Merge branch 'sched/urgent'
[linux-2.6/x86.git] / drivers / net / ns83820.c
blobe736aec588fcb1cbdc3e365b88e158592322b8f2
1 #define VERSION "0.23"
2 /* ns83820.c by Benjamin LaHaise with contributions.
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 * $Revision: 1.34.2.23 $
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
11 * Mmmm, chocolate vanilla mocha...
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * ChangeLog
30 * =========
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
38 * fiddling with TXCFG
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
46 * - fix >> 32 bugs
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
62 * - gmii bus probing
63 * - fix missed txok introduced during performance
64 * tuning
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
66 * 20040828 0.21 - add hardware vlan accleration
67 * by Neil Horman <nhorman@redhat.com>
68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
69 * - removal of dead code from Adrian Bunk
70 * - fix half duplex collision behaviour
71 * Driver Overview
72 * ===============
74 * This driver was originally written for the National Semiconductor
75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76 * this code will turn out to be a) clean, b) correct, and c) fast.
77 * With that in mind, I'm aiming to split the code up as much as
78 * reasonably possible. At present there are X major sections that
79 * break down into a) packet receive, b) packet transmit, c) link
80 * management, d) initialization and configuration. Where possible,
81 * these code paths are designed to run in parallel.
83 * This driver has been tested and found to work with the following
84 * cards (in no particular order):
86 * Cameo SOHO-GA2000T SOHO-GA2500T
87 * D-Link DGE-500T
88 * PureData PDP8023Z-TG
89 * SMC SMC9452TX SMC9462TX
90 * Netgear GA621
92 * Special thanks to SMC for providing hardware to test this driver on.
94 * Reports of success or failure would be greatly appreciated.
96 //#define dprintk printk
97 #define dprintk(x...) do { } while (0)
99 #include <linux/module.h>
100 #include <linux/moduleparam.h>
101 #include <linux/types.h>
102 #include <linux/pci.h>
103 #include <linux/dma-mapping.h>
104 #include <linux/netdevice.h>
105 #include <linux/etherdevice.h>
106 #include <linux/delay.h>
107 #include <linux/workqueue.h>
108 #include <linux/init.h>
109 #include <linux/interrupt.h>
110 #include <linux/ip.h> /* for iph */
111 #include <linux/in.h> /* for IPPROTO_... */
112 #include <linux/compiler.h>
113 #include <linux/prefetch.h>
114 #include <linux/ethtool.h>
115 #include <linux/sched.h>
116 #include <linux/timer.h>
117 #include <linux/if_vlan.h>
118 #include <linux/rtnetlink.h>
119 #include <linux/jiffies.h>
120 #include <linux/slab.h>
122 #include <asm/io.h>
123 #include <asm/uaccess.h>
124 #include <asm/system.h>
126 #define DRV_NAME "ns83820"
128 /* Global parameters. See module_param near the bottom. */
129 static int ihr = 2;
130 static int reset_phy = 0;
131 static int lnksts = 0; /* CFG_LNKSTS bit polarity */
133 /* Dprintk is used for more interesting debug events */
134 #undef Dprintk
135 #define Dprintk dprintk
137 /* tunables */
138 #define RX_BUF_SIZE 1500 /* 8192 */
139 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
140 #define NS83820_VLAN_ACCEL_SUPPORT
141 #endif
143 /* Must not exceed ~65000. */
144 #define NR_RX_DESC 64
145 #define NR_TX_DESC 128
147 /* not tunable */
148 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
150 #define MIN_TX_DESC_FREE 8
152 /* register defines */
153 #define CFGCS 0x04
155 #define CR_TXE 0x00000001
156 #define CR_TXD 0x00000002
157 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
158 * The Receive engine skips one descriptor and moves
159 * onto the next one!! */
160 #define CR_RXE 0x00000004
161 #define CR_RXD 0x00000008
162 #define CR_TXR 0x00000010
163 #define CR_RXR 0x00000020
164 #define CR_SWI 0x00000080
165 #define CR_RST 0x00000100
167 #define PTSCR_EEBIST_FAIL 0x00000001
168 #define PTSCR_EEBIST_EN 0x00000002
169 #define PTSCR_EELOAD_EN 0x00000004
170 #define PTSCR_RBIST_FAIL 0x000001b8
171 #define PTSCR_RBIST_DONE 0x00000200
172 #define PTSCR_RBIST_EN 0x00000400
173 #define PTSCR_RBIST_RST 0x00002000
175 #define MEAR_EEDI 0x00000001
176 #define MEAR_EEDO 0x00000002
177 #define MEAR_EECLK 0x00000004
178 #define MEAR_EESEL 0x00000008
179 #define MEAR_MDIO 0x00000010
180 #define MEAR_MDDIR 0x00000020
181 #define MEAR_MDC 0x00000040
183 #define ISR_TXDESC3 0x40000000
184 #define ISR_TXDESC2 0x20000000
185 #define ISR_TXDESC1 0x10000000
186 #define ISR_TXDESC0 0x08000000
187 #define ISR_RXDESC3 0x04000000
188 #define ISR_RXDESC2 0x02000000
189 #define ISR_RXDESC1 0x01000000
190 #define ISR_RXDESC0 0x00800000
191 #define ISR_TXRCMP 0x00400000
192 #define ISR_RXRCMP 0x00200000
193 #define ISR_DPERR 0x00100000
194 #define ISR_SSERR 0x00080000
195 #define ISR_RMABT 0x00040000
196 #define ISR_RTABT 0x00020000
197 #define ISR_RXSOVR 0x00010000
198 #define ISR_HIBINT 0x00008000
199 #define ISR_PHY 0x00004000
200 #define ISR_PME 0x00002000
201 #define ISR_SWI 0x00001000
202 #define ISR_MIB 0x00000800
203 #define ISR_TXURN 0x00000400
204 #define ISR_TXIDLE 0x00000200
205 #define ISR_TXERR 0x00000100
206 #define ISR_TXDESC 0x00000080
207 #define ISR_TXOK 0x00000040
208 #define ISR_RXORN 0x00000020
209 #define ISR_RXIDLE 0x00000010
210 #define ISR_RXEARLY 0x00000008
211 #define ISR_RXERR 0x00000004
212 #define ISR_RXDESC 0x00000002
213 #define ISR_RXOK 0x00000001
215 #define TXCFG_CSI 0x80000000
216 #define TXCFG_HBI 0x40000000
217 #define TXCFG_MLB 0x20000000
218 #define TXCFG_ATP 0x10000000
219 #define TXCFG_ECRETRY 0x00800000
220 #define TXCFG_BRST_DIS 0x00080000
221 #define TXCFG_MXDMA1024 0x00000000
222 #define TXCFG_MXDMA512 0x00700000
223 #define TXCFG_MXDMA256 0x00600000
224 #define TXCFG_MXDMA128 0x00500000
225 #define TXCFG_MXDMA64 0x00400000
226 #define TXCFG_MXDMA32 0x00300000
227 #define TXCFG_MXDMA16 0x00200000
228 #define TXCFG_MXDMA8 0x00100000
230 #define CFG_LNKSTS 0x80000000
231 #define CFG_SPDSTS 0x60000000
232 #define CFG_SPDSTS1 0x40000000
233 #define CFG_SPDSTS0 0x20000000
234 #define CFG_DUPSTS 0x10000000
235 #define CFG_TBI_EN 0x01000000
236 #define CFG_MODE_1000 0x00400000
237 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
238 * Read the Phy response and then configure the MAC accordingly */
239 #define CFG_AUTO_1000 0x00200000
240 #define CFG_PINT_CTL 0x001c0000
241 #define CFG_PINT_DUPSTS 0x00100000
242 #define CFG_PINT_LNKSTS 0x00080000
243 #define CFG_PINT_SPDSTS 0x00040000
244 #define CFG_TMRTEST 0x00020000
245 #define CFG_MRM_DIS 0x00010000
246 #define CFG_MWI_DIS 0x00008000
247 #define CFG_T64ADDR 0x00004000
248 #define CFG_PCI64_DET 0x00002000
249 #define CFG_DATA64_EN 0x00001000
250 #define CFG_M64ADDR 0x00000800
251 #define CFG_PHY_RST 0x00000400
