Merge branch 'sched/urgent'
[linux-2.6/x86.git] / drivers / net / gianfar.c
blob31d5c574e5a9aaf923d23c124186dbdfc7defa70
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
27 * Theory of operation
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #define DEBUG
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
90 #include <asm/io.h>
91 #include <asm/reg.h>
92 #include <asm/irq.h>
93 #include <asm/uaccess.h>
94 #include <linux/module.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/crc32.h>
97 #include <linux/mii.h>
98 #include <linux/phy.h>
99 #include <linux/phy_fixed.h>
100 #include <linux/of.h>
101 #include <linux/of_net.h>
103 #include "gianfar.h"
104 #include "fsl_pq_mdio.h"
106 #define TX_TIMEOUT (1*HZ)
107 #undef BRIEF_GFAR_ERRORS
108 #undef VERBOSE_GFAR_ERRORS
110 const char gfar_driver_name[] = "Gianfar Ethernet";
111 const char gfar_driver_version[] = "1.3";
113 static int gfar_enet_open(struct net_device *dev);
114 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
115 static void gfar_reset_task(struct work_struct *work);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev);
119 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
120 struct sk_buff *skb);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static void init_registers(struct net_device *dev);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll(struct napi_struct *napi, int budget);
136 #ifdef CONFIG_NET_POLL_CONTROLLER
137 static void gfar_netpoll(struct net_device *dev);
138 #endif
139 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
140 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
141 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
142 int amount_pull);
143 void gfar_halt(struct net_device *dev);
144 static void gfar_halt_nodisable(struct net_device *dev);
145 void gfar_start(struct net_device *dev);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
158 u32 lstatus;
160 bdp->bufPtr = buf;
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
166 eieio();
168 bdp->lstatus = lstatus;
171 static int gfar_init_bds(struct net_device *ndev)
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar_priv_tx_q *tx_queue = NULL;
175 struct gfar_priv_rx_q *rx_queue = NULL;
176 struct txbd8 *txbdp;
177 struct rxbd8 *rxbdp;
178 int i, j;
180 for (i = 0; i < priv->num_tx_queues; i++) {
181 tx_queue = priv->tx_queue[i];
182 /* Initialize some variables in our dev structure */
183 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
184 tx_queue->dirty_tx = tx_queue->tx_bd_base;
185 tx_queue->cur_tx = tx_queue->tx_bd_base;
186 tx_queue->skb_curtx = 0;
187 tx_queue->skb_dirtytx = 0;
189 /* Initialize Transmit Descriptor Ring */
190 txbdp = tx_queue->tx_bd_base;
191 for (j = 0; j < tx_queue->tx_ring_size; j++) {
192 txbdp->lstatus = 0;
193 txbdp->bufPtr = 0;
194 txbdp++;
197 /* Set the last descriptor in the ring to indicate wrap */
198 txbdp--;
199 txbdp->status |= TXBD_WRAP;
202 for (i = 0; i < priv->num_rx_queues; i++) {
203 rx_queue = priv->rx_queue[i];
204 rx_queue->cur_rx = rx_queue->rx_bd_base;
205 rx_queue->skb_currx = 0;
206 rxbdp = rx_queue->rx_bd_base;
208 for (j = 0; j < rx_queue->rx_ring_size; j++) {
209 struct sk_buff *skb = rx_queue->rx_skbuff[j];
211 if (skb) {
212 gfar_init_rxbdp(rx_queue, rxbdp,
213 rxbdp->bufPtr);
214 } else {
215 skb = gfar_new_skb(ndev);
216 if (!skb) {
217 netdev_err(ndev, "Can't allocate RX buffers\n");
218 goto err_rxalloc_fail;
220 rx_queue->rx_skbuff[j] = skb;
222 gfar_new_rxbdp(rx_queue, rxbdp, skb);
225 rxbdp++;
230 return 0;
232 err_rxalloc_fail:
233 free_skb_resources(priv);
234 return -ENOMEM;
237 static int gfar_alloc_skb_resources(struct net_device *ndev)
239 void *vaddr;
240 dma_addr_t addr;
241 int i, j, k;
242 struct gfar_private *priv = netdev_priv(ndev);
243 struct device *dev = &priv->ofdev->dev;
244 struct gfar_priv_tx_q *tx_queue = NULL;
245 struct gfar_priv_rx_q *rx_queue = NULL;
247 priv->total_tx_ring_size = 0;
248 for (i = 0; i < priv->num_tx_queues; i++)
249 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
251 priv->total_rx_ring_size = 0;
252 for (i = 0; i < priv->num_rx_queues; i++)
253 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
255 /* Allocate memory for the buffer descriptors */
256 vaddr = dma_alloc_coherent(dev,
257 sizeof(struct txbd8) * priv->total_tx_ring_size +
258 sizeof(struct rxbd8) * priv->total_rx_ring_size,
259 &addr, GFP_KERNEL);
260 if (!vaddr) {
261 netif_err(priv, ifup, ndev,
262 "Could not allocate buffer descriptors!\n");
263 return -ENOMEM;
266 for (i = 0; i < priv->num_tx_queues; i++) {
267 tx_queue = priv->tx_queue[i];
268 tx_queue->tx_bd_base = vaddr;
269 tx_queue->tx_bd_dma_base = addr;
270 tx_queue->dev = ndev;
271 /* enet DMA only understands physical addresses */
272 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
276 /* Start the rx descriptor ring where the tx ring leaves off */
277 for (i = 0; i < priv->num_rx_queues; i++) {
278 rx_queue = priv->rx_queue[i];
279 rx_queue->rx_bd_base = vaddr;
280 rx_queue->rx_bd_dma_base = addr;
281 rx_queue->dev = ndev;
282 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
286 /* Setup the skbuff rings */
287 for (i = 0; i < priv->num_tx_queues; i++) {
288 tx_queue = priv->tx_queue[i];
289 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
290 tx_queue->tx_ring_size, GFP_KERNEL);
291 if (!tx_queue->tx_skbuff) {
292 netif_err(priv, ifup, ndev,
293 "Could not allocate tx_skbuff\n");
294 goto cleanup;
297 for (k = 0; k < tx_queue->tx_ring_size; k++)
298 tx_queue->tx_skbuff[k] = NULL;
301 for (i = 0; i < priv->num_rx_queues; i++) {
302 rx_queue = priv->rx_queue[i];
303 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
304 rx_queue->rx_ring_size, GFP_KERNEL);
306 if (!rx_queue->rx_skbuff) {
307 netif_err(priv, ifup, ndev,
308 "Could not allocate rx_skbuff\n");
309 goto cleanup;
312 for (j = 0; j < rx_queue->rx_ring_size; j++)
313 rx_queue->rx_skbuff[j] = NULL;
316 if (gfar_init_bds(ndev))
317 goto cleanup;
319 return 0;
321 cleanup:
322 free_skb_resources(priv);
323 return -ENOMEM;
326 static void gfar_init_tx_rx_base(struct gfar_private *priv)
328 struct gfar __iomem *regs = priv->gfargrp[0].regs;
329 u32 __iomem *baddr;
330 int i;
332 baddr = &regs->tbase0;
333 for(i = 0; i < priv->num_tx_queues; i++) {
334 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
335 baddr += 2;
338 baddr = &regs->rbase0;
339 for(i = 0; i < priv->num_rx_queues; i++) {
340 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
341 baddr += 2;
345 static void gfar_init_mac(struct net_device *ndev)
347 struct gfar_private *priv = netdev_priv(ndev);
348 struct gfar __iomem *regs = priv->gfargrp[0].regs;
349 u32 rctrl = 0;
350 u32 tctrl = 0;
351 u32 attrs = 0;
353 /* write the tx/rx base registers */
354 gfar_init_tx_rx_base(priv);
356 /* Configure the coalescing support */
357 gfar_configure_coalescing(priv, 0xFF, 0xFF);
359 if (priv->rx_filer_enable) {
360 rctrl |= RCTRL_FILREN;
361 /* Program the RIR0 reg with the required distribution */
362 gfar_write(&regs->rir0, DEFAULT_RIR0);
365 if (ndev->features & NETIF_F_RXCSUM)
366 rctrl |= RCTRL_CHECKSUMMING;
368 if (priv->extended_hash) {
369 rctrl |= RCTRL_EXTHASH;
371 gfar_clear_exact_match(ndev);
372 rctrl |= RCTRL_EMEN;
375 if (priv->padding) {
376 rctrl &= ~RCTRL_PAL_MASK;
377 rctrl |= RCTRL_PADDING(priv->padding);
380 /* Insert receive time stamps into padding alignment bytes */
381 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
382 rctrl &= ~RCTRL_PAL_MASK;
383 rctrl |= RCTRL_PADDING(8);
384 priv->padding = 8;
387 /* Enable HW time stamping if requested from user space */
388 if (priv->hwts_rx_en)
389 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
391 if (ndev->features & NETIF_F_HW_VLAN_RX)
392 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
394 /* Init rctrl based on our settings */
395 gfar_write(&regs->rctrl, rctrl);
397 if (ndev->features & NETIF_F_IP_CSUM)
398 tctrl |= TCTRL_INIT_CSUM;
400 tctrl |= TCTRL_TXSCHED_PRIO;
402 gfar_write(&regs->tctrl, tctrl);
404 /* Set the extraction length and index */
405 attrs = ATTRELI_EL(priv->rx_stash_size) |
406 ATTRELI_EI(priv->rx_stash_index);
408 gfar_write(&regs->attreli, attrs);
410 /* Start with defaults, and add stashing or locking
411 * depending on the approprate variables */
412 attrs = ATTR_INIT_SETTINGS;
414 if (priv->bd_stash_en)
415 attrs |= ATTR_BDSTASH;
417 if (priv->rx_stash_size != 0)
418 attrs |= ATTR_BUFSTASH;
420 gfar_write(&regs->attr, attrs);
422 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
423 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
424 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
427 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
429 struct gfar_private *priv = netdev_priv(dev);
430 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
431 unsigned long tx_packets = 0, tx_bytes = 0;
432 int i = 0;
434 for (i = 0; i < priv->num_rx_queues; i++) {
435 rx_packets += priv->rx_queue[i]->stats.rx_packets;
436 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
437 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
440 dev->stats.rx_packets = rx_packets;
441 dev->stats.rx_bytes = rx_bytes;
442 dev->stats.rx_dropped = rx_dropped;
444 for (i = 0; i < priv->num_tx_queues; i++) {
445 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
446 tx_packets += priv->tx_queue[i]->stats.tx_packets;
449 dev->stats.tx_bytes = tx_bytes;
450 dev->stats.tx_packets = tx_packets;
452 return &dev->stats;
455 static const struct net_device_ops gfar_netdev_ops = {
456 .ndo_open = gfar_enet_open,
457 .ndo_start_xmit = gfar_start_xmit,
458 .ndo_stop = gfar_close,
459 .ndo_change_mtu = gfar_change_mtu,
460 .ndo_set_features = gfar_set_features,
461 .ndo_set_multicast_list = gfar_set_multi,
462 .ndo_tx_timeout = gfar_timeout,
463 .ndo_do_ioctl = gfar_ioctl,
464 .ndo_get_stats = gfar_get_stats,
465 .ndo_set_mac_address = eth_mac_addr,
466 .ndo_validate_addr = eth_validate_addr,
467 #ifdef CONFIG_NET_POLL_CONTROLLER
468 .ndo_poll_controller = gfar_netpoll,
469 #endif
472 void lock_rx_qs(struct gfar_private *priv)
474 int i = 0x0;
476 for (i = 0; i < priv->num_rx_queues; i++)
477 spin_lock(&priv->rx_queue[i]->rxlock);
480 void lock_tx_qs(struct gfar_private *priv)
482 int i = 0x0;
484 for (i = 0; i < priv->num_tx_queues; i++)
485 spin_lock(&priv->tx_queue[i]->txlock);
488 void unlock_rx_qs(struct gfar_private *priv)
490 int i = 0x0;
492 for (i = 0; i < priv->num_rx_queues; i++)
493 spin_unlock(&priv->rx_queue[i]->rxlock);
496 void unlock_tx_qs(struct gfar_private *priv)
498 int i = 0x0;
500 for (i = 0; i < priv->num_tx_queues; i++)
501 spin_unlock(&priv->tx_queue[i]->txlock);
504 static bool gfar_is_vlan_on(struct gfar_private *priv)
506 return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
507 (priv->ndev->features & NETIF_F_HW_VLAN_TX);
510 /* Returns 1 if incoming frames use an FCB */
511 static inline int gfar_uses_fcb(struct gfar_private *priv)
513 return gfar_is_vlan_on(priv) ||
514 (priv->ndev->features & NETIF_F_RXCSUM) ||
515 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
518 static void free_tx_pointers(struct gfar_private *priv)
520 int i = 0;
522 for (i = 0; i < priv->num_tx_queues; i++)
523 kfree(priv->tx_queue[i]);
526 static void free_rx_pointers(struct gfar_private *priv)
528 int i = 0;
530 for (i = 0; i < priv->num_rx_queues; i++)
531 kfree(priv->rx_queue[i]);
534 static void unmap_group_regs(struct gfar_private *priv)
536 int i = 0;
538 for (i = 0; i < MAXGROUPS; i++)
539 if (priv->gfargrp[i].regs)
540 iounmap(priv->gfargrp[i].regs);
