_safe(task, task_tmp,
2280 &cmd->t_task_list, t_list)
2281 __transport_stop_task_timer(task, &flags);
2282 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2285 static inline int transport_tcq_window_closed(struct se_device *dev)
2287 if (dev->dev_tcq_window_closed++ <
2288 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2289 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2290 } else
2291 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2293 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2294 return 0;
2298 * Called from Fabric Module context from transport_execute_tasks()
2300 * The return of this function determins if the tasks from struct se_cmd
2301 * get added to the execution queue in transport_execute_tasks(),
2302 * or are added to the delayed or ordered lists here.
2304 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2306 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2307 return 1;
2309 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2310 * to allow the passed struct se_cmd list of tasks to the front of the list.
2312 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2313 atomic_inc(&cmd->se_dev->dev_hoq_count);
2314 smp_mb__after_atomic_inc();
2315 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2316 " 0x%02x, se_ordered_id: %u\n",
2317 cmd->t_task_cdb[0],
2318 cmd->se_ordered_id);
2319 return 1;
2320 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2321 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2322 list_add_tail(&cmd->se_ordered_node,
2323 &cmd->se_dev->ordered_cmd_list);
2324 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2326 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2327 smp_mb__after_atomic_inc();
2329 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2330 " list, se_ordered_id: %u\n",
2331 cmd->t_task_cdb[0],
2332 cmd->se_ordered_id);
2334 * Add ORDERED command to tail of execution queue if
2335 * no other older commands exist that need to be
2336 * completed first.
2338 if (!atomic_read(&cmd->se_dev->simple_cmds))
2339 return 1;
2340 } else {
2342 * For SIMPLE and UNTAGGED Task Attribute commands
2344 atomic_inc(&cmd->se_dev->simple_cmds);
2345 smp_mb__after_atomic_inc();
2348 * Otherwise if one or more outstanding ORDERED task attribute exist,
2349 * add the dormant task(s) built for the passed struct se_cmd to the
2350 * execution queue and become in Active state for this struct se_device.
2352 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2354 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2355 * will be drained upon completion of HEAD_OF_QUEUE task.
2357 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2358 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2359 list_add_tail(&cmd->se_delayed_node,
2360 &cmd->se_dev->delayed_cmd_list);
2361 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2363 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2364 " delayed CMD list, se_ordered_id: %u\n",
2365 cmd->t_task_cdb[0], cmd->sam_task_attr,
2366 cmd->se_ordered_id);
2368 * Return zero to let transport_execute_tasks() know
2369 * not to add the delayed tasks to the execution list.
2371 return 0;
2374 * Otherwise, no ORDERED task attributes exist..
2376 return 1;
2380 * Called from fabric module context in transport_generic_new_cmd() and
2381 * transport_generic_process_write()
2383 static int transport_execute_tasks(struct se_cmd *cmd)
2385 int add_tasks;
2387 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2388 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2389 transport_generic_request_failure(cmd, NULL, 0, 1);
2390 return 0;
2394 * Call transport_cmd_check_stop() to see if a fabric exception
2395 * has occurred that prevents execution.
2397 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2399 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2400 * attribute for the tasks of the received struct se_cmd CDB
2402 add_tasks = transport_execute_task_attr(cmd);
2403 if (!add_tasks)
2404 goto execute_tasks;
2406 * This calls transport_add_tasks_from_cmd() to handle
2407 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2408 * (if enabled) in __transport_add_task_to_execute_queue() and
2409 * transport_add_task_check_sam_attr().
2411 transport_add_tasks_from_cmd(cmd);
2414 * Kick the execution queue for the cmd associated struct se_device
2415 * storage object.
2417 execute_tasks:
2418 __transport_execute_tasks(cmd->se_dev);
2419 return 0;
2423 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2424 * from struct se_device->execute_task_list and
2426 * Called from transport_processing_thread()
2428 static int __transport_execute_tasks(struct se_device *dev)
2430 int error;
2431 struct se_cmd *cmd = NULL;
2432 struct se_task *task = NULL;
2433 unsigned long flags;
2436 * Check if there is enough room in the device and HBA queue to send
2437 * struct se_tasks to the selected transport.
2439 check_depth:
2440 if (!atomic_read(&dev->depth_left))
2441 return transport_tcq_window_closed(dev);
2443 dev->dev_tcq_window_closed = 0;
2445 spin_lock_irq(&dev->execute_task_lock);
2446 if (list_empty(&dev->execute_task_list)) {
2447 spin_unlock_irq(&dev->execute_task_lock);
2448 return 0;
2450 task = list_first_entry(&dev->execute_task_list,
2451 struct se_task, t_execute_list);
2452 list_del(&task->t_execute_list);
2453 atomic_set(&task->task_execute_queue, 0);
2454 atomic_dec(&dev->execute_tasks);
2455 spin_unlock_irq(&dev->execute_task_lock);
2457 atomic_dec(&dev->depth_left);
2459 cmd = task->task_se_cmd;
2461 spin_lock_irqsave(&cmd->t_state_lock, flags);
2462 atomic_set(&task->task_active, 1);
2463 atomic_set(&task->task_sent, 1);
2464 atomic_inc(&cmd->t_task_cdbs_sent);
2466 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2467 cmd->t_task_list_num)
2468 atomic_set(&cmd->transport_sent, 1);
2470 transport_start_task_timer(task);
2471 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2473 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2474 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2475 * struct se_subsystem_api->do_task() caller below.
2477 if (cmd->transport_emulate_cdb) {
2478 error = cmd->transport_emulate_cdb(cmd);
2479 if (error != 0) {
2480 cmd->transport_error_status = error;
2481 atomic_set(&task->task_active, 0);
2482 atomic_set(&cmd->transport_sent, 0);
2483 transport_stop_tasks_for_cmd(cmd);
2484 transport_generic_request_failure(cmd, dev, 0, 1);
2485 goto check_depth;
2488 * Handle the successful completion for transport_emulate_cdb()
2489 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2490 * Otherwise the caller is expected to complete the task with
2491 * proper status.
2493 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2494 cmd->scsi_status = SAM_STAT_GOOD;
2495 task->task_scsi_status = GOOD;
2496 transport_complete_task(task, 1);
2498 } else {
2500 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2501 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2502 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2503 * LUN emulation code.
2505 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2506 * call ->do_task() directly and let the underlying TCM subsystem plugin
2507 * code handle the CDB emulation.
2509 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2510 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2511 error = transport_emulate_control_cdb(task);
2512 else
2513 error = dev->transport->do_task(task);
2515 if (error != 0) {
2516 cmd->transport_error_status = error;
2517 atomic_set(&task->task_active, 0);
2518 atomic_set(&cmd->transport_sent, 0);
2519 transport_stop_tasks_for_cmd(cmd);
2520 transport_generic_request_failure(cmd, dev, 0, 1);
2524 goto check_depth;
2526 return 0;
2529 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2531 unsigned long flags;
2533 * Any unsolicited data will get dumped for failed command inside of
2534 * the fabric plugin
2536 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2537 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2538 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2539 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2542 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2544 static inline u32 transport_get_sectors_6(
2545 unsigned char *cdb,
2546 struct se_cmd *cmd,
2547 int *ret)
2549 struct se_device *dev = cmd->se_dev;
2552 * Assume TYPE_DISK for non struct se_device objects.
2553 * Use 8-bit sector value.
2555 if (!dev)
2556 goto type_disk;
2559 * Use 24-bit allocation length for TYPE_TAPE.
2561 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2562 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2565 * Everything else assume TYPE_DISK Sector CDB location.
2566 * Use 8-bit sector value.
2568 type_disk:
2569 return (u32)cdb[4];
2572 static inline u32 transport_get_sectors_10(
2573 unsigned char *cdb,
2574 struct se_cmd *cmd,
2575 int *ret)
2577 struct se_device *dev = cmd->se_dev;
2580 * Assume TYPE_DISK for non struct se_device objects.
2581 * Use 16-bit sector value.
2583 if (!dev)
2584 goto type_disk;
2587 * XXX_10 is not defined in SSC, throw an exception
2589 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2590 *ret = -EINVAL;
2591 return 0;
2595 * Everything else assume TYPE_DISK Sector CDB location.
2596 * Use 16-bit sector value.
2598 type_disk:
2599 return (u32)(cdb[7] << 8) + cdb[8];
2602 static inline u32 transport_get_sectors_12(
2603 unsigned char *cdb,
2604 struct se_cmd *cmd,
2605 int *ret)
2607 struct se_device *dev = cmd->se_dev;
2610 * Assume TYPE_DISK for non struct se_device objects.
2611 * Use 32-bit sector value.
2613 if (!dev)
2614 goto type_disk;
2617 * XXX_12 is not defined in SSC, throw an exception
2619 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2620 *ret = -EINVAL;
2621 return 0;
2625 * Everything else assume TYPE_DISK Sector CDB location.
2626 * Use 32-bit sector value.
2628 type_disk:
2629 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2632 static inline u32 transport_get_sectors_16(
2633 unsigned char *cdb,
2634 struct se_cmd *cmd,
2635 int *ret)
2637 struct se_device *dev = cmd->se_dev;
2640 * Assume TYPE_DISK for non struct se_device objects.
2641 * Use 32-bit sector value.
2643 if (!dev)
2644 goto type_disk;
2647 * Use 24-bit allocation length for TYPE_TAPE.
2649 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2650 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2652 type_disk:
2653 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2654 (cdb[12] << 8) + cdb[13];
2658 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2660 static inline u32 transport_get_sectors_32(
2661 unsigned char *cdb,
2662 struct se_cmd *cmd,
2663 int *ret)
2666 * Assume TYPE_DISK for non struct se_device objects.
2667 * Use 32-bit sector value.
2669 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2670 (cdb[30] << 8) + cdb[31];
2674 static inline u32 transport_get_size(
2675 u32 sectors,
2676 unsigned char *cdb,
2677 struct se_cmd *cmd)
2679 struct se_device *dev = cmd->se_dev;
2681 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2682 if (cdb[1] & 1) { /* sectors */
2683 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2684 } else /* bytes */
2685 return sectors;
2687 #if 0
2688 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2689 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2690 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2691 dev->transport->name);
2692 #endif
2693 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2696 static void transport_xor_callback(struct se_cmd *cmd)
2698 unsigned char *buf, *addr;
2699 struct scatterlist *sg;
2700 unsigned int offset;
2701 int i;
2702 int count;
2704 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2706 * 1) read the specified logical block(s);
2707 * 2) transfer logical blocks from the data-out buffer;
2708 * 3) XOR the logical blocks transferred from the data-out buffer with
2709 * the logical blocks read, storing the resulting XOR data in a buffer;
2710 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2711 * blocks transferred from the data-out buffer; and
2712 * 5) transfer the resulting XOR data to the data-in buffer.