252 #define CFG_PHY_DIS 0x00000200
253 #define CFG_EXTSTS_EN 0x00000100
254 #define CFG_REQALG 0x00000080
255 #define CFG_SB 0x00000040
256 #define CFG_POW 0x00000020
257 #define CFG_EXD 0x00000010
258 #define CFG_PESEL 0x00000008
259 #define CFG_BROM_DIS 0x00000004
260 #define CFG_EXT_125 0x00000002
261 #define CFG_BEM 0x00000001
263 #define EXTSTS_UDPPKT 0x00200000
264 #define EXTSTS_TCPPKT 0x00080000
265 #define EXTSTS_IPPKT 0x00020000
266 #define EXTSTS_VPKT 0x00010000
267 #define EXTSTS_VTG_MASK 0x0000ffff
269 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
271 #define MIBC_MIBS 0x00000008
272 #define MIBC_ACLR 0x00000004
273 #define MIBC_FRZ 0x00000002
274 #define MIBC_WRN 0x00000001
276 #define PCR_PSEN (1 << 31)
277 #define PCR_PS_MCAST (1 << 30)
278 #define PCR_PS_DA (1 << 29)
279 #define PCR_STHI_8 (3 << 23)
280 #define PCR_STLO_4 (1 << 23)
281 #define PCR_FFHI_8K (3 << 21)
282 #define PCR_FFLO_4K (1 << 21)
283 #define PCR_PAUSE_CNT 0xFFFE
285 #define RXCFG_AEP 0x80000000
286 #define RXCFG_ARP 0x40000000
287 #define RXCFG_STRIPCRC 0x20000000
288 #define RXCFG_RX_FD 0x10000000
289 #define RXCFG_ALP 0x08000000
290 #define RXCFG_AIRL 0x04000000
291 #define RXCFG_MXDMA512 0x00700000
292 #define RXCFG_DRTH 0x0000003e
293 #define RXCFG_DRTH0 0x00000002
295 #define RFCR_RFEN 0x80000000
296 #define RFCR_AAB 0x40000000
297 #define RFCR_AAM 0x20000000
298 #define RFCR_AAU 0x10000000
299 #define RFCR_APM 0x08000000
300 #define RFCR_APAT 0x07800000
301 #define RFCR_APAT3 0x04000000
302 #define RFCR_APAT2 0x02000000
303 #define RFCR_APAT1 0x01000000
304 #define RFCR_APAT0 0x00800000
305 #define RFCR_AARP 0x00400000
306 #define RFCR_MHEN 0x00200000
307 #define RFCR_UHEN 0x00100000
308 #define RFCR_ULM 0x00080000
310 #define VRCR_RUDPE 0x00000080
311 #define VRCR_RTCPE 0x00000040
312 #define VRCR_RIPE 0x00000020
313 #define VRCR_IPEN 0x00000010
314 #define VRCR_DUTF 0x00000008
315 #define VRCR_DVTF 0x00000004
316 #define VRCR_VTREN 0x00000002
317 #define VRCR_VTDEN 0x00000001
319 #define VTCR_PPCHK 0x00000008
320 #define VTCR_GCHK 0x00000004
321 #define VTCR_VPPTI 0x00000002
322 #define VTCR_VGTI 0x00000001
324 #define CR 0x00
325 #define CFG 0x04
326 #define MEAR 0x08
327 #define PTSCR 0x0c
328 #define ISR 0x10
329 #define IMR 0x14
330 #define IER 0x18
331 #define IHR 0x1c
332 #define TXDP 0x20
333 #define TXDP_HI 0x24
334 #define TXCFG 0x28
335 #define GPIOR 0x2c
336 #define RXDP 0x30
337 #define RXDP_HI 0x34
338 #define RXCFG 0x38
339 #define PQCR 0x3c
340 #define WCSR 0x40
341 #define PCR 0x44
342 #define RFCR 0x48
343 #define RFDR 0x4c
345 #define SRR 0x58
347 #define VRCR 0xbc
348 #define VTCR 0xc0
349 #define VDR 0xc4
350 #define CCSR 0xcc
352 #define TBICR 0xe0
353 #define TBISR 0xe4
354 #define TANAR 0xe8
355 #define TANLPAR 0xec
356 #define TANER 0xf0
357 #define TESR 0xf4
359 #define TBICR_MR_AN_ENABLE 0x00001000
360 #define TBICR_MR_RESTART_AN 0x00000200
362 #define TBISR_MR_LINK_STATUS 0x00000020
363 #define TBISR_MR_AN_COMPLETE 0x00000004
365 #define TANAR_PS2 0x00000100
366 #define TANAR_PS1 0x00000080
367 #define TANAR_HALF_DUP 0x00000040
368 #define TANAR_FULL_DUP 0x00000020
370 #define GPIOR_GP5_OE 0x00000200
371 #define GPIOR_GP4_OE 0x00000100
372 #define GPIOR_GP3_OE 0x00000080
373 #define GPIOR_GP2_OE 0x00000040
374 #define GPIOR_GP1_OE 0x00000020
375 #define GPIOR_GP3_OUT 0x00000004
376 #define GPIOR_GP1_OUT 0x00000001
378 #define LINK_AUTONEGOTIATE 0x01
379 #define LINK_DOWN 0x02
380 #define LINK_UP 0x04
382 #define HW_ADDR_LEN sizeof(dma_addr_t)
383 #define desc_addr_set(desc, addr) \
384 do { \
385 ((desc)[0] = cpu_to_le32(addr)); \
386 if (HW_ADDR_LEN == 8) \
387 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
388 } while(0)
389 #define desc_addr_get(desc) \
390 (le32_to_cpu((desc)[0]) | \
391 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
393 #define DESC_LINK 0
394 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
395 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
396 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
398 #define CMDSTS_OWN 0x80000000
399 #define CMDSTS_MORE 0x40000000
400 #define CMDSTS_INTR 0x20000000
401 #define CMDSTS_ERR 0x10000000
402 #define CMDSTS_OK 0x08000000
403 #define CMDSTS_RUNT 0x00200000
404 #define CMDSTS_LEN_MASK 0x0000ffff
406 #define CMDSTS_DEST_MASK 0x01800000
407 #define CMDSTS_DEST_SELF 0x00800000
408 #define CMDSTS_DEST_MULTI 0x01000000
410 #define DESC_SIZE 8 /* Should be cache line sized */
412 struct rx_info {
413 spinlock_t lock;
414 int up;
415 unsigned long idle;
417 struct sk_buff *skbs[NR_RX_DESC];
419 __le32 *next_rx_desc;
420 u16 next_rx, next_empty;
422 __le32 *descs;
423 dma_addr_t phy_descs;
427 struct ns83820 {
428 u8 __iomem *base;
430 struct pci_dev *pci_dev;
431 struct net_device *ndev;
433 struct rx_info rx_info;
434 struct tasklet_struct rx_tasklet;
436 unsigned ihr;
437 struct work_struct tq_refill;
439 /* protects everything below. irqsave when using. */
440 spinlock_t misc_lock;
442 u32 CFG_cache;
444 u32 MEAR_cache;
445 u32 IMR_cache;
447 unsigned linkstate;
449 spinlock_t tx_lock;
451 u16 tx_done_idx;
452 u16 tx_idx;
453 volatile u16 tx_free_idx; /* idx of free desc chain */
454 u16 tx_intr_idx;
456 atomic_t nr_tx_skbs;
457 struct sk_buff *tx_skbs[NR_TX_DESC];
459 char pad[16] __attribute__((aligned(16)));
460 __le32 *tx_descs;
461 dma_addr_t tx_phy_descs;
463 struct timer_list tx_watchdog;
466 static inline struct ns83820 *PRIV(struct net_device *dev)
468 return netdev_priv(dev);
471 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
473 static inline void kick_rx(struct net_device *ndev)
475 struct ns83820 *dev = PRIV(ndev);
476 dprintk("kick_rx: maybe kicking\n");
477 if (test_and_clear_bit(0, &dev->rx_info.idle)) {
478 dprintk("actually kicking\n");
479 writel(dev->rx_info.phy_descs +
480 (4 * DESC_SIZE * dev->rx_info.next_rx),
481 dev->base + RXDP);
482 if (dev->rx_info.next_rx == dev->rx_info.next_empty)
483 printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
484 ndev->name);
485 __kick_rx(dev);
489 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
490 #define start_tx_okay(dev) \
491 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
493 /* Packet Receiver
495 * The hardware supports linked lists of receive descriptors for
496 * which ownership is transferred back and forth by means of an
497 * ownership bit. While the hardware does support the use of a
498 * ring for receive descriptors, we only make use of a chain in
499 * an attempt to reduce bus traffic under heavy load scenarios.
500 * This will also make bugs a bit more obvious. The current code
501 * only makes use of a single rx chain; I hope to implement
502 * priority based rx for version 1.0. Goal: even under overload
503 * conditions, still route realtime traffic with as low jitter as
504 * possible.