543 static void disable_napi(struct gfar_private *priv)
545 int i = 0;
547 for (i = 0; i < priv->num_grps; i++)
548 napi_disable(&priv->gfargrp[i].napi);
551 static void enable_napi(struct gfar_private *priv)
553 int i = 0;
555 for (i = 0; i < priv->num_grps; i++)
556 napi_enable(&priv->gfargrp[i].napi);
559 static int gfar_parse_group(struct device_node *np,
560 struct gfar_private *priv, const char *model)
562 u32 *queue_mask;
564 priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
565 if (!priv->gfargrp[priv->num_grps].regs)
566 return -ENOMEM;
568 priv->gfargrp[priv->num_grps].interruptTransmit =
569 irq_of_parse_and_map(np, 0);
571 /* If we aren't the FEC we have multiple interrupts */
572 if (model && strcasecmp(model, "FEC")) {
573 priv->gfargrp[priv->num_grps].interruptReceive =
574 irq_of_parse_and_map(np, 1);
575 priv->gfargrp[priv->num_grps].interruptError =
576 irq_of_parse_and_map(np,2);
577 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
578 priv->gfargrp[priv->num_grps].interruptReceive == NO_IRQ ||
579 priv->gfargrp[priv->num_grps].interruptError == NO_IRQ)
580 return -EINVAL;
583 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
584 priv->gfargrp[priv->num_grps].priv = priv;
585 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
586 if(priv->mode == MQ_MG_MODE) {
587 queue_mask = (u32 *)of_get_property(np,
588 "fsl,rx-bit-map", NULL);
589 priv->gfargrp[priv->num_grps].rx_bit_map =
590 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
591 queue_mask = (u32 *)of_get_property(np,
592 "fsl,tx-bit-map", NULL);
593 priv->gfargrp[priv->num_grps].tx_bit_map =
594 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
595 } else {
596 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
597 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
599 priv->num_grps++;
601 return 0;
604 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
606 const char *model;
607 const char *ctype;
608 const void *mac_addr;
609 int err = 0, i;
610 struct net_device *dev = NULL;
611 struct gfar_private *priv = NULL;
612 struct device_node *np = ofdev->dev.of_node;
613 struct device_node *child = NULL;
614 const u32 *stash;
615 const u32 *stash_len;
616 const u32 *stash_idx;
617 unsigned int num_tx_qs, num_rx_qs;
618 u32 *tx_queues, *rx_queues;
620 if (!np || !of_device_is_available(np))
621 return -ENODEV;
623 /* parse the num of tx and rx queues */
624 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
625 num_tx_qs = tx_queues ? *tx_queues : 1;
627 if (num_tx_qs > MAX_TX_QS) {
628 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
629 num_tx_qs, MAX_TX_QS);
630 pr_err("Cannot do alloc_etherdev, aborting\n");
631 return -EINVAL;
634 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
635 num_rx_qs = rx_queues ? *rx_queues : 1;
637 if (num_rx_qs > MAX_RX_QS) {
638 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
639 num_rx_qs, MAX_RX_QS);
640 pr_err("Cannot do alloc_etherdev, aborting\n");
641 return -EINVAL;
644 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
645 dev = *pdev;
646 if (NULL == dev)
647 return -ENOMEM;
649 priv = netdev_priv(dev);
650 priv->node = ofdev->dev.of_node;
651 priv->ndev = dev;
653 priv->num_tx_queues = num_tx_qs;
654 netif_set_real_num_rx_queues(dev, num_rx_qs);
655 priv->num_rx_queues = num_rx_qs;
656 priv->num_grps = 0x0;
658 /* Init Rx queue filer rule set linked list*/
659 INIT_LIST_HEAD(&priv->rx_list.list);
660 priv->rx_list.count = 0;
661 mutex_init(&priv->rx_queue_access);
663 model = of_get_property(np, "model", NULL);
665 for (i = 0; i < MAXGROUPS; i++)
666 priv->gfargrp[i].regs = NULL;
668 /* Parse and initialize group specific information */
669 if (of_device_is_compatible(np, "fsl,etsec2")) {
670 priv->mode = MQ_MG_MODE;
671 for_each_child_of_node(np, child) {
672 err = gfar_parse_group(child, priv, model);
673 if (err)
674 goto err_grp_init;
676 } else {
677 priv->mode = SQ_SG_MODE;
678 err = gfar_parse_group(np, priv, model);
679 if(err)
680 goto err_grp_init;
683 for (i = 0; i < priv->num_tx_queues; i++)
684 priv->tx_queue[i] = NULL;
685 for (i = 0; i < priv->num_rx_queues; i++)
686 priv->rx_queue[i] = NULL;
688 for (i = 0; i < priv->num_tx_queues; i++) {
689 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
690 GFP_KERNEL);
691 if (!priv->tx_queue[i]) {
692 err = -ENOMEM;
693 goto tx_alloc_failed;
695 priv->tx_queue[i]->tx_skbuff = NULL;
696 priv->tx_queue[i]->qindex = i;
697 priv->tx_queue[i]->dev = dev;
698 spin_lock_init(&(priv->tx_queue[i]->txlock));
701 for (i = 0; i < priv->num_rx_queues; i++) {
702 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
703 GFP_KERNEL);
704 if (!priv->rx_queue[i]) {
705 err = -ENOMEM;
706 goto rx_alloc_failed;
708 priv->rx_queue[i]->rx_skbuff = NULL;
709 priv->rx_queue[i]->qindex = i;
710 priv->rx_queue[i]->dev = dev;
711 spin_lock_init(&(priv->rx_queue[i]->rxlock));
715 stash = of_get_property(np, "bd-stash", NULL);
717 if (stash) {
718 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
719 priv->bd_stash_en = 1;
722 stash_len = of_get_property(np, "rx-stash-len", NULL);
724 if (stash_len)
725 priv->rx_stash_size = *stash_len;
727 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
729 if (stash_idx)
730 priv->rx_stash_index = *stash_idx;
732 if (stash_len || stash_idx)
733 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
735 mac_addr = of_get_mac_address(np);
736 if (mac_addr)
737 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
739 if (model && !strcasecmp(model, "TSEC"))
740 priv->device_flags =
741 FSL_GIANFAR_DEV_HAS_GIGABIT |
742 FSL_GIANFAR_DEV_HAS_COALESCE |
743 FSL_GIANFAR_DEV_HAS_RMON |
744 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
745 if (model && !strcasecmp(model, "eTSEC"))
746 priv->device_flags =
747 FSL_GIANFAR_DEV_HAS_GIGABIT |
748 FSL_GIANFAR_DEV_HAS_COALESCE |
749 FSL_GIANFAR_DEV_HAS_RMON |
750 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
751 FSL_GIANFAR_DEV_HAS_PADDING |
752 FSL_GIANFAR_DEV_HAS_CSUM |
753 FSL_GIANFAR_DEV_HAS_VLAN |
754 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
755 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
756 FSL_GIANFAR_DEV_HAS_TIMER;
758 ctype = of_get_property(np, "phy-connection-type", NULL);
760 /* We only care about rgmii-id. The rest are autodetected */
761 if (ctype && !strcmp(ctype, "rgmii-id"))
762 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
763 else
764 priv->interface = PHY_INTERFACE_MODE_MII;
766 if (of_get_property(np, "fsl,magic-packet", NULL))
767 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
769 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
771 /* Find the TBI PHY. If it's not there, we don't support SGMII */
772 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
774 return 0;
776 rx_alloc_failed:
777 free_rx_pointers(priv);
778 tx_alloc_failed:
779 free_tx_pointers(priv);
780 err_grp_init:
781 unmap_group_regs(priv);
782 free_netdev(dev);
783 return err;
786 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
787 struct ifreq *ifr, int cmd)
789 struct hwtstamp_config config;
790 struct gfar_private *priv = netdev_priv(netdev);
792 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
793 return -EFAULT;
795 /* reserved for future extensions */
796 if (config.flags)
797 return -EINVAL;
799 switch (config.tx_type) {
800 case HWTSTAMP_TX_OFF:
801 priv->hwts_tx_en = 0;
802 break;
803 case HWTSTAMP_TX_ON:
804 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
805 return -ERANGE;
806 priv->hwts_tx_en = 1;
807 break;
808 default:
809 return -ERANGE;
812 switch (config.rx_filter) {
813 case HWTSTAMP_FILTER_NONE:
814 if (priv->hwts_rx_en) {
815 stop_gfar(netdev);
816 priv->hwts_rx_en = 0;
817 startup_gfar(netdev);
819 break;
820 default:
821 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
822 return -ERANGE;
823 if (!priv->hwts_rx_en) {
824 stop_gfar(netdev);
825 priv->hwts_rx_en = 1;
826 startup_gfar(netdev);
828 config.rx_filter = HWTSTAMP_FILTER_ALL;
829 break;
832 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
833 -EFAULT : 0;
836 /* Ioctl MII Interface */
837 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
839 struct gfar_private *priv = netdev_priv(dev);
841 if (!netif_running(dev))
842 return -EINVAL;
844 if (cmd == SIOCSHWTSTAMP)
845 return gfar_hwtstamp_ioctl(dev, rq, cmd);
847 if (!priv->phydev)
848 return -ENODEV;
850 return phy_mii_ioctl(priv->phydev, rq, cmd);
853 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
855 unsigned int new_bit_map = 0x0;
856 int mask = 0x1 << (max_qs - 1), i;
857 for (i = 0; i < max_qs; i++) {
858 if (bit_map & mask)
859 new_bit_map = new_bit_map + (1 << i);
860 mask = mask >> 0x1;
862 return new_bit_map;
865 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
866 u32 class)
868 u32 rqfpr = FPR_FILER_MASK;
869 u32 rqfcr = 0x0;
871 rqfar--;
872 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
873 priv->ftp_rqfpr[rqfar] = rqfpr;
874 priv->ftp_rqfcr[rqfar] = rqfcr;
875 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
877 rqfar--;
878 rqfcr = RQFCR_CMP_NOMATCH;
879 priv->ftp_rqfpr[rqfar] = rqfpr;
880 priv->ftp_rqfcr[rqfar] = rqfcr;
881 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
883 rqfar--;
884 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
885 rqfpr = class;
886 priv->ftp_rqfcr[rqfar] = rqfcr;
887 priv->ftp_rqfpr[rqfar] = rqfpr;
888 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
890 rqfar--;
891 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
892 rqfpr = class;
893 priv->ftp_rqfcr[rqfar] = rqfcr;
894 priv->ftp_rqfpr[rqfar] = rqfpr;
895 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
897 return rqfar;
900 static void gfar_init_filer_table(struct gfar_private *priv)
902 int i = 0x0;
903 u32 rqfar = MAX_FILER_IDX;
904 u32 rqfcr = 0x0;
905 u32 rqfpr = FPR_FILER_MASK;
907 /* Default rule */
908 rqfcr = RQFCR_CMP_MATCH;
909 priv->ftp_rqfcr[rqfar] = rqfcr;
910 priv->ftp_rqfpr[rqfar] = rqfpr;
911 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
913 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
914 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
915 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
916 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
917 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
918 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
920 /* cur_filer_idx indicated the first non-masked rule */
921 priv->cur_filer_idx = rqfar;
923 /* Rest are masked rules */
924 rqfcr = RQFCR_CMP_NOMATCH;
925 for (i = 0; i < rqfar; i++) {
926 priv->ftp_rqfcr[i] = rqfcr;
927 priv->ftp_rqfpr[i] = rqfpr;
928 gfar_write_filer(priv, i, rqfcr, rqfpr);
932 static void gfar_detect_errata(struct gfar_private *priv)
934 struct device *dev = &priv->ofdev->dev;
935 unsigned int pvr = mfspr(SPRN_PVR);
936 unsigned int svr = mfspr(SPRN_SVR);
937 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
938 unsigned int rev = svr & 0xffff;
940 /* MPC8313 Rev 2.0 and higher; All MPC837x */
941 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
942 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
943 priv->errata |= GFAR_ERRATA_74;
945 /* MPC8313 and MPC837x all rev */
946 if ((pvr == 0x80850010 && mod == 0x80b0) ||
947 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
948 priv->errata |= GFAR_ERRATA_76;
950 /* MPC8313 and MPC837x all rev */
951 if ((pvr == 0x80850010 && mod == 0x80b0) ||
952 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953 priv->errata |= GFAR_ERRATA_A002;
955 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
956 if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