2714 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2715 if (!buf) {
2716 pr_err("Unable to allocate xor_callback buf\n");
2717 return;
2720 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2721 * into the locally allocated *buf
2723 sg_copy_to_buffer(cmd->t_data_sg,
2724 cmd->t_data_nents,
2725 buf,
2726 cmd->data_length);
2729 * Now perform the XOR against the BIDI read memory located at
2730 * cmd->t_mem_bidi_list
2733 offset = 0;
2734 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2735 addr = kmap_atomic(sg_page(sg), KM_USER0);
2736 if (!addr)
2737 goto out;
2739 for (i = 0; i < sg->length; i++)
2740 *(addr + sg->offset + i) ^= *(buf + offset + i);
2742 offset += sg->length;
2743 kunmap_atomic(addr, KM_USER0);
2746 out:
2747 kfree(buf);
2751 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2753 static int transport_get_sense_data(struct se_cmd *cmd)
2755 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2756 struct se_device *dev;
2757 struct se_task *task = NULL, *task_tmp;
2758 unsigned long flags;
2759 u32 offset = 0;
2761 WARN_ON(!cmd->se_lun);
2763 spin_lock_irqsave(&cmd->t_state_lock, flags);
2764 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2765 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2766 return 0;
2769 list_for_each_entry_safe(task, task_tmp,
2770 &cmd->t_task_list, t_list) {
2772 if (!task->task_sense)
2773 continue;
2775 dev = task->se_dev;
2776 if (!dev)
2777 continue;
2779 if (!dev->transport->get_sense_buffer) {
2780 pr_err("dev->transport->get_sense_buffer"
2781 " is NULL\n");
2782 continue;
2785 sense_buffer = dev->transport->get_sense_buffer(task);
2786 if (!sense_buffer) {
2787 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2788 " sense buffer for task with sense\n",
2789 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2790 continue;
2792 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2794 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2795 TRANSPORT_SENSE_BUFFER);
2797 memcpy(&buffer[offset], sense_buffer,
2798 TRANSPORT_SENSE_BUFFER);
2799 cmd->scsi_status = task->task_scsi_status;
2800 /* Automatically padded */
2801 cmd->scsi_sense_length =
2802 (TRANSPORT_SENSE_BUFFER + offset);
2804 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2805 " and sense\n",
2806 dev->se_hba->hba_id, dev->transport->name,
2807 cmd->scsi_status);
2808 return 0;
2810 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2812 return -1;
2815 static int
2816 transport_handle_reservation_conflict(struct se_cmd *cmd)
2818 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2819 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2820 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2821 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2823 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2824 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2825 * CONFLICT STATUS.
2827 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2829 if (cmd->se_sess &&
2830 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2831 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2832 cmd->orig_fe_lun, 0x2C,
2833 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2834 return -EINVAL;
2837 static inline long long transport_dev_end_lba(struct se_device *dev)
2839 return dev->transport->get_blocks(dev) + 1;
2842 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2844 struct se_device *dev = cmd->se_dev;
2845 u32 sectors;
2847 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2848 return 0;
2850 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2852 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2853 pr_err("LBA: %llu Sectors: %u exceeds"
2854 " transport_dev_end_lba(): %llu\n",
2855 cmd->t_task_lba, sectors,
2856 transport_dev_end_lba(dev));
2857 return -EINVAL;
2860 return 0;
2863 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2866 * Determine if the received WRITE_SAME is used to for direct
2867 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2868 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2869 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2871 int passthrough = (dev->transport->transport_type ==
2872 TRANSPORT_PLUGIN_PHBA_PDEV);
2874 if (!passthrough) {
2875 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2876 pr_err("WRITE_SAME PBDATA and LBDATA"
2877 " bits not supported for Block Discard"
2878 " Emulation\n");
2879 return -ENOSYS;
2882 * Currently for the emulated case we only accept
2883 * tpws with the UNMAP=1 bit set.
2885 if (!(flags[0] & 0x08)) {
2886 pr_err("WRITE_SAME w/o UNMAP bit not"
2887 " supported for Block Discard Emulation\n");
2888 return -ENOSYS;
2892 return 0;
2895 /* transport_generic_cmd_sequencer():
2897 * Generic Command Sequencer that should work for most DAS transport
2898 * drivers.
2900 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2901 * RX Thread.
2903 * FIXME: Need to support other SCSI OPCODES where as well.
2905 static int transport_generic_cmd_sequencer(
2906 struct se_cmd *cmd,
2907 unsigned char *cdb)
2909 struct se_device *dev = cmd->se_dev;
2910 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2911 int ret = 0, sector_ret = 0, passthrough;
2912 u32 sectors = 0, size = 0, pr_reg_type = 0;
2913 u16 service_action;
2914 u8 alua_ascq = 0;
2916 * Check for an existing UNIT ATTENTION condition
2918 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2919 cmd->transport_wait_for_tasks =
2920 &transport_nop_wait_for_tasks;
2921 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2922 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2923 return -EINVAL;
2926 * Check status of Asymmetric Logical Unit Assignment port
2928 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2929 if (ret != 0) {
2930 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2932 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2933 * The ALUA additional sense code qualifier (ASCQ) is determined
2934 * by the ALUA primary or secondary access state..
2936 if (ret > 0) {
2937 #if 0
2938 pr_debug("[%s]: ALUA TG Port not available,"
2939 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2940 cmd->se_tfo->get_fabric_name(), alua_ascq);
2941 #endif
2942 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2943 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2944 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2945 return -EINVAL;
2947 goto out_invalid_cdb_field;
2950 * Check status for SPC-3 Persistent Reservations
2952 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2953 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2954 cmd, cdb, pr_reg_type) != 0)
2955 return transport_handle_reservation_conflict(cmd);
2957 * This means the CDB is allowed for the SCSI Initiator port
2958 * when said port is *NOT* holding the legacy SPC-2 or
2959 * SPC-3 Persistent Reservation.
2963 switch (cdb[0]) {
2964 case READ_6:
2965 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2966 if (sector_ret)
2967 goto out_unsupported_cdb;
2968 size = transport_get_size(sectors, cdb, cmd);
2969 cmd->transport_split_cdb = &split_cdb_XX_6;
2970 cmd->t_task_lba = transport_lba_21(cdb);
2971 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2972 break;
2973 case READ_10:
2974 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2975 if (sector_ret)
2976 goto out_unsupported_cdb;
2977 size = transport_get_size(sectors, cdb, cmd);
2978 cmd->transport_split_cdb = &split_cdb_XX_10;
2979 cmd->t_task_lba = transport_lba_32(cdb);
2980 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2981 break;
2982 case READ_12:
2983 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2984 if (sector_ret)
2985 goto out_unsupported_cdb;
2986 size = transport_get_size(sectors, cdb, cmd);
2987 cmd->transport_split_cdb = &split_cdb_XX_12;
2988 cmd->t_task_lba = transport_lba_32(cdb);
2989 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2990 break;
2991 case READ_16:
2992 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2993 if (sector_ret)
2994 goto out_unsupported_cdb;
2995 size = transport_get_size(sectors, cdb, cmd);
2996 cmd->transport_split_cdb = &split_cdb_XX_16;
2997 cmd->t_task_lba = transport_lba_64(cdb);
2998 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2999 break;
3000 case WRITE_6:
3001 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3002 if (sector_ret)
3003 goto out_unsupported_cdb;
3004 size = transport_get_size(sectors, cdb, cmd);
3005 cmd->transport_split_cdb = &split_cdb_XX_6;
3006 cmd->t_task_lba = transport_lba_21(cdb);
3007 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3008 break;
3009 case WRITE_10:
3010 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3011 if (sector_ret)
3012 goto out_unsupported_cdb;
3013 size = transport_get_size(sectors, cdb, cmd);
3014 cmd->transport_split_cdb = &split_cdb_XX_10;
3015 cmd->t_task_lba = transport_lba_32(cdb);
3016 cmd->t_tasks_fua = (cdb[1] & 0x8);
3017 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3018 break;
3019 case WRITE_12:
3020 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3021 if (sector_ret)
3022 goto out_unsupported_cdb;
3023 size = transport_get_size(sectors, cdb, cmd);
3024 cmd->transport_split_cdb = &split_cdb_XX_12;
3025 cmd->t_task_lba = transport_lba_32(cdb);
3026 cmd->t_tasks_fua = (cdb[1] & 0x8);
3027 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3028 break;
3029 case WRITE_16:
3030 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3031 if (sector_ret)
3032 goto out_unsupported_cdb;
3033 size = transport_get_size(sectors, cdb, cmd);
3034 cmd->transport_split_cdb = &split_cdb_XX_16;
3035 cmd->t_task_lba = transport_lba_64(cdb);
3036 cmd->t_tasks_fua = (cdb[1] & 0x8);
3037 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3038 break;
3039 case XDWRITEREAD_10:
3040 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3041 !(cmd->t_tasks_bidi))
3042 goto out_invalid_cdb_field;
3043 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3044 if (sector_ret)
3045 goto out_unsupported_cdb;
3046 size = transport_get_size(sectors, cdb, cmd);
3047 cmd->transport_split_cdb = &split_cdb_XX_10;
3048 cmd->t_task_lba = transport_lba_32(cdb);
3049 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3050 passthrough = (dev->transport->transport_type ==
3051 TRANSPORT_PLUGIN_PHBA_PDEV);
3053 * Skip the remaining assignments for TCM/PSCSI passthrough
3055 if (passthrough)
3056 break;
3058 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3060 cmd->transport_complete_callback = &transport_xor_callback;
3061 cmd->t_tasks_fua = (cdb[1] & 0x8);
3062 break;
3063 case VARIABLE_LENGTH_CMD:
3064 service_action = get_unaligned_be16(&cdb[8]);
3066 * Determine if this is TCM/PSCSI device and we should disable
3067 * internal emulation for this CDB.
3069 passthrough = (dev->transport->transport_type ==
3070 TRANSPORT_PLUGIN_PHBA_PDEV);
3072 switch (service_action) {
3073 case XDWRITEREAD_32:
3074 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3075 if (sector_ret)
3076 goto out_unsupported_cdb;
3077 size = transport_get_size(sectors, cdb, cmd);
3079 * Use WRITE_32 and READ_32 opcodes for the emulated
3080 * XDWRITE_READ_32 logic.
