Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6/sactl.git] / drivers / scsi / scsi_transport_spi.c
blobf49f55c6bfc893b282c6ef74d708edbad0ef5e60
1 /*
2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs.
4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/ctype.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/workqueue.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/sysfs.h>
28 #include <scsi/scsi.h>
29 #include "scsi_priv.h"
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_host.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_transport.h>
35 #include <scsi/scsi_transport_spi.h>
37 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
38 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
39 * on" attributes */
40 #define SPI_HOST_ATTRS 1
42 #define SPI_MAX_ECHO_BUFFER_SIZE 4096
44 #define DV_LOOPS 3
45 #define DV_TIMEOUT (10*HZ)
46 #define DV_RETRIES 3 /* should only need at most
47 * two cc/ua clears */
49 /* Private data accessors (keep these out of the header file) */
50 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
51 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
53 struct spi_internal {
54 struct scsi_transport_template t;
55 struct spi_function_template *f;
58 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
60 static const int ppr_to_ps[] = {
61 /* The PPR values 0-6 are reserved, fill them in when
62 * the committee defines them */
63 -1, /* 0x00 */
64 -1, /* 0x01 */
65 -1, /* 0x02 */
66 -1, /* 0x03 */
67 -1, /* 0x04 */
68 -1, /* 0x05 */
69 -1, /* 0x06 */
70 3125, /* 0x07 */
71 6250, /* 0x08 */
72 12500, /* 0x09 */
73 25000, /* 0x0a */
74 30300, /* 0x0b */
75 50000, /* 0x0c */
77 /* The PPR values at which you calculate the period in ns by multiplying
78 * by 4 */
79 #define SPI_STATIC_PPR 0x0c
81 static int sprint_frac(char *dest, int value, int denom)
83 int frac = value % denom;
84 int result = sprintf(dest, "%d", value / denom);
86 if (frac == 0)
87 return result;
88 dest[result++] = '.';
90 do {
91 denom /= 10;
92 sprintf(dest + result, "%d", frac / denom);
93 result++;
94 frac %= denom;
95 } while (frac);
97 dest[result++] = '\0';
98 return result;
101 static int spi_execute(struct scsi_device *sdev, const void *cmd,
102 enum dma_data_direction dir,
103 void *buffer, unsigned bufflen,
104 struct scsi_sense_hdr *sshdr)
106 int i, result;
107 unsigned char sense[SCSI_SENSE_BUFFERSIZE];
109 for(i = 0; i < DV_RETRIES; i++) {
110 result = scsi_execute(sdev, cmd, dir, buffer, bufflen,
111 sense, DV_TIMEOUT, /* retries */ 1,
112 REQ_FAILFAST_DEV |
113 REQ_FAILFAST_TRANSPORT |
114 REQ_FAILFAST_DRIVER,
115 NULL);
116 if (driver_byte(result) & DRIVER_SENSE) {
117 struct scsi_sense_hdr sshdr_tmp;
118 if (!sshdr)
119 sshdr = &sshdr_tmp;
121 if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE,
122 sshdr)
123 && sshdr->sense_key == UNIT_ATTENTION)
124 continue;
126 break;
128 return result;
131 static struct {
132 enum spi_signal_type value;
133 char *name;
134 } signal_types[] = {
135 { SPI_SIGNAL_UNKNOWN, "unknown" },
136 { SPI_SIGNAL_SE, "SE" },
137 { SPI_SIGNAL_LVD, "LVD" },
138 { SPI_SIGNAL_HVD, "HVD" },
141 static inline const char *spi_signal_to_string(enum spi_signal_type type)
143 int i;
145 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
146 if (type == signal_types[i].value)
147 return signal_types[i].name;
149 return NULL;
151 static inline enum spi_signal_type spi_signal_to_value(const char *name)
153 int i, len;
155 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
156 len = strlen(signal_types[i].name);
157 if (strncmp(name, signal_types[i].name, len) == 0 &&
158 (name[len] == '\n' || name[len] == '\0'))
159 return signal_types[i].value;
161 return SPI_SIGNAL_UNKNOWN;
164 static int spi_host_setup(struct transport_container *tc, struct device *dev,
165 struct device *cdev)
167 struct Scsi_Host *shost = dev_to_shost(dev);
169 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
171 return 0;
174 static int spi_host_configure(struct transport_container *tc,
175 struct device *dev,
176 struct device *cdev);
178 static DECLARE_TRANSPORT_CLASS(spi_host_class,
179 "spi_host",
180 spi_host_setup,
181 NULL,
182 spi_host_configure);
184 static int spi_host_match(struct attribute_container *cont,
185 struct device *dev)
187 struct Scsi_Host *shost;
189 if (!scsi_is_host_device(dev))
190 return 0;
192 shost = dev_to_shost(dev);
193 if (!shost->transportt || shost->transportt->host_attrs.ac.class
194 != &spi_host_class.class)
195 return 0;
197 return &shost->transportt->host_attrs.ac == cont;
200 static int spi_target_configure(struct transport_container *tc,
201 struct device *dev,
202 struct device *cdev);
204 static int spi_device_configure(struct transport_container *tc,
205 struct device *dev,
206 struct device *cdev)
208 struct scsi_device *sdev = to_scsi_device(dev);
209 struct scsi_target *starget = sdev->sdev_target;
211 /* Populate the target capability fields with the values
212 * gleaned from the device inquiry */
214 spi_support_sync(starget) = scsi_device_sync(sdev);
215 spi_support_wide(starget) = scsi_device_wide(sdev);
216 spi_support_dt(starget) = scsi_device_dt(sdev);
217 spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
218 spi_support_ius(starget) = scsi_device_ius(sdev);
219 spi_support_qas(starget) = scsi_device_qas(sdev);
221 return 0;
224 static int spi_setup_transport_attrs(struct transport_container *tc,
225 struct device *dev,
226 struct device *cdev)
228 struct scsi_target *starget = to_scsi_target(dev);
230 spi_period(starget) = -1; /* illegal value */
231 spi_min_period(starget) = 0;