957 (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
958 priv->errata |= GFAR_ERRATA_12;
960 if (priv->errata)
961 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
962 priv->errata);
965 /* Set up the ethernet device structure, private data,
966 * and anything else we need before we start */
967 static int gfar_probe(struct platform_device *ofdev)
969 u32 tempval;
970 struct net_device *dev = NULL;
971 struct gfar_private *priv = NULL;
972 struct gfar __iomem *regs = NULL;
973 int err = 0, i, grp_idx = 0;
974 int len_devname;
975 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
976 u32 isrg = 0;
977 u32 __iomem *baddr;
979 err = gfar_of_init(ofdev, &dev);
981 if (err)
982 return err;
984 priv = netdev_priv(dev);
985 priv->ndev = dev;
986 priv->ofdev = ofdev;
987 priv->node = ofdev->dev.of_node;
988 SET_NETDEV_DEV(dev, &ofdev->dev);
990 spin_lock_init(&priv->bflock);
991 INIT_WORK(&priv->reset_task, gfar_reset_task);
993 dev_set_drvdata(&ofdev->dev, priv);
994 regs = priv->gfargrp[0].regs;
996 gfar_detect_errata(priv);
998 /* Stop the DMA engine now, in case it was running before */
999 /* (The firmware could have used it, and left it running). */
1000 gfar_halt(dev);
1002 /* Reset MAC layer */
1003 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1005 /* We need to delay at least 3 TX clocks */
1006 udelay(2);
1008 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1009 gfar_write(&regs->maccfg1, tempval);
1011 /* Initialize MACCFG2. */
1012 tempval = MACCFG2_INIT_SETTINGS;
1013 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1014 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1015 gfar_write(&regs->maccfg2, tempval);
1017 /* Initialize ECNTRL */
1018 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1020 /* Set the dev->base_addr to the gfar reg region */
1021 dev->base_addr = (unsigned long) regs;
1023 SET_NETDEV_DEV(dev, &ofdev->dev);
1025 /* Fill in the dev structure */
1026 dev->watchdog_timeo = TX_TIMEOUT;
1027 dev->mtu = 1500;
1028 dev->netdev_ops = &gfar_netdev_ops;
1029 dev->ethtool_ops = &gfar_ethtool_ops;
1031 /* Register for napi ...We are registering NAPI for each grp */
1032 for (i = 0; i < priv->num_grps; i++)
1033 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1035 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1036 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1037 NETIF_F_RXCSUM;
1038 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1039 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1042 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1043 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1044 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1047 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1048 priv->extended_hash = 1;
1049 priv->hash_width = 9;
1051 priv->hash_regs[0] = &regs->igaddr0;
1052 priv->hash_regs[1] = &regs->igaddr1;
1053 priv->hash_regs[2] = &regs->igaddr2;
1054 priv->hash_regs[3] = &regs->igaddr3;
1055 priv->hash_regs[4] = &regs->igaddr4;
1056 priv->hash_regs[5] = &regs->igaddr5;
1057 priv->hash_regs[6] = &regs->igaddr6;
1058 priv->hash_regs[7] = &regs->igaddr7;
1059 priv->hash_regs[8] = &regs->gaddr0;
1060 priv->hash_regs[9] = &regs->gaddr1;
1061 priv->hash_regs[10] = &regs->gaddr2;
1062 priv->hash_regs[11] = &regs->gaddr3;
1063 priv->hash_regs[12] = &regs->gaddr4;
1064 priv->hash_regs[13] = &regs->gaddr5;
1065 priv->hash_regs[14] = &regs->gaddr6;
1066 priv->hash_regs[15] = &regs->gaddr7;
1068 } else {
1069 priv->extended_hash = 0;
1070 priv->hash_width = 8;
1072 priv->hash_regs[0] = &regs->gaddr0;
1073 priv->hash_regs[1] = &regs->gaddr1;
1074 priv->hash_regs[2] = &regs->gaddr2;
1075 priv->hash_regs[3] = &regs->gaddr3;
1076 priv->hash_regs[4] = &regs->gaddr4;
1077 priv->hash_regs[5] = &regs->gaddr5;
1078 priv->hash_regs[6] = &regs->gaddr6;
1079 priv->hash_regs[7] = &regs->gaddr7;
1082 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1083 priv->padding = DEFAULT_PADDING;
1084 else
1085 priv->padding = 0;
1087 if (dev->features & NETIF_F_IP_CSUM ||
1088 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1089 dev->hard_header_len += GMAC_FCB_LEN;
1091 /* Program the isrg regs only if number of grps > 1 */
1092 if (priv->num_grps > 1) {
1093 baddr = &regs->isrg0;
1094 for (i = 0; i < priv->num_grps; i++) {
1095 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1096 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1097 gfar_write(baddr, isrg);
1098 baddr++;
1099 isrg = 0x0;
1103 /* Need to reverse the bit maps as bit_map's MSB is q0
1104 * but, for_each_set_bit parses from right to left, which
1105 * basically reverses the queue numbers */
1106 for (i = 0; i< priv->num_grps; i++) {
1107 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1108 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1109 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1110 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1113 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1114 * also assign queues to groups */
1115 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1116 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1117 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1118 priv->num_rx_queues) {
1119 priv->gfargrp[grp_idx].num_rx_queues++;
1120 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1121 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1122 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1124 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1125 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1126 priv->num_tx_queues) {
1127 priv->gfargrp[grp_idx].num_tx_queues++;
1128 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1129 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1130 tqueue = tqueue | (TQUEUE_EN0 >> i);
1132 priv->gfargrp[grp_idx].rstat = rstat;
1133 priv->gfargrp[grp_idx].tstat = tstat;
1134 rstat = tstat =0;
1137 gfar_write(&regs->rqueue, rqueue);
1138 gfar_write(&regs->tqueue, tqueue);
1140 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1142 /* Initializing some of the rx/tx queue level parameters */
1143 for (i = 0; i < priv->num_tx_queues; i++) {
1144 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1145 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1146 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1147 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1150 for (i = 0; i < priv->num_rx_queues; i++) {
1151 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1152 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1153 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1156 /* always enable rx filer*/
1157 priv->rx_filer_enable = 1;
1158 /* Enable most messages by default */
1159 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1161 /* Carrier starts down, phylib will bring it up */
1162 netif_carrier_off(dev);
1164 err = register_netdev(dev);
1166 if (err) {
1167 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1168 goto register_fail;
1171 device_init_wakeup(&dev->dev,
1172 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1174 /* fill out IRQ number and name fields */
1175 len_devname = strlen(dev->name);
1176 for (i = 0; i < priv->num_grps; i++) {
1177 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1178 len_devname);
1179 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1180 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1181 "_g", sizeof("_g"));
1182 priv->gfargrp[i].int_name_tx[
1183 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1184 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1185 priv->gfargrp[i].int_name_tx)],
1186 "_tx", sizeof("_tx") + 1);
1188 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1189 len_devname);
1190 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1191 "_g", sizeof("_g"));
1192 priv->gfargrp[i].int_name_rx[
1193 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1194 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1195 priv->gfargrp[i].int_name_rx)],
1196 "_rx", sizeof("_rx") + 1);
1198 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1199 len_devname);
1200 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1201 "_g", sizeof("_g"));
1202 priv->gfargrp[i].int_name_er[strlen(
1203 priv->gfargrp[i].int_name_er)] = i+48;
1204 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1205 priv->gfargrp[i].int_name_er)],
1206 "_er", sizeof("_er") + 1);
1207 } else
1208 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1211 /* Initialize the filer table */
1212 gfar_init_filer_table(priv);
1214 /* Create all the sysfs files */
1215 gfar_init_sysfs(dev);
1217 /* Print out the device info */
1218 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1220 /* Even more device info helps when determining which kernel */
1221 /* provided which set of benchmarks. */
1222 netdev_info(dev, "Running with NAPI enabled\n");
1223 for (i = 0; i < priv->num_rx_queues; i++)
1224 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1225 i, priv->rx_queue[i]->rx_ring_size);
1226 for(i = 0; i < priv->num_tx_queues; i++)
1227 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1228 i, priv->tx_queue[i]->tx_ring_size);
1230 return 0;
1232 register_fail:
1233 unmap_group_regs(priv);
1234 free_tx_pointers(priv);
1235 free_rx_pointers(priv);
1236 if (priv->phy_node)
1237 of_node_put(priv->phy_node);
1238 if (priv->tbi_node)
1239 of_node_put(priv->tbi_node);
1240 free_netdev(dev);
1241 return err;
1244 static int gfar_remove(struct platform_device *ofdev)
1246 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1248 if (priv->phy_node)
1249 of_node_put(priv->phy_node);
1250 if (priv->tbi_node)
1251 of_node_put(priv->tbi_node);
1253 dev_set_drvdata(&ofdev->dev, NULL);
1255 unregister_netdev(priv->ndev);
1256 unmap_group_regs(priv);
1257 free_netdev(priv->ndev);
1259 return 0;
1262 #ifdef CONFIG_PM
1264 static int gfar_suspend(struct device *dev)
1266 struct gfar_private *priv = dev_get_drvdata(dev);
1267 struct net_device *ndev = priv->ndev;
1268 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1269 unsigned long flags;
1270 u32 tempval;
1272 int magic_packet = priv->wol_en &&
1273 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1275 netif_device_detach(ndev);
1277 if (netif_running(ndev)) {
1279 local_irq_save(flags);
1280 lock_tx_qs(priv);
1281 lock_rx_qs(priv);
1283 gfar_halt_nodisable(ndev);
1285 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1286 tempval = gfar_read(&regs->maccfg1);
1288 tempval &= ~MACCFG1_TX_EN;
1290 if (!magic_packet)
1291 tempval &= ~MACCFG1_RX_EN;
1293 gfar_write(&regs->maccfg1, tempval);
1295 unlock_rx_qs(priv);
1296 unlock_tx_qs(priv);
1297 local_irq_restore(flags);
1299 disable_napi(priv);
1301 if (magic_packet) {
1302 /* Enable interrupt on Magic Packet */
1303 gfar_write(&regs->imask, IMASK_MAG);
1305 /* Enable Magic Packet mode */
1306 tempval = gfar_read(&regs->maccfg2);
1307 tempval |= MACCFG2_MPEN;
1308 gfar_write(&regs->maccfg2, tempval);
1309 } else {
1310 phy_stop(priv->phydev);
1314 return 0;
1317 static int gfar_resume(struct device *dev)
1319 struct gfar_private *priv = dev_get_drvdata(dev);
1320 struct net_device *ndev = priv->ndev;
1321 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1322 unsigned long flags;
1323 u32 tempval;
1324 int magic_packet = priv->wol_en &&
1325 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1327 if (!netif_running(ndev)) {
1328 netif_device_attach(ndev);
1329 return 0;
1332 if (!magic_packet && priv->phydev)
1333 phy_start(priv->phydev);
1335 /* Disable Magic Packet mode, in case something
1336 * else woke us up.