3082 cmd->transport_split_cdb = &split_cdb_XX_32;
3083 cmd->t_task_lba = transport_lba_64_ext(cdb);
3084 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3087 * Skip the remaining assignments for TCM/PSCSI passthrough
3089 if (passthrough)
3090 break;
3093 * Setup BIDI XOR callback to be run during
3094 * transport_generic_complete_ok()
3096 cmd->transport_complete_callback = &transport_xor_callback;
3097 cmd->t_tasks_fua = (cdb[10] & 0x8);
3098 break;
3099 case WRITE_SAME_32:
3100 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3101 if (sector_ret)
3102 goto out_unsupported_cdb;
3104 if (sectors)
3105 size = transport_get_size(1, cdb, cmd);
3106 else {
3107 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3108 " supported\n");
3109 goto out_invalid_cdb_field;
3112 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3113 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3115 if (target_check_write_same_discard(&cdb[10], dev) < 0)
3116 goto out_invalid_cdb_field;
3118 break;
3119 default:
3120 pr_err("VARIABLE_LENGTH_CMD service action"
3121 " 0x%04x not supported\n", service_action);
3122 goto out_unsupported_cdb;
3124 break;
3125 case MAINTENANCE_IN:
3126 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3127 /* MAINTENANCE_IN from SCC-2 */
3129 * Check for emulated MI_REPORT_TARGET_PGS.
3131 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3132 cmd->transport_emulate_cdb =
3133 (su_dev->t10_alua.alua_type ==
3134 SPC3_ALUA_EMULATED) ?
3135 core_emulate_report_target_port_groups :
3136 NULL;
3138 size = (cdb[6] << 24) | (cdb[7] << 16) |
3139 (cdb[8] << 8) | cdb[9];
3140 } else {
3141 /* GPCMD_SEND_KEY from multi media commands */
3142 size = (cdb[8] << 8) + cdb[9];
3144 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3145 break;
3146 case MODE_SELECT:
3147 size = cdb[4];
3148 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3149 break;
3150 case MODE_SELECT_10:
3151 size = (cdb[7] << 8) + cdb[8];
3152 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3153 break;
3154 case MODE_SENSE:
3155 size = cdb[4];
3156 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3157 break;
3158 case MODE_SENSE_10:
3159 case GPCMD_READ_BUFFER_CAPACITY:
3160 case GPCMD_SEND_OPC:
3161 case LOG_SELECT:
3162 case LOG_SENSE:
3163 size = (cdb[7] << 8) + cdb[8];
3164 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3165 break;
3166 case READ_BLOCK_LIMITS:
3167 size = READ_BLOCK_LEN;
3168 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3169 break;
3170 case GPCMD_GET_CONFIGURATION:
3171 case GPCMD_READ_FORMAT_CAPACITIES:
3172 case GPCMD_READ_DISC_INFO:
3173 case GPCMD_READ_TRACK_RZONE_INFO:
3174 size = (cdb[7] << 8) + cdb[8];
3175 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3176 break;
3177 case PERSISTENT_RESERVE_IN:
3178 case PERSISTENT_RESERVE_OUT:
3179 cmd->transport_emulate_cdb =
3180 (su_dev->t10_pr.res_type ==
3181 SPC3_PERSISTENT_RESERVATIONS) ?
3182 core_scsi3_emulate_pr : NULL;
3183 size = (cdb[7] << 8) + cdb[8];
3184 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3185 break;
3186 case GPCMD_MECHANISM_STATUS:
3187 case GPCMD_READ_DVD_STRUCTURE:
3188 size = (cdb[8] << 8) + cdb[9];
3189 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3190 break;
3191 case READ_POSITION:
3192 size = READ_POSITION_LEN;
3193 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3194 break;
3195 case MAINTENANCE_OUT:
3196 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3197 /* MAINTENANCE_OUT from SCC-2
3199 * Check for emulated MO_SET_TARGET_PGS.
3201 if (cdb[1] == MO_SET_TARGET_PGS) {
3202 cmd->transport_emulate_cdb =
3203 (su_dev->t10_alua.alua_type ==
3204 SPC3_ALUA_EMULATED) ?
3205 core_emulate_set_target_port_groups :
3206 NULL;
3209 size = (cdb[6] << 24) | (cdb[7] << 16) |
3210 (cdb[8] << 8) | cdb[9];
3211 } else {
3212 /* GPCMD_REPORT_KEY from multi media commands */
3213 size = (cdb[8] << 8) + cdb[9];
3215 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3216 break;
3217 case INQUIRY:
3218 size = (cdb[3] << 8) + cdb[4];
3220 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3221 * See spc4r17 section 5.3
3223 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3224 cmd->sam_task_attr = MSG_HEAD_TAG;
3225 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3226 break;
3227 case READ_BUFFER:
3228 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3229 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3230 break;
3231 case READ_CAPACITY:
3232 size = READ_CAP_LEN;
3233 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3234 break;
3235 case READ_MEDIA_SERIAL_NUMBER:
3236 case SECURITY_PROTOCOL_IN:
3237 case SECURITY_PROTOCOL_OUT:
3238 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3239 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3240 break;
3241 case SERVICE_ACTION_IN:
3242 case ACCESS_CONTROL_IN:
3243 case ACCESS_CONTROL_OUT:
3244 case EXTENDED_COPY:
3245 case READ_ATTRIBUTE:
3246 case RECEIVE_COPY_RESULTS:
3247 case WRITE_ATTRIBUTE:
3248 size = (cdb[10] << 24) | (cdb[11] << 16) |
3249 (cdb[12] << 8) | cdb[13];
3250 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3251 break;
3252 case RECEIVE_DIAGNOSTIC:
3253 case SEND_DIAGNOSTIC:
3254 size = (cdb[3] << 8) | cdb[4];
3255 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3256 break;
3257 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3258 #if 0
3259 case GPCMD_READ_CD:
3260 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3261 size = (2336 * sectors);
3262 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3263 break;
3264 #endif
3265 case READ_TOC:
3266 size = cdb[8];
3267 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3268 break;
3269 case REQUEST_SENSE:
3270 size = cdb[4];
3271 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3272 break;
3273 case READ_ELEMENT_STATUS:
3274 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3275 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3276 break;
3277 case WRITE_BUFFER:
3278 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3279 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3280 break;
3281 case RESERVE:
3282 case RESERVE_10:
3284 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3285 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3287 if (cdb[0] == RESERVE_10)
3288 size = (cdb[7] << 8) | cdb[8];
3289 else
3290 size = cmd->data_length;
3293 * Setup the legacy emulated handler for SPC-2 and
3294 * >= SPC-3 compatible reservation handling (CRH=1)
3295 * Otherwise, we assume the underlying SCSI logic is
3296 * is running in SPC_PASSTHROUGH, and wants reservations
3297 * emulation disabled.
3299 cmd->transport_emulate_cdb =
3300 (su_dev->t10_pr.res_type !=
3301 SPC_PASSTHROUGH) ?
3302 core_scsi2_emulate_crh : NULL;
3303 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3304 break;
3305 case RELEASE:
3306 case RELEASE_10:
3308 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3309 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3311 if (cdb[0] == RELEASE_10)
3312 size = (cdb[7] << 8) | cdb[8];
3313 else
3314 size = cmd->data_length;
3316 cmd->transport_emulate_cdb =
3317 (su_dev->t10_pr.res_type !=
3318 SPC_PASSTHROUGH) ?
3319 core_scsi2_emulate_crh : NULL;
3320 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3321 break;
3322 case SYNCHRONIZE_CACHE:
3323 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3325 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3327 if (cdb[0] == SYNCHRONIZE_CACHE) {
3328 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3329 cmd->t_task_lba = transport_lba_32(cdb);
3330 } else {
3331 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3332 cmd->t_task_lba = transport_lba_64(cdb);
3334 if (sector_ret)
3335 goto out_unsupported_cdb;
3337 size = transport_get_size(sectors, cdb, cmd);
3338 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3341 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3343 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3344 break;
3346 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3347 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3349 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3351 * Check to ensure that LBA + Range does not exceed past end of
3352 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3354 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3355 if (transport_cmd_get_valid_sectors(cmd) < 0)
3356 goto out_invalid_cdb_field;
3358 break;
3359 case UNMAP:
3360 size = get_unaligned_be16(&cdb[7]);
3361 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3362 break;
3363 case WRITE_SAME_16:
3364 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3365 if (sector_ret)
3366 goto out_unsupported_cdb;
3368 if (sectors)
3369 size = transport_get_size(1, cdb, cmd);
3370 else {
3371 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3372 goto out_invalid_cdb_field;
3375 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3376 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3378 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3379 goto out_invalid_cdb_field;
3380 break;
3381 case WRITE_SAME:
3382 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3383 if (sector_ret)
3384 goto out_unsupported_cdb;
3386 if (sectors)
3387 size = transport_get_size(1, cdb, cmd);
3388 else {
3389 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3390 goto out_invalid_cdb_field;
3393 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3394 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3396 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3397 * of byte 1 bit 3 UNMAP instead of original reserved field
3399 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3400 goto out_invalid_cdb_field;
3401 break;
3402 case ALLOW_MEDIUM_REMOVAL:
3403 case GPCMD_CLOSE_TRACK:
3404 case ERASE:
3405 case INITIALIZE_ELEMENT_STATUS:
3406 case GPCMD_LOAD_UNLOAD:
3407 case REZERO_UNIT:
3408 case SEEK_10:
3409 case GPCMD_SET_SPEED:
3410 case SPACE:
3411 case START_STOP:
3412 case TEST_UNIT_READY:
3413 case VERIFY:
3414 case WRITE_FILEMARKS:
3415 case MOVE_MEDIUM:
3416 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3417 break;
3418 case REPORT_LUNS:
3419 cmd->transport_emulate_cdb =
3420 transport_core_report_lun_response;
3421 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3423 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3424 * See spc4r17 section 5.3
3426 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3427 cmd->sam_task_attr = MSG_HEAD_TAG;
3428 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3429 break;
3430 default:
3431 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3432 " 0x%02x, sending CHECK_CONDITION.\n",
3433 cmd->se_tfo->get_fabric_name(), cdb[0]);
3434 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3435 goto out_unsupported_cdb;
3438 if (size != cmd->data_length) {
3439 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3440 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3441 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3442 cmd->data_length, size, cdb[0]);
3444 cmd->cmd_spdtl = size;
3446 if (cmd->data_direction == DMA_TO_DEVICE) {
3447 pr_err("Rejecting underflow/overflow"
3448 " WRITE data\n");
3449 goto out_invalid_cdb_field;
3452 * Reject READ_* or WRITE_* with overflow/underflow for
3453 * type SCF_SCSI_DATA_SG_IO_CDB.