232 spi_offset(starget) = 0; /* async */
233 spi_max_offset(starget) = 255;
234 spi_width(starget) = 0; /* narrow */
235 spi_max_width(starget) = 1;
236 spi_iu(starget) = 0; /* no IU */
237 spi_dt(starget) = 0; /* ST */
238 spi_qas(starget) = 0;
239 spi_wr_flow(starget) = 0;
240 spi_rd_strm(starget) = 0;
241 spi_rti(starget) = 0;
242 spi_pcomp_en(starget) = 0;
243 spi_hold_mcs(starget) = 0;
244 spi_dv_pending(starget) = 0;
245 spi_dv_in_progress(starget) = 0;
246 spi_initial_dv(starget) = 0;
247 mutex_init(&spi_dv_mutex(starget));
249 return 0;
252 #define spi_transport_show_simple(field, format_string) \
254 static ssize_t \
255 show_spi_transport_##field(struct device *dev, \
256 struct device_attribute *attr, char *buf) \
258 struct scsi_target *starget = transport_class_to_starget(dev); \
259 struct spi_transport_attrs *tp; \
261 tp = (struct spi_transport_attrs *)&starget->starget_data; \
262 return snprintf(buf, 20, format_string, tp->field); \
265 #define spi_transport_store_simple(field, format_string) \
267 static ssize_t \
268 store_spi_transport_##field(struct device *dev, \
269 struct device_attribute *attr, \
270 const char *buf, size_t count) \
272 int val; \
273 struct scsi_target *starget = transport_class_to_starget(dev); \
274 struct spi_transport_attrs *tp; \
276 tp = (struct spi_transport_attrs *)&starget->starget_data; \
277 val = simple_strtoul(buf, NULL, 0); \
278 tp->field = val; \
279 return count; \
282 #define spi_transport_show_function(field, format_string) \
284 static ssize_t \
285 show_spi_transport_##field(struct device *dev, \
286 struct device_attribute *attr, char *buf) \
288 struct scsi_target *starget = transport_class_to_starget(dev); \
289 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
290 struct spi_transport_attrs *tp; \
291 struct spi_internal *i = to_spi_internal(shost->transportt); \
292 tp = (struct spi_transport_attrs *)&starget->starget_data; \
293 if (i->f->get_##field) \
294 i->f->get_##field(starget); \
295 return snprintf(buf, 20, format_string, tp->field); \
298 #define spi_transport_store_function(field, format_string) \
299 static ssize_t \
300 store_spi_transport_##field(struct device *dev, \
301 struct device_attribute *attr, \
302 const char *buf, size_t count) \
304 int val; \
305 struct scsi_target *starget = transport_class_to_starget(dev); \
306 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
307 struct spi_internal *i = to_spi_internal(shost->transportt); \
309 if (!i->f->set_##field) \
310 return -EINVAL; \
311 val = simple_strtoul(buf, NULL, 0); \
312 i->f->set_##field(starget, val); \
313 return count; \
316 #define spi_transport_store_max(field, format_string) \
317 static ssize_t \
318 store_spi_transport_##field(struct device *dev, \
319 struct device_attribute *attr, \
320 const char *buf, size_t count) \
322 int val; \
323 struct scsi_target *starget = transport_class_to_starget(dev); \
324 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
325 struct spi_internal *i = to_spi_internal(shost->transportt); \
326 struct spi_transport_attrs *tp \
327 = (struct spi_transport_attrs *)&starget->starget_data; \
329 if (i->f->set_##field) \
330 return -EINVAL; \
331 val = simple_strtoul(buf, NULL, 0); \
332 if (val > tp->max_##field) \
333 val = tp->max_##field; \
334 i->f->set_##field(starget, val); \
335 return count; \
338 #define spi_transport_rd_attr(field, format_string) \
339 spi_transport_show_function(field, format_string) \
340 spi_transport_store_function(field, format_string) \
341 static DEVICE_ATTR(field, S_IRUGO, \
342 show_spi_transport_##field, \
343 store_spi_transport_##field);
345 #define spi_transport_simple_attr(field, format_string) \
346 spi_transport_show_simple(field, format_string) \
347 spi_transport_store_simple(field, format_string) \
348 static DEVICE_ATTR(field, S_IRUGO, \
349 show_spi_transport_##field, \
350 store_spi_transport_##field);
352 #define spi_transport_max_attr(field, format_string) \
353 spi_transport_show_function(field, format_string) \
354 spi_transport_store_max(field, format_string) \
355 spi_transport_simple_attr(max_##field, format_string) \
356 static DEVICE_ATTR(field, S_IRUGO, \
357 show_spi_transport_##field, \
358 store_spi_transport_##field);
360 /* The Parallel SCSI Tranport Attributes: */
361 spi_transport_max_attr(offset, "%d\n");
362 spi_transport_max_attr(width, "%d\n");
363 spi_transport_rd_attr(iu, "%d\n");
364 spi_transport_rd_attr(dt, "%d\n");
365 spi_transport_rd_attr(qas, "%d\n");
366 spi_transport_rd_attr(wr_flow, "%d\n");
367 spi_transport_rd_attr(rd_strm, "%d\n");
368 spi_transport_rd_attr(rti, "%d\n");
369 spi_transport_rd_attr(pcomp_en, "%d\n");
370 spi_transport_rd_attr(hold_mcs, "%d\n");
372 /* we only care about the first child device that's a real SCSI device
373 * so we return 1 to terminate the iteration when we find it */
374 static int child_iter(struct device *dev, void *data)
376 if (!scsi_is_sdev_device(dev))
377 return 0;
379 spi_dv_device(to_scsi_device(dev));
380 return 1;
383 static ssize_t
384 store_spi_revalidate(struct device *dev, struct device_attribute *attr,
385 const char *buf, size_t count)
387 struct scsi_target *starget = transport_class_to_starget(dev);
389 device_for_each_child(&starget->dev, NULL, child_iter);
390 return count;
392 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
394 /* Translate the period into ns according to the current spec
395 * for SDTR/PPR messages */
396 static int period_to_str(char *buf, int period)
398 int len, picosec;
400 if (period < 0 || period > 0xff) {
401 picosec = -1;
