IPoIB: Do not print error messages for multicast join retries
[linux-2.6/sactl.git] / net / ipv4 / ip_output.c
blob8ebe86dd72af159e2250bc315251cf61561cc38a
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__ void ip_send_check(struct iphdr *iph)
88 iph->check = 0;
89 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 int __ip_local_out(struct sk_buff *skb)
94 struct iphdr *iph = ip_hdr(skb);
96 iph->tot_len = htons(skb->len);
97 ip_send_check(iph);
98 return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
99 dst_output);
102 int ip_local_out(struct sk_buff *skb)
104 int err;
106 err = __ip_local_out(skb);
107 if (likely(err == 1))
108 err = dst_output(skb);
110 return err;
112 EXPORT_SYMBOL_GPL(ip_local_out);
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
117 skb_reset_mac_header(newskb);
118 __skb_pull(newskb, skb_network_offset(newskb));
119 newskb->pkt_type = PACKET_LOOPBACK;
120 newskb->ip_summed = CHECKSUM_UNNECESSARY;
121 WARN_ON(!newskb->dst);
122 netif_rx(newskb);
123 return 0;
126 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
128 int ttl = inet->uc_ttl;
130 if (ttl < 0)
131 ttl = dst_metric(dst, RTAX_HOPLIMIT);
132 return ttl;
136 * Add an ip header to a skbuff and send it out.
139 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
140 __be32 saddr, __be32 daddr, struct ip_options *opt)
142 struct inet_sock *inet = inet_sk(sk);
143 struct rtable *rt = skb->rtable;
144 struct iphdr *iph;
146 /* Build the IP header. */
147 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
148 skb_reset_network_header(skb);
149 iph = ip_hdr(skb);
150 iph->version = 4;
151 iph->ihl = 5;
152 iph->tos = inet->tos;
153 if (ip_dont_fragment(sk, &rt->u.dst))
154 iph->frag_off = htons(IP_DF);
155 else
156 iph->frag_off = 0;
157 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
158 iph->daddr = rt->rt_dst;
159 iph->saddr = rt->rt_src;
160 iph->protocol = sk->sk_protocol;
161 ip_select_ident(iph, &rt->u.dst, sk);
163 if (opt && opt->optlen) {
164 iph->ihl += opt->optlen>>2;
165 ip_options_build(skb, opt, daddr, rt, 0);
168 skb->priority = sk->sk_priority;
169 skb->mark = sk->sk_mark;
171 /* Send it out. */
172 return ip_local_out(skb);
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
177 static inline int ip_finish_output2(struct sk_buff *skb)
179 struct dst_entry *dst = skb->dst;
180 struct rtable *rt = (struct rtable *)dst;
181 struct net_device *dev = dst->dev;
182 unsigned int hh_len = LL_RESERVED_SPACE(dev);
184 if (rt->rt_type == RTN_MULTICAST)
185 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTMCASTPKTS);
186 else if (rt->rt_type == RTN_BROADCAST)
187 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTBCASTPKTS);
189 /* Be paranoid, rather than too clever. */
190 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
191 struct sk_buff *skb2;
193 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
194 if (skb2 == NULL) {
195 kfree_skb(skb);
196 return -ENOMEM;
198 if (skb->sk)
199 skb_set_owner_w(skb2, skb->sk);
200 kfree_skb(skb);
201 skb = skb2;
204 if (dst->hh)
205 return neigh_hh_output(dst->hh, skb);
206 else if (dst->neighbour)
207 return dst->neighbour->output(skb);
209 if (net_ratelimit())
210 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
211 kfree_skb(skb);
212 return -EINVAL;
215 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
217 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
219 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
220 skb->dst->dev->mtu : dst_mtu(skb->dst);
223 static int ip_finish_output(struct sk_buff *skb)
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 /* Policy lookup after SNAT yielded a new policy */
227 if (skb->dst->xfrm != NULL) {
228 IPCB(skb)->flags |= IPSKB_REROUTED;
229 return dst_output(skb);
231 #endif
232 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
233 return ip_fragment(skb, ip_finish_output2);
234 else
235 return ip_finish_output2(skb);
238 int ip_mc_output(struct sk_buff *skb)
240 struct sock *sk = skb->sk;
241 struct rtable *rt = skb->rtable;
242 struct net_device *dev = rt->u.dst.dev;
245 * If the indicated interface is up and running, send the packet.