3455 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3456 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3457 " CDB on non 512-byte sector setup subsystem"
3458 " plugin: %s\n", dev->transport->name);
3459 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3460 goto out_invalid_cdb_field;
3463 if (size > cmd->data_length) {
3464 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3465 cmd->residual_count = (size - cmd->data_length);
3466 } else {
3467 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3468 cmd->residual_count = (cmd->data_length - size);
3470 cmd->data_length = size;
3473 /* Let's limit control cdbs to a page, for simplicity's sake. */
3474 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3475 size > PAGE_SIZE)
3476 goto out_invalid_cdb_field;
3478 transport_set_supported_SAM_opcode(cmd);
3479 return ret;
3481 out_unsupported_cdb:
3482 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3483 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3484 return -EINVAL;
3485 out_invalid_cdb_field:
3486 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3487 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3488 return -EINVAL;
3492 * Called from transport_generic_complete_ok() and
3493 * transport_generic_request_failure() to determine which dormant/delayed
3494 * and ordered cmds need to have their tasks added to the execution queue.
3496 static void transport_complete_task_attr(struct se_cmd *cmd)
3498 struct se_device *dev = cmd->se_dev;
3499 struct se_cmd *cmd_p, *cmd_tmp;
3500 int new_active_tasks = 0;
3502 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3503 atomic_dec(&dev->simple_cmds);
3504 smp_mb__after_atomic_dec();
3505 dev->dev_cur_ordered_id++;
3506 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3507 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3508 cmd->se_ordered_id);
3509 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3510 atomic_dec(&dev->dev_hoq_count);
3511 smp_mb__after_atomic_dec();
3512 dev->dev_cur_ordered_id++;
3513 pr_debug("Incremented dev_cur_ordered_id: %u for"
3514 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3515 cmd->se_ordered_id);
3516 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3517 spin_lock(&dev->ordered_cmd_lock);
3518 list_del(&cmd->se_ordered_node);
3519 atomic_dec(&dev->dev_ordered_sync);
3520 smp_mb__after_atomic_dec();
3521 spin_unlock(&dev->ordered_cmd_lock);
3523 dev->dev_cur_ordered_id++;
3524 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3525 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3528 * Process all commands up to the last received
3529 * ORDERED task attribute which requires another blocking
3530 * boundary
3532 spin_lock(&dev->delayed_cmd_lock);
3533 list_for_each_entry_safe(cmd_p, cmd_tmp,
3534 &dev->delayed_cmd_list, se_delayed_node) {
3536 list_del(&cmd_p->se_delayed_node);
3537 spin_unlock(&dev->delayed_cmd_lock);
3539 pr_debug("Calling add_tasks() for"
3540 " cmd_p: 0x%02x Task Attr: 0x%02x"
3541 " Dormant -> Active, se_ordered_id: %u\n",
3542 cmd_p->t_task_cdb[0],
3543 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3545 transport_add_tasks_from_cmd(cmd_p);
3546 new_active_tasks++;
3548 spin_lock(&dev->delayed_cmd_lock);
3549 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3550 break;
3552 spin_unlock(&dev->delayed_cmd_lock);
3554 * If new tasks have become active, wake up the transport thread
3555 * to do the processing of the Active tasks.
3557 if (new_active_tasks != 0)
3558 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3561 static int transport_complete_qf(struct se_cmd *cmd)
3563 int ret = 0;
3565 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3566 return cmd->se_tfo->queue_status(cmd);
3568 switch (cmd->data_direction) {
3569 case DMA_FROM_DEVICE:
3570 ret = cmd->se_tfo->queue_data_in(cmd);
3571 break;
3572 case DMA_TO_DEVICE:
3573 if (cmd->t_bidi_data_sg) {
3574 ret = cmd->se_tfo->queue_data_in(cmd);
3575 if (ret < 0)
3576 return ret;
3578 /* Fall through for DMA_TO_DEVICE */
3579 case DMA_NONE:
3580 ret = cmd->se_tfo->queue_status(cmd);
3581 break;
3582 default:
3583 break;
3586 return ret;
3589 static void transport_handle_queue_full(
3590 struct se_cmd *cmd,
3591 struct se_device *dev,
3592 int (*qf_callback)(struct se_cmd *))
3594 spin_lock_irq(&dev->qf_cmd_lock);
3595 cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3596 cmd->transport_qf_callback = qf_callback;
3597 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3598 atomic_inc(&dev->dev_qf_count);
3599 smp_mb__after_atomic_inc();
3600 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3602 schedule_work(&cmd->se_dev->qf_work_queue);
3605 static void transport_generic_complete_ok(struct se_cmd *cmd)
3607 int reason = 0, ret;
3609 * Check if we need to move delayed/dormant tasks from cmds on the
3610 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3611 * Attribute.
3613 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3614 transport_complete_task_attr(cmd);
3616 * Check to schedule QUEUE_FULL work, or execute an existing
3617 * cmd->transport_qf_callback()
3619 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3620 schedule_work(&cmd->se_dev->qf_work_queue);
3622 if (cmd->transport_qf_callback) {
3623 ret = cmd->transport_qf_callback(cmd);
3624 if (ret < 0)
3625 goto queue_full;
3627 cmd->transport_qf_callback = NULL;
3628 goto done;
3631 * Check if we need to retrieve a sense buffer from
3632 * the struct se_cmd in question.
3634 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3635 if (transport_get_sense_data(cmd) < 0)
3636 reason = TCM_NON_EXISTENT_LUN;
3639 * Only set when an struct se_task->task_scsi_status returned
3640 * a non GOOD status.
3642 if (cmd->scsi_status) {
3643 ret = transport_send_check_condition_and_sense(
3644 cmd, reason, 1);
3645 if (ret == -EAGAIN)
3646 goto queue_full;
3648 transport_lun_remove_cmd(cmd);
3649 transport_cmd_check_stop_to_fabric(cmd);
3650 return;
3654 * Check for a callback, used by amongst other things
3655 * XDWRITE_READ_10 emulation.
3657 if (cmd->transport_complete_callback)
3658 cmd->transport_complete_callback(cmd);
3660 switch (cmd->data_direction) {
3661 case DMA_FROM_DEVICE:
3662 spin_lock(&cmd->se_lun->lun_sep_lock);
3663 if (cmd->se_lun->lun_sep) {
3664 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3665 cmd->data_length;
3667 spin_unlock(&cmd->se_lun->lun_sep_lock);
3669 ret = cmd->se_tfo->queue_data_in(cmd);
3670 if (ret == -EAGAIN)
3671 goto queue_full;
3672 break;
3673 case DMA_TO_DEVICE:
3674 spin_lock(&cmd->se_lun->lun_sep_lock);
3675 if (cmd->se_lun->lun_sep) {
3676 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3677 cmd->data_length;
3679 spin_unlock(&cmd->se_lun->lun_sep_lock);
3681 * Check if we need to send READ payload for BIDI-COMMAND
3683 if (cmd->t_bidi_data_sg) {
3684 spin_lock(&cmd->se_lun->lun_sep_lock);
3685 if (cmd->se_lun->lun_sep) {
3686 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3687 cmd->data_length;
3689 spin_unlock(&cmd->se_lun->lun_sep_lock);
3690 ret = cmd->se_tfo->queue_data_in(cmd);
3691 if (ret == -EAGAIN)
3692 goto queue_full;
3693 break;
3695 /* Fall through for DMA_TO_DEVICE */
3696 case DMA_NONE:
3697 ret = cmd->se_tfo->queue_status(cmd);
3698 if (ret == -EAGAIN)
3699 goto queue_full;
3700 break;
3701 default:
3702 break;
3705 done:
3706 transport_lun_remove_cmd(cmd);
3707 transport_cmd_check_stop_to_fabric(cmd);
3708 return;
3710 queue_full:
3711 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3712 " data_direction: %d\n", cmd, cmd->data_direction);
3713 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3716 static void transport_free_dev_tasks(struct se_cmd *cmd)
3718 struct se_task *task, *task_tmp;
3719 unsigned long flags;
3721 spin_lock_irqsave(&cmd->t_state_lock, flags);
3722 list_for_each_entry_safe(task, task_tmp,
3723 &cmd->t_task_list, t_list) {
3724 if (atomic_read(&task->task_active))
3725 continue;
3727 kfree(task->task_sg_bidi);
3728 kfree(task->task_sg);
3730 list_del(&task->t_list);
3732 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3733 if (task->se_dev)
3734 task->se_dev->transport->free_task(task);
3735 else
3736 pr_err("task[%u] - task->se_dev is NULL\n",
3737 task->task_no);
3738 spin_lock_irqsave(&cmd->t_state_lock, flags);
3740 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3743 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3745 struct scatterlist *sg;
3746 int count;
3748 for_each_sg(sgl, sg, nents, count)
3749 __free_page(sg_page(sg));
3751 kfree(sgl);
3754 static inline void transport_free_pages(struct se_cmd *cmd)
3756 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3757 return;
3759 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3760 cmd->t_data_sg = NULL;
3761 cmd->t_data_nents = 0;
3763 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3764 cmd->t_bidi_data_sg = NULL;
3765 cmd->t_bidi_data_nents = 0;
3768 static inline void transport_release_tasks(struct se_cmd *cmd)
3770 transport_free_dev_tasks(cmd);
3773 static inline int transport_dec_and_check(struct se_cmd *cmd)
3775 unsigned long flags;
3777 spin_lock_irqsave(&cmd->t_state_lock, flags);
3778 if (atomic_read(&cmd->t_fe_count)) {
3779 if (!atomic_dec_and_test(&cmd->t_fe_count)) {
3780 spin_unlock_irqrestore(&cmd->t_state_lock,
3781 flags);
3782 return 1;
3786 if (atomic_read(&cmd->t_se_count)) {
3787 if (!atomic_dec_and_test(&cmd->t_se_count)) {
3788 spin_unlock_irqrestore(&cmd->t_state_lock,
3789 flags);
3790 return 1;
3793 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3795 return 0;
3798 static void transport_release_fe_cmd(struct se_cmd *cmd)
3800 unsigned long flags;
3802 if (transport_dec_and_check(cmd))
3803 return;
3805 spin_lock_irqsave(&cmd->t_state_lock, flags);
3806 if (!atomic_read(&cmd->transport_dev_active)) {
3807 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3808 goto free_pages;
3810 atomic_set(&cmd->transport_dev_active, 0);
3811 transport_all_task_dev_remove_state(cmd);
3812 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3814 transport_release_tasks(cmd);
3815 free_pages:
3816 transport_free_pages(cmd);
3817 transport_free_se_cmd(cmd);
3818 cmd->se_tfo->release_cmd(cmd);
3821 static int
3822 transport_generic_remove(struct se_cmd *cmd, int session_reinstatement)
3824 unsigned long flags;
3826 if (transport_dec_and_check(cmd)) {
3827 if (session_reinstatement) {
3828 spin_lock_irqsave(&cmd->t_state_lock, flags);
3829 transport_all_task_dev_remove_state(cmd);
3830 spin_unlock_irqrestore(&cmd->t_state_lock,
3831 flags);
3833 return 1;
3836 spin_lock_irqsave(&cmd->t_state_lock, flags);
3837 if (!atomic_read(&cmd->transport_dev_active)) {
3838 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3839 goto free_pages;
3841 atomic_set(&cmd->transport_dev_active, 0);
3842 transport_all_task_dev_remove_state(cmd);
3843 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3845 transport_release_tasks(cmd);
3847 free_pages:
3848 transport_free_pages(cmd);
3849 transport_release_cmd(cmd);
3850 return 0;
3854 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3855 * allocating in the core.