1338 local_irq_save(flags);
1339 lock_tx_qs(priv);
1340 lock_rx_qs(priv);
1342 tempval = gfar_read(&regs->maccfg2);
1343 tempval &= ~MACCFG2_MPEN;
1344 gfar_write(&regs->maccfg2, tempval);
1346 gfar_start(ndev);
1348 unlock_rx_qs(priv);
1349 unlock_tx_qs(priv);
1350 local_irq_restore(flags);
1352 netif_device_attach(ndev);
1354 enable_napi(priv);
1356 return 0;
1359 static int gfar_restore(struct device *dev)
1361 struct gfar_private *priv = dev_get_drvdata(dev);
1362 struct net_device *ndev = priv->ndev;
1364 if (!netif_running(ndev))
1365 return 0;
1367 gfar_init_bds(ndev);
1368 init_registers(ndev);
1369 gfar_set_mac_address(ndev);
1370 gfar_init_mac(ndev);
1371 gfar_start(ndev);
1373 priv->oldlink = 0;
1374 priv->oldspeed = 0;
1375 priv->oldduplex = -1;
1377 if (priv->phydev)
1378 phy_start(priv->phydev);
1380 netif_device_attach(ndev);
1381 enable_napi(priv);
1383 return 0;
1386 static struct dev_pm_ops gfar_pm_ops = {
1387 .suspend = gfar_suspend,
1388 .resume = gfar_resume,
1389 .freeze = gfar_suspend,
1390 .thaw = gfar_resume,
1391 .restore = gfar_restore,
1394 #define GFAR_PM_OPS (&gfar_pm_ops)
1396 #else
1398 #define GFAR_PM_OPS NULL
1400 #endif
1402 /* Reads the controller's registers to determine what interface
1403 * connects it to the PHY.
1405 static phy_interface_t gfar_get_interface(struct net_device *dev)
1407 struct gfar_private *priv = netdev_priv(dev);
1408 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1409 u32 ecntrl;
1411 ecntrl = gfar_read(&regs->ecntrl);
1413 if (ecntrl & ECNTRL_SGMII_MODE)
1414 return PHY_INTERFACE_MODE_SGMII;
1416 if (ecntrl & ECNTRL_TBI_MODE) {
1417 if (ecntrl & ECNTRL_REDUCED_MODE)
1418 return PHY_INTERFACE_MODE_RTBI;
1419 else
1420 return PHY_INTERFACE_MODE_TBI;
1423 if (ecntrl & ECNTRL_REDUCED_MODE) {
1424 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1425 return PHY_INTERFACE_MODE_RMII;
1426 else {
1427 phy_interface_t interface = priv->interface;
1430 * This isn't autodetected right now, so it must
1431 * be set by the device tree or platform code.
1433 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1434 return PHY_INTERFACE_MODE_RGMII_ID;
1436 return PHY_INTERFACE_MODE_RGMII;
1440 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1441 return PHY_INTERFACE_MODE_GMII;
1443 return PHY_INTERFACE_MODE_MII;
1447 /* Initializes driver's PHY state, and attaches to the PHY.
1448 * Returns 0 on success.
1450 static int init_phy(struct net_device *dev)
1452 struct gfar_private *priv = netdev_priv(dev);
1453 uint gigabit_support =
1454 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1455 SUPPORTED_1000baseT_Full : 0;
1456 phy_interface_t interface;
1458 priv->oldlink = 0;
1459 priv->oldspeed = 0;
1460 priv->oldduplex = -1;
1462 interface = gfar_get_interface(dev);
1464 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1465 interface);
1466 if (!priv->phydev)
1467 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1468 interface);
1469 if (!priv->phydev) {
1470 dev_err(&dev->dev, "could not attach to PHY\n");
1471 return -ENODEV;
1474 if (interface == PHY_INTERFACE_MODE_SGMII)
1475 gfar_configure_serdes(dev);
1477 /* Remove any features not supported by the controller */
1478 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1479 priv->phydev->advertising = priv->phydev->supported;
1481 return 0;
1485 * Initialize TBI PHY interface for communicating with the
1486 * SERDES lynx PHY on the chip. We communicate with this PHY
1487 * through the MDIO bus on each controller, treating it as a
1488 * "normal" PHY at the address found in the TBIPA register. We assume
1489 * that the TBIPA register is valid. Either the MDIO bus code will set
1490 * it to a value that doesn't conflict with other PHYs on the bus, or the
1491 * value doesn't matter, as there are no other PHYs on the bus.
1493 static void gfar_configure_serdes(struct net_device *dev)
1495 struct gfar_private *priv = netdev_priv(dev);
1496 struct phy_device *tbiphy;
1498 if (!priv->tbi_node) {
1499 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1500 "device tree specify a tbi-handle\n");
1501 return;
1504 tbiphy = of_phy_find_device(priv->tbi_node);
1505 if (!tbiphy) {
1506 dev_err(&dev->dev, "error: Could not get TBI device\n");
1507 return;
1511 * If the link is already up, we must already be ok, and don't need to
1512 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1513 * everything for us? Resetting it takes the link down and requires
1514 * several seconds for it to come back.
1516 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1517 return;
1519 /* Single clk mode, mii mode off(for serdes communication) */
1520 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1522 phy_write(tbiphy, MII_ADVERTISE,
1523 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1524 ADVERTISE_1000XPSE_ASYM);
1526 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1527 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1530 static void init_registers(struct net_device *dev)
1532 struct gfar_private *priv = netdev_priv(dev);
1533 struct gfar __iomem *regs = NULL;
1534 int i = 0;
1536 for (i = 0; i < priv->num_grps; i++) {
1537 regs = priv->gfargrp[i].regs;
1538 /* Clear IEVENT */
1539 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1541 /* Initialize IMASK */
1542 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1545 regs = priv->gfargrp[0].regs;
1546 /* Init hash registers to zero */
1547 gfar_write(&regs->igaddr0, 0);
1548 gfar_write(&regs->igaddr1, 0);
1549 gfar_write(&regs->igaddr2, 0);
1550 gfar_write(&regs->igaddr3, 0);
1551 gfar_write(&regs->igaddr4, 0);
1552 gfar_write(&regs->igaddr5, 0);
1553 gfar_write(&regs->igaddr6, 0);
1554 gfar_write(&regs->igaddr7, 0);
1556 gfar_write(&regs->gaddr0, 0);
1557 gfar_write(&regs->gaddr1, 0);
1558 gfar_write(&regs->gaddr2, 0);
1559 gfar_write(&regs->gaddr3, 0);
1560 gfar_write(&regs->gaddr4, 0);
1561 gfar_write(&regs->gaddr5, 0);
1562 gfar_write(&regs->gaddr6, 0);
1563 gfar_write(&regs->gaddr7, 0);
1565 /* Zero out the rmon mib registers if it has them */
1566 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1567 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1569 /* Mask off the CAM interrupts */
1570 gfar_write(&regs->rmon.cam1, 0xffffffff);
1571 gfar_write(&regs->rmon.cam2, 0xffffffff);
1574 /* Initialize the max receive buffer length */
1575 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1577 /* Initialize the Minimum Frame Length Register */
1578 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1581 static int __gfar_is_rx_idle(struct gfar_private *priv)
1583 u32 res;
1586 * Normaly TSEC should not hang on GRS commands, so we should
1587 * actually wait for IEVENT_GRSC flag.
1589 if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1590 return 0;
1593 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1594 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1595 * and the Rx can be safely reset.
1597 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1598 res &= 0x7f807f80;
1599 if ((res & 0xffff) == (res >> 16))
1600 return 1;
1602 return 0;
1605 /* Halt the receive and transmit queues */
1606 static void gfar_halt_nodisable(struct net_device *dev)
1608 struct gfar_private *priv = netdev_priv(dev);
1609 struct gfar __iomem *regs = NULL;
1610 u32 tempval;
1611 int i = 0;
1613 for (i = 0; i < priv->num_grps; i++) {
1614 regs = priv->gfargrp[i].regs;
1615 /* Mask all interrupts */
1616 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1618 /* Clear all interrupts */
1619 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1622 regs = priv->gfargrp[0].regs;
1623 /* Stop the DMA, and wait for it to stop */
1624 tempval = gfar_read(&regs->dmactrl);
1625 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1626 != (DMACTRL_GRS | DMACTRL_GTS)) {
1627 int ret;
1629 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1630 gfar_write(&regs->dmactrl, tempval);
1632 do {
1633 ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1634 (IEVENT_GRSC | IEVENT_GTSC)) ==
1635 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1636 if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1637 ret = __gfar_is_rx_idle(priv);
1638 } while (!ret);
1642 /* Halt the receive and transmit queues */
1643 void gfar_halt(struct net_device *dev)
1645 struct gfar_private *priv = netdev_priv(dev);
1646 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1647 u32 tempval;
1649 gfar_halt_nodisable(dev);
1651 /* Disable Rx and Tx */
1652 tempval = gfar_read(&regs->maccfg1);
1653 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1654 gfar_write(&regs->maccfg1, tempval);
1657 static void free_grp_irqs(struct gfar_priv_grp *grp)
1659 free_irq(grp->interruptError, grp);
1660 free_irq(grp->interruptTransmit, grp);
1661 free_irq(grp->interruptReceive, grp);
1664 void stop_gfar(struct net_device *dev)
1666 struct gfar_private *priv = netdev_priv(dev);
1667 unsigned long flags;
1668 int i;
1670 phy_stop(priv->phydev);
1673 /* Lock it down */
1674 local_irq_save(flags);
1675 lock_tx_qs(priv);
1676 lock_rx_qs(priv);
1678 gfar_halt(dev);
1680 unlock_rx_qs(priv);
1681 unlock_tx_qs(priv);
1682 local_irq_restore(flags);
1684 /* Free the IRQs */
1685 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1686 for (i = 0; i < priv->num_grps; i++)
1687 free_grp_irqs(&priv->gfargrp[i]);
1688 } else {
1689 for (i = 0; i < priv->num_grps; i++)
1690 free_irq(priv->gfargrp[i].interruptTransmit,
1691 &priv->gfargrp[i]);
1694 free_skb_resources(priv);
1697 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1699 struct txbd8 *txbdp;
1700 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1701 int i, j;
1703 txbdp = tx_queue->tx_bd_base;
1705 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1706 if (!tx_queue->tx_skbuff[i])
1707 continue;
1709 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1710 txbdp->length, DMA_TO_DEVICE);
1711 txbdp->lstatus = 0;
1712 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1713 j++) {
1714 txbdp++;
1715 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1716 txbdp->length, DMA_TO_DEVICE);
1718 txbdp++;
1719 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1720 tx_queue->tx_skbuff[i] = NULL;
1722 kfree(tx_queue->tx_skbuff);
1725 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1727 struct rxbd8 *rxbdp;
1728 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1729 int i;
1731 rxbdp = rx_queue->rx_bd_base;
1733 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1734 if (rx_queue->rx_skbuff[i]) {
1735 dma_unmap_single(&priv->ofdev->dev,
1736 rxbdp->bufPtr, priv->rx_buffer_size,
1737 DMA_FROM_DEVICE);
1738 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1739 rx_queue->rx_skbuff[i] = NULL;
1741 rxbdp->lstatus = 0;
1742 rxbdp->bufPtr = 0;
1743 rxbdp++;
1745 kfree(rx_queue->rx_skbuff);
1748 /* If there are any tx skbs or rx skbs still around, free them.