506 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
508 desc_addr_set(desc + DESC_LINK, link);
509 desc_addr_set(desc + DESC_BUFPTR, buf);
510 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
511 mb();
512 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
515 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
516 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
518 unsigned next_empty;
519 u32 cmdsts;
520 __le32 *sg;
521 dma_addr_t buf;
523 next_empty = dev->rx_info.next_empty;
525 /* don't overrun last rx marker */
526 if (unlikely(nr_rx_empty(dev) <= 2)) {
527 kfree_skb(skb);
528 return 1;
531 #if 0
532 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
533 dev->rx_info.next_empty,
534 dev->rx_info.nr_used,
535 dev->rx_info.next_rx
537 #endif
539 sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
540 BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
541 dev->rx_info.skbs[next_empty] = skb;
543 dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
544 cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
545 buf = pci_map_single(dev->pci_dev, skb->data,
546 REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
547 build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
548 /* update link of previous rx */
549 if (likely(next_empty != dev->rx_info.next_rx))
550 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
552 return 0;
555 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
557 struct ns83820 *dev = PRIV(ndev);
558 unsigned i;
559 unsigned long flags = 0;
561 if (unlikely(nr_rx_empty(dev) <= 2))
562 return 0;
564 dprintk("rx_refill(%p)\n", ndev);
565 if (gfp == GFP_ATOMIC)
566 spin_lock_irqsave(&dev->rx_info.lock, flags);
567 for (i=0; i<NR_RX_DESC; i++) {
568 struct sk_buff *skb;
569 long res;
571 /* extra 16 bytes for alignment */
572 skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
573 if (unlikely(!skb))
574 break;
576 skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
577 if (gfp != GFP_ATOMIC)
578 spin_lock_irqsave(&dev->rx_info.lock, flags);
579 res = ns83820_add_rx_skb(dev, skb);
580 if (gfp != GFP_ATOMIC)
581 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
582 if (res) {
583 i = 1;
584 break;
587 if (gfp == GFP_ATOMIC)
588 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
590 return i ? 0 : -ENOMEM;
593 static void rx_refill_atomic(struct net_device *ndev)
595 rx_refill(ndev, GFP_ATOMIC);
598 /* REFILL */
599 static inline void queue_refill(struct work_struct *work)
601 struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
602 struct net_device *ndev = dev->ndev;
604 rx_refill(ndev, GFP_KERNEL);
605 if (dev->rx_info.up)
606 kick_rx(ndev);
609 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
611 build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
614 static void phy_intr(struct net_device *ndev)
616 struct ns83820 *dev = PRIV(ndev);
617 static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
618 u32 cfg, new_cfg;
619 u32 tbisr, tanar, tanlpar;
620 int speed, fullduplex, newlinkstate;
622 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
624 if (dev->CFG_cache & CFG_TBI_EN) {
625 /* we have an optical transceiver */
626 tbisr = readl(dev->base + TBISR);
627 tanar = readl(dev->base + TANAR);
628 tanlpar = readl(dev->base + TANLPAR);
629 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
630 tbisr, tanar, tanlpar);
632 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
633 (tanar & TANAR_FULL_DUP)) ) {
635 /* both of us are full duplex */
636 writel(readl(dev->base + TXCFG)
637 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
638 dev->base + TXCFG);
639 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
640 dev->base + RXCFG);
641 /* Light up full duplex LED */
642 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
643 dev->base + GPIOR);
645 } else if (((tanlpar & TANAR_HALF_DUP) &&
646 (tanar & TANAR_HALF_DUP)) ||
647 ((tanlpar & TANAR_FULL_DUP) &&
648 (tanar & TANAR_HALF_DUP)) ||
649 ((tanlpar & TANAR_HALF_DUP) &&
650 (tanar & TANAR_FULL_DUP))) {
652 /* one or both of us are half duplex */
653 writel((readl(dev->base + TXCFG)
654 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
655 dev->base + TXCFG);
656 writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
657 dev->base + RXCFG);
658 /* Turn off full duplex LED */
659 writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
660 dev->base + GPIOR);
663 speed = 4; /* 1000F */
665 } else {
666 /* we have a copper transceiver */
667 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
669 if (cfg & CFG_SPDSTS1)
670 new_cfg |= CFG_MODE_1000;
671 else
672 new_cfg &= ~CFG_MODE_1000;
674 speed = ((cfg / CFG_SPDSTS0) & 3);
675 fullduplex = (cfg & CFG_DUPSTS);
677 if (fullduplex) {
678 new_cfg |= CFG_SB;
679 writel(readl(dev->base + TXCFG)
680 | TXCFG_CSI | TXCFG_HBI,
681 dev->base + TXCFG);
682 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
683 dev->base + RXCFG);
684 } else {
685 writel(readl(dev->base + TXCFG)
686 & ~(TXCFG_CSI | TXCFG_HBI),
687 dev->base + TXCFG);
688 writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
689 dev->base + RXCFG);
692 if ((cfg & CFG_LNKSTS) &&
693 ((new_cfg ^ dev->CFG_cache) != 0)) {
694 writel(new_cfg, dev->base + CFG);
695 dev->CFG_cache = new_cfg;
698 dev->CFG_cache &= ~CFG_SPDSTS;
699 dev->CFG_cache |= cfg & CFG_SPDSTS;
702 newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
704 if (newlinkstate & LINK_UP &&
705 dev->linkstate != newlinkstate) {
706 netif_start_queue(ndev);
707 netif_wake_queue(ndev);
708 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
709 ndev->name,
710 speeds[speed],
711 fullduplex ? "full" : "half");
712 } else if (newlinkstate & LINK_DOWN &&
713 dev->linkstate != newlinkstate) {
714 netif_stop_queue(ndev);
715 printk(KERN_INFO "%s: link now down.\n", ndev->name);
718 dev->linkstate = newlinkstate;
721 static int ns83820_setup_rx(struct net_device *ndev)
723 struct ns83820 *dev = PRIV(ndev);
724 unsigned i;
725 int ret;
727 dprintk("ns83820_setup_rx(%p)\n", ndev);
729 dev->rx_info.idle = 1;
730 dev->rx_info.next_rx = 0;
731 dev->rx_info.next_rx_desc = dev->rx_info.descs;
732 dev->rx_info.next_empty = 0;
734 for (i=0; i<NR_RX_DESC; i++)
735 clear_rx_desc(dev, i);
737 writel(0, dev->base + RXDP_HI);
738 writel(dev->rx_info.phy_descs, dev->base + RXDP);
740 ret = rx_refill(ndev, GFP_KERNEL);
741 if (!ret) {
742 dprintk("starting receiver\n");
743 /* prevent the interrupt handler from stomping on us */
744 spin_lock_irq(&dev->rx_info.lock);
746 writel(0x0001, dev->base + CCSR);
747 writel(0, dev->base + RFCR);
748 writel(0x7fc00000, dev->base + RFCR);
749 writel(0xffc00000, dev->base + RFCR);
751 dev->rx_info.up = 1;
753 phy_intr(ndev);
755 /* Okay, let it rip */
756 spin_lock(&dev->misc_lock);
757 dev->IMR_cache |= ISR_PHY;
758 dev->IMR_cache |= ISR_RXRCMP;
759 //dev->IMR_cache |= ISR_RXERR;
760 //dev->IMR_cache |= ISR_RXOK;
761 dev->IMR_cache |= ISR_RXORN;
762 dev->IMR_cache |= ISR_RXSOVR;
763 dev->IMR_cache |= ISR_RXDESC;
764 dev->IMR_cache |= ISR_RXIDLE;
765 dev->IMR_cache |= ISR_TXDESC;
766 dev->IMR_cache |= ISR_TXIDLE;
768 writel(dev->IMR_cache, dev->base + IMR);
769 writel(1, dev->base + IER);
770 spin_unlock(&dev->misc_lock);
772 kick_rx(ndev);
774 spin_unlock_irq(&dev->rx_info.lock);
776 return ret;
779 static void ns83820_cleanup_rx(struct ns83820 *dev)
781 unsigned i;
782 unsigned long flags;
784 dprintk("ns83820_cleanup_rx(%p)\n", dev);
786 /* disable receive interrupts */
787 spin_lock_irqsave(&dev->misc_lock, flags);
788 dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
789 writel(dev->IMR_cache, dev->base + IMR);
790 spin_unlock_irqrestore(&dev->misc_lock, flags);
792 /* synchronize with the interrupt handler and kill it */
793 dev->rx_info.up = 0;
794 synchronize_irq(dev->pci_dev->irq);
796 /* touch the pci bus... */
797 readl(dev->base + IMR);
799 /* assumes the transmitter is already disabled and reset */
800 writel(0, dev->base + RXDP_HI);
801 writel(0, dev->base + RXDP);
803 for (i=0; i<NR_RX_DESC; i++) {
804 struct sk_buff *skb = dev->rx_info.skbs[i];
805 dev->rx_info.skbs[i] = NULL;
806 clear_rx_desc(dev, i);
807 kfree_skb(skb);
811 static void ns83820_rx_kick(struct net_device *ndev)
813 struct ns83820 *dev = PRIV(ndev);
814 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
815 if (dev->rx_info.up) {
816 rx_refill_atomic(ndev);
817 kick_rx(ndev);
821 if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
822 schedule_work(&dev->tq_refill);
823 else
824 kick_rx(ndev);
825 if (dev->rx_info.idle)
826 printk(KERN_DEBUG "%s: BAD\n", ndev->name);
829 /* rx_irq
832 static void rx_irq(struct net_device *ndev)
834 struct ns83820 *dev = PRIV(ndev);
835 struct rx_info *info = &dev->rx_info;
836 unsigned next_rx;
837 int rx_rc, len;
838 u32 cmdsts;
839 __le32 *desc;
840 unsigned long flags;
841 int nr = 0;
843 dprintk("rx_irq(%p)\n", ndev);
844 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
845 readl(dev->base + RXDP),
846 (long)(dev->rx_info.phy_descs),
847 (int)dev->rx_info.next_rx,
848 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
849 (int)dev->rx_info.next_empty,
850 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
853 spin_lock_irqsave(&info->lock, flags);
854 if (!info->up)
855 goto out;
857 dprintk("walking descs\n");
858 next_rx = info->next_rx;
859 desc = info->next_rx_desc;
860 while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
861 (cmdsts != CMDSTS_OWN)) {
862 struct sk_buff *skb;
863 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
864 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
866 dprintk("cmdsts: %08x\n", cmdsts);
867 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
868 dprintk("extsts: %08x\n", extsts);
870 skb = info->skbs[next_rx];
871 info->skbs[next_rx] = NULL;
872 info->next_rx = (next_rx + 1) % NR_RX_DESC;
874 mb();
875 clear_rx_desc(dev, next_rx);
877 pci_unmap_single(dev->pci_dev, bufptr,
878 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
879 len = cmdsts & CMDSTS_LEN_MASK;
880 #ifdef NS83820_VLAN_ACCEL_SUPPORT
881 /* NH: As was mentioned below, this chip is kinda
882 * brain dead about vlan tag stripping. Frames
883 * that are 64 bytes with a vlan header appended
884 * like arp frames, or pings, are flagged as Runts
885 * when the tag is stripped and hardware. This
886 * also means that the OK bit in the descriptor
887 * is cleared when the frame comes in so we have
888 * to do a specific length check here to make sure
889 * the frame would have been ok, had we not stripped
890 * the tag.