3856 * @cmd: Associated se_cmd descriptor
3857 * @mem: SGL style memory for TCM WRITE / READ
3858 * @sg_mem_num: Number of SGL elements
3859 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3860 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3862 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3863 * of parameters.
3865 int transport_generic_map_mem_to_cmd(
3866 struct se_cmd *cmd,
3867 struct scatterlist *sgl,
3868 u32 sgl_count,
3869 struct scatterlist *sgl_bidi,
3870 u32 sgl_bidi_count)
3872 if (!sgl || !sgl_count)
3873 return 0;
3875 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3876 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3878 cmd->t_data_sg = sgl;
3879 cmd->t_data_nents = sgl_count;
3881 if (sgl_bidi && sgl_bidi_count) {
3882 cmd->t_bidi_data_sg = sgl_bidi;
3883 cmd->t_bidi_data_nents = sgl_bidi_count;
3885 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3888 return 0;
3890 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3892 static int transport_new_cmd_obj(struct se_cmd *cmd)
3894 struct se_device *dev = cmd->se_dev;
3895 int set_counts = 1, rc, task_cdbs;
3898 * Setup any BIDI READ tasks and memory from
3899 * cmd->t_mem_bidi_list so the READ struct se_tasks
3900 * are queued first for the non pSCSI passthrough case.
3902 if (cmd->t_bidi_data_sg &&
3903 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3904 rc = transport_allocate_tasks(cmd,
3905 cmd->t_task_lba,
3906 DMA_FROM_DEVICE,
3907 cmd->t_bidi_data_sg,
3908 cmd->t_bidi_data_nents);
3909 if (rc <= 0) {
3910 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3911 cmd->scsi_sense_reason =
3912 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3913 return -EINVAL;
3915 atomic_inc(&cmd->t_fe_count);
3916 atomic_inc(&cmd->t_se_count);
3917 set_counts = 0;
3920 * Setup the tasks and memory from cmd->t_mem_list
3921 * Note for BIDI transfers this will contain the WRITE payload
3923 task_cdbs = transport_allocate_tasks(cmd,
3924 cmd->t_task_lba,
3925 cmd->data_direction,
3926 cmd->t_data_sg,
3927 cmd->t_data_nents);
3928 if (task_cdbs <= 0) {
3929 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3930 cmd->scsi_sense_reason =
3931 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3932 return -EINVAL;
3935 if (set_counts) {
3936 atomic_inc(&cmd->t_fe_count);
3937 atomic_inc(&cmd->t_se_count);
3940 cmd->t_task_list_num = task_cdbs;
3942 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3943 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3944 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3945 return 0;
3948 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3950 struct scatterlist *sg = cmd->t_data_sg;
3952 BUG_ON(!sg);
3954 * We need to take into account a possible offset here for fabrics like
3955 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3956 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3958 return kmap(sg_page(sg)) + sg->offset;
3960 EXPORT_SYMBOL(transport_kmap_first_data_page);
3962 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3964 kunmap(sg_page(cmd->t_data_sg));
3966 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3968 static int
3969 transport_generic_get_mem(struct se_cmd *cmd)
3971 u32 length = cmd->data_length;
3972 unsigned int nents;
3973 struct page *page;
3974 int i = 0;
3976 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3977 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3978 if (!cmd->t_data_sg)
3979 return -ENOMEM;
3981 cmd->t_data_nents = nents;
3982 sg_init_table(cmd->t_data_sg, nents);
3984 while (length) {
3985 u32 page_len = min_t(u32, length, PAGE_SIZE);
3986 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3987 if (!page)
3988 goto out;
3990 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3991 length -= page_len;
3992 i++;
3994 return 0;
3996 out:
3997 while (i >= 0) {
3998 __free_page(sg_page(&cmd->t_data_sg[i]));
3999 i--;
4001 kfree(cmd->t_data_sg);
4002 cmd->t_data_sg = NULL;
4003 return -ENOMEM;
4006 /* Reduce sectors if they are too long for the device */
4007 static inline sector_t transport_limit_task_sectors(
4008 struct se_device *dev,
4009 unsigned long long lba,
4010 sector_t sectors)
4012 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
4014 if (dev->transport->get_device_type(dev) == TYPE_DISK)
4015 if ((lba + sectors) > transport_dev_end_lba(dev))
4016 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4018 return sectors;
4023 * This function can be used by HW target mode drivers to create a linked
4024 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4025 * This is intended to be called during the completion path by TCM Core
4026 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4028 void transport_do_task_sg_chain(struct se_cmd *cmd)
4030 struct scatterlist *sg_first = NULL;
4031 struct scatterlist *sg_prev = NULL;
4032 int sg_prev_nents = 0;
4033 struct scatterlist *sg;
4034 struct se_task *task;
4035 u32 chained_nents = 0;
4036 int i;
4038 BUG_ON(!cmd->se_tfo->task_sg_chaining);
4041 * Walk the struct se_task list and setup scatterlist chains
4042 * for each contiguously allocated struct se_task->task_sg[].
4044 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4045 if (!task->task_sg)
4046 continue;
4048 if (!sg_first) {
4049 sg_first = task->task_sg;
4050 chained_nents = task->task_sg_nents;
4051 } else {
4052 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
4053 chained_nents += task->task_sg_nents;
4056 * For the padded tasks, use the extra SGL vector allocated
4057 * in transport_allocate_data_tasks() for the sg_prev_nents
4058 * offset into sg_chain() above.. The last task of a
4059 * multi-task list, or a single task will not have
4060 * task->task_sg_padded set..
4062 if (task->task_padded_sg)
4063 sg_prev_nents = (task->task_sg_nents + 1);
4064 else
4065 sg_prev_nents = task->task_sg_nents;
4067 sg_prev = task->task_sg;
4070 * Setup the starting pointer and total t_tasks_sg_linked_no including
4071 * padding SGs for linking and to mark the end.
4073 cmd->t_tasks_sg_chained = sg_first;
4074 cmd->t_tasks_sg_chained_no = chained_nents;
4076 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
4077 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
4078 cmd->t_tasks_sg_chained_no);
4080 for_each_sg(cmd->t_tasks_sg_chained, sg,
4081 cmd->t_tasks_sg_chained_no, i) {
4083 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
4084 i, sg, sg_page(sg), sg->length, sg->offset);
4085 if (sg_is_chain(sg))
4086 pr_debug("SG: %p sg_is_chain=1\n", sg);
4087 if (sg_is_last(sg))
4088 pr_debug("SG: %p sg_is_last=1\n", sg);
4091 EXPORT_SYMBOL(transport_do_task_sg_chain);
4094 * Break up cmd into chunks transport can handle
4096 static int transport_allocate_data_tasks(
4097 struct se_cmd *cmd,
4098 unsigned long long lba,
4099 enum dma_data_direction data_direction,
4100 struct scatterlist *sgl,
4101 unsigned int sgl_nents)
4103 unsigned char *cdb = NULL;
4104 struct se_task *task;
4105 struct se_device *dev = cmd->se_dev;
4106 unsigned long flags;
4107 int task_count, i, ret;
4108 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4109 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
4110 struct scatterlist *sg;
4111 struct scatterlist *cmd_sg;
4113 WARN_ON(cmd->data_length % sector_size);
4114 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
4115 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
4117 cmd_sg = sgl;
4118 for (i = 0; i < task_count; i++) {
4119 unsigned int task_size, task_sg_nents_padded;
4120 int count;
4122 task = transport_generic_get_task(cmd, data_direction);
4123 if (!task)
4124 return -ENOMEM;
4126 task->task_lba = lba;
4127 task->task_sectors = min(sectors, dev_max_sectors);
4128 task->task_size = task->task_sectors * sector_size;
4130 cdb = dev->transport->get_cdb(task);
4131 BUG_ON(!cdb);
4133 memcpy(cdb, cmd->t_task_cdb,
4134 scsi_command_size(cmd->t_task_cdb));
4136 /* Update new cdb with updated lba/sectors */
4137 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
4139 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
4140 * in order to calculate the number per task SGL entries
4142 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
4144 * Check if the fabric module driver is requesting that all
4145 * struct se_task->task_sg[] be chained together.. If so,
4146 * then allocate an extra padding SG entry for linking and
4147 * marking the end of the chained SGL for every task except
4148 * the last one for (task_count > 1) operation, or skipping
4149 * the extra padding for the (task_count == 1) case.
4151 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
4152 task_sg_nents_padded = (task->task_sg_nents + 1);
4153 task->task_padded_sg = 1;
4154 } else
4155 task_sg_nents_padded = task->task_sg_nents;
4157 task->task_sg = kmalloc(sizeof(struct scatterlist) *
4158 task_sg_nents_padded, GFP_KERNEL);
4159 if (!task->task_sg) {
4160 cmd->se_dev->transport->free_task(task);
4161 return -ENOMEM;
4164 sg_init_table(task->task_sg, task_sg_nents_padded);
4166 task_size = task->task_size;
4168 /* Build new sgl, only up to task_size */
4169 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4170 if (cmd_sg->length > task_size)
4171 break;
4173 *sg = *cmd_sg;
4174 task_size -= cmd_sg->length;
4175 cmd_sg = sg_next(cmd_sg);
4178 lba += task->task_sectors;
4179 sectors -= task->task_sectors;
4181 spin_lock_irqsave(&cmd->t_state_lock, flags);
4182 list_add_tail(&task->t_list, &cmd->t_task_list);
4183 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4186 * Now perform the memory map of task->task_sg[] into backend
4187 * subsystem memory..