1749 * Then free tx_skbuff and rx_skbuff */
1750 static void free_skb_resources(struct gfar_private *priv)
1752 struct gfar_priv_tx_q *tx_queue = NULL;
1753 struct gfar_priv_rx_q *rx_queue = NULL;
1754 int i;
1756 /* Go through all the buffer descriptors and free their data buffers */
1757 for (i = 0; i < priv->num_tx_queues; i++) {
1758 tx_queue = priv->tx_queue[i];
1759 if(tx_queue->tx_skbuff)
1760 free_skb_tx_queue(tx_queue);
1763 for (i = 0; i < priv->num_rx_queues; i++) {
1764 rx_queue = priv->rx_queue[i];
1765 if(rx_queue->rx_skbuff)
1766 free_skb_rx_queue(rx_queue);
1769 dma_free_coherent(&priv->ofdev->dev,
1770 sizeof(struct txbd8) * priv->total_tx_ring_size +
1771 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1772 priv->tx_queue[0]->tx_bd_base,
1773 priv->tx_queue[0]->tx_bd_dma_base);
1774 skb_queue_purge(&priv->rx_recycle);
1777 void gfar_start(struct net_device *dev)
1779 struct gfar_private *priv = netdev_priv(dev);
1780 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1781 u32 tempval;
1782 int i = 0;
1784 /* Enable Rx and Tx in MACCFG1 */
1785 tempval = gfar_read(&regs->maccfg1);
1786 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1787 gfar_write(&regs->maccfg1, tempval);
1789 /* Initialize DMACTRL to have WWR and WOP */
1790 tempval = gfar_read(&regs->dmactrl);
1791 tempval |= DMACTRL_INIT_SETTINGS;
1792 gfar_write(&regs->dmactrl, tempval);
1794 /* Make sure we aren't stopped */
1795 tempval = gfar_read(&regs->dmactrl);
1796 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1797 gfar_write(&regs->dmactrl, tempval);
1799 for (i = 0; i < priv->num_grps; i++) {
1800 regs = priv->gfargrp[i].regs;
1801 /* Clear THLT/RHLT, so that the DMA starts polling now */
1802 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1803 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1804 /* Unmask the interrupts we look for */
1805 gfar_write(&regs->imask, IMASK_DEFAULT);
1808 dev->trans_start = jiffies; /* prevent tx timeout */
1811 void gfar_configure_coalescing(struct gfar_private *priv,
1812 unsigned long tx_mask, unsigned long rx_mask)
1814 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1815 u32 __iomem *baddr;
1816 int i = 0;
1818 /* Backward compatible case ---- even if we enable
1819 * multiple queues, there's only single reg to program
1821 gfar_write(&regs->txic, 0);
1822 if(likely(priv->tx_queue[0]->txcoalescing))
1823 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1825 gfar_write(&regs->rxic, 0);
1826 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1827 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1829 if (priv->mode == MQ_MG_MODE) {
1830 baddr = &regs->txic0;
1831 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1832 if (likely(priv->tx_queue[i]->txcoalescing)) {
1833 gfar_write(baddr + i, 0);
1834 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1838 baddr = &regs->rxic0;
1839 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1840 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1841 gfar_write(baddr + i, 0);
1842 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1848 static int register_grp_irqs(struct gfar_priv_grp *grp)
1850 struct gfar_private *priv = grp->priv;
1851 struct net_device *dev = priv->ndev;
1852 int err;
1854 /* If the device has multiple interrupts, register for
1855 * them. Otherwise, only register for the one */
1856 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1857 /* Install our interrupt handlers for Error,
1858 * Transmit, and Receive */
1859 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1860 grp->int_name_er,grp)) < 0) {
1861 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1862 grp->interruptError);
1864 goto err_irq_fail;
1867 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1868 0, grp->int_name_tx, grp)) < 0) {
1869 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1870 grp->interruptTransmit);
1871 goto tx_irq_fail;
1874 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1875 grp->int_name_rx, grp)) < 0) {
1876 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1877 grp->interruptReceive);
1878 goto rx_irq_fail;
1880 } else {
1881 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1882 grp->int_name_tx, grp)) < 0) {
1883 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1884 grp->interruptTransmit);
1885 goto err_irq_fail;
1889 return 0;
1891 rx_irq_fail:
1892 free_irq(grp->interruptTransmit, grp);
1893 tx_irq_fail:
1894 free_irq(grp->interruptError, grp);
1895 err_irq_fail:
1896 return err;
1900 /* Bring the controller up and running */
1901 int startup_gfar(struct net_device *ndev)
1903 struct gfar_private *priv = netdev_priv(ndev);
1904 struct gfar __iomem *regs = NULL;
1905 int err, i, j;
1907 for (i = 0; i < priv->num_grps; i++) {
1908 regs= priv->gfargrp[i].regs;
1909 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1912 regs= priv->gfargrp[0].regs;
1913 err = gfar_alloc_skb_resources(ndev);
1914 if (err)
1915 return err;
1917 gfar_init_mac(ndev);
1919 for (i = 0; i < priv->num_grps; i++) {
1920 err = register_grp_irqs(&priv->gfargrp[i]);
1921 if (err) {
1922 for (j = 0; j < i; j++)
1923 free_grp_irqs(&priv->gfargrp[j]);
1924 goto irq_fail;
1928 /* Start the controller */
1929 gfar_start(ndev);
1931 phy_start(priv->phydev);
1933 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1935 return 0;
1937 irq_fail:
1938 free_skb_resources(priv);
1939 return err;
1942 /* Called when something needs to use the ethernet device */
1943 /* Returns 0 for success. */
1944 static int gfar_enet_open(struct net_device *dev)
1946 struct gfar_private *priv = netdev_priv(dev);
1947 int err;
1949 enable_napi(priv);
1951 skb_queue_head_init(&priv->rx_recycle);
1953 /* Initialize a bunch of registers */
1954 init_registers(dev);
1956 gfar_set_mac_address(dev);
1958 err = init_phy(dev);
1960 if (err) {
1961 disable_napi(priv);
1962 return err;
1965 err = startup_gfar(dev);
1966 if (err) {
1967 disable_napi(priv);
1968 return err;
1971 netif_tx_start_all_queues(dev);
1973 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1975 return err;
1978 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1980 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1982 memset(fcb, 0, GMAC_FCB_LEN);
1984 return fcb;
1987 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1989 u8 flags = 0;
1991 /* If we're here, it's a IP packet with a TCP or UDP
1992 * payload. We set it to checksum, using a pseudo-header
1993 * we provide
1995 flags = TXFCB_DEFAULT;
1997 /* Tell the controller what the protocol is */
1998 /* And provide the already calculated phcs */
1999 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2000 flags |= TXFCB_UDP;
2001 fcb->phcs = udp_hdr(skb)->check;
2002 } else
2003 fcb->phcs = tcp_hdr(skb)->check;
2005 /* l3os is the distance between the start of the
2006 * frame (skb->data) and the start of the IP hdr.
2007 * l4os is the distance between the start of the
2008 * l3 hdr and the l4 hdr */
2009 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2010 fcb->l4os = skb_network_header_len(skb);
2012 fcb->flags = flags;
2015 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2017 fcb->flags |= TXFCB_VLN;
2018 fcb->vlctl = vlan_tx_tag_get(skb);
2021 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2022 struct txbd8 *base, int ring_size)
2024 struct txbd8 *new_bd = bdp + stride;
2026 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2029 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2030 int ring_size)
2032 return skip_txbd(bdp, 1, base, ring_size);
2035 /* This is called by the kernel when a frame is ready for transmission. */
2036 /* It is pointed to by the dev->hard_start_xmit function pointer */
2037 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2039 struct gfar_private *priv = netdev_priv(dev);
2040 struct gfar_priv_tx_q *tx_queue = NULL;
2041 struct netdev_queue *txq;
2042 struct gfar __iomem *regs = NULL;
2043 struct txfcb *fcb = NULL;
2044 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2045 u32 lstatus;
2046 int i, rq = 0, do_tstamp = 0;
2047 u32 bufaddr;
2048 unsigned long flags;
2049 unsigned int nr_frags, nr_txbds, length;
2052 * TOE=1 frames larger than 2500 bytes may see excess delays
2053 * before start of transmission.
2055 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2056 skb->ip_summed == CHECKSUM_PARTIAL &&
2057 skb->len > 2500)) {
2058 int ret;
2060 ret = skb_checksum_help(skb);
2061 if (ret)
2062 return ret;
2065 rq = skb->queue_mapping;
2066 tx_queue = priv->tx_queue[rq];
2067 txq = netdev_get_tx_queue(dev, rq);
2068 base = tx_queue->tx_bd_base;
2069 regs = tx_queue->grp->regs;
2071 /* check if time stamp should be generated */
2072 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2073 priv->hwts_tx_en))
2074 do_tstamp = 1;
2076 /* make space for additional header when fcb is needed */
2077 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2078 vlan_tx_tag_present(skb) ||
2079 unlikely(do_tstamp)) &&
2080 (skb_headroom(skb) < GMAC_FCB_LEN)) {
2081 struct sk_buff *skb_new;
2083 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2084 if (!skb_new) {
2085 dev->stats.tx_errors++;
2086 kfree_skb(skb);
2087 return NETDEV_TX_OK;
2089 kfree_skb(skb);
2090 skb = skb_new;
2093 /* total number of fragments in the SKB */
2094 nr_frags = skb_shinfo(skb)->nr_frags;
2096 /* calculate the required number of TxBDs for this skb */
2097 if (unlikely(do_tstamp))
2098 nr_txbds = nr_frags + 2;
2099 else
2100 nr_txbds = nr_frags + 1;
2102 /* check if there is space to queue this packet */
2103 if (nr_txbds > tx_queue->num_txbdfree) {
2104 /* no space, stop the queue */
2105 netif_tx_stop_queue(txq);
2106 dev->stats.tx_fifo_errors++;
2107 return NETDEV_TX_BUSY;
2110 /* Update transmit stats */
2111 tx_queue->stats.tx_bytes += skb->len;
2112 tx_queue->stats.tx_packets++;
2114 txbdp = txbdp_start = tx_queue->cur_tx;
2115 lstatus = txbdp->lstatus;
2117 /* Time stamp insertion requires one additional TxBD */
2118 if (unlikely(do_tstamp))
2119 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2120 tx_queue->tx_ring_size);
2122 if (nr_frags == 0) {
2123 if (unlikely(do_tstamp))
2124 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2125 TXBD_INTERRUPT);
2126 else
2127 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2128 } else {
2129 /* Place the fragment addresses and lengths into the TxBDs */
2130 for (i = 0; i < nr_frags; i++) {
2131 /* Point at the next BD, wrapping as needed */
2132 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2134 length = skb_shinfo(skb)->frags[i].size;
2136 lstatus = txbdp->lstatus | length |
2137 BD_LFLAG(TXBD_READY);
2139 /* Handle the last BD specially */
2140 if (i == nr_frags - 1)
2141 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2143 bufaddr = dma_map_page(&priv->ofdev->dev,
2144 skb_shinfo(skb)->frags[i].page,
2145 skb_shinfo(skb)->frags[i].page_offset,
2146 length,
2147 DMA_TO_DEVICE);
2149 /* set the TxBD length and buffer pointer */
2150 txbdp->bufPtr = bufaddr;
2151 txbdp->lstatus = lstatus;
2154 lstatus = txbdp_start->lstatus;
2157 /* Set up checksumming */
2158 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2159 fcb = gfar_add_fcb(skb);
2160 /* as specified by errata */
2161 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2162 && ((unsigned long)fcb % 0x20) > 0x18)) {
2163 __skb_pull(skb, GMAC_FCB_LEN);
2164 skb_checksum_help(skb);
2165 } else {
2166 lstatus |= BD_LFLAG(TXBD_TOE);
2167 gfar_tx_checksum(skb, fcb);
2171 if (vlan_tx_tag_present(skb)) {
2172 if (unlikely(NULL == fcb)) {
2173 fcb = gfar_add_fcb(skb);
2174 lstatus |= BD_LFLAG(TXBD_TOE);
2177 gfar_tx_vlan(skb, fcb);
2180 /* Setup tx hardware time stamping if requested */
2181 if (unlikely(do_tstamp)) {
2182 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2183 if (fcb == NULL)
2184 fcb = gfar_add_fcb(skb);
2185 fcb->ptp = 1;
2186 lstatus |= BD_LFLAG(TXBD_TOE);
2189 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2190 skb_headlen(skb), DMA_TO_DEVICE);
2193 * If time stamping is requested one additional TxBD must be set up. The
2194 * first TxBD points to the FCB and must have a data length of
2195 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2196 * the full frame length.