892 if (likely((CMDSTS_OK & cmdsts) ||
893 ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
894 #else
895 if (likely(CMDSTS_OK & cmdsts)) {
896 #endif
897 skb_put(skb, len);
898 if (unlikely(!skb))
899 goto netdev_mangle_me_harder_failed;
900 if (cmdsts & CMDSTS_DEST_MULTI)
901 ndev->stats.multicast++;
902 ndev->stats.rx_packets++;
903 ndev->stats.rx_bytes += len;
904 if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
905 skb->ip_summed = CHECKSUM_UNNECESSARY;
906 } else {
907 skb_checksum_none_assert(skb);
909 skb->protocol = eth_type_trans(skb, ndev);
910 #ifdef NS83820_VLAN_ACCEL_SUPPORT
911 if(extsts & EXTSTS_VPKT) {
912 unsigned short tag;
914 tag = ntohs(extsts & EXTSTS_VTG_MASK);
915 __vlan_hwaccel_put_tag(skb, tag);
917 #endif
918 rx_rc = netif_rx(skb);
919 if (NET_RX_DROP == rx_rc) {
920 netdev_mangle_me_harder_failed:
921 ndev->stats.rx_dropped++;
923 } else {
924 kfree_skb(skb);
927 nr++;
928 next_rx = info->next_rx;
929 desc = info->descs + (DESC_SIZE * next_rx);
931 info->next_rx = next_rx;
932 info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
934 out:
935 if (0 && !nr) {
936 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
939 spin_unlock_irqrestore(&info->lock, flags);
942 static void rx_action(unsigned long _dev)
944 struct net_device *ndev = (void *)_dev;
945 struct ns83820 *dev = PRIV(ndev);
946 rx_irq(ndev);
947 writel(ihr, dev->base + IHR);
949 spin_lock_irq(&dev->misc_lock);
950 dev->IMR_cache |= ISR_RXDESC;
951 writel(dev->IMR_cache, dev->base + IMR);
952 spin_unlock_irq(&dev->misc_lock);
954 rx_irq(ndev);
955 ns83820_rx_kick(ndev);
958 /* Packet Transmit code
960 static inline void kick_tx(struct ns83820 *dev)
962 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
963 dev, dev->tx_idx, dev->tx_free_idx);
964 writel(CR_TXE, dev->base + CR);
967 /* No spinlock needed on the transmit irq path as the interrupt handler is
968 * serialized.
970 static void do_tx_done(struct net_device *ndev)
972 struct ns83820 *dev = PRIV(ndev);
973 u32 cmdsts, tx_done_idx;
974 __le32 *desc;
976 dprintk("do_tx_done(%p)\n", ndev);
977 tx_done_idx = dev->tx_done_idx;
978 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
980 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
981 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
982 while ((tx_done_idx != dev->tx_free_idx) &&
983 !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
984 struct sk_buff *skb;
985 unsigned len;
986 dma_addr_t addr;
988 if (cmdsts & CMDSTS_ERR)
989 ndev->stats.tx_errors++;
990 if (cmdsts & CMDSTS_OK)
991 ndev->stats.tx_packets++;
992 if (cmdsts & CMDSTS_OK)
993 ndev->stats.tx_bytes += cmdsts & 0xffff;
995 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
996 tx_done_idx, dev->tx_free_idx, cmdsts);
997 skb = dev->tx_skbs[tx_done_idx];
998 dev->tx_skbs[tx_done_idx] = NULL;
999 dprintk("done(%p)\n", skb);
1001 len = cmdsts & CMDSTS_LEN_MASK;
1002 addr = desc_addr_get(desc + DESC_BUFPTR);
1003 if (skb) {
1004 pci_unmap_single(dev->pci_dev,
1005 addr,
1006 len,
1007 PCI_DMA_TODEVICE);
1008 dev_kfree_skb_irq(skb);
1009 atomic_dec(&dev->nr_tx_skbs);
1010 } else
1011 pci_unmap_page(dev->pci_dev,
1012 addr,
1013 len,
1014 PCI_DMA_TODEVICE);
1016 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1017 dev->tx_done_idx = tx_done_idx;
1018 desc[DESC_CMDSTS] = cpu_to_le32(0);
1019 mb();
1020 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1023 /* Allow network stack to resume queueing packets after we've
1024 * finished transmitting at least 1/4 of the packets in the queue.
1026 if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1027 dprintk("start_queue(%p)\n", ndev);
1028 netif_start_queue(ndev);
1029 netif_wake_queue(ndev);
1033 static void ns83820_cleanup_tx(struct ns83820 *dev)
1035 unsigned i;
1037 for (i=0; i<NR_TX_DESC; i++) {
1038 struct sk_buff *skb = dev->tx_skbs[i];
1039 dev->tx_skbs[i] = NULL;
1040 if (skb) {
1041 __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1042 pci_unmap_single(dev->pci_dev,
1043 desc_addr_get(desc + DESC_BUFPTR),
1044 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1045 PCI_DMA_TODEVICE);
1046 dev_kfree_skb_irq(skb);
1047 atomic_dec(&dev->nr_tx_skbs);
1051 memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1054 /* transmit routine. This code relies on the network layer serializing
1055 * its calls in, but will run happily in parallel with the interrupt
1056 * handler. This code currently has provisions for fragmenting tx buffers
1057 * while trying to track down a bug in either the zero copy code or
1058 * the tx fifo (hence the MAX_FRAG_LEN).