4189 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4190 if (atomic_read(&task->task_sent))
4191 continue;
4192 if (!dev->transport->map_data_SG)
4193 continue;
4195 ret = dev->transport->map_data_SG(task);
4196 if (ret < 0)
4197 return 0;
4200 return task_count;
4203 static int
4204 transport_allocate_control_task(struct se_cmd *cmd)
4206 struct se_device *dev = cmd->se_dev;
4207 unsigned char *cdb;
4208 struct se_task *task;
4209 unsigned long flags;
4210 int ret = 0;
4212 task = transport_generic_get_task(cmd, cmd->data_direction);
4213 if (!task)
4214 return -ENOMEM;
4216 cdb = dev->transport->get_cdb(task);
4217 BUG_ON(!cdb);
4218 memcpy(cdb, cmd->t_task_cdb,
4219 scsi_command_size(cmd->t_task_cdb));
4221 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4222 GFP_KERNEL);
4223 if (!task->task_sg) {
4224 cmd->se_dev->transport->free_task(task);
4225 return -ENOMEM;
4228 memcpy(task->task_sg, cmd->t_data_sg,
4229 sizeof(struct scatterlist) * cmd->t_data_nents);
4230 task->task_size = cmd->data_length;
4231 task->task_sg_nents = cmd->t_data_nents;
4233 spin_lock_irqsave(&cmd->t_state_lock, flags);
4234 list_add_tail(&task->t_list, &cmd->t_task_list);
4235 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4237 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
4238 if (dev->transport->map_control_SG)
4239 ret = dev->transport->map_control_SG(task);
4240 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
4241 if (dev->transport->cdb_none)
4242 ret = dev->transport->cdb_none(task);
4243 } else {
4244 pr_err("target: Unknown control cmd type!\n");
4245 BUG();
4248 /* Success! Return number of tasks allocated */
4249 if (ret == 0)
4250 return 1;
4251 return ret;
4254 static u32 transport_allocate_tasks(
4255 struct se_cmd *cmd,
4256 unsigned long long lba,
4257 enum dma_data_direction data_direction,
4258 struct scatterlist *sgl,
4259 unsigned int sgl_nents)
4261 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4262 if (transport_cmd_get_valid_sectors(cmd) < 0)
4263 return -EINVAL;
4265 return transport_allocate_data_tasks(cmd, lba, data_direction,
4266 sgl, sgl_nents);
4267 } else
4268 return transport_allocate_control_task(cmd);
4273 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4275 * Allocate storage transport resources from a set of values predefined
4276 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4277 * Any non zero return here is treated as an "out of resource' op here.
4280 * Generate struct se_task(s) and/or their payloads for this CDB.
4282 int transport_generic_new_cmd(struct se_cmd *cmd)
4284 int ret = 0;
4287 * Determine is the TCM fabric module has already allocated physical
4288 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4289 * beforehand.
4291 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4292 cmd->data_length) {
4293 ret = transport_generic_get_mem(cmd);
4294 if (ret < 0)
4295 return ret;
4298 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4299 * control or data CDB types, and perform the map to backend subsystem
4300 * code from SGL memory allocated here by transport_generic_get_mem(), or
4301 * via pre-existing SGL memory setup explictly by fabric module code with
4302 * transport_generic_map_mem_to_cmd().
4304 ret = transport_new_cmd_obj(cmd);
4305 if (ret < 0)
4306 return ret;
4308 * For WRITEs, let the fabric know its buffer is ready..
4309 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4310 * will be added to the struct se_device execution queue after its WRITE
4311 * data has arrived. (ie: It gets handled by the transport processing
4312 * thread a second time)
4314 if (cmd->data_direction == DMA_TO_DEVICE) {
4315 transport_add_tasks_to_state_queue(cmd);
4316 return transport_generic_write_pending(cmd);
4319 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4320 * to the execution queue.
4322 transport_execute_tasks(cmd);
4323 return 0;
4325 EXPORT_SYMBOL(transport_generic_new_cmd);
4327 /* transport_generic_process_write():
4331 void transport_generic_process_write(struct se_cmd *cmd)
4333 transport_execute_tasks(cmd);
4335 EXPORT_SYMBOL(transport_generic_process_write);
4337 static int transport_write_pending_qf(struct se_cmd *cmd)
4339 return cmd->se_tfo->write_pending(cmd);
4342 /* transport_generic_write_pending():
4346 static int transport_generic_write_pending(struct se_cmd *cmd)
4348 unsigned long flags;
4349 int ret;
4351 spin_lock_irqsave(&cmd->t_state_lock, flags);
4352 cmd->t_state = TRANSPORT_WRITE_PENDING;
4353 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4355 if (cmd->transport_qf_callback) {
4356 ret = cmd->transport_qf_callback(cmd);
4357 if (ret == -EAGAIN)
4358 goto queue_full;
4359 else if (ret < 0)
4360 return ret;
4362 cmd->transport_qf_callback = NULL;
4363 return 0;
4367 * Clear the se_cmd for WRITE_PENDING status in order to set
4368 * cmd->t_transport_active=0 so that transport_generic_handle_data
4369 * can be called from HW target mode interrupt code. This is safe
4370 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4371 * because the se_cmd->se_lun pointer is not being cleared.
4373 transport_cmd_check_stop(cmd, 1, 0);
4376 * Call the fabric write_pending function here to let the
4377 * frontend know that WRITE buffers are ready.
4379 ret = cmd->se_tfo->write_pending(cmd);
4380 if (ret == -EAGAIN)
4381 goto queue_full;
4382 else if (ret < 0)
4383 return ret;
4385 return PYX_TRANSPORT_WRITE_PENDING;
4387 queue_full:
4388 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4389 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4390 transport_handle_queue_full(cmd, cmd->se_dev,
4391 transport_write_pending_qf);
4392 return ret;
4395 void transport_release_cmd(struct se_cmd *cmd)
4397 BUG_ON(!cmd->se_tfo);
4399 transport_free_se_cmd(cmd);
4400 cmd->se_tfo->release_cmd(cmd);
4402 EXPORT_SYMBOL(transport_release_cmd);
4404 /* transport_generic_free_cmd():
4406 * Called from processing frontend to release storage engine resources
4408 void transport_generic_free_cmd(
4409 struct se_cmd *cmd,
4410 int wait_for_tasks,
4411 int session_reinstatement)
4413 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
4414 transport_release_cmd(cmd);
4415 else {
4416 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4418 if (cmd->se_lun) {
4419 #if 0
4420 pr_debug("cmd: %p ITT: 0x%08x contains"
4421 " cmd->se_lun\n", cmd,
4422 cmd->se_tfo->get_task_tag(cmd));
4423 #endif
4424 transport_lun_remove_cmd(cmd);
4427 if (wait_for_tasks && cmd->transport_wait_for_tasks)
4428 cmd->transport_wait_for_tasks(cmd, 0, 0);
4430 transport_free_dev_tasks(cmd);
4432 transport_generic_remove(cmd, session_reinstatement);
4435 EXPORT_SYMBOL(transport_generic_free_cmd);
4437 static void transport_nop_wait_for_tasks(
4438 struct se_cmd *cmd,
4439 int remove_cmd,
4440 int session_reinstatement)
4442 return;
4445 /* transport_lun_wait_for_tasks():
4447 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4448 * an struct se_lun to be successfully shutdown.
4450 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4452 unsigned long flags;
4453 int ret;
4455 * If the frontend has already requested this struct se_cmd to
4456 * be stopped, we can safely ignore this struct se_cmd.
4458 spin_lock_irqsave(&cmd->t_state_lock, flags);
4459 if (atomic_read(&cmd->t_transport_stop)) {
4460 atomic_set(&cmd->transport_lun_stop, 0);
4461 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4462 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4463 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4464 transport_cmd_check_stop(cmd, 1, 0);
4465 return -EPERM;
4467 atomic_set(&cmd->transport_lun_fe_stop, 1);
4468 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4470 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4472 ret = transport_stop_tasks_for_cmd(cmd);
4474 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4475 " %d\n", cmd, cmd->t_task_list_num, ret);
4476 if (!ret) {
4477 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4478 cmd->se_tfo->get_task_tag(cmd));
4479 wait_for_completion(&cmd->transport_lun_stop_comp);
4480 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4481 cmd->se_tfo->get_task_tag(cmd));
4483 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4485 return 0;
4488 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4490 struct se_cmd *cmd = NULL;
4491 unsigned long lun_flags, cmd_flags;
4493 * Do exception processing and return CHECK_CONDITION status to the
4494 * Initiator Port.
4496 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4497 while (!list_empty(&lun->lun_cmd_list)) {
4498 cmd = list_first_entry(&lun->lun_cmd_list,
4499 struct se_cmd, se_lun_node);
4500 list_del(&cmd->se_lun_node);
4502 atomic_set(&cmd->transport_lun_active, 0);
4504 * This will notify iscsi_target_transport.c:
4505 * transport_cmd_check_stop() that a LUN shutdown is in
4506 * progress for the iscsi_cmd_t.
4508 spin_lock(&cmd->t_state_lock);
4509 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4510 "_lun_stop for ITT: 0x%08x\n",
4511 cmd->se_lun->unpacked_lun,
4512 cmd->se_tfo->get_task_tag(cmd));
4513 atomic_set(&cmd->transport_lun_stop, 1);
4514 spin_unlock(&cmd->t_state_lock);
4516 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4518 if (!cmd->se_lun) {
4519 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4520 cmd->se_tfo->get_task_tag(cmd),
4521 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4522 BUG();
4525 * If the Storage engine still owns the iscsi_cmd_t, determine
4526 * and/or stop its context.
4528 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4529 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4530 cmd->se_tfo->get_task_tag(cmd));
4532 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4533 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4534 continue;
4537 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4538 "_wait_for_tasks(): SUCCESS\n",
4539 cmd->se_lun->unpacked_lun,
4540 cmd->se_tfo->get_task_tag(cmd));
4542 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4543 if (!atomic_read(&cmd->transport_dev_active)) {
4544 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4545 goto check_cond;
4547 atomic_set(&cmd->transport_dev_active, 0);
4548 transport_all_task_dev_remove_state(cmd);
4549 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4551 transport_free_dev_tasks(cmd);
4553 * The Storage engine stopped this struct se_cmd before it was
4554 * send to the fabric frontend for delivery back to the
4555 * Initiator Node. Return this SCSI CDB back with an
4556 * CHECK_CONDITION status.
4558 check_cond:
4559 transport_send_check_condition_and_sense(cmd,
4560 TCM_NON_EXISTENT_LUN, 0);
4562 * If the fabric frontend is waiting for this iscsi_cmd_t to
4563 * be released, notify the waiting thread now that LU has
4564 * finished accessing it.