2198 if (unlikely(do_tstamp)) {
2199 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2200 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2201 (skb_headlen(skb) - GMAC_FCB_LEN);
2202 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2203 } else {
2204 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2208 * We can work in parallel with gfar_clean_tx_ring(), except
2209 * when modifying num_txbdfree. Note that we didn't grab the lock
2210 * when we were reading the num_txbdfree and checking for available
2211 * space, that's because outside of this function it can only grow,
2212 * and once we've got needed space, it cannot suddenly disappear.
2214 * The lock also protects us from gfar_error(), which can modify
2215 * regs->tstat and thus retrigger the transfers, which is why we
2216 * also must grab the lock before setting ready bit for the first
2217 * to be transmitted BD.
2219 spin_lock_irqsave(&tx_queue->txlock, flags);
2222 * The powerpc-specific eieio() is used, as wmb() has too strong
2223 * semantics (it requires synchronization between cacheable and
2224 * uncacheable mappings, which eieio doesn't provide and which we
2225 * don't need), thus requiring a more expensive sync instruction. At
2226 * some point, the set of architecture-independent barrier functions
2227 * should be expanded to include weaker barriers.
2229 eieio();
2231 txbdp_start->lstatus = lstatus;
2233 eieio(); /* force lstatus write before tx_skbuff */
2235 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2237 /* Update the current skb pointer to the next entry we will use
2238 * (wrapping if necessary) */
2239 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2240 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2242 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2244 /* reduce TxBD free count */
2245 tx_queue->num_txbdfree -= (nr_txbds);
2247 /* If the next BD still needs to be cleaned up, then the bds
2248 are full. We need to tell the kernel to stop sending us stuff. */
2249 if (!tx_queue->num_txbdfree) {
2250 netif_tx_stop_queue(txq);
2252 dev->stats.tx_fifo_errors++;
2255 /* Tell the DMA to go go go */
2256 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2258 /* Unlock priv */
2259 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2261 return NETDEV_TX_OK;
2264 /* Stops the kernel queue, and halts the controller */
2265 static int gfar_close(struct net_device *dev)
2267 struct gfar_private *priv = netdev_priv(dev);
2269 disable_napi(priv);
2271 cancel_work_sync(&priv->reset_task);
2272 stop_gfar(dev);
2274 /* Disconnect from the PHY */
2275 phy_disconnect(priv->phydev);
2276 priv->phydev = NULL;
2278 netif_tx_stop_all_queues(dev);
2280 return 0;
2283 /* Changes the mac address if the controller is not running. */
2284 static int gfar_set_mac_address(struct net_device *dev)
2286 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2288 return 0;
2291 /* Check if rx parser should be activated */
2292 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2294 struct gfar __iomem *regs;
2295 u32 tempval;
2297 regs = priv->gfargrp[0].regs;
2299 tempval = gfar_read(&regs->rctrl);
2300 /* If parse is no longer required, then disable parser */
2301 if (tempval & RCTRL_REQ_PARSER)
2302 tempval |= RCTRL_PRSDEP_INIT;
2303 else
2304 tempval &= ~RCTRL_PRSDEP_INIT;
2305 gfar_write(&regs->rctrl, tempval);
2308 /* Enables and disables VLAN insertion/extraction */
2309 void gfar_vlan_mode(struct net_device *dev, u32 features)
2311 struct gfar_private *priv = netdev_priv(dev);
2312 struct gfar __iomem *regs = NULL;
2313 unsigned long flags;
2314 u32 tempval;
2316 regs = priv->gfargrp[0].regs;
2317 local_irq_save(flags);
2318 lock_rx_qs(priv);
2320 if (features & NETIF_F_HW_VLAN_TX) {
2321 /* Enable VLAN tag insertion */
2322 tempval = gfar_read(&regs->tctrl);
2323 tempval |= TCTRL_VLINS;
2324 gfar_write(&regs->tctrl, tempval);
2325 } else {
2326 /* Disable VLAN tag insertion */
2327 tempval = gfar_read(&regs->tctrl);
2328 tempval &= ~TCTRL_VLINS;
2329 gfar_write(&regs->tctrl, tempval);
2332 if (features & NETIF_F_HW_VLAN_RX) {
2333 /* Enable VLAN tag extraction */
2334 tempval = gfar_read(&regs->rctrl);
2335 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2336 gfar_write(&regs->rctrl, tempval);
2337 } else {
2338 /* Disable VLAN tag extraction */
2339 tempval = gfar_read(&regs->rctrl);
2340 tempval &= ~RCTRL_VLEX;
2341 gfar_write(&regs->rctrl, tempval);
2343 gfar_check_rx_parser_mode(priv);
2346 gfar_change_mtu(dev, dev->mtu);
2348 unlock_rx_qs(priv);
2349 local_irq_restore(flags);
2352 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2354 int tempsize, tempval;
2355 struct gfar_private *priv = netdev_priv(dev);
2356 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2357 int oldsize = priv->rx_buffer_size;
2358 int frame_size = new_mtu + ETH_HLEN;
2360 if (gfar_is_vlan_on(priv))
2361 frame_size += VLAN_HLEN;
2363 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2364 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2365 return -EINVAL;
2368 if (gfar_uses_fcb(priv))
2369 frame_size += GMAC_FCB_LEN;
2371 frame_size += priv->padding;
2373 tempsize =
2374 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2375 INCREMENTAL_BUFFER_SIZE;
2377 /* Only stop and start the controller if it isn't already
2378 * stopped, and we changed something */
2379 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2380 stop_gfar(dev);
2382 priv->rx_buffer_size = tempsize;
2384 dev->mtu = new_mtu;
2386 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2387 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2389 /* If the mtu is larger than the max size for standard
2390 * ethernet frames (ie, a jumbo frame), then set maccfg2
2391 * to allow huge frames, and to check the length */
2392 tempval = gfar_read(&regs->maccfg2);
2394 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2395 gfar_has_errata(priv, GFAR_ERRATA_74))
2396 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2397 else
2398 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2400 gfar_write(&regs->maccfg2, tempval);
2402 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2403 startup_gfar(dev);
2405 return 0;
2408 /* gfar_reset_task gets scheduled when a packet has not been
2409 * transmitted after a set amount of time.
2410 * For now, assume that clearing out all the structures, and
2411 * starting over will fix the problem.
2413 static void gfar_reset_task(struct work_struct *work)
2415 struct gfar_private *priv = container_of(work, struct gfar_private,
2416 reset_task);
2417 struct net_device *dev = priv->ndev;
2419 if (dev->flags & IFF_UP) {
2420 netif_tx_stop_all_queues(dev);
2421 stop_gfar(dev);
2422 startup_gfar(dev);
2423 netif_tx_start_all_queues(dev);
2426 netif_tx_schedule_all(dev);
2429 static void gfar_timeout(struct net_device *dev)
2431 struct gfar_private *priv = netdev_priv(dev);
2433 dev->stats.tx_errors++;
2434 schedule_work(&priv->reset_task);
2437 static void gfar_align_skb(struct sk_buff *skb)
2439 /* We need the data buffer to be aligned properly. We will reserve
2440 * as many bytes as needed to align the data properly
2442 skb_reserve(skb, RXBUF_ALIGNMENT -
2443 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2446 /* Interrupt Handler for Transmit complete */
2447 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2449 struct net_device *dev = tx_queue->dev;
2450 struct gfar_private *priv = netdev_priv(dev);
2451 struct gfar_priv_rx_q *rx_queue = NULL;
2452 struct txbd8 *bdp, *next = NULL;
2453 struct txbd8 *lbdp = NULL;
2454 struct txbd8 *base = tx_queue->tx_bd_base;
2455 struct sk_buff *skb;
2456 int skb_dirtytx;
2457 int tx_ring_size = tx_queue->tx_ring_size;
2458 int frags = 0, nr_txbds = 0;
2459 int i;
2460 int howmany = 0;
2461 u32 lstatus;
2462 size_t buflen;
2464 rx_queue = priv->rx_queue[tx_queue->qindex];
2465 bdp = tx_queue->dirty_tx;
2466 skb_dirtytx = tx_queue->skb_dirtytx;
2468 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2469 unsigned long flags;
2471 frags = skb_shinfo(skb)->nr_frags;
2474 * When time stamping, one additional TxBD must be freed.
2475 * Also, we need to dma_unmap_single() the TxPAL.
2477 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2478 nr_txbds = frags + 2;
2479 else
2480 nr_txbds = frags + 1;
2482 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2484 lstatus = lbdp->lstatus;
2486 /* Only clean completed frames */
2487 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2488 (lstatus & BD_LENGTH_MASK))
2489 break;
2491 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2492 next = next_txbd(bdp, base, tx_ring_size);
2493 buflen = next->length + GMAC_FCB_LEN;
2494 } else
2495 buflen = bdp->length;
2497 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2498 buflen, DMA_TO_DEVICE);
2500 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2501 struct skb_shared_hwtstamps shhwtstamps;
2502 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2503 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2504 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2505 skb_tstamp_tx(skb, &shhwtstamps);
2506 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2507 bdp = next;
2510 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2511 bdp = next_txbd(bdp, base, tx_ring_size);
2513 for (i = 0; i < frags; i++) {
2514 dma_unmap_page(&priv->ofdev->dev,
2515 bdp->bufPtr,
2516 bdp->length,
2517 DMA_TO_DEVICE);
2518 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2519 bdp = next_txbd(bdp, base, tx_ring_size);
2523 * If there's room in the queue (limit it to rx_buffer_size)
2524 * we add this skb back into the pool, if it's the right size
2526 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2527 skb_recycle_check(skb, priv->rx_buffer_size +
2528 RXBUF_ALIGNMENT)) {
2529 gfar_align_skb(skb);
2530 skb_queue_head(&priv->rx_recycle, skb);
2531 } else
2532 dev_kfree_skb_any(skb);
2534 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2536 skb_dirtytx = (skb_dirtytx + 1) &
2537 TX_RING_MOD_MASK(tx_ring_size);
2539 howmany++;
2540 spin_lock_irqsave(&tx_queue->txlock, flags);
2541 tx_queue->num_txbdfree += nr_txbds;
2542 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2545 /* If we freed a buffer, we can restart transmission, if necessary */
2546 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2547 netif_wake_subqueue(dev, tx_queue->qindex);
2549 /* Update dirty indicators */
2550 tx_queue->skb_dirtytx = skb_dirtytx;
2551 tx_queue->dirty_tx = bdp;
2553 return howmany;
2556 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2558 unsigned long flags;
2560 spin_lock_irqsave(&gfargrp->grplock, flags);
2561 if (napi_schedule_prep(&gfargrp->napi)) {
2562 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2563 __napi_schedule(&gfargrp->napi);
2564 } else {
2566 * Clear IEVENT, so interrupts aren't called again
2567 * because of the packets that have already arrived.