402 } else if (period <= SPI_STATIC_PPR) {
403 picosec = ppr_to_ps[period];
404 } else {
405 picosec = period * 4000;
408 if (picosec == -1) {
409 len = sprintf(buf, "reserved");
410 } else {
411 len = sprint_frac(buf, picosec, 1000);
414 return len;
417 static ssize_t
418 show_spi_transport_period_helper(char *buf, int period)
420 int len = period_to_str(buf, period);
421 buf[len++] = '\n';
422 buf[len] = '\0';
423 return len;
426 static ssize_t
427 store_spi_transport_period_helper(struct device *dev, const char *buf,
428 size_t count, int *periodp)
430 int j, picosec, period = -1;
431 char *endp;
433 picosec = simple_strtoul(buf, &endp, 10) * 1000;
434 if (*endp == '.') {
435 int mult = 100;
436 do {
437 endp++;
438 if (!isdigit(*endp))
439 break;
440 picosec += (*endp - '0') * mult;
441 mult /= 10;
442 } while (mult > 0);
445 for (j = 0; j <= SPI_STATIC_PPR; j++) {
446 if (ppr_to_ps[j] < picosec)
447 continue;
448 period = j;
449 break;
452 if (period == -1)
453 period = picosec / 4000;
455 if (period > 0xff)
456 period = 0xff;
458 *periodp = period;
460 return count;
463 static ssize_t
464 show_spi_transport_period(struct device *dev,
465 struct device_attribute *attr, char *buf)
467 struct scsi_target *starget = transport_class_to_starget(dev);
468 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
469 struct spi_internal *i = to_spi_internal(shost->transportt);
470 struct spi_transport_attrs *tp =
471 (struct spi_transport_attrs *)&starget->starget_data;
473 if (i->f->get_period)
474 i->f->get_period(starget);
476 return show_spi_transport_period_helper(buf, tp->period);
479 static ssize_t
480 store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
481 const char *buf, size_t count)
483 struct scsi_target *starget = transport_class_to_starget(cdev);
484 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
485 struct spi_internal *i = to_spi_internal(shost->transportt);
486 struct spi_transport_attrs *tp =
487 (struct spi_transport_attrs *)&starget->starget_data;
488 int period, retval;
490 if (!i->f->set_period)
491 return -EINVAL;
493 retval = store_spi_transport_period_helper(cdev, buf, count, &period);
495 if (period < tp->min_period)
496 period = tp->min_period;
498 i->f->set_period(starget, period);
500 return retval;
503 static DEVICE_ATTR(period, S_IRUGO,
504 show_spi_transport_period,
505 store_spi_transport_period);
507 static ssize_t
508 show_spi_transport_min_period(struct device *cdev,
509 struct device_attribute *attr, char *buf)
511 struct scsi_target *starget = transport_class_to_starget(cdev);
512 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
513 struct spi_internal *i = to_spi_internal(shost->transportt);
514 struct spi_transport_attrs *tp =
515 (struct spi_transport_attrs *)&starget->starget_data;
517 if (!i->f->set_period)
518 return -EINVAL;
520 return show_spi_transport_period_helper(buf, tp->min_period);
523 static ssize_t
524 store_spi_transport_min_period(struct device *cdev,
525 struct device_attribute *attr,
526 const char *buf, size_t count)
528 struct scsi_target *starget = transport_class_to_starget(cdev);
529 struct spi_transport_attrs *tp =
530 (struct spi_transport_attrs *)&starget->starget_data;
532 return store_spi_transport_period_helper(cdev, buf, count,
533 &tp->min_period);
537 static DEVICE_ATTR(min_period, S_IRUGO,
538 show_spi_transport_min_period,
539 store_spi_transport_min_period);
542 static ssize_t show_spi_host_signalling(struct device *cdev,
543 struct device_attribute *attr,
544 char *buf)
546 struct Scsi_Host *shost = transport_class_to_shost(cdev);
547 struct spi_internal *i = to_spi_internal(shost->transportt);
549 if (i->f->get_signalling)
550 i->f->get_signalling(shost);
552 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
554 static ssize_t store_spi_host_signalling(struct device *dev,
555 struct device_attribute *attr,
556 const char *buf, size_t count)
558 struct Scsi_Host *shost = transport_class_to_shost(dev);
559 struct spi_internal *i = to_spi_internal(shost->transportt);
560 enum spi_signal_type type = spi_signal_to_value(buf);
562 if (!i->f->set_signalling)
563 return -EINVAL;
565 if (type != SPI_SIGNAL_UNKNOWN)
566 i->f->set_signalling(shost, type);
568 return count;
570 static DEVICE_ATTR(signalling, S_IRUGO,
571 show_spi_host_signalling,
572 store_spi_host_signalling);
574 #define DV_SET(x, y) \
575 if(i->f->set_##x) \
576 i->f->set_##x(sdev->sdev_target, y)
578 enum spi_compare_returns {
579 SPI_COMPARE_SUCCESS,
580 SPI_COMPARE_FAILURE,
581 SPI_COMPARE_SKIP_TEST,
585 /* This is for read/write Domain Validation: If the device supports
586 * an echo buffer, we do read/write tests to it */
587 static enum spi_compare_returns
588 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
589 u8 *ptr, const int retries)
591 int len = ptr - buffer;
592 int j, k, r, result;
593 unsigned int pattern = 0x0000ffff;
594 struct scsi_sense_hdr sshdr;
596 const char spi_write_buffer[] = {
597 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
599 const char spi_read_buffer[] = {
600 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
603 /* set up the pattern buffer. Doesn't matter if we spill
604 * slightly beyond since that's where the read buffer is */
605 for (j = 0; j < len; ) {
607 /* fill the buffer with counting (test a) */
608 for ( ; j < min(len, 32); j++)
609 buffer[j] = j;
610 k = j;
611 /* fill the buffer with alternating words of 0x0 and
612 * 0xffff (test b) */
613 for ( ; j < min(len, k + 32); j += 2) {
614 u16 *word = (u16 *)&buffer[j];
616 *word = (j & 0x02) ? 0x0000 : 0xffff;
618 k = j;