4566 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4567 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4568 pr_debug("SE_LUN[%d] - Detected FE stop for"
4569 " struct se_cmd: %p ITT: 0x%08x\n",
4570 lun->unpacked_lun,
4571 cmd, cmd->se_tfo->get_task_tag(cmd));
4573 spin_unlock_irqrestore(&cmd->t_state_lock,
4574 cmd_flags);
4575 transport_cmd_check_stop(cmd, 1, 0);
4576 complete(&cmd->transport_lun_fe_stop_comp);
4577 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4578 continue;
4580 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4581 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4583 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4584 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4586 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4589 static int transport_clear_lun_thread(void *p)
4591 struct se_lun *lun = (struct se_lun *)p;
4593 __transport_clear_lun_from_sessions(lun);
4594 complete(&lun->lun_shutdown_comp);
4596 return 0;
4599 int transport_clear_lun_from_sessions(struct se_lun *lun)
4601 struct task_struct *kt;
4603 kt = kthread_run(transport_clear_lun_thread, lun,
4604 "tcm_cl_%u", lun->unpacked_lun);
4605 if (IS_ERR(kt)) {
4606 pr_err("Unable to start clear_lun thread\n");
4607 return PTR_ERR(kt);
4609 wait_for_completion(&lun->lun_shutdown_comp);
4611 return 0;
4614 /* transport_generic_wait_for_tasks():
4616 * Called from frontend or passthrough context to wait for storage engine
4617 * to pause and/or release frontend generated struct se_cmd.
4619 static void transport_generic_wait_for_tasks(
4620 struct se_cmd *cmd,
4621 int remove_cmd,
4622 int session_reinstatement)
4624 unsigned long flags;
4626 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
4627 return;
4629 spin_lock_irqsave(&cmd->t_state_lock, flags);
4631 * If we are already stopped due to an external event (ie: LUN shutdown)
4632 * sleep until the connection can have the passed struct se_cmd back.
4633 * The cmd->transport_lun_stopped_sem will be upped by
4634 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4635 * has completed its operation on the struct se_cmd.
4637 if (atomic_read(&cmd->transport_lun_stop)) {
4639 pr_debug("wait_for_tasks: Stopping"
4640 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4641 "_stop_comp); for ITT: 0x%08x\n",
4642 cmd->se_tfo->get_task_tag(cmd));
4644 * There is a special case for WRITES where a FE exception +
4645 * LUN shutdown means ConfigFS context is still sleeping on
4646 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4647 * We go ahead and up transport_lun_stop_comp just to be sure
4648 * here.
4650 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4651 complete(&cmd->transport_lun_stop_comp);
4652 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4653 spin_lock_irqsave(&cmd->t_state_lock, flags);
4655 transport_all_task_dev_remove_state(cmd);
4657 * At this point, the frontend who was the originator of this
4658 * struct se_cmd, now owns the structure and can be released through
4659 * normal means below.
4661 pr_debug("wait_for_tasks: Stopped"
4662 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4663 "stop_comp); for ITT: 0x%08x\n",
4664 cmd->se_tfo->get_task_tag(cmd));
4666 atomic_set(&cmd->transport_lun_stop, 0);
4668 if (!atomic_read(&cmd->t_transport_active) ||
4669 atomic_read(&cmd->t_transport_aborted))
4670 goto remove;
4672 atomic_set(&cmd->t_transport_stop, 1);
4674 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4675 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4676 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4677 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4678 cmd->deferred_t_state);
4680 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4682 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4684 wait_for_completion(&cmd->t_transport_stop_comp);
4686 spin_lock_irqsave(&cmd->t_state_lock, flags);
4687 atomic_set(&cmd->t_transport_active, 0);
4688 atomic_set(&cmd->t_transport_stop, 0);
4690 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4691 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4692 cmd->se_tfo->get_task_tag(cmd));
4693 remove:
4694 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4695 if (!remove_cmd)
4696 return;
4698 transport_generic_free_cmd(cmd, 0, session_reinstatement);
4701 static int transport_get_sense_codes(
4702 struct se_cmd *cmd,
4703 u8 *asc,
4704 u8 *ascq)
4706 *asc = cmd->scsi_asc;
4707 *ascq = cmd->scsi_ascq;
4709 return 0;
4712 static int transport_set_sense_codes(
4713 struct se_cmd *cmd,
4714 u8 asc,
4715 u8 ascq)
4717 cmd->scsi_asc = asc;
4718 cmd->scsi_ascq = ascq;
4720 return 0;
4723 int transport_send_check_condition_and_sense(
4724 struct se_cmd *cmd,
4725 u8 reason,
4726 int from_transport)
4728 unsigned char *buffer = cmd->sense_buffer;
4729 unsigned long flags;
4730 int offset;
4731 u8 asc = 0, ascq = 0;
4733 spin_lock_irqsave(&cmd->t_state_lock, flags);
4734 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4735 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4736 return 0;
4738 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4739 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4741 if (!reason && from_transport)
4742 goto after_reason;
4744 if (!from_transport)
4745 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4747 * Data Segment and SenseLength of the fabric response PDU.
4749 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4750 * from include/scsi/scsi_cmnd.h
4752 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4753 TRANSPORT_SENSE_BUFFER);
4755 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4756 * SENSE KEY values from include/scsi/scsi.h
4758 switch (reason) {
4759 case TCM_NON_EXISTENT_LUN:
4760 /* CURRENT ERROR */
4761 buffer[offset] = 0x70;
4762 /* ILLEGAL REQUEST */
4763 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4764 /* LOGICAL UNIT NOT SUPPORTED */
4765 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4766 break;
4767 case TCM_UNSUPPORTED_SCSI_OPCODE:
4768 case TCM_SECTOR_COUNT_TOO_MANY:
4769 /* CURRENT ERROR */
4770 buffer[offset] = 0x70;
4771 /* ILLEGAL REQUEST */
4772 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4773 /* INVALID COMMAND OPERATION CODE */
4774 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4775 break;
4776 case TCM_UNKNOWN_MODE_PAGE:
4777 /* CURRENT ERROR */
4778 buffer[offset] = 0x70;
4779 /* ILLEGAL REQUEST */
4780 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4781 /* INVALID FIELD IN CDB */
4782 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4783 break;
4784 case TCM_CHECK_CONDITION_ABORT_CMD:
4785 /* CURRENT ERROR */
4786 buffer[offset] = 0x70;
4787 /* ABORTED COMMAND */
4788 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4789 /* BUS DEVICE RESET FUNCTION OCCURRED */
4790 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4791 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4792 break;
4793 case TCM_INCORRECT_AMOUNT_OF_DATA:
4794 /* CURRENT ERROR */
4795 buffer[offset] = 0x70;
4796 /* ABORTED COMMAND */
4797 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4798 /* WRITE ERROR */
4799 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4800 /* NOT ENOUGH UNSOLICITED DATA */
4801 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4802 break;
4803 case TCM_INVALID_CDB_FIELD:
4804 /* CURRENT ERROR */
4805 buffer[offset] = 0x70;
4806 /* ABORTED COMMAND */
4807 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4808 /* INVALID FIELD IN CDB */
4809 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4810 break;
4811 case TCM_INVALID_PARAMETER_LIST:
4812 /* CURRENT ERROR */
4813 buffer[offset] = 0x70;
4814 /* ABORTED COMMAND */
4815 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4816 /* INVALID FIELD IN PARAMETER LIST */
4817 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4818 break;
4819 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4820 /* CURRENT ERROR */
4821 buffer[offset] = 0x70;
4822 /* ABORTED COMMAND */
4823 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4824 /* WRITE ERROR */
4825 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4826 /* UNEXPECTED_UNSOLICITED_DATA */
4827 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4828 break;
4829 case TCM_SERVICE_CRC_ERROR:
4830 /* CURRENT ERROR */
4831 buffer[offset] = 0x70;
4832 /* ABORTED COMMAND */
4833 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4834 /* PROTOCOL SERVICE CRC ERROR */
4835 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4836 /* N/A */
4837 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4838 break;
4839 case TCM_SNACK_REJECTED:
4840 /* CURRENT ERROR */
4841 buffer[offset] = 0x70;
4842 /* ABORTED COMMAND */
4843 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4844 /* READ ERROR */
4845 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4846 /* FAILED RETRANSMISSION REQUEST */
4847 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4848 break;
4849 case TCM_WRITE_PROTECTED:
4850 /* CURRENT ERROR */
4851 buffer[offset] = 0x70;
4852 /* DATA PROTECT */
4853 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4854 /* WRITE PROTECTED */
4855 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4856 break;
4857 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4858 /* CURRENT ERROR */
4859 buffer[offset] = 0x70;
4860 /* UNIT ATTENTION */
4861 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4862 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4863 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4864 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4865 break;
4866 case TCM_CHECK_CONDITION_NOT_READY:
4867 /* CURRENT ERROR */
4868 buffer[offset] = 0x70;
4869 /* Not Ready */
4870 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4871 transport_get_sense_codes(cmd, &asc, &ascq);
4872 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4873 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4874 break;
4875 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4876 default:
4877 /* CURRENT ERROR */
4878 buffer[offset] = 0x70;
4879 /* ILLEGAL REQUEST */
4880 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4881 /* LOGICAL UNIT COMMUNICATION FAILURE */
4882 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4883 break;
4886 * This code uses linux/include/scsi/scsi.h SAM status codes!
4888 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4890 * Automatically padded, this value is encoded in the fabric's
4891 * data_length response PDU containing the SCSI defined sense data.
4893 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4895 after_reason:
4896 return cmd->se_tfo->queue_status(cmd);
4898 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4900 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4902 int ret = 0;
4904 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4905 if (!send_status ||
4906 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4907 return 1;
4908 #if 0
4909 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4910 " status for CDB: 0x%02x ITT: 0x%08x\n",
4911 cmd->t_task_cdb[0],
4912 cmd->se_tfo->get_task_tag(cmd));
4913 #endif
4914 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4915 cmd->se_tfo->queue_status(cmd);
4916 ret = 1;
4918 return ret;
4920 EXPORT_SYMBOL(transport_check_aborted_status);
4922 void transport_send_task_abort(struct se_cmd *cmd)
4925 * If there are still expected incoming fabric WRITEs, we wait
4926 * until until they have completed before sending a TASK_ABORTED
4927 * response. This response with TASK_ABORTED status will be
4928 * queued back to fabric module by transport_check_aborted_status().