2569 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2571 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2575 /* Interrupt Handler for Transmit complete */
2576 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2578 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2579 return IRQ_HANDLED;
2582 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2583 struct sk_buff *skb)
2585 struct net_device *dev = rx_queue->dev;
2586 struct gfar_private *priv = netdev_priv(dev);
2587 dma_addr_t buf;
2589 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2590 priv->rx_buffer_size, DMA_FROM_DEVICE);
2591 gfar_init_rxbdp(rx_queue, bdp, buf);
2594 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2596 struct gfar_private *priv = netdev_priv(dev);
2597 struct sk_buff *skb = NULL;
2599 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2600 if (!skb)
2601 return NULL;
2603 gfar_align_skb(skb);
2605 return skb;
2608 struct sk_buff * gfar_new_skb(struct net_device *dev)
2610 struct gfar_private *priv = netdev_priv(dev);
2611 struct sk_buff *skb = NULL;
2613 skb = skb_dequeue(&priv->rx_recycle);
2614 if (!skb)
2615 skb = gfar_alloc_skb(dev);
2617 return skb;
2620 static inline void count_errors(unsigned short status, struct net_device *dev)
2622 struct gfar_private *priv = netdev_priv(dev);
2623 struct net_device_stats *stats = &dev->stats;
2624 struct gfar_extra_stats *estats = &priv->extra_stats;
2626 /* If the packet was truncated, none of the other errors
2627 * matter */
2628 if (status & RXBD_TRUNCATED) {
2629 stats->rx_length_errors++;
2631 estats->rx_trunc++;
2633 return;
2635 /* Count the errors, if there were any */
2636 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2637 stats->rx_length_errors++;
2639 if (status & RXBD_LARGE)
2640 estats->rx_large++;
2641 else
2642 estats->rx_short++;
2644 if (status & RXBD_NONOCTET) {
2645 stats->rx_frame_errors++;
2646 estats->rx_nonoctet++;
2648 if (status & RXBD_CRCERR) {
2649 estats->rx_crcerr++;
2650 stats->rx_crc_errors++;
2652 if (status & RXBD_OVERRUN) {
2653 estats->rx_overrun++;
2654 stats->rx_crc_errors++;
2658 irqreturn_t gfar_receive(int irq, void *grp_id)
2660 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2661 return IRQ_HANDLED;
2664 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2666 /* If valid headers were found, and valid sums
2667 * were verified, then we tell the kernel that no
2668 * checksumming is necessary. Otherwise, it is */
2669 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2670 skb->ip_summed = CHECKSUM_UNNECESSARY;
2671 else
2672 skb_checksum_none_assert(skb);
2676 /* gfar_process_frame() -- handle one incoming packet if skb
2677 * isn't NULL. */
2678 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2679 int amount_pull)
2681 struct gfar_private *priv = netdev_priv(dev);
2682 struct rxfcb *fcb = NULL;
2684 int ret;
2686 /* fcb is at the beginning if exists */
2687 fcb = (struct rxfcb *)skb->data;
2689 /* Remove the FCB from the skb */
2690 /* Remove the padded bytes, if there are any */
2691 if (amount_pull) {
2692 skb_record_rx_queue(skb, fcb->rq);
2693 skb_pull(skb, amount_pull);
2696 /* Get receive timestamp from the skb */
2697 if (priv->hwts_rx_en) {
2698 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2699 u64 *ns = (u64 *) skb->data;
2700 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2701 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2704 if (priv->padding)
2705 skb_pull(skb, priv->padding);
2707 if (dev->features & NETIF_F_RXCSUM)
2708 gfar_rx_checksum(skb, fcb);
2710 /* Tell the skb what kind of packet this is */
2711 skb->protocol = eth_type_trans(skb, dev);
2714 * There's need to check for NETIF_F_HW_VLAN_RX here.
2715 * Even if vlan rx accel is disabled, on some chips
2716 * RXFCB_VLN is pseudo randomly set.
2718 if (dev->features & NETIF_F_HW_VLAN_RX &&
2719 fcb->flags & RXFCB_VLN)
2720 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2722 /* Send the packet up the stack */
2723 ret = netif_receive_skb(skb);
2725 if (NET_RX_DROP == ret)
2726 priv->extra_stats.kernel_dropped++;
2728 return 0;
2731 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2732 * until the budget/quota has been reached. Returns the number
2733 * of frames handled
2735 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2737 struct net_device *dev = rx_queue->dev;
2738 struct rxbd8 *bdp, *base;
2739 struct sk_buff *skb;
2740 int pkt_len;
2741 int amount_pull;
2742 int howmany = 0;
2743 struct gfar_private *priv = netdev_priv(dev);
2745 /* Get the first full descriptor */
2746 bdp = rx_queue->cur_rx;
2747 base = rx_queue->rx_bd_base;
2749 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2751 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2752 struct sk_buff *newskb;
2753 rmb();
2755 /* Add another skb for the future */
2756 newskb = gfar_new_skb(dev);
2758 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2760 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2761 priv->rx_buffer_size, DMA_FROM_DEVICE);
2763 if (unlikely(!(bdp->status & RXBD_ERR) &&
2764 bdp->length > priv->rx_buffer_size))
2765 bdp->status = RXBD_LARGE;
2767 /* We drop the frame if we failed to allocate a new buffer */
2768 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2769 bdp->status & RXBD_ERR)) {
2770 count_errors(bdp->status, dev);
2772 if (unlikely(!newskb))
2773 newskb = skb;
2774 else if (skb)
2775 skb_queue_head(&priv->rx_recycle, skb);
2776 } else {
2777 /* Increment the number of packets */
2778 rx_queue->stats.rx_packets++;
2779 howmany++;
2781 if (likely(skb)) {
2782 pkt_len = bdp->length - ETH_FCS_LEN;
2783 /* Remove the FCS from the packet length */
2784 skb_put(skb, pkt_len);
2785 rx_queue->stats.rx_bytes += pkt_len;
2786 skb_record_rx_queue(skb, rx_queue->qindex);
2787 gfar_process_frame(dev, skb, amount_pull);
2789 } else {
2790 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2791 rx_queue->stats.rx_dropped++;
2792 priv->extra_stats.rx_skbmissing++;
2797 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2799 /* Setup the new bdp */
2800 gfar_new_rxbdp(rx_queue, bdp, newskb);
2802 /* Update to the next pointer */
2803 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2805 /* update to point at the next skb */
2806 rx_queue->skb_currx =
2807 (rx_queue->skb_currx + 1) &
2808 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2811 /* Update the current rxbd pointer to be the next one */
2812 rx_queue->cur_rx = bdp;
2814 return howmany;
2817 static int gfar_poll(struct napi_struct *napi, int budget)
2819 struct gfar_priv_grp *gfargrp = container_of(napi,
2820 struct gfar_priv_grp, napi);
2821 struct gfar_private *priv = gfargrp->priv;
2822 struct gfar __iomem *regs = gfargrp->regs;
2823 struct gfar_priv_tx_q *tx_queue = NULL;
2824 struct gfar_priv_rx_q *rx_queue = NULL;
2825 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2826 int tx_cleaned = 0, i, left_over_budget = budget;
2827 unsigned long serviced_queues = 0;
2828 int num_queues = 0;
2830 num_queues = gfargrp->num_rx_queues;
2831 budget_per_queue = budget/num_queues;
2833 /* Clear IEVENT, so interrupts aren't called again
2834 * because of the packets that have already arrived */
2835 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2837 while (num_queues && left_over_budget) {
2839 budget_per_queue = left_over_budget/num_queues;
2840 left_over_budget = 0;
2842 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2843 if (test_bit(i, &serviced_queues))
2844 continue;
2845 rx_queue = priv->rx_queue[i];
2846 tx_queue = priv->tx_queue[rx_queue->qindex];
2848 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2849 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2850 budget_per_queue);
2851 rx_cleaned += rx_cleaned_per_queue;
2852 if(rx_cleaned_per_queue < budget_per_queue) {
2853 left_over_budget = left_over_budget +
2854 (budget_per_queue - rx_cleaned_per_queue);
2855 set_bit(i, &serviced_queues);
2856 num_queues--;
2861 if (tx_cleaned)
2862 return budget;
2864 if (rx_cleaned < budget) {
2865 napi_complete(napi);
2867 /* Clear the halt bit in RSTAT */
2868 gfar_write(&regs->rstat, gfargrp->rstat);
2870 gfar_write(&regs->imask, IMASK_DEFAULT);
2872 /* If we are coalescing interrupts, update the timer */
2873 /* Otherwise, clear it */
2874 gfar_configure_coalescing(priv,
2875 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2878 return rx_cleaned;
2881 #ifdef CONFIG_NET_POLL_CONTROLLER
2883 * Polling 'interrupt' - used by things like netconsole to send skbs
2884 * without having to re-enable interrupts. It's not called while
2885 * the interrupt routine is executing.
2887 static void gfar_netpoll(struct net_device *dev)
2889 struct gfar_private *priv = netdev_priv(dev);
2890 int i = 0;
2892 /* If the device has multiple interrupts, run tx/rx */
2893 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2894 for (i = 0; i < priv->num_grps; i++) {
2895 disable_irq(priv->gfargrp[i].interruptTransmit);
2896 disable_irq(priv->gfargrp[i].interruptReceive);
2897 disable_irq(priv->gfargrp[i].interruptError);
2898 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2899 &priv->gfargrp[i]);
2900 enable_irq(priv->gfargrp[i].interruptError);
2901 enable_irq(priv->gfargrp[i].interruptReceive);
2902 enable_irq(priv->gfargrp[i].interruptTransmit);
2904 } else {
2905 for (i = 0; i < priv->num_grps; i++) {
2906 disable_irq(priv->gfargrp[i].interruptTransmit);
2907 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2908 &priv->gfargrp[i]);
2909 enable_irq(priv->gfargrp[i].interruptTransmit);
2913 #endif
2915 /* The interrupt handler for devices with one interrupt */
2916 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2918 struct gfar_priv_grp *gfargrp = grp_id;
2920 /* Save ievent for future reference */
2921 u32 events = gfar_read(&gfargrp->regs->ievent);
2923 /* Check for reception */
2924 if (events & IEVENT_RX_MASK)
2925 gfar_receive(irq, grp_id);
2927 /* Check for transmit completion */
2928 if (events & IEVENT_TX_MASK)
2929 gfar_transmit(irq, grp_id);
2931 /* Check for errors */
2932 if (events & IEVENT_ERR_MASK)
2933 gfar_error(irq, grp_id);
2935 return IRQ_HANDLED;
2938 /* Called every time the controller might need to be made
2939 * aware of new link state. The PHY code conveys this
2940 * information through variables in the phydev structure, and this
2941 * function converts those variables into the appropriate
2942 * register values, and can bring down the device if needed.