619 /* fill with crosstalk (alternating 0x5555 0xaaa)
620 * (test c) */
621 for ( ; j < min(len, k + 32); j += 2) {
622 u16 *word = (u16 *)&buffer[j];
624 *word = (j & 0x02) ? 0x5555 : 0xaaaa;
626 k = j;
627 /* fill with shifting bits (test d) */
628 for ( ; j < min(len, k + 32); j += 4) {
629 u32 *word = (unsigned int *)&buffer[j];
630 u32 roll = (pattern & 0x80000000) ? 1 : 0;
632 *word = pattern;
633 pattern = (pattern << 1) | roll;
635 /* don't bother with random data (test e) */
638 for (r = 0; r < retries; r++) {
639 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
640 buffer, len, &sshdr);
641 if(result || !scsi_device_online(sdev)) {
643 scsi_device_set_state(sdev, SDEV_QUIESCE);
644 if (scsi_sense_valid(&sshdr)
645 && sshdr.sense_key == ILLEGAL_REQUEST
646 /* INVALID FIELD IN CDB */
647 && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
648 /* This would mean that the drive lied
649 * to us about supporting an echo
650 * buffer (unfortunately some Western
651 * Digital drives do precisely this)
653 return SPI_COMPARE_SKIP_TEST;
656 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
657 return SPI_COMPARE_FAILURE;
660 memset(ptr, 0, len);
661 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
662 ptr, len, NULL);
663 scsi_device_set_state(sdev, SDEV_QUIESCE);
665 if (memcmp(buffer, ptr, len) != 0)
666 return SPI_COMPARE_FAILURE;
668 return SPI_COMPARE_SUCCESS;
671 /* This is for the simplest form of Domain Validation: a read test
672 * on the inquiry data from the device */
673 static enum spi_compare_returns
674 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
675 u8 *ptr, const int retries)
677 int r, result;
678 const int len = sdev->inquiry_len;
679 const char spi_inquiry[] = {
680 INQUIRY, 0, 0, 0, len, 0
683 for (r = 0; r < retries; r++) {
684 memset(ptr, 0, len);
686 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
687 ptr, len, NULL);
689 if(result || !scsi_device_online(sdev)) {
690 scsi_device_set_state(sdev, SDEV_QUIESCE);
691 return SPI_COMPARE_FAILURE;
694 /* If we don't have the inquiry data already, the
695 * first read gets it */
696 if (ptr == buffer) {
697 ptr += len;
698 --r;
699 continue;
702 if (memcmp(buffer, ptr, len) != 0)
703 /* failure */
704 return SPI_COMPARE_FAILURE;
706 return SPI_COMPARE_SUCCESS;
709 static enum spi_compare_returns
710 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
711 enum spi_compare_returns
712 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
714 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
715 struct scsi_target *starget = sdev->sdev_target;
716 int period = 0, prevperiod = 0;
717 enum spi_compare_returns retval;
720 for (;;) {
721 int newperiod;
722 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
724 if (retval == SPI_COMPARE_SUCCESS
725 || retval == SPI_COMPARE_SKIP_TEST)
726 break;
728 /* OK, retrain, fallback */
729 if (i->f->get_iu)
730 i->f->get_iu(starget);
731 if (i->f->get_qas)
732 i->f->get_qas(starget);
733 if (i->f->get_period)
734 i->f->get_period(sdev->sdev_target);
736 /* Here's the fallback sequence; first try turning off
737 * IU, then QAS (if we can control them), then finally
738 * fall down the periods */
739 if (i->f->set_iu && spi_iu(starget)) {
740 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n");
741 DV_SET(iu, 0);
742 } else if (i->f->set_qas && spi_qas(starget)) {
743 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n");
744 DV_SET(qas, 0);
745 } else {
746 newperiod = spi_period(starget);
747 period = newperiod > period ? newperiod : period;
748 if (period < 0x0d)
749 period++;
750 else
751 period += period >> 1;
753 if (unlikely(period > 0xff || period == prevperiod)) {
754 /* Total failure; set to async and return */
755 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
756 DV_SET(offset, 0);
757 return SPI_COMPARE_FAILURE;
759 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
760 DV_SET(period, period);
761 prevperiod = period;
764 return retval;
767 static int
768 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
770 int l, result;
772 /* first off do a test unit ready. This can error out
773 * because of reservations or some other reason. If it
774 * fails, the device won't let us write to the echo buffer
775 * so just return failure */
777 const char spi_test_unit_ready[] = {
778 TEST_UNIT_READY, 0, 0, 0, 0, 0
781 const char spi_read_buffer_descriptor[] = {
782 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
786 /* We send a set of three TURs to clear any outstanding
787 * unit attention conditions if they exist (Otherwise the
788 * buffer tests won't be happy). If the TUR still fails
789 * (reservation conflict, device not ready, etc) just
790 * skip the write tests */
791 for (l = 0; ; l++) {
792 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
793 NULL, 0, NULL);
795 if(result) {
796 if(l >= 3)
797 return 0;
798 } else {
799 /* TUR succeeded */
800 break;
804 result = spi_execute(sdev, spi_read_buffer_descriptor,
805 DMA_FROM_DEVICE, buffer, 4, NULL);
807 if (result)
808 /* Device has no echo buffer */
809 return 0;
811 return buffer[3] + ((buffer[2] & 0x1f) << 8);
814 static void
815 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
817 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
818 struct scsi_target *starget = sdev->sdev_target;
819 struct Scsi_Host *shost = sdev->host;
820 int len = sdev->inquiry_len;
821 int min_period = spi_min_period(starget);
822 int max_width = spi_max_width(starget);
823 /* first set us up for narrow async */
824 DV_SET(offset, 0);
825 DV_SET(width, 0);