1060 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1061 struct net_device *ndev)
1063 struct ns83820 *dev = PRIV(ndev);
1064 u32 free_idx, cmdsts, extsts;
1065 int nr_free, nr_frags;
1066 unsigned tx_done_idx, last_idx;
1067 dma_addr_t buf;
1068 unsigned len;
1069 skb_frag_t *frag;
1070 int stopped = 0;
1071 int do_intr = 0;
1072 volatile __le32 *first_desc;
1074 dprintk("ns83820_hard_start_xmit\n");
1076 nr_frags = skb_shinfo(skb)->nr_frags;
1077 again:
1078 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1079 netif_stop_queue(ndev);
1080 if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1081 return NETDEV_TX_BUSY;
1082 netif_start_queue(ndev);
1085 last_idx = free_idx = dev->tx_free_idx;
1086 tx_done_idx = dev->tx_done_idx;
1087 nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1088 nr_free -= 1;
1089 if (nr_free <= nr_frags) {
1090 dprintk("stop_queue - not enough(%p)\n", ndev);
1091 netif_stop_queue(ndev);
1093 /* Check again: we may have raced with a tx done irq */
1094 if (dev->tx_done_idx != tx_done_idx) {
1095 dprintk("restart queue(%p)\n", ndev);
1096 netif_start_queue(ndev);
1097 goto again;
1099 return NETDEV_TX_BUSY;
1102 if (free_idx == dev->tx_intr_idx) {
1103 do_intr = 1;
1104 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1107 nr_free -= nr_frags;
1108 if (nr_free < MIN_TX_DESC_FREE) {
1109 dprintk("stop_queue - last entry(%p)\n", ndev);
1110 netif_stop_queue(ndev);
1111 stopped = 1;
1114 frag = skb_shinfo(skb)->frags;
1115 if (!nr_frags)
1116 frag = NULL;
1117 extsts = 0;
1118 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1119 extsts |= EXTSTS_IPPKT;
1120 if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1121 extsts |= EXTSTS_TCPPKT;
1122 else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1123 extsts |= EXTSTS_UDPPKT;
1126 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1127 if(vlan_tx_tag_present(skb)) {
1128 /* fetch the vlan tag info out of the
1129 * ancillary data if the vlan code
1130 * is using hw vlan acceleration
1132 short tag = vlan_tx_tag_get(skb);
1133 extsts |= (EXTSTS_VPKT | htons(tag));
1135 #endif
1137 len = skb->len;
1138 if (nr_frags)
1139 len -= skb->data_len;
1140 buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1142 first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1144 for (;;) {
1145 volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1147 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1148 (unsigned long long)buf);
1149 last_idx = free_idx;
1150 free_idx = (free_idx + 1) % NR_TX_DESC;
1151 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1152 desc_addr_set(desc + DESC_BUFPTR, buf);
1153 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1155 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1156 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1157 cmdsts |= len;
1158 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1160 if (!nr_frags)
1161 break;
1163 buf = pci_map_page(dev->pci_dev, frag->page,
1164 frag->page_offset,
1165 frag->size, PCI_DMA_TODEVICE);
1166 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1167 (long long)buf, (long) page_to_pfn(frag->page),
1168 frag->page_offset);
1169 len = frag->size;
1170 frag++;
1171 nr_frags--;
1173 dprintk("done pkt\n");
1175 spin_lock_irq(&dev->tx_lock);
1176 dev->tx_skbs[last_idx] = skb;
1177 first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1178 dev->tx_free_idx = free_idx;
1179 atomic_inc(&dev->nr_tx_skbs);
1180 spin_unlock_irq(&dev->tx_lock);
1182 kick_tx(dev);
1184 /* Check again: we may have raced with a tx done irq */
1185 if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1186 netif_start_queue(ndev);
1188 return NETDEV_TX_OK;
1191 static void ns83820_update_stats(struct ns83820 *dev)
1193 struct net_device *ndev = dev->ndev;
1194 u8 __iomem *base = dev->base;
1196 /* the DP83820 will freeze counters, so we need to read all of them */
1197 ndev->stats.rx_errors += readl(base + 0x60) & 0xffff;
1198 ndev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
1199 ndev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
1200 ndev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
1201 /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1202 ndev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
1203 ndev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
1204 /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1205 /*ndev->stats.rx_pause_count += */ readl(base + 0x80);
1206 /*ndev->stats.tx_pause_count += */ readl(base + 0x84);
1207 ndev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
1210 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1212 struct ns83820 *dev = PRIV(ndev);
1214 /* somewhat overkill */
1215 spin_lock_irq(&dev->misc_lock);
1216 ns83820_update_stats(dev);
1217 spin_unlock_irq(&dev->misc_lock);
1219 return &ndev->stats;
1222 /* Let ethtool retrieve info */
1223 static int ns83820_get_settings(struct net_device *ndev,
1224 struct ethtool_cmd *cmd)
1226 struct ns83820 *dev = PRIV(ndev);
1227 u32 cfg, tanar, tbicr;
1228 int fullduplex = 0;
1231 * Here's the list of available ethtool commands from other drivers:
1232 * cmd->advertising =
1233 * ethtool_cmd_speed_set(cmd, ...)
1234 * cmd->duplex =
1235 * cmd->port = 0;
1236 * cmd->phy_address =
1237 * cmd->transceiver = 0;
1238 * cmd->autoneg =
1239 * cmd->maxtxpkt = 0;
1240 * cmd->maxrxpkt = 0;
1243 /* read current configuration */
1244 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1245 tanar = readl(dev->base + TANAR);
1246 tbicr = readl(dev->base + TBICR);
1248 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1250 cmd->supported = SUPPORTED_Autoneg;
1252 if (dev->CFG_cache & CFG_TBI_EN) {
1253 /* we have optical interface */
1254 cmd->supported |= SUPPORTED_1000baseT_Half |
1255 SUPPORTED_1000baseT_Full |
1256 SUPPORTED_FIBRE;
1257 cmd->port = PORT_FIBRE;
1258 } else {
1259 /* we have copper */
1260 cmd->supported |= SUPPORTED_10baseT_Half |
1261 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1262 SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1263 SUPPORTED_1000baseT_Full |
1264 SUPPORTED_MII;
1265 cmd->port = PORT_MII;
1268 cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1269 switch (cfg / CFG_SPDSTS0 & 3) {
1270 case 2:
1271 ethtool_cmd_speed_set(cmd, SPEED_1000);
1272 break;
1273 case 1:
1274 ethtool_cmd_speed_set(cmd, SPEED_100);
1275 break;
1276 default:
1277 ethtool_cmd_speed_set(cmd, SPEED_10);
1278 break;
1280 cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1281 ? AUTONEG_ENABLE : AUTONEG_DISABLE;
1282 return 0;
1285 /* Let ethool change settings*/
1286 static int ns83820_set_settings(struct net_device *ndev,
1287 struct ethtool_cmd *cmd)
1289 struct ns83820 *dev = PRIV(ndev);
1290 u32 cfg, tanar;
1291 int have_optical = 0;
1292 int fullduplex = 0;
1294 /* read current configuration */
1295 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1296 tanar = readl(dev->base + TANAR);
1298 if (dev->CFG_cache & CFG_TBI_EN) {
1299 /* we have optical */
1300 have_optical = 1;
1301 fullduplex = (tanar & TANAR_FULL_DUP);
1303 } else {
1304 /* we have copper */
1305 fullduplex = cfg & CFG_DUPSTS;
1308 spin_lock_irq(&dev->misc_lock);
1309 spin_lock(&dev->tx_lock);
1311 /* Set duplex */
1312 if (cmd->duplex != fullduplex) {
1313 if (have_optical) {
1314 /*set full duplex*/
1315 if (cmd->duplex == DUPLEX_FULL) {
1316 /* force full duplex */
1317 writel(readl(dev->base + TXCFG)
1318 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1319 dev->base + TXCFG);
1320 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1321 dev->base + RXCFG);
1322 /* Light up full duplex LED */
1323 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1324 dev->base + GPIOR);
1325 } else {
1326 /*TODO: set half duplex */
1329 } else {
1330 /*we have copper*/
1331 /* TODO: Set duplex for copper cards */
1333 printk(KERN_INFO "%s: Duplex set via ethtool\n",
1334 ndev->name);
1337 /* Set autonegotiation */
1338 if (1) {
1339 if (cmd->autoneg == AUTONEG_ENABLE) {
1340 /* restart auto negotiation */
1341 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1342 dev->base + TBICR);
1343 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1344 dev->linkstate = LINK_AUTONEGOTIATE;
1346 printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1347 ndev->name);
1348 } else {
1349 /* disable auto negotiation */
1350 writel(0x00000000, dev->base + TBICR);
1353 printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1354 cmd->autoneg ? "ENABLED" : "DISABLED");
1357 phy_intr(ndev);
1358 spin_unlock(&dev->tx_lock);
1359 spin_unlock_irq(&dev->misc_lock);
1361 return 0;
1363 /* end ethtool get/set support -df */
1365 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1367 struct ns83820 *dev = PRIV(ndev);
1368 strcpy(info->driver, "ns83820");
1369 strcpy(info->version, VERSION);
1370 strcpy(info->bus_info, pci_name(dev->pci_dev));
1373 static u32 ns83820_get_link(struct net_device *ndev)
1375 struct ns83820 *dev = PRIV(ndev);
1376 u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1377 return cfg & CFG_LNKSTS ? 1 : 0;
1380 static const struct ethtool_ops ops = {
1381 .get_settings = ns83820_get_settings,
1382 .set_settings = ns83820_set_settings,
1383 .get_drvinfo = ns83820_get_drvinfo,
1384 .get_link = ns83820_get_link
1387 static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1389 writel(0, dev->base + IMR);
1390 writel(0, dev->base + IER);
1391 readl(dev->base + IER);
1394 /* this function is called in irq context from the ISR */
1395 static void ns83820_mib_isr(struct ns83820 *dev)
1397 unsigned long flags;
1398 spin_lock_irqsave(&dev->misc_lock, flags);
1399 ns83820_update_stats(dev);
1400 spin_unlock_irqrestore(&dev->misc_lock, flags);
1403 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1404 static irqreturn_t ns83820_irq(int foo, void *data)
1406 struct net_device *ndev = data;
1407 struct ns83820 *dev = PRIV(ndev);
1408 u32 isr;
1409 dprintk("ns83820_irq(%p)\n", ndev);
1411 dev->ihr = 0;
1413 isr = readl(dev->base + ISR);
1414 dprintk("irq: %08x\n", isr);
1415 ns83820_do_isr(ndev, isr);
1416 return IRQ_HANDLED;
1419 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1421 struct ns83820 *dev = PRIV(ndev);
1422 unsigned long flags;
1424 #ifdef DEBUG
1425 if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1426 Dprintk("odd isr? 0x%08x\n", isr);
1427 #endif
1429 if (ISR_RXIDLE & isr) {
1430 dev->rx_info.idle = 1;
1431 Dprintk("oh dear, we are idle\n");
1432 ns83820_rx_kick(ndev);
1435 if ((ISR_RXDESC | ISR_RXOK) & isr) {
1436 prefetch(dev->rx_info.next_rx_desc);
1438 spin_lock_irqsave(&dev->misc_lock, flags);
1439 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1440 writel(dev->IMR_cache, dev->base + IMR);
1441 spin_unlock_irqrestore(&dev->misc_lock, flags);
1443 tasklet_schedule(&dev->rx_tasklet);
1444 //rx_irq(ndev);
1445 //writel(4, dev->base + IHR);
1448 if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1449 ns83820_rx_kick(ndev);
1451 if (unlikely(ISR_RXSOVR & isr)) {
1452 //printk("overrun: rxsovr\n");
1453 ndev->stats.rx_fifo_errors++;
1456 if (unlikely(ISR_RXORN & isr)) {
1457 //printk("overrun: rxorn\n");
1458 ndev->stats.rx_fifo_errors++;
1461 if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1462 writel(CR_RXE, dev->base + CR);
1464 if (ISR_TXIDLE & isr) {
1465 u32 txdp;
1466 txdp = readl(dev->base + TXDP);
1467 dprintk("txdp: %08x\n", txdp);
1468 txdp -= dev->tx_phy_descs;
1469 dev->tx_idx = txdp / (DESC_SIZE * 4);
1470 if (dev->tx_idx >= NR_TX_DESC) {
1471 printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1472 dev->tx_idx = 0;
1474 /* The may have been a race between a pci originated read
1475 * and the descriptor update from the cpu. Just in case,
1476 * kick the transmitter if the hardware thinks it is on a
1477 * different descriptor than we are.