2944 static void adjust_link(struct net_device *dev)
2946 struct gfar_private *priv = netdev_priv(dev);
2947 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2948 unsigned long flags;
2949 struct phy_device *phydev = priv->phydev;
2950 int new_state = 0;
2952 local_irq_save(flags);
2953 lock_tx_qs(priv);
2955 if (phydev->link) {
2956 u32 tempval = gfar_read(&regs->maccfg2);
2957 u32 ecntrl = gfar_read(&regs->ecntrl);
2959 /* Now we make sure that we can be in full duplex mode.
2960 * If not, we operate in half-duplex mode. */
2961 if (phydev->duplex != priv->oldduplex) {
2962 new_state = 1;
2963 if (!(phydev->duplex))
2964 tempval &= ~(MACCFG2_FULL_DUPLEX);
2965 else
2966 tempval |= MACCFG2_FULL_DUPLEX;
2968 priv->oldduplex = phydev->duplex;
2971 if (phydev->speed != priv->oldspeed) {
2972 new_state = 1;
2973 switch (phydev->speed) {
2974 case 1000:
2975 tempval =
2976 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2978 ecntrl &= ~(ECNTRL_R100);
2979 break;
2980 case 100:
2981 case 10:
2982 tempval =
2983 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2985 /* Reduced mode distinguishes
2986 * between 10 and 100 */
2987 if (phydev->speed == SPEED_100)
2988 ecntrl |= ECNTRL_R100;
2989 else
2990 ecntrl &= ~(ECNTRL_R100);
2991 break;
2992 default:
2993 netif_warn(priv, link, dev,
2994 "Ack! Speed (%d) is not 10/100/1000!\n",
2995 phydev->speed);
2996 break;
2999 priv->oldspeed = phydev->speed;
3002 gfar_write(&regs->maccfg2, tempval);
3003 gfar_write(&regs->ecntrl, ecntrl);
3005 if (!priv->oldlink) {
3006 new_state = 1;
3007 priv->oldlink = 1;
3009 } else if (priv->oldlink) {
3010 new_state = 1;
3011 priv->oldlink = 0;
3012 priv->oldspeed = 0;
3013 priv->oldduplex = -1;
3016 if (new_state && netif_msg_link(priv))
3017 phy_print_status(phydev);
3018 unlock_tx_qs(priv);
3019 local_irq_restore(flags);
3022 /* Update the hash table based on the current list of multicast
3023 * addresses we subscribe to. Also, change the promiscuity of
3024 * the device based on the flags (this function is called
3025 * whenever dev->flags is changed */
3026 static void gfar_set_multi(struct net_device *dev)
3028 struct netdev_hw_addr *ha;
3029 struct gfar_private *priv = netdev_priv(dev);
3030 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3031 u32 tempval;
3033 if (dev->flags & IFF_PROMISC) {
3034 /* Set RCTRL to PROM */
3035 tempval = gfar_read(&regs->rctrl);
3036 tempval |= RCTRL_PROM;
3037 gfar_write(&regs->rctrl, tempval);
3038 } else {
3039 /* Set RCTRL to not PROM */
3040 tempval = gfar_read(&regs->rctrl);
3041 tempval &= ~(RCTRL_PROM);
3042 gfar_write(&regs->rctrl, tempval);
3045 if (dev->flags & IFF_ALLMULTI) {
3046 /* Set the hash to rx all multicast frames */
3047 gfar_write(&regs->igaddr0, 0xffffffff);
3048 gfar_write(&regs->igaddr1, 0xffffffff);
3049 gfar_write(&regs->igaddr2, 0xffffffff);
3050 gfar_write(&regs->igaddr3, 0xffffffff);
3051 gfar_write(&regs->igaddr4, 0xffffffff);
3052 gfar_write(&regs->igaddr5, 0xffffffff);
3053 gfar_write(&regs->igaddr6, 0xffffffff);
3054 gfar_write(&regs->igaddr7, 0xffffffff);
3055 gfar_write(&regs->gaddr0, 0xffffffff);
3056 gfar_write(&regs->gaddr1, 0xffffffff);
3057 gfar_write(&regs->gaddr2, 0xffffffff);
3058 gfar_write(&regs->gaddr3, 0xffffffff);
3059 gfar_write(&regs->gaddr4, 0xffffffff);
3060 gfar_write(&regs->gaddr5, 0xffffffff);
3061 gfar_write(&regs->gaddr6, 0xffffffff);
3062 gfar_write(&regs->gaddr7, 0xffffffff);
3063 } else {
3064 int em_num;
3065 int idx;
3067 /* zero out the hash */
3068 gfar_write(&regs->igaddr0, 0x0);
3069 gfar_write(&regs->igaddr1, 0x0);
3070 gfar_write(&regs->igaddr2, 0x0);
3071 gfar_write(&regs->igaddr3, 0x0);
3072 gfar_write(&regs->igaddr4, 0x0);
3073 gfar_write(&regs->igaddr5, 0x0);
3074 gfar_write(&regs->igaddr6, 0x0);
3075 gfar_write(&regs->igaddr7, 0x0);
3076 gfar_write(&regs->gaddr0, 0x0);
3077 gfar_write(&regs->gaddr1, 0x0);
3078 gfar_write(&regs->gaddr2, 0x0);
3079 gfar_write(&regs->gaddr3, 0x0);
3080 gfar_write(&regs->gaddr4, 0x0);
3081 gfar_write(&regs->gaddr5, 0x0);
3082 gfar_write(&regs->gaddr6, 0x0);
3083 gfar_write(&regs->gaddr7, 0x0);
3085 /* If we have extended hash tables, we need to
3086 * clear the exact match registers to prepare for
3087 * setting them */
3088 if (priv->extended_hash) {
3089 em_num = GFAR_EM_NUM + 1;
3090 gfar_clear_exact_match(dev);
3091 idx = 1;
3092 } else {
3093 idx = 0;
3094 em_num = 0;
3097 if (netdev_mc_empty(dev))
3098 return;
3100 /* Parse the list, and set the appropriate bits */
3101 netdev_for_each_mc_addr(ha, dev) {
3102 if (idx < em_num) {
3103 gfar_set_mac_for_addr(dev, idx, ha->addr);
3104 idx++;
3105 } else
3106 gfar_set_hash_for_addr(dev, ha->addr);
3112 /* Clears each of the exact match registers to zero, so they
3113 * don't interfere with normal reception */
3114 static void gfar_clear_exact_match(struct net_device *dev)
3116 int idx;
3117 static const u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
3119 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3120 gfar_set_mac_for_addr(dev, idx, zero_arr);
3123 /* Set the appropriate hash bit for the given addr */
3124 /* The algorithm works like so:
3125 * 1) Take the Destination Address (ie the multicast address), and
3126 * do a CRC on it (little endian), and reverse the bits of the
3127 * result.
3128 * 2) Use the 8 most significant bits as a hash into a 256-entry
3129 * table. The table is controlled through 8 32-bit registers:
3130 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3131 * gaddr7. This means that the 3 most significant bits in the
3132 * hash index which gaddr register to use, and the 5 other bits
3133 * indicate which bit (assuming an IBM numbering scheme, which
3134 * for PowerPC (tm) is usually the case) in the register holds
3135 * the entry. */
3136 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3138 u32 tempval;
3139 struct gfar_private *priv = netdev_priv(dev);
3140 u32 result = ether_crc(MAC_ADDR_LEN, addr);
3141 int width = priv->hash_width;
3142 u8 whichbit = (result >> (32 - width)) & 0x1f;
3143 u8 whichreg = result >> (32 - width + 5);
3144 u32 value = (1 << (31-whichbit));
3146 tempval = gfar_read(priv->hash_regs[whichreg]);
3147 tempval |= value;
3148 gfar_write(priv->hash_regs[whichreg], tempval);
3152 /* There are multiple MAC Address register pairs on some controllers
3153 * This function sets the numth pair to a given address
3155 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3156 const u8 *addr)
3158 struct gfar_private *priv = netdev_priv(dev);
3159 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3160 int idx;
3161 char tmpbuf[MAC_ADDR_LEN];
3162 u32 tempval;
3163 u32 __iomem *macptr = &regs->macstnaddr1;
3165 macptr += num*2;
3167 /* Now copy it into the mac registers backwards, cuz */
3168 /* little endian is silly */
3169 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3170 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3172 gfar_write(macptr, *((u32 *) (tmpbuf)));
3174 tempval = *((u32 *) (tmpbuf + 4));
3176 gfar_write(macptr+1, tempval);
3179 /* GFAR error interrupt handler */
3180 static irqreturn_t gfar_error(int irq, void *grp_id)
3182 struct gfar_priv_grp *gfargrp = grp_id;
3183 struct gfar __iomem *regs = gfargrp->regs;
3184 struct gfar_private *priv= gfargrp->priv;
3185 struct net_device *dev = priv->ndev;
3187 /* Save ievent for future reference */
3188 u32 events = gfar_read(&regs->ievent);
3190 /* Clear IEVENT */
3191 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3193 /* Magic Packet is not an error. */
3194 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3195 (events & IEVENT_MAG))
3196 events &= ~IEVENT_MAG;
3198 /* Hmm... */
3199 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3200 netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3201 events, gfar_read(&regs->imask));
3203 /* Update the error counters */
3204 if (events & IEVENT_TXE) {
3205 dev->stats.tx_errors++;
3207 if (events & IEVENT_LC)
3208 dev->stats.tx_window_errors++;
3209 if (events & IEVENT_CRL)
3210 dev->stats.tx_aborted_errors++;
3211 if (events & IEVENT_XFUN) {
3212 unsigned long flags;
3214 netif_dbg(priv, tx_err, dev,
3215 "TX FIFO underrun, packet dropped\n");
3216 dev->stats.tx_dropped++;
3217 priv->extra_stats.tx_underrun++;
3219 local_irq_save(flags);
3220 lock_tx_qs(priv);
3222 /* Reactivate the Tx Queues */
3223 gfar_write(&regs->tstat, gfargrp->tstat);
3225 unlock_tx_qs(priv);
3226 local_irq_restore(flags);
3228 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3230 if (events & IEVENT_BSY) {
3231 dev->stats.rx_errors++;
3232 priv->extra_stats.rx_bsy++;
3234 gfar_receive(irq, grp_id);
3236 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3237 gfar_read(&regs->rstat));
3239 if (events & IEVENT_BABR) {
3240 dev->stats.rx_errors++;
3241 priv->extra_stats.rx_babr++;
3243 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3245 if (events & IEVENT_EBERR) {
3246 priv->extra_stats.eberr++;
3247 netif_dbg(priv, rx_err, dev, "bus error\n");
3249 if (events & IEVENT_RXC)
3250 netif_dbg(priv, rx_status, dev, "control frame\n");
3252 if (events & IEVENT_BABT) {
3253 priv->extra_stats.tx_babt++;
3254 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3256 return IRQ_HANDLED;
3259 static struct of_device_id gfar_match[] =
3262 .type = "network",
3263 .compatible = "gianfar",
3266 .compatible = "fsl,etsec2",
3270 MODULE_DEVICE_TABLE(of, gfar_match);
3272 /* Structure for a device driver */
3273 static struct platform_driver gfar_driver = {
3274 .driver = {
3275 .name = "fsl-gianfar",
3276 .owner = THIS_MODULE,
3277 .pm = GFAR_PM_OPS,
3278 .of_match_table = gfar_match,
3280 .probe = gfar_probe,
3281 .remove = gfar_remove,
3284 static int __init gfar_init(void)
3286 return platform_driver_register(&gfar_driver);
3289 static void __exit gfar_exit(void)
3291 platform_driver_unregister(&gfar_driver);
3294 module_init(gfar_init);
3295 module_exit(gfar_exit);