827 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
828 != SPI_COMPARE_SUCCESS) {
829 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
830 /* FIXME: should probably offline the device here? */
831 return;
834 if (!scsi_device_wide(sdev)) {
835 spi_max_width(starget) = 0;
836 max_width = 0;
839 /* test width */
840 if (i->f->set_width && max_width) {
841 i->f->set_width(starget, 1);
843 if (spi_dv_device_compare_inquiry(sdev, buffer,
844 buffer + len,
845 DV_LOOPS)
846 != SPI_COMPARE_SUCCESS) {
847 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
848 i->f->set_width(starget, 0);
849 /* Make sure we don't force wide back on by asking
850 * for a transfer period that requires it */
851 max_width = 0;
852 if (min_period < 10)
853 min_period = 10;
857 if (!i->f->set_period)
858 return;
860 /* device can't handle synchronous */
861 if (!scsi_device_sync(sdev) && !scsi_device_dt(sdev))
862 return;
864 /* len == -1 is the signal that we need to ascertain the
865 * presence of an echo buffer before trying to use it. len ==
866 * 0 means we don't have an echo buffer */
867 len = -1;
869 retry:
871 /* now set up to the maximum */
872 DV_SET(offset, spi_max_offset(starget));
873 DV_SET(period, min_period);
875 /* try QAS requests; this should be harmless to set if the
876 * target supports it */
877 if (scsi_device_qas(sdev)) {
878 DV_SET(qas, 1);
879 } else {
880 DV_SET(qas, 0);
883 if (scsi_device_ius(sdev) && min_period < 9) {
884 /* This u320 (or u640). Set IU transfers */
885 DV_SET(iu, 1);
886 /* Then set the optional parameters */
887 DV_SET(rd_strm, 1);
888 DV_SET(wr_flow, 1);
889 DV_SET(rti, 1);
890 if (min_period == 8)
891 DV_SET(pcomp_en, 1);
892 } else {
893 DV_SET(iu, 0);
896 /* now that we've done all this, actually check the bus
897 * signal type (if known). Some devices are stupid on
898 * a SE bus and still claim they can try LVD only settings */
899 if (i->f->get_signalling)
900 i->f->get_signalling(shost);
901 if (spi_signalling(shost) == SPI_SIGNAL_SE ||
902 spi_signalling(shost) == SPI_SIGNAL_HVD ||
903 !scsi_device_dt(sdev)) {
904 DV_SET(dt, 0);
905 } else {
906 DV_SET(dt, 1);
908 /* set width last because it will pull all the other
909 * parameters down to required values */
910 DV_SET(width, max_width);
912 /* Do the read only INQUIRY tests */
913 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
914 spi_dv_device_compare_inquiry);
915 /* See if we actually managed to negotiate and sustain DT */
916 if (i->f->get_dt)
917 i->f->get_dt(starget);
919 /* see if the device has an echo buffer. If it does we can do
920 * the SPI pattern write tests. Because of some broken
921 * devices, we *only* try this on a device that has actually
922 * negotiated DT */
924 if (len == -1 && spi_dt(starget))
925 len = spi_dv_device_get_echo_buffer(sdev, buffer);
927 if (len <= 0) {
928 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
929 return;
932 if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
933 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
934 len = SPI_MAX_ECHO_BUFFER_SIZE;
937 if (spi_dv_retrain(sdev, buffer, buffer + len,
938 spi_dv_device_echo_buffer)
939 == SPI_COMPARE_SKIP_TEST) {
940 /* OK, the stupid drive can't do a write echo buffer
941 * test after all, fall back to the read tests */
942 len = 0;
943 goto retry;
948 /** spi_dv_device - Do Domain Validation on the device
949 * @sdev: scsi device to validate
951 * Performs the domain validation on the given device in the
952 * current execution thread. Since DV operations may sleep,
953 * the current thread must have user context. Also no SCSI
954 * related locks that would deadlock I/O issued by the DV may
955 * be held.
957 void
958 spi_dv_device(struct scsi_device *sdev)
960 struct scsi_target *starget = sdev->sdev_target;
961 u8 *buffer;
962 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
964 if (unlikely(scsi_device_get(sdev)))
965 return;
967 if (unlikely(spi_dv_in_progress(starget)))
968 return;
969 spi_dv_in_progress(starget) = 1;
971 buffer = kzalloc(len, GFP_KERNEL);
973 if (unlikely(!buffer))
974 goto out_put;
976 /* We need to verify that the actual device will quiesce; the
977 * later target quiesce is just a nice to have */
978 if (unlikely(scsi_device_quiesce(sdev)))
979 goto out_free;
981 scsi_target_quiesce(starget);
983 spi_dv_pending(starget) = 1;
984 mutex_lock(&spi_dv_mutex(starget));
986 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
988 spi_dv_device_internal(sdev, buffer);
990 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
992 mutex_unlock(&spi_dv_mutex(starget));
993 spi_dv_pending(starget) = 0;
995 scsi_target_resume(starget);
997 spi_initial_dv(starget) = 1;
999 out_free:
1000 kfree(buffer);
1001 out_put:
1002 spi_dv_in_progress(starget) = 0;
1003 scsi_device_put(sdev);
1005 EXPORT_SYMBOL(spi_dv_device);
1007 struct work_queue_wrapper {
1008 struct work_struct work;
1009 struct scsi_device *sdev;
1012 static void
1013 spi_dv_device_work_wrapper(struct work_struct *work)
1015 struct work_queue_wrapper *wqw =
1016 container_of(work, struct work_queue_wrapper, work);
1017 struct scsi_device *sdev = wqw->sdev;
1019 kfree(wqw);
1020 spi_dv_device(sdev);
1021 spi_dv_pending(sdev->sdev_target) = 0;
1022 scsi_device_put(sdev);
1027 * spi_schedule_dv_device - schedule domain validation to occur on the device
1028 * @sdev: The device to validate
1030 * Identical to spi_dv_device() above, except that the DV will be
1031 * scheduled to occur in a workqueue later. All memory allocations
1032 * are atomic, so may be called from any context including those holding
1033 * SCSI locks.