1479 if (dev->tx_idx != dev->tx_free_idx)
1480 kick_tx(dev);
1483 /* Defer tx ring processing until more than a minimum amount of
1484 * work has accumulated
1486 if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1487 spin_lock_irqsave(&dev->tx_lock, flags);
1488 do_tx_done(ndev);
1489 spin_unlock_irqrestore(&dev->tx_lock, flags);
1491 /* Disable TxOk if there are no outstanding tx packets.
1493 if ((dev->tx_done_idx == dev->tx_free_idx) &&
1494 (dev->IMR_cache & ISR_TXOK)) {
1495 spin_lock_irqsave(&dev->misc_lock, flags);
1496 dev->IMR_cache &= ~ISR_TXOK;
1497 writel(dev->IMR_cache, dev->base + IMR);
1498 spin_unlock_irqrestore(&dev->misc_lock, flags);
1502 /* The TxIdle interrupt can come in before the transmit has
1503 * completed. Normally we reap packets off of the combination
1504 * of TxDesc and TxIdle and leave TxOk disabled (since it
1505 * occurs on every packet), but when no further irqs of this
1506 * nature are expected, we must enable TxOk.
1508 if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1509 spin_lock_irqsave(&dev->misc_lock, flags);
1510 dev->IMR_cache |= ISR_TXOK;
1511 writel(dev->IMR_cache, dev->base + IMR);
1512 spin_unlock_irqrestore(&dev->misc_lock, flags);
1515 /* MIB interrupt: one of the statistics counters is about to overflow */
1516 if (unlikely(ISR_MIB & isr))
1517 ns83820_mib_isr(dev);
1519 /* PHY: Link up/down/negotiation state change */
1520 if (unlikely(ISR_PHY & isr))
1521 phy_intr(ndev);
1523 #if 0 /* Still working on the interrupt mitigation strategy */
1524 if (dev->ihr)
1525 writel(dev->ihr, dev->base + IHR);
1526 #endif
1529 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1531 Dprintk("resetting chip...\n");
1532 writel(which, dev->base + CR);
1533 do {
1534 schedule();
1535 } while (readl(dev->base + CR) & which);
1536 Dprintk("okay!\n");
1539 static int ns83820_stop(struct net_device *ndev)
1541 struct ns83820 *dev = PRIV(ndev);
1543 /* FIXME: protect against interrupt handler? */
1544 del_timer_sync(&dev->tx_watchdog);
1546 ns83820_disable_interrupts(dev);
1548 dev->rx_info.up = 0;
1549 synchronize_irq(dev->pci_dev->irq);
1551 ns83820_do_reset(dev, CR_RST);
1553 synchronize_irq(dev->pci_dev->irq);
1555 spin_lock_irq(&dev->misc_lock);
1556 dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1557 spin_unlock_irq(&dev->misc_lock);
1559 ns83820_cleanup_rx(dev);
1560 ns83820_cleanup_tx(dev);
1562 return 0;
1565 static void ns83820_tx_timeout(struct net_device *ndev)
1567 struct ns83820 *dev = PRIV(ndev);
1568 u32 tx_done_idx;
1569 __le32 *desc;
1570 unsigned long flags;
1572 spin_lock_irqsave(&dev->tx_lock, flags);
1574 tx_done_idx = dev->tx_done_idx;
1575 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1577 printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1578 ndev->name,
1579 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1581 #if defined(DEBUG)
1583 u32 isr;
1584 isr = readl(dev->base + ISR);
1585 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1586 ns83820_do_isr(ndev, isr);
1588 #endif
1590 do_tx_done(ndev);
1592 tx_done_idx = dev->tx_done_idx;
1593 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1595 printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1596 ndev->name,
1597 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1599 spin_unlock_irqrestore(&dev->tx_lock, flags);
1602 static void ns83820_tx_watch(unsigned long data)
1604 struct net_device *ndev = (void *)data;
1605 struct ns83820 *dev = PRIV(ndev);
1607 #if defined(DEBUG)
1608 printk("ns83820_tx_watch: %u %u %d\n",
1609 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1611 #endif
1613 if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1614 dev->tx_done_idx != dev->tx_free_idx) {
1615 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1616 ndev->name,
1617 dev->tx_done_idx, dev->tx_free_idx,
1618 atomic_read(&dev->nr_tx_skbs));
1619 ns83820_tx_timeout(ndev);
1622 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1625 static int ns83820_open(struct net_device *ndev)
1627 struct ns83820 *dev = PRIV(ndev);
1628 unsigned i;
1629 u32 desc;
1630 int ret;
1632 dprintk("ns83820_open\n");
1634 writel(0, dev->base + PQCR);
1636 ret = ns83820_setup_rx(ndev);
1637 if (ret)
1638 goto failed;
1640 memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1641 for (i=0; i<NR_TX_DESC; i++) {
1642 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1643 = cpu_to_le32(
1644 dev->tx_phy_descs
1645 + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1648 dev->tx_idx = 0;
1649 dev->tx_done_idx = 0;
1650 desc = dev->tx_phy_descs;
1651 writel(0, dev->base + TXDP_HI);
1652 writel(desc, dev->base + TXDP);
1654 init_timer(&dev->tx_watchdog);
1655 dev->tx_watchdog.data = (unsigned long)ndev;
1656 dev->tx_watchdog.function = ns83820_tx_watch;
1657 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1659 netif_start_queue(ndev); /* FIXME: wait for phy to come up */
1661 return 0;
1663 failed:
1664 ns83820_stop(ndev);
1665 return ret;
1668 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1670 unsigned i;
1671 for (i=0; i<3; i++) {
1672 u32 data;
1674 /* Read from the perfect match memory: this is loaded by
1675 * the chip from the EEPROM via the EELOAD self test.