4930 if (cmd->data_direction == DMA_TO_DEVICE) {
4931 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4932 atomic_inc(&cmd->t_transport_aborted);
4933 smp_mb__after_atomic_inc();
4934 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4935 transport_new_cmd_failure(cmd);
4936 return;
4939 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4940 #if 0
4941 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4942 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4943 cmd->se_tfo->get_task_tag(cmd));
4944 #endif
4945 cmd->se_tfo->queue_status(cmd);
4948 /* transport_generic_do_tmr():
4952 int transport_generic_do_tmr(struct se_cmd *cmd)
4954 struct se_device *dev = cmd->se_dev;
4955 struct se_tmr_req *tmr = cmd->se_tmr_req;
4956 int ret;
4958 switch (tmr->function) {
4959 case TMR_ABORT_TASK:
4960 tmr->response = TMR_FUNCTION_REJECTED;
4961 break;
4962 case TMR_ABORT_TASK_SET:
4963 case TMR_CLEAR_ACA:
4964 case TMR_CLEAR_TASK_SET:
4965 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4966 break;
4967 case TMR_LUN_RESET:
4968 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4969 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4970 TMR_FUNCTION_REJECTED;
4971 break;
4972 case TMR_TARGET_WARM_RESET:
4973 tmr->response = TMR_FUNCTION_REJECTED;
4974 break;
4975 case TMR_TARGET_COLD_RESET:
4976 tmr->response = TMR_FUNCTION_REJECTED;
4977 break;
4978 default:
4979 pr_err("Uknown TMR function: 0x%02x.\n",
4980 tmr->function);
4981 tmr->response = TMR_FUNCTION_REJECTED;
4982 break;
4985 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4986 cmd->se_tfo->queue_tm_rsp(cmd);
4988 transport_cmd_check_stop(cmd, 2, 0);
4989 return 0;
4993 * Called with spin_lock_irq(&dev->execute_task_lock); held
4996 static struct se_task *
4997 transport_get_task_from_state_list(struct se_device *dev)
4999 struct se_task *task;
5001 if (list_empty(&dev->state_task_list))
5002 return NULL;
5004 list_for_each_entry(task, &dev->state_task_list, t_state_list)
5005 break;
5007 list_del(&task->t_state_list);
5008 atomic_set(&task->task_state_active, 0);
5010 return task;
5013 static void transport_processing_shutdown(struct se_device *dev)
5015 struct se_cmd *cmd;
5016 struct se_task *task;
5017 unsigned long flags;
5019 * Empty the struct se_device's struct se_task state list.
5021 spin_lock_irqsave(&dev->execute_task_lock, flags);
5022 while ((task = transport_get_task_from_state_list(dev))) {
5023 if (!task->task_se_cmd) {
5024 pr_err("task->task_se_cmd is NULL!\n");
5025 continue;
5027 cmd = task->task_se_cmd;
5029 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5031 spin_lock_irqsave(&cmd->t_state_lock, flags);
5033 pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
5034 " i_state: %d, t_state/def_t_state:"
5035 " %d/%d cdb: 0x%02x\n", cmd, task,
5036 cmd->se_tfo->get_task_tag(cmd),
5037 cmd->se_tfo->get_cmd_state(cmd),
5038 cmd->t_state, cmd->deferred_t_state,
5039 cmd->t_task_cdb[0]);
5040 pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
5041 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5042 " t_transport_stop: %d t_transport_sent: %d\n",
5043 cmd->se_tfo->get_task_tag(cmd),
5044 cmd->t_task_list_num,
5045 atomic_read(&cmd->t_task_cdbs_left),
5046 atomic_read(&cmd->t_task_cdbs_sent),
5047 atomic_read(&cmd->t_transport_active),
5048 atomic_read(&cmd->t_transport_stop),
5049 atomic_read(&cmd->t_transport_sent));
5051 if (atomic_read(&task->task_active)) {
5052 atomic_set(&task->task_stop, 1);
5053 spin_unlock_irqrestore(
5054 &cmd->t_state_lock, flags);
5056 pr_debug("Waiting for task: %p to shutdown for dev:"
5057 " %p\n", task, dev);
5058 wait_for_completion(&task->task_stop_comp);
5059 pr_debug("Completed task: %p shutdown for dev: %p\n",
5060 task, dev);
5062 spin_lock_irqsave(&cmd->t_state_lock, flags);
5063 atomic_dec(&cmd->t_task_cdbs_left);
5065 atomic_set(&task->task_active, 0);
5066 atomic_set(&task->task_stop, 0);
5067 } else {
5068 if (atomic_read(&task->task_execute_queue) != 0)
5069 transport_remove_task_from_execute_queue(task, dev);
5071 __transport_stop_task_timer(task, &flags);
5073 if (!atomic_dec_and_test(&cmd->t_task_cdbs_ex_left)) {
5074 spin_unlock_irqrestore(
5075 &cmd->t_state_lock, flags);
5077 pr_debug("Skipping task: %p, dev: %p for"
5078 " t_task_cdbs_ex_left: %d\n", task, dev,
5079 atomic_read(&cmd->t_task_cdbs_ex_left));
5081 spin_lock_irqsave(&dev->execute_task_lock, flags);
5082 continue;
5085 if (atomic_read(&cmd->t_transport_active)) {
5086 pr_debug("got t_transport_active = 1 for task: %p, dev:"
5087 " %p\n", task, dev);
5089 if (atomic_read(&cmd->t_fe_count)) {
5090 spin_unlock_irqrestore(
5091 &cmd->t_state_lock, flags);
5092 transport_send_check_condition_and_sense(
5093 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5095 transport_remove_cmd_from_queue(cmd,
5096 &cmd->se_dev->dev_queue_obj);
5098 transport_lun_remove_cmd(cmd);
5099 transport_cmd_check_stop(cmd, 1, 0);
5100 } else {
5101 spin_unlock_irqrestore(
5102 &cmd->t_state_lock, flags);
5104 transport_remove_cmd_from_queue(cmd,
5105 &cmd->se_dev->dev_queue_obj);
5107 transport_lun_remove_cmd(cmd);
5109 if (transport_cmd_check_stop(cmd, 1, 0))
5110 transport_generic_remove(cmd, 0);
5113 spin_lock_irqsave(&dev->execute_task_lock, flags);
5114 continue;
5116 pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
5117 task, dev);
5119 if (atomic_read(&cmd->t_fe_count)) {
5120 spin_unlock_irqrestore(
5121 &cmd->t_state_lock, flags);
5122 transport_send_check_condition_and_sense(cmd,
5123 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5124 transport_remove_cmd_from_queue(cmd,
5125 &cmd->se_dev->dev_queue_obj);
5127 transport_lun_remove_cmd(cmd);
5128 transport_cmd_check_stop(cmd, 1, 0);
5129 } else {
5130 spin_unlock_irqrestore(
5131 &cmd->t_state_lock, flags);
5133 transport_remove_cmd_from_queue(cmd,
5134 &cmd->se_dev->dev_queue_obj);
5135 transport_lun_remove_cmd(cmd);
5137 if (transport_cmd_check_stop(cmd, 1, 0))
5138 transport_generic_remove(cmd, 0);
5141 spin_lock_irqsave(&dev->execute_task_lock, flags);
5143 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5145 * Empty the struct se_device's struct se_cmd list.
5147 while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5149 pr_debug("From Device Queue: cmd: %p t_state: %d\n",
5150 cmd, cmd->t_state);
5152 if (atomic_read(&cmd->t_fe_count)) {
5153 transport_send_check_condition_and_sense(cmd,
5154 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5156 transport_lun_remove_cmd(cmd);
5157 transport_cmd_check_stop(cmd, 1, 0);
5158 } else {
5159 transport_lun_remove_cmd(cmd);
5160 if (transport_cmd_check_stop(cmd, 1, 0))
5161 transport_generic_remove(cmd, 0);
5166 /* transport_processing_thread():
5170 static int transport_processing_thread(void *param)
5172 int ret;
5173 struct se_cmd *cmd;
5174 struct se_device *dev = (struct se_device *) param;
5176 set_user_nice(current, -20);
5178 while (!kthread_should_stop()) {
5179 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5180 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5181 kthread_should_stop());
5182 if (ret < 0)
5183 goto out;
5185 spin_lock_irq(&dev->dev_status_lock);
5186 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5187 spin_unlock_irq(&dev->dev_status_lock);
5188 transport_processing_shutdown(dev);
5189 continue;
5191 spin_unlock_irq(&dev->dev_status_lock);
5193 get_cmd:
5194 __transport_execute_tasks(dev);
5196 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5197 if (!cmd)
5198 continue;
5200 switch (cmd->t_state) {
5201 case TRANSPORT_NEW_CMD_MAP:
5202 if (!cmd->se_tfo->new_cmd_map) {
5203 pr_err("cmd->se_tfo->new_cmd_map is"
5204 " NULL for TRANSPORT_NEW_CMD_MAP\n");
5205 BUG();
5207 ret = cmd->se_tfo->new_cmd_map(cmd);
5208 if (ret < 0) {
5209 cmd->transport_error_status = ret;
5210 transport_generic_request_failure(cmd, NULL,
5211 0, (cmd->data_direction !=
5212 DMA_TO_DEVICE));
5213 break;
5215 /* Fall through */
5216 case TRANSPORT_NEW_CMD:
5217 ret = transport_generic_new_cmd(cmd);
5218 if (ret == -EAGAIN)
5219 break;
5220 else if (ret < 0) {
5221 cmd->transport_error_status = ret;
5222 transport_generic_request_failure(cmd, NULL,
5223 0, (cmd->data_direction !=
5224 DMA_TO_DEVICE));
5226 break;
5227 case TRANSPORT_PROCESS_WRITE:
5228 transport_generic_process_write(cmd);
5229 break;
5230 case TRANSPORT_COMPLETE_OK:
5231 transport_stop_all_task_timers(cmd);
5232 transport_generic_complete_ok(cmd);
5233 break;
5234 case TRANSPORT_REMOVE:
5235 transport_generic_remove(cmd, 0);
5236 break;
5237 case TRANSPORT_FREE_CMD_INTR:
5238 transport_generic_free_cmd(cmd, 0, 0);
5239 break;
5240 case TRANSPORT_PROCESS_TMR:
5241 transport_generic_do_tmr(cmd);
5242 break;
5243 case TRANSPORT_COMPLETE_FAILURE:
5244 transport_generic_request_failure(cmd, NULL, 1, 1);
5245 break;
5246 case TRANSPORT_COMPLETE_TIMEOUT:
5247 transport_stop_all_task_timers(cmd);
5248 transport_generic_request_timeout(cmd);
5249 break;
5250 case TRANSPORT_COMPLETE_QF_WP:
5251 transport_generic_write_pending(cmd);
5252 break;
5253 default:
5254 pr_err("Unknown t_state: %d deferred_t_state:"
5255 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5256 " %u\n", cmd->t_state, cmd->deferred_t_state,
5257 cmd->se_tfo->get_task_tag(cmd),
5258 cmd->se_tfo->get_cmd_state(cmd),
5259 cmd->se_lun->unpacked_lun);
5260 BUG();
5263 goto get_cmd;
5266 out:
5267 transport_release_all_cmds(dev);
5268 dev->process_thread = NULL;
5269 return 0;