1035 void
1036 spi_schedule_dv_device(struct scsi_device *sdev)
1038 struct work_queue_wrapper *wqw =
1039 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1041 if (unlikely(!wqw))
1042 return;
1044 if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1045 kfree(wqw);
1046 return;
1048 /* Set pending early (dv_device doesn't check it, only sets it) */
1049 spi_dv_pending(sdev->sdev_target) = 1;
1050 if (unlikely(scsi_device_get(sdev))) {
1051 kfree(wqw);
1052 spi_dv_pending(sdev->sdev_target) = 0;
1053 return;
1056 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1057 wqw->sdev = sdev;
1059 schedule_work(&wqw->work);
1061 EXPORT_SYMBOL(spi_schedule_dv_device);
1064 * spi_display_xfer_agreement - Print the current target transfer agreement
1065 * @starget: The target for which to display the agreement
1067 * Each SPI port is required to maintain a transfer agreement for each
1068 * other port on the bus. This function prints a one-line summary of
1069 * the current agreement; more detailed information is available in sysfs.
1071 void spi_display_xfer_agreement(struct scsi_target *starget)
1073 struct spi_transport_attrs *tp;
1074 tp = (struct spi_transport_attrs *)&starget->starget_data;
1076 if (tp->offset > 0 && tp->period > 0) {
1077 unsigned int picosec, kb100;
1078 char *scsi = "FAST-?";
1079 char tmp[8];
1081 if (tp->period <= SPI_STATIC_PPR) {
1082 picosec = ppr_to_ps[tp->period];
1083 switch (tp->period) {
1084 case 7: scsi = "FAST-320"; break;
1085 case 8: scsi = "FAST-160"; break;
1086 case 9: scsi = "FAST-80"; break;
1087 case 10:
1088 case 11: scsi = "FAST-40"; break;
1089 case 12: scsi = "FAST-20"; break;
1091 } else {
1092 picosec = tp->period * 4000;
1093 if (tp->period < 25)
1094 scsi = "FAST-20";
1095 else if (tp->period < 50)
1096 scsi = "FAST-10";
1097 else
1098 scsi = "FAST-5";
1101 kb100 = (10000000 + picosec / 2) / picosec;
1102 if (tp->width)
1103 kb100 *= 2;
1104 sprint_frac(tmp, picosec, 1000);
1106 dev_info(&starget->dev,
1107 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1108 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1109 tp->dt ? "DT" : "ST",
1110 tp->iu ? " IU" : "",
1111 tp->qas ? " QAS" : "",
1112 tp->rd_strm ? " RDSTRM" : "",
1113 tp->rti ? " RTI" : "",
1114 tp->wr_flow ? " WRFLOW" : "",
1115 tp->pcomp_en ? " PCOMP" : "",
1116 tp->hold_mcs ? " HMCS" : "",
1117 tmp, tp->offset);
1118 } else {
1119 dev_info(&starget->dev, "%sasynchronous\n",
1120 tp->width ? "wide " : "");
1123 EXPORT_SYMBOL(spi_display_xfer_agreement);
1125 int spi_populate_width_msg(unsigned char *msg, int width)
1127 msg[0] = EXTENDED_MESSAGE;
1128 msg[1] = 2;
1129 msg[2] = EXTENDED_WDTR;
1130 msg[3] = width;
1131 return 4;
1133 EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1135 int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1137 msg[0] = EXTENDED_MESSAGE;
1138 msg[1] = 3;
1139 msg[2] = EXTENDED_SDTR;
1140 msg[3] = period;
1141 msg[4] = offset;
1142 return 5;
1144 EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1146 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1147 int width, int options)
1149 msg[0] = EXTENDED_MESSAGE;
1150 msg[1] = 6;
1151 msg[2] = EXTENDED_PPR;
1152 msg[3] = period;
1153 msg[4] = 0;
1154 msg[5] = offset;
1155 msg[6] = width;
1156 msg[7] = options;
1157 return 8;
1159 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1161 #ifdef CONFIG_SCSI_CONSTANTS
1162 static const char * const one_byte_msgs[] = {
1163 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1164 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1165 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1166 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1167 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1168 /* 0x0f */ "Initiate Recovery", "Release Recovery",
1169 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1170 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1173 static const char * const two_byte_msgs[] = {
1174 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1175 /* 0x23 */ "Ignore Wide Residue", "ACA"
1178 static const char * const extended_msgs[] = {
1179 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1180 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1181 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1184 static void print_nego(const unsigned char *msg, int per, int off, int width)
1186 if (per) {
1187 char buf[20];
1188 period_to_str(buf, msg[per]);
1189 printk("period = %s ns ", buf);
1192 if (off)
1193 printk("offset = %d ", msg[off]);
1194 if (width)
1195 printk("width = %d ", 8 << msg[width]);
1198 static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1200 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1201 msg[msb+3];
1202 printk("%s = %d ", desc, ptr);
1205 int spi_print_msg(const unsigned char *msg)
1207 int len = 1, i;
1208 if (msg[0] == EXTENDED_MESSAGE) {
1209 len = 2 + msg[1];
1210 if (len == 2)
1211 len += 256;
1212 if (msg[2] < ARRAY_SIZE(extended_msgs))
1213 printk ("%s ", extended_msgs[msg[2]]);
1214 else
1215 printk ("Extended Message, reserved code (0x%02x) ",
1216 (int) msg[2]);
1217 switch (msg[2]) {
1218 case EXTENDED_MODIFY_DATA_POINTER:
1219 print_ptr(msg, 3, "pointer");
1220 break;
1221 case EXTENDED_SDTR:
1222 print_nego(msg, 3, 4, 0);
1223 break;
1224 case EXTENDED_WDTR:
1225 print_nego(msg, 0, 0, 3);
1226 break;
1227 case EXTENDED_PPR:
1228 print_nego(msg, 3, 5, 6);
1229 break;
1230 case EXTENDED_MODIFY_BIDI_DATA_PTR:
1231 print_ptr(msg, 3, "out");
1232 print_ptr(msg, 7, "in");
1233 break;
1234 default:
1235 for (i = 2; i < len; ++i)
1236 printk("%02x ", msg[i]);
1238 /* Identify */
1239 } else if (msg[0] & 0x80) {
1240 printk("Identify disconnect %sallowed %s %d ",
1241 (msg[0] & 0x40) ? "" : "not ",
1242 (msg[0] & 0x20) ? "target routine" : "lun",
1243 msg[0] & 0x7);
1244 /* Normal One byte */
1245 } else if (msg[0] < 0x1f) {
1246 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1247 printk("%s ", one_byte_msgs[msg[0]]);
1248 else
1249 printk("reserved (%02x) ", msg[0]);
1250 } else if (msg[0] == 0x55) {
1251 printk("QAS Request ");
1252 /* Two byte */
1253 } else if (msg[0] <= 0x2f) {
1254 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1255 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1256 msg[1]);
1257 else
1258 printk("reserved two byte (%02x %02x) ",
1259 msg[0], msg[1]);
1260 len = 2;
1261 } else
1262 printk("reserved ");
1263 return len;
1265 EXPORT_SYMBOL(spi_print_msg);
1267 #else /* ifndef CONFIG_SCSI_CONSTANTS */
1269 int spi_print_msg(const unsigned char *msg)
1271 int len = 1, i;
1273 if (msg[0] == EXTENDED_MESSAGE) {
1274 len = 2 + msg[1];
1275 if (len == 2)
1276 len += 256;
1277 for (i = 0; i < len; ++i)
1278 printk("%02x ", msg[i]);
1279 /* Identify */
1280 } else if (msg[0] & 0x80) {
1281 printk("%02x ", msg[0]);
1282 /* Normal One byte */
1283 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1284 printk("%02x ", msg[0]);
1285 /* Two byte */
1286 } else if (msg[0] <= 0x2f) {
1287 printk("%02x %02x", msg[0], msg[1]);
1288 len = 2;
1289 } else
1290 printk("%02x ", msg[0]);
1291 return len;
1293 EXPORT_SYMBOL(spi_print_msg);
1294 #endif /* ! CONFIG_SCSI_CONSTANTS */
1296 static int spi_device_match(struct attribute_container *cont,
1297 struct device *dev)
1299 struct scsi_device *sdev;
1300 struct Scsi_Host *shost;
1301 struct spi_internal *i;
1303 if (!scsi_is_sdev_device(dev))
1304 return 0;
1306 sdev = to_scsi_device(dev);
1307 shost = sdev->host;
1308 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1309 != &spi_host_class.class)
1310 return 0;
1311 /* Note: this class has no device attributes, so it has
1312 * no per-HBA allocation and thus we don't need to distinguish
1313 * the attribute containers for the device */
1314 i = to_spi_internal(shost->transportt);
1315 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1316 return 0;
1317 return 1;
1320 static int spi_target_match(struct attribute_container *cont,
1321 struct device *dev)
1323 struct Scsi_Host *shost;
1324 struct scsi_target *starget;
1325 struct spi_internal *i;
1327 if (!scsi_is_target_device(dev))
1328 return 0;
1330 shost = dev_to_shost(dev->parent);
1331 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1332 != &spi_host_class.class)
1333 return 0;
1335 i = to_spi_internal(shost->transportt);
1336 starget = to_scsi_target(dev);
1338 if (i->f->deny_binding && i->f->deny_binding(starget))
1339 return 0;
1341 return &i->t.target_attrs.ac == cont;
1344 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1345 "spi_transport",
1346 spi_setup_transport_attrs,
1347 NULL,
1348 spi_target_configure);
1350 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1351 spi_device_match,
1352 spi_device_configure);
1354 static struct attribute *host_attributes[] = {
1355 &dev_attr_signalling.attr,
1356 NULL
1359 static struct attribute_group host_attribute_group = {
1360 .attrs = host_attributes,
1363 static int spi_host_configure(struct transport_container *tc,
1364 struct device *dev,
1365 struct device *cdev)
1367 struct kobject *kobj = &cdev->kobj;
1368 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1369 struct spi_internal *si = to_spi_internal(shost->transportt);
1370 struct attribute *attr = &dev_attr_signalling.attr;
1371 int rc = 0;
1373 if (si->f->set_signalling)
1374 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1376 return rc;
1379 /* returns true if we should be showing the variable. Also
1380 * overloads the return by setting 1<<1 if the attribute should
1381 * be writeable */
1382 #define TARGET_ATTRIBUTE_HELPER(name) \
1383 (si->f->show_##name ? S_IRUGO : 0) | \
1384 (si->f->set_##name ? S_IWUSR : 0)
1386 static mode_t target_attribute_is_visible(struct kobject *kobj,