1677 writel(i*2, dev->base + RFCR);
1678 data = readl(dev->base + RFDR);
1680 *mac++ = data;
1681 *mac++ = data >> 8;
1685 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1687 if (new_mtu > RX_BUF_SIZE)
1688 return -EINVAL;
1689 ndev->mtu = new_mtu;
1690 return 0;
1693 static void ns83820_set_multicast(struct net_device *ndev)
1695 struct ns83820 *dev = PRIV(ndev);
1696 u8 __iomem *rfcr = dev->base + RFCR;
1697 u32 and_mask = 0xffffffff;
1698 u32 or_mask = 0;
1699 u32 val;
1701 if (ndev->flags & IFF_PROMISC)
1702 or_mask |= RFCR_AAU | RFCR_AAM;
1703 else
1704 and_mask &= ~(RFCR_AAU | RFCR_AAM);
1706 if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1707 or_mask |= RFCR_AAM;
1708 else
1709 and_mask &= ~RFCR_AAM;
1711 spin_lock_irq(&dev->misc_lock);
1712 val = (readl(rfcr) & and_mask) | or_mask;
1713 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1714 writel(val & ~RFCR_RFEN, rfcr);
1715 writel(val, rfcr);
1716 spin_unlock_irq(&dev->misc_lock);
1719 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1721 struct ns83820 *dev = PRIV(ndev);
1722 int timed_out = 0;
1723 unsigned long start;
1724 u32 status;
1725 int loops = 0;
1727 dprintk("%s: start %s\n", ndev->name, name);
1729 start = jiffies;
1731 writel(enable, dev->base + PTSCR);
1732 for (;;) {
1733 loops++;
1734 status = readl(dev->base + PTSCR);
1735 if (!(status & enable))
1736 break;
1737 if (status & done)
1738 break;
1739 if (status & fail)
1740 break;
1741 if (time_after_eq(jiffies, start + HZ)) {
1742 timed_out = 1;
1743 break;
1745 schedule_timeout_uninterruptible(1);
1748 if (status & fail)
1749 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1750 ndev->name, name, status, fail);
1751 else if (timed_out)
1752 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1753 ndev->name, name, status);
1755 dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1758 #ifdef PHY_CODE_IS_FINISHED
1759 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1761 /* drive MDC low */
1762 dev->MEAR_cache &= ~MEAR_MDC;
1763 writel(dev->MEAR_cache, dev->base + MEAR);
1764 readl(dev->base + MEAR);
1766 /* enable output, set bit */
1767 dev->MEAR_cache |= MEAR_MDDIR;
1768 if (bit)
1769 dev->MEAR_cache |= MEAR_MDIO;
1770 else
1771 dev->MEAR_cache &= ~MEAR_MDIO;
1773 /* set the output bit */
1774 writel(dev->MEAR_cache, dev->base + MEAR);
1775 readl(dev->base + MEAR);
1777 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1778 udelay(1);
1780 /* drive MDC high causing the data bit to be latched */
1781 dev->MEAR_cache |= MEAR_MDC;
1782 writel(dev->MEAR_cache, dev->base + MEAR);
1783 readl(dev->base + MEAR);
1785 /* Wait again... */
1786 udelay(1);
1789 static int ns83820_mii_read_bit(struct ns83820 *dev)
1791 int bit;
1793 /* drive MDC low, disable output */
1794 dev->MEAR_cache &= ~MEAR_MDC;
1795 dev->MEAR_cache &= ~MEAR_MDDIR;
1796 writel(dev->MEAR_cache, dev->base + MEAR);
1797 readl(dev->base + MEAR);
1799 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1800 udelay(1);
1802 /* drive MDC high causing the data bit to be latched */
1803 bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1804 dev->MEAR_cache |= MEAR_MDC;
1805 writel(dev->MEAR_cache, dev->base + MEAR);
1807 /* Wait again... */
1808 udelay(1);
1810 return bit;
1813 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1815 unsigned data = 0;
1816 int i;
1818 /* read some garbage so that we eventually sync up */
1819 for (i=0; i<64; i++)
1820 ns83820_mii_read_bit(dev);
1822 ns83820_mii_write_bit(dev, 0); /* start */
1823 ns83820_mii_write_bit(dev, 1);
1824 ns83820_mii_write_bit(dev, 1); /* opcode read */
1825 ns83820_mii_write_bit(dev, 0);
1827 /* write out the phy address: 5 bits, msb first */
1828 for (i=0; i<5; i++)
1829 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1831 /* write out the register address, 5 bits, msb first */
1832 for (i=0; i<5; i++)
1833 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1835 ns83820_mii_read_bit(dev); /* turn around cycles */
1836 ns83820_mii_read_bit(dev);
1838 /* read in the register data, 16 bits msb first */
1839 for (i=0; i<16; i++) {
1840 data <<= 1;
1841 data |= ns83820_mii_read_bit(dev);
1844 return data;
1847 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1849 int i;
1851 /* read some garbage so that we eventually sync up */
1852 for (i=0; i<64; i++)
1853 ns83820_mii_read_bit(dev);
1855 ns83820_mii_write_bit(dev, 0); /* start */
1856 ns83820_mii_write_bit(dev, 1);
1857 ns83820_mii_write_bit(dev, 0); /* opcode read */
1858 ns83820_mii_write_bit(dev, 1);
1860 /* write out the phy address: 5 bits, msb first */
1861 for (i=0; i<5; i++)
1862 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1864 /* write out the register address, 5 bits, msb first */
1865 for (i=0; i<5; i++)
1866 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1868 ns83820_mii_read_bit(dev); /* turn around cycles */
1869 ns83820_mii_read_bit(dev);
1871 /* read in the register data, 16 bits msb first */
1872 for (i=0; i<16; i++)
1873 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1875 return data;
1878 static void ns83820_probe_phy(struct net_device *ndev)
1880 struct ns83820 *dev = PRIV(ndev);
1881 static int first;
1882 int i;
1883 #define MII_PHYIDR1 0x02
1884 #define MII_PHYIDR2 0x03
1886 #if 0
1887 if (!first) {
1888 unsigned tmp;
1889 ns83820_mii_read_reg(dev, 1, 0x09);
1890 ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1892 tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1893 ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1894 udelay(1300);
1895 ns83820_mii_read_reg(dev, 1, 0x09);
1897 #endif
1898 first = 1;
1900 for (i=1; i<2; i++) {
1901 int j;
1902 unsigned a, b;
1903 a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1904 b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1906 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1907 // ndev->name, i, a, b);
1909 for (j=0; j<0x16; j+=4) {
1910 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1911 ndev->name, j,
1912 ns83820_mii_read_reg(dev, i, 0 + j),
1913 ns83820_mii_read_reg(dev, i, 1 + j),
1914 ns83820_mii_read_reg(dev, i, 2 + j),
1915 ns83820_mii_read_reg(dev, i, 3 + j)
1920 unsigned a, b;
1921 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1922 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1923 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1924 a = ns83820_mii_read_reg(dev, 1, 0x1d);
1926 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1927 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1928 b = ns83820_mii_read_reg(dev, 1, 0x1d);
1929 dprintk("version: 0x%04x 0x%04x\n", a, b);
1932 #endif
1934 static const struct net_device_ops netdev_ops = {
1935 .ndo_open = ns83820_open,
1936 .ndo_stop = ns83820_stop,
1937 .ndo_start_xmit = ns83820_hard_start_xmit,
1938 .ndo_get_stats = ns83820_get_stats,
1939 .ndo_change_mtu = ns83820_change_mtu,
1940 .ndo_set_multicast_list = ns83820_set_multicast,
1941 .ndo_validate_addr = eth_validate_addr,
1942 .ndo_set_mac_address = eth_mac_addr,
1943 .ndo_tx_timeout = ns83820_tx_timeout,
1946 static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1947 const struct pci_device_id *id)
1949 struct net_device *ndev;
1950 struct ns83820 *dev;
1951 long addr;
1952 int err;
1953 int using_dac = 0;
1955 /* See if we can set the dma mask early on; failure is fatal. */
1956 if (sizeof(dma_addr_t) == 8 &&
1957 !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1958 using_dac = 1;
1959 } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1960 using_dac = 0;
1961 } else {
1962 dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1963 return -ENODEV;
1966 ndev = alloc_etherdev(sizeof(struct ns83820));
1967 err = -ENOMEM;
1968 if (!ndev)
1969 goto out;
1971 dev = PRIV(ndev);
1972 dev->ndev = ndev;
1974 spin_lock_init(&dev->rx_info.lock);
1975 spin_lock_init(&dev->tx_lock);
1976 spin_lock_init(&dev->misc_lock);
1977 dev->pci_dev = pci_dev;
1979 SET_NETDEV_DEV(ndev, &pci_dev->dev);
1981 INIT_WORK(&dev->tq_refill, queue_refill);
1982 tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1984 err = pci_enable_device(pci_dev);
1985 if (err) {
1986 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1987 goto out_free;
1990 pci_set_master(pci_dev);
1991 addr = pci_resource_start(pci_dev, 1);
1992 dev->base = ioremap_nocache(addr, PAGE_SIZE);
1993 dev->tx_descs = pci_alloc_consistent(pci_dev,
1994 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1995 dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1996 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1997 err = -ENOMEM;
1998 if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1999 goto out_disable;
2001 dprintk("%p: %08lx %p: %08lx\n",
2002 dev->tx_descs, (long)dev->tx_phy_descs,
2003 dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2005 ns83820_disable_interrupts(dev);
2007 dev->IMR_cache = 0;
2009 err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2010 DRV_NAME, ndev);
2011 if (err) {
2012 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2013 pci_dev->irq, err);
2014 goto out_disable;
2018 * FIXME: we are holding rtnl_lock() over obscenely long area only
2019 * because some of the setup code uses dev->name. It's Wrong(tm) -
2020 * we should be using driver-specific names for all that stuff.