247 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
249 skb->dev = dev;
250 skb->protocol = htons(ETH_P_IP);
253 * Multicasts are looped back for other local users
256 if (rt->rt_flags&RTCF_MULTICAST) {
257 if ((!sk || inet_sk(sk)->mc_loop)
258 #ifdef CONFIG_IP_MROUTE
259 /* Small optimization: do not loopback not local frames,
260 which returned after forwarding; they will be dropped
261 by ip_mr_input in any case.
262 Note, that local frames are looped back to be delivered
263 to local recipients.
265 This check is duplicated in ip_mr_input at the moment.
267 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
268 #endif
270 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
271 if (newskb)
272 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
273 NULL, newskb->dev,
274 ip_dev_loopback_xmit);
277 /* Multicasts with ttl 0 must not go beyond the host */
279 if (ip_hdr(skb)->ttl == 0) {
280 kfree_skb(skb);
281 return 0;
285 if (rt->rt_flags&RTCF_BROADCAST) {
286 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
287 if (newskb)
288 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
289 newskb->dev, ip_dev_loopback_xmit);
292 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
293 ip_finish_output,
294 !(IPCB(skb)->flags & IPSKB_REROUTED));
297 int ip_output(struct sk_buff *skb)
299 struct net_device *dev = skb->dst->dev;
301 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
303 skb->dev = dev;
304 skb->protocol = htons(ETH_P_IP);
306 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
307 ip_finish_output,
308 !(IPCB(skb)->flags & IPSKB_REROUTED));
311 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
313 struct sock *sk = skb->sk;
314 struct inet_sock *inet = inet_sk(sk);
315 struct ip_options *opt = inet->opt;
316 struct rtable *rt;
317 struct iphdr *iph;
319 /* Skip all of this if the packet is already routed,
320 * f.e. by something like SCTP.
322 rt = skb->rtable;
323 if (rt != NULL)
324 goto packet_routed;
326 /* Make sure we can route this packet. */
327 rt = (struct rtable *)__sk_dst_check(sk, 0);
328 if (rt == NULL) {
329 __be32 daddr;
331 /* Use correct destination address if we have options. */
332 daddr = inet->daddr;
333 if(opt && opt->srr)
334 daddr = opt->faddr;
337 struct flowi fl = { .oif = sk->sk_bound_dev_if,
338 .nl_u = { .ip4_u =
339 { .daddr = daddr,
340 .saddr = inet->saddr,
341 .tos = RT_CONN_FLAGS(sk) } },
342 .proto = sk->sk_protocol,
343 .flags = inet_sk_flowi_flags(sk),
344 .uli_u = { .ports =
345 { .sport = inet->sport,
346 .dport = inet->dport } } };
348 /* If this fails, retransmit mechanism of transport layer will
349 * keep trying until route appears or the connection times
350 * itself out.
352 security_sk_classify_flow(sk, &fl);
353 if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
354 goto no_route;
356 sk_setup_caps(sk, &rt->u.dst);
358 skb->dst = dst_clone(&rt->u.dst);
360 packet_routed:
361 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
362 goto no_route;
364 /* OK, we know where to send it, allocate and build IP header. */
365 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
366 skb_reset_network_header(skb);
367 iph = ip_hdr(skb);
368 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
369 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
370 iph->frag_off = htons(IP_DF);
371 else
372 iph->frag_off = 0;
373 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
374 iph->protocol = sk->sk_protocol;
375 iph->saddr = rt->rt_src;
376 iph->daddr = rt->rt_dst;
377 /* Transport layer set skb->h.foo itself. */
379 if (opt && opt->optlen) {
380 iph->ihl += opt->optlen >> 2;
381 ip_options_build(skb, opt, inet->daddr, rt, 0);
384 ip_select_ident_more(iph, &rt->u.dst, sk,
385 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
387 skb->priority = sk->sk_priority;
388 skb->mark = sk->sk_mark;
390 return ip_local_out(skb);
392 no_route:
393 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
394 kfree_skb(skb);
395 return -EHOSTUNREACH;
399 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
401 to->pkt_type = from->pkt_type;
402 to->priority = from->priority;
403 to->protocol = from->protocol;
404 dst_release(to->dst);
405 to->dst = dst_clone(from->dst);
406 to->dev = from->dev;
407 to->mark = from->mark;
409 /* Copy the flags to each fragment. */
410 IPCB(to)->flags = IPCB(from)->flags;
412 #ifdef CONFIG_NET_SCHED
413 to->tc_index = from->tc_index;
414 #endif
415 nf_copy(to, from);
416 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
417 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
418 to->nf_trace = from->nf_trace;
419 #endif
420 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
421 to->ipvs_property = from->ipvs_property;
422 #endif
423 skb_copy_secmark(to, from);
427 * This IP datagram is too large to be sent in one piece. Break it up into
428 * smaller pieces (each of size equal to IP header plus
429 * a block of the data of the original IP data part) that will yet fit in a
430 * single device frame, and queue such a frame for sending.
433 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
435 struct iphdr *iph;
436 int raw = 0;
437 int ptr;
438 struct net_device *dev;
439 struct sk_buff *skb2;
440 unsigned int mtu, hlen, left, len, ll_rs, pad;
441 int offset;
442 __be16 not_last_frag;
443 struct rtable *rt = skb->rtable;
444 int err = 0;
446 dev = rt->u.dst.dev;
449 * Point into the IP datagram header.
452 iph = ip_hdr(skb);
454 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
455 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
456 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
457 htonl(ip_skb_dst_mtu(skb)));
458 kfree_skb(skb);
459 return -EMSGSIZE;
463 * Setup starting values.
466 hlen = iph->ihl * 4;
467 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
468 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
470 /* When frag_list is given, use it. First, check its validity:
471 * some transformers could create wrong frag_list or break existing
472 * one, it is not prohibited. In this case fall back to copying.
474 * LATER: this step can be merged to real generation of fragments,
475 * we can switch to copy when see the first bad fragment.
477 if (skb_shinfo(skb)->frag_list) {
478 struct sk_buff *frag;
479 int first_len = skb_pagelen(skb);
480 int truesizes = 0;
482 if (first_len - hlen > mtu ||
483 ((first_len - hlen) & 7) ||
484 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
485 skb_cloned(skb))
486 goto slow_path;
488 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
489 /* Correct geometry. */
490 if (frag->len > mtu ||
491 ((frag->len & 7) && frag->next) ||
492 skb_headroom(frag) < hlen)
493 goto slow_path;
495 /* Partially cloned skb? */
496 if (skb_shared(frag))
497 goto slow_path;
499 BUG_ON(frag->sk);
500 if (skb->sk) {
501 sock_hold(skb->sk);
502 frag->sk = skb->sk;
503 frag->destructor = sock_wfree;
504 truesizes += frag->truesize;
508 /* Everything is OK. Generate! */
510 err = 0;
511 offset = 0;
512 frag = skb_shinfo(skb)->frag_list;
513 skb_shinfo(skb)->frag_list = NULL;
514 skb->data_len = first_len - skb_headlen(skb);
515 skb->truesize -= truesizes;
516 skb->len = first_len;
517 iph->tot_len = htons(first_len);
518 iph->frag_off = htons(IP_MF);
519 ip_send_check(iph);
521 for (;;) {
522 /* Prepare header of the next frame,
523 * before previous one went down. */
524 if (frag) {
525 frag->ip_summed = CHECKSUM_NONE;
526 skb_reset_transport_header(frag);
527 __skb_push(frag, hlen);
528 skb_reset_network_header(frag);
529 memcpy(skb_network_header(frag), iph, hlen);
530 iph = ip_hdr(frag);
531 iph->tot_len = htons(frag->len);
532 ip_copy_metadata(frag, skb);
533 if (offset == 0)
534 ip_options_fragment(frag);
535 offset += skb->len - hlen;
536 iph->frag_off = htons(offset>>3);
537 if (frag->next != NULL)
538 iph->frag_off |= htons(IP_MF);
539 /* Ready, complete checksum */
540 ip_send_check(iph);
543 err = output(skb);
545 if (!err)
546 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
547 if (err || !frag)
548 break;
550 skb = frag;
551 frag = skb->next;
552 skb->next = NULL;
555 if (err == 0) {
556 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
557 return 0;
560 while (frag) {
561 skb = frag->next;
562 kfree_skb(frag);
563 frag = skb;
565 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
566 return err;
569 slow_path:
570 left = skb->len - hlen; /* Space per frame */
571 ptr = raw + hlen; /* Where to start from */
573 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
574 * we need to make room for the encapsulating header
576 pad = nf_bridge_pad(skb);
577 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
578 mtu -= pad;
581 * Fragment the datagram.
584 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
585 not_last_frag = iph->frag_off & htons(IP_MF);
588 * Keep copying data until we run out.
591 while (left > 0) {
592 len = left;
593 /* IF: it doesn't fit, use 'mtu' - the data space left */
594 if (len > mtu)
595 len = mtu;
596 /* IF: we are not sending upto and including the packet end
597 then align the next start on an eight byte boundary */
598 if (len < left) {
599 len &= ~7;
602 * Allocate buffer.
605 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
606 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
607 err = -ENOMEM;
608 goto fail;
612 * Set up data on packet
615 ip_copy_metadata(skb2, skb);
616 skb_reserve(skb2, ll_rs);
617 skb_put(skb2, len + hlen);
618 skb_reset_network_header(skb2);
619 skb2->transport_header = skb2->network_header + hlen;
622 * Charge the memory for the fragment to any owner
623 * it might possess
626 if (skb->sk)
627 skb_set_owner_w(skb2, skb->sk);
630 * Copy the packet header into the new buffer.
633 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
636 * Copy a block of the IP datagram.
638 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
639 BUG();
640 left -= len;
643 * Fill in the new header fields.
645 iph = ip_hdr(skb2);
646 iph->frag_off = htons((offset >> 3));
648 /* ANK: dirty, but effective trick. Upgrade options only if
649 * the segment to be fragmented was THE FIRST (otherwise,
650 * options are already fixed) and make it ONCE
651 * on the initial skb, so that all the following fragments
652 * will inherit fixed options.
654 if (offset == 0)
655 ip_options_fragment(skb);
658 * Added AC : If we are fragmenting a fragment that's not the
659 * last fragment then keep MF on each bit
661 if (left > 0 || not_last_frag)
662 iph->frag_off |= htons(IP_MF);
663 ptr += len;
664 offset += len;
667 * Put this fragment into the sending queue.
669 iph->tot_len = htons(len + hlen);
671 ip_send_check(iph);
673 err = output(skb2);
674 if (err)
675 goto fail;
677 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
679 kfree_skb(skb);
680 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
681 return err;
683 fail:
684 kfree_skb(skb);
685 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
686 return err;
689 EXPORT_SYMBOL(ip_fragment);
692 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
694 struct iovec *iov = from;
696 if (skb->ip_summed == CHECKSUM_PARTIAL) {
697 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
698 return -EFAULT;
699 } else {
700 __wsum csum = 0;
701 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
702 return -EFAULT;
703 skb->csum = csum_block_add(skb->csum, csum, odd);
705 return 0;
708 static inline __wsum
709 csum_page(struct page *page, int offset, int copy)
711 char *kaddr;
712 __wsum csum;
713 kaddr = kmap(page);
714 csum = csum_partial(kaddr + offset, copy, 0);
715 kunmap(page);
716 return csum;
719 static inline int ip_ufo_append_data(struct sock *sk,
720 int getfrag(void *from, char *to, int offset, int len,
721 int odd, struct sk_buff *skb),
722 void *from, int length, int hh_len, int fragheaderlen,
723 int transhdrlen, int mtu, unsigned int flags)
725 struct sk_buff *skb;
726 int err;
728 /* There is support for UDP fragmentation offload by network
729 * device, so create one single skb packet containing complete
730 * udp datagram
732 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
733 skb = sock_alloc_send_skb(sk,
734 hh_len + fragheaderlen + transhdrlen + 20,
735 (flags & MSG_DONTWAIT), &err);
737 if (skb == NULL)
738 return err;
740 /* reserve space for Hardware header */
741 skb_reserve(skb, hh_len);
743 /* create space for UDP/IP header */
744 skb_put(skb, fragheaderlen + transhdrlen);
746 /* initialize network header pointer */
747 skb_reset_network_header(skb);
749 /* initialize protocol header pointer */
750 skb->transport_header = skb->network_header + fragheaderlen;
752 skb->ip_summed = CHECKSUM_PARTIAL;
753 skb->csum = 0;
754 sk->sk_sndmsg_off = 0;
756 /* specify the length of each IP datagram fragment */
757 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
758 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
759 __skb_queue_tail(&sk->sk_write_queue, skb);
762 return skb_append_datato_frags(sk, skb, getfrag, from,
763 (length - transhdrlen));
767 * ip_append_data() and ip_append_page() can make one large IP datagram
768 * