powerpc/pmac: Fix issues with sleep on some powerbooks
[linux-2.6/verdex.git] / mm / swap_state.c
blob0313a135f2a120c80c36dbc97de89a3cb0ba736b
1 /*
2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
22 #include <asm/pgtable.h>
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
27 * future use of radix_tree tags in the swap cache.
29 static const struct address_space_operations swap_aops = {
30 .writepage = swap_writepage,
31 .sync_page = block_sync_page,
32 .set_page_dirty = __set_page_dirty_nobuffers,
33 .migratepage = migrate_page,
36 static struct backing_dev_info swap_backing_dev_info = {
37 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
38 .unplug_io_fn = swap_unplug_io_fn,
41 struct address_space swapper_space = {
42 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
43 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
44 .a_ops = &swap_aops,
45 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
46 .backing_dev_info = &swap_backing_dev_info,
49 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
51 static struct {
52 unsigned long add_total;
53 unsigned long del_total;
54 unsigned long find_success;
55 unsigned long find_total;
56 } swap_cache_info;
58 void show_swap_cache_info(void)
60 printk("%lu pages in swap cache\n", total_swapcache_pages);
61 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
62 swap_cache_info.add_total, swap_cache_info.del_total,
63 swap_cache_info.find_success, swap_cache_info.find_total);
64 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
65 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
69 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
70 * but sets SwapCache flag and private instead of mapping and index.
72 static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
74 int error;
76 VM_BUG_ON(!PageLocked(page));
77 VM_BUG_ON(PageSwapCache(page));
78 VM_BUG_ON(!PageSwapBacked(page));
80 page_cache_get(page);
81 SetPageSwapCache(page);
82 set_page_private(page, entry.val);
84 spin_lock_irq(&swapper_space.tree_lock);
85 error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
86 if (likely(!error)) {
87 total_swapcache_pages++;
88 __inc_zone_page_state(page, NR_FILE_PAGES);
89 INC_CACHE_INFO(add_total);
91 spin_unlock_irq(&swapper_space.tree_lock);
93 if (unlikely(error)) {
94 set_page_private(page, 0UL);
95 ClearPageSwapCache(page);
96 page_cache_release(page);
99 return error;
103 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
105 int error;
107 error = radix_tree_preload(gfp_mask);
108 if (!error) {
109 error = __add_to_swap_cache(page, entry);
110 radix_tree_preload_end();
112 return error;
116 * This must be called only on pages that have
117 * been verified to be in the swap cache.
119 void __delete_from_swap_cache(struct page *page)
121 VM_BUG_ON(!PageLocked(page));
122 VM_BUG_ON(!PageSwapCache(page));
123 VM_BUG_ON(PageWriteback(page));
125 radix_tree_delete(&swapper_space.page_tree, page_private(page));
126 set_page_private(page, 0);
127 ClearPageSwapCache(page);
128 total_swapcache_pages--;
129 __dec_zone_page_state(page, NR_FILE_PAGES);
130 INC_CACHE_INFO(del_total);
134 * add_to_swap - allocate swap space for a page
135 * @page: page we want to move to swap
137 * Allocate swap space for the page and add the page to the
138 * swap cache. Caller needs to hold the page lock.
140 int add_to_swap(struct page *page)
142 swp_entry_t entry;
143 int err;
145 VM_BUG_ON(!PageLocked(page));
146 VM_BUG_ON(!PageUptodate(page));
148 for (;;) {
149 entry = get_swap_page();
150 if (!entry.val)
151 return 0;
154 * Radix-tree node allocations from PF_MEMALLOC contexts could
155 * completely exhaust the page allocator. __GFP_NOMEMALLOC
156 * stops emergency reserves from being allocated.
158 * TODO: this could cause a theoretical memory reclaim
159 * deadlock in the swap out path.
162 * Add it to the swap cache and mark it dirty
164 err = add_to_swap_cache(page, entry,
165 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
167 switch (err) {
168 case 0: /* Success */
169 SetPageDirty(page);
170 return 1;
171 case -EEXIST:
172 /* Raced with "speculative" read_swap_cache_async */
173 swapcache_free(entry, NULL);
174 continue;
175 default:
176 /* -ENOMEM radix-tree allocation failure */
177 swapcache_free(entry, NULL);
178 return 0;
184 * This must be called only on pages that have
185 * been verified to be in the swap cache and locked.
186 * It will never put the page into the free list,
187 * the caller has a reference on the page.
189 void delete_from_swap_cache(struct page *page)
191 swp_entry_t entry;
193 entry.val = page_private(page);
195 spin_lock_irq(&swapper_space.tree_lock);
196 __delete_from_swap_cache(page);
197 spin_unlock_irq(&swapper_space.tree_lock);
199 swapcache_free(entry, page);
200 page_cache_release(page);
204 * If we are the only user, then try to free up the swap cache.
206 * Its ok to check for PageSwapCache without the page lock
207 * here because we are going to recheck again inside
208 * try_to_free_swap() _with_ the lock.
209 * - Marcelo
211 static inline void free_swap_cache(struct page *page)
213 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
214 try_to_free_swap(page);
215 unlock_page(page);
220 * Perform a free_page(), also freeing any swap cache associated with
221 * this page if it is the last user of the page.
223 void free_page_and_swap_cache(struct page *page)
225 free_swap_cache(page);
226 page_cache_release(page);
230 * Passed an array of pages, drop them all from swapcache and then release
231 * them. They are removed from the LRU and freed if this is their last use.
233 void free_pages_and_swap_cache(struct page **pages, int nr)
235 struct page **pagep = pages;
237 lru_add_drain();
238 while (nr) {
239 int todo = min(nr, PAGEVEC_SIZE);
240 int i;
242 for (i = 0; i < todo; i++)
243 free_swap_cache(pagep[i]);
244 release_pages(pagep, todo, 0);
245 pagep += todo;
246 nr -= todo;
251 * Lookup a swap entry in the swap cache. A found page will be returned
252 * unlocked and with its refcount incremented - we rely on the kernel
253 * lock getting page table operations atomic even if we drop the page
254 * lock before returning.
256 struct page * lookup_swap_cache(swp_entry_t entry)
258 struct page *page;
260 page = find_get_page(&swapper_space, entry.val);
262 if (page)
263 INC_CACHE_INFO(find_success);
265 INC_CACHE_INFO(find_total);
266 return page;
270 * Locate a page of swap in physical memory, reserving swap cache space
271 * and reading the disk if it is not already cached.
272 * A failure return means that either the page allocation failed or that
273 * the swap entry is no longer in use.
275 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
276 struct vm_area_struct *vma, unsigned long addr)
278 struct page *found_page, *new_page = NULL;
279 int err;
281 do {
283 * First check the swap cache. Since this is normally
284 * called after lookup_swap_cache() failed, re-calling
285 * that would confuse statistics.
287 found_page = find_get_page(&swapper_space, entry.val);
288 if (found_page)
289 break;
292 * Get a new page to read into from swap.
294 if (!new_page) {
295 new_page = alloc_page_vma(gfp_mask, vma, addr);
296 if (!new_page)
297 break; /* Out of memory */
301 * call radix_tree_preload() while we can wait.
303 err = radix_tree_preload(gfp_mask & GFP_KERNEL);
304 if (err)
305 break;
308 * Swap entry may have been freed since our caller observed it.
310 err = swapcache_prepare(entry);
311 if (err == -EEXIST) { /* seems racy */
312 radix_tree_preload_end();
313 continue;
315 if (err) { /* swp entry is obsolete ? */
316 radix_tree_preload_end();
317 break;
321 * Associate the page with swap entry in the swap cache.
322 * May fail (-EEXIST) if there is already a page associated
323 * with this entry in the swap cache: added by a racing
324 * read_swap_cache_async, or add_to_swap or shmem_writepage
325 * re-using the just freed swap entry for an existing page.
326 * May fail (-ENOMEM) if radix-tree node allocation failed.
328 __set_page_locked(new_page);
329 SetPageSwapBacked(new_page);
330 err = __add_to_swap_cache(new_page, entry);
331 if (likely(!err)) {
332 radix_tree_preload_end();
334 * Initiate read into locked page and return.
336 lru_cache_add_anon(new_page);
337 swap_readpage(new_page);
338 return new_page;
340 radix_tree_preload_end();
341 ClearPageSwapBacked(new_page);
342 __clear_page_locked(new_page);
343 swapcache_free(entry, NULL);
344 } while (err != -ENOMEM);
346 if (new_page)
347 page_cache_release(new_page);
348 return found_page;
352 * swapin_readahead - swap in pages in hope we need them soon
353 * @entry: swap entry of this memory
354 * @gfp_mask: memory allocation flags
355 * @vma: user vma this address belongs to
356 * @addr: target address for mempolicy
358 * Returns the struct page for entry and addr, after queueing swapin.
360 * Primitive swap readahead code. We simply read an aligned block of
361 * (1 << page_cluster) entries in the swap area. This method is chosen
362 * because it doesn't cost us any seek time. We also make sure to queue
363 * the 'original' request together with the readahead ones...
365 * This has been extended to use the NUMA policies from the mm triggering
366 * the readahead.
368 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
370 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
371 struct vm_area_struct *vma, unsigned long addr)
373 int nr_pages;
374 struct page *page;
375 unsigned long offset;
376 unsigned long end_offset;
379 * Get starting offset for readaround, and number of pages to read.
380 * Adjust starting address by readbehind (for NUMA interleave case)?
381 * No, it's very unlikely that swap layout would follow vma layout,
382 * more likely that neighbouring swap pages came from the same node:
383 * so use the same "addr" to choose the same node for each swap read.
385 nr_pages = valid_swaphandles(entry, &offset);
386 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
387 /* Ok, do the async read-ahead now */
388 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
389 gfp_mask, vma, addr);
390 if (!page)
391 break;
392 page_cache_release(page);
394 lru_add_drain(); /* Push any new pages onto the LRU now */
395 return read_swap_cache_async(entry, gfp_mask, vma, addr);