2021 * For now that will do, but we really need to come back and kill
2022 * most of the dev_alloc_name() users later.
2024 rtnl_lock();
2025 err = dev_alloc_name(ndev, ndev->name);
2026 if (err < 0) {
2027 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2028 goto out_free_irq;
2031 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2032 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2033 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2035 ndev->netdev_ops = &netdev_ops;
2036 SET_ETHTOOL_OPS(ndev, &ops);
2037 ndev->watchdog_timeo = 5 * HZ;
2038 pci_set_drvdata(pci_dev, ndev);
2040 ns83820_do_reset(dev, CR_RST);
2042 /* Must reset the ram bist before running it */
2043 writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2044 ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
2045 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2046 ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2047 PTSCR_EEBIST_FAIL);
2048 ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2050 /* I love config registers */
2051 dev->CFG_cache = readl(dev->base + CFG);
2053 if ((dev->CFG_cache & CFG_PCI64_DET)) {
2054 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2055 ndev->name);
2056 /*dev->CFG_cache |= CFG_DATA64_EN;*/
2057 if (!(dev->CFG_cache & CFG_DATA64_EN))
2058 printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
2059 ndev->name);
2060 } else
2061 dev->CFG_cache &= ~(CFG_DATA64_EN);
2063 dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
2064 CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2065 CFG_M64ADDR);
2066 dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2067 CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
2068 dev->CFG_cache |= CFG_REQALG;
2069 dev->CFG_cache |= CFG_POW;
2070 dev->CFG_cache |= CFG_TMRTEST;
2072 /* When compiled with 64 bit addressing, we must always enable
2073 * the 64 bit descriptor format.
2075 if (sizeof(dma_addr_t) == 8)
2076 dev->CFG_cache |= CFG_M64ADDR;
2077 if (using_dac)
2078 dev->CFG_cache |= CFG_T64ADDR;
2080 /* Big endian mode does not seem to do what the docs suggest */
2081 dev->CFG_cache &= ~CFG_BEM;
2083 /* setup optical transceiver if we have one */
2084 if (dev->CFG_cache & CFG_TBI_EN) {
2085 printk(KERN_INFO "%s: enabling optical transceiver\n",
2086 ndev->name);
2087 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2089 /* setup auto negotiation feature advertisement */
2090 writel(readl(dev->base + TANAR)
2091 | TANAR_HALF_DUP | TANAR_FULL_DUP,
2092 dev->base + TANAR);
2094 /* start auto negotiation */
2095 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2096 dev->base + TBICR);
2097 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2098 dev->linkstate = LINK_AUTONEGOTIATE;
2100 dev->CFG_cache |= CFG_MODE_1000;
2103 writel(dev->CFG_cache, dev->base + CFG);
2104 dprintk("CFG: %08x\n", dev->CFG_cache);
2106 if (reset_phy) {
2107 printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2108 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2109 msleep(10);
2110 writel(dev->CFG_cache, dev->base + CFG);
2113 #if 0 /* Huh? This sets the PCI latency register. Should be done via
2114 * the PCI layer. FIXME.
2116 if (readl(dev->base + SRR))
2117 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2118 #endif
2120 /* Note! The DMA burst size interacts with packet
2121 * transmission, such that the largest packet that
2122 * can be transmitted is 8192 - FLTH - burst size.
2123 * If only the transmit fifo was larger...
2125 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2126 * some DELL and COMPAQ SMP systems */
2127 writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2128 | ((1600 / 32) * 0x100),
2129 dev->base + TXCFG);
2131 /* Flush the interrupt holdoff timer */
2132 writel(0x000, dev->base + IHR);
2133 writel(0x100, dev->base + IHR);
2134 writel(0x000, dev->base + IHR);
2136 /* Set Rx to full duplex, don't accept runt, errored, long or length
2137 * range errored packets. Use 512 byte DMA.
2139 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2140 * some DELL and COMPAQ SMP systems
2141 * Turn on ALP, only we are accpeting Jumbo Packets */
2142 writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2143 | RXCFG_STRIPCRC
2144 //| RXCFG_ALP
2145 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2147 /* Disable priority queueing */
2148 writel(0, dev->base + PQCR);
2150 /* Enable IP checksum validation and detetion of VLAN headers.
2151 * Note: do not set the reject options as at least the 0x102
2152 * revision of the chip does not properly accept IP fragments
2153 * at least for UDP.
2155 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2156 * the MAC it calculates the packetsize AFTER stripping the VLAN
2157 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2158 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2159 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2160 * it discrards it!. These guys......
2161 * also turn on tag stripping if hardware acceleration is enabled
2163 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2164 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2165 #else
2166 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2167 #endif
2168 writel(VRCR_INIT_VALUE, dev->base + VRCR);
2170 /* Enable per-packet TCP/UDP/IP checksumming
2171 * and per packet vlan tag insertion if
2172 * vlan hardware acceleration is enabled
2174 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2175 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2176 #else
2177 #define VTCR_INIT_VALUE VTCR_PPCHK
2178 #endif
2179 writel(VTCR_INIT_VALUE, dev->base + VTCR);
2181 /* Ramit : Enable async and sync pause frames */
2182 /* writel(0, dev->base + PCR); */
2183 writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2184 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2185 dev->base + PCR);
2187 /* Disable Wake On Lan */
2188 writel(0, dev->base + WCSR);
2190 ns83820_getmac(dev, ndev->dev_addr);
2192 /* Yes, we support dumb IP checksum on transmit */
2193 ndev->features |= NETIF_F_SG;
2194 ndev->features |= NETIF_F_IP_CSUM;
2196 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2197 /* We also support hardware vlan acceleration */
2198 ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2199 #endif
2201 if (using_dac) {
2202 printk(KERN_INFO "%s: using 64 bit addressing.\n",
2203 ndev->name);
2204 ndev->features |= NETIF_F_HIGHDMA;
2207 printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2208 ndev->name,
2209 (unsigned)readl(dev->base + SRR) >> 8,
2210 (unsigned)readl(dev->base + SRR) & 0xff,
2211 ndev->dev_addr, addr, pci_dev->irq,
2212 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2215 #ifdef PHY_CODE_IS_FINISHED
2216 ns83820_probe_phy(ndev);
2217 #endif
2219 err = register_netdevice(ndev);
2220 if (err) {
2221 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2222 goto out_cleanup;
2224 rtnl_unlock();
2226 return 0;
2228 out_cleanup:
2229 ns83820_disable_interrupts(dev); /* paranoia */
2230 out_free_irq:
2231 rtnl_unlock();
2232 free_irq(pci_dev->irq, ndev);
2233 out_disable:
2234 if (dev->base)
2235 iounmap(dev->base);
2236 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2237 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2238 pci_disable_device(pci_dev);
2239 out_free:
2240 free_netdev(ndev);
2241 pci_set_drvdata(pci_dev, NULL);
2242 out:
2243 return err;
2246 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2248 struct net_device *ndev = pci_get_drvdata(pci_dev);
2249 struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2251 if (!ndev) /* paranoia */
2252 return;
2254 ns83820_disable_interrupts(dev); /* paranoia */
2256 unregister_netdev(ndev);
2257 free_irq(dev->pci_dev->irq, ndev);
2258 iounmap(dev->base);
2259 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2260 dev->tx_descs, dev->tx_phy_descs);
2261 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2262 dev->rx_info.descs, dev->rx_info.phy_descs);
2263 pci_disable_device(dev->pci_dev);
2264 free_netdev(ndev);
2265 pci_set_drvdata(pci_dev, NULL);
2268 static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = {
2269 { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2270 { 0, },
2273 static struct pci_driver driver = {
2274 .name = "ns83820",
2275 .id_table = ns83820_pci_tbl,
2276 .probe = ns83820_init_one,
2277 .remove = __devexit_p(ns83820_remove_one),
2278 #if 0 /* FIXME: implement */
2279 .suspend = ,
2280 .resume = ,
2281 #endif
2285 static int __init ns83820_init(void)
2287 printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2288 return pci_register_driver(&driver);
2291 static void __exit ns83820_exit(void)
2293 pci_unregister_driver(&driver);
2296 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2297 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2298 MODULE_LICENSE("GPL");
2300 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2302 module_param(lnksts, int, 0);
2303 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2305 module_param(ihr, int, 0);
2306 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2308 module_param(reset_phy, int, 0);
2309 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2311 module_init(ns83820_init);
2312 module_exit(ns83820_exit);