1387 struct attribute *attr, int i)
1389 struct device *cdev = container_of(kobj, struct device, kobj);
1390 struct scsi_target *starget = transport_class_to_starget(cdev);
1391 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1392 struct spi_internal *si = to_spi_internal(shost->transportt);
1394 if (attr == &dev_attr_period.attr &&
1395 spi_support_sync(starget))
1396 return TARGET_ATTRIBUTE_HELPER(period);
1397 else if (attr == &dev_attr_min_period.attr &&
1398 spi_support_sync(starget))
1399 return TARGET_ATTRIBUTE_HELPER(period);
1400 else if (attr == &dev_attr_offset.attr &&
1401 spi_support_sync(starget))
1402 return TARGET_ATTRIBUTE_HELPER(offset);
1403 else if (attr == &dev_attr_max_offset.attr &&
1404 spi_support_sync(starget))
1405 return TARGET_ATTRIBUTE_HELPER(offset);
1406 else if (attr == &dev_attr_width.attr &&
1407 spi_support_wide(starget))
1408 return TARGET_ATTRIBUTE_HELPER(width);
1409 else if (attr == &dev_attr_max_width.attr &&
1410 spi_support_wide(starget))
1411 return TARGET_ATTRIBUTE_HELPER(width);
1412 else if (attr == &dev_attr_iu.attr &&
1413 spi_support_ius(starget))
1414 return TARGET_ATTRIBUTE_HELPER(iu);
1415 else if (attr == &dev_attr_dt.attr &&
1416 spi_support_dt(starget))
1417 return TARGET_ATTRIBUTE_HELPER(dt);
1418 else if (attr == &dev_attr_qas.attr &&
1419 spi_support_qas(starget))
1420 return TARGET_ATTRIBUTE_HELPER(qas);
1421 else if (attr == &dev_attr_wr_flow.attr &&
1422 spi_support_ius(starget))
1423 return TARGET_ATTRIBUTE_HELPER(wr_flow);
1424 else if (attr == &dev_attr_rd_strm.attr &&
1425 spi_support_ius(starget))
1426 return TARGET_ATTRIBUTE_HELPER(rd_strm);
1427 else if (attr == &dev_attr_rti.attr &&
1428 spi_support_ius(starget))
1429 return TARGET_ATTRIBUTE_HELPER(rti);
1430 else if (attr == &dev_attr_pcomp_en.attr &&
1431 spi_support_ius(starget))
1432 return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1433 else if (attr == &dev_attr_hold_mcs.attr &&
1434 spi_support_ius(starget))
1435 return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1436 else if (attr == &dev_attr_revalidate.attr)
1437 return S_IWUSR;
1439 return 0;
1442 static struct attribute *target_attributes[] = {
1443 &dev_attr_period.attr,
1444 &dev_attr_min_period.attr,
1445 &dev_attr_offset.attr,
1446 &dev_attr_max_offset.attr,
1447 &dev_attr_width.attr,
1448 &dev_attr_max_width.attr,
1449 &dev_attr_iu.attr,
1450 &dev_attr_dt.attr,
1451 &dev_attr_qas.attr,
1452 &dev_attr_wr_flow.attr,
1453 &dev_attr_rd_strm.attr,
1454 &dev_attr_rti.attr,
1455 &dev_attr_pcomp_en.attr,
1456 &dev_attr_hold_mcs.attr,
1457 &dev_attr_revalidate.attr,
1458 NULL
1461 static struct attribute_group target_attribute_group = {
1462 .attrs = target_attributes,
1463 .is_visible = target_attribute_is_visible,
1466 static int spi_target_configure(struct transport_container *tc,
1467 struct device *dev,
1468 struct device *cdev)
1470 struct kobject *kobj = &cdev->kobj;
1472 /* force an update based on parameters read from the device */
1473 sysfs_update_group(kobj, &target_attribute_group);
1475 return 0;
1478 struct scsi_transport_template *
1479 spi_attach_transport(struct spi_function_template *ft)
1481 struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1482 GFP_KERNEL);
1484 if (unlikely(!i))
1485 return NULL;
1487 i->t.target_attrs.ac.class = &spi_transport_class.class;
1488 i->t.target_attrs.ac.grp = &target_attribute_group;
1489 i->t.target_attrs.ac.match = spi_target_match;
1490 transport_container_register(&i->t.target_attrs);
1491 i->t.target_size = sizeof(struct spi_transport_attrs);
1492 i->t.host_attrs.ac.class = &spi_host_class.class;
1493 i->t.host_attrs.ac.grp = &host_attribute_group;
1494 i->t.host_attrs.ac.match = spi_host_match;
1495 transport_container_register(&i->t.host_attrs);
1496 i->t.host_size = sizeof(struct spi_host_attrs);
1497 i->f = ft;
1499 return &i->t;
1501 EXPORT_SYMBOL(spi_attach_transport);
1503 void spi_release_transport(struct scsi_transport_template *t)
1505 struct spi_internal *i = to_spi_internal(t);
1507 transport_container_unregister(&i->t.target_attrs);
1508 transport_container_unregister(&i->t.host_attrs);
1510 kfree(i);
1512 EXPORT_SYMBOL(spi_release_transport);
1514 static __init int spi_transport_init(void)
1516 int error = transport_class_register(&spi_transport_class);
1517 if (error)
1518 return error;
1519 error = anon_transport_class_register(&spi_device_class);
1520 return transport_class_register(&spi_host_class);
1523 static void __exit spi_transport_exit(void)
1525 transport_class_unregister(&spi_transport_class);
1526 anon_transport_class_unregister(&spi_device_class);
1527 transport_class_unregister(&spi_host_class);
1530 MODULE_AUTHOR("Martin Hicks");
1531 MODULE_DESCRIPTION("SPI Transport Attributes");
1532 MODULE_LICENSE("GPL");
1534 module_init(spi_transport_init);
1535 module_exit(spi_transport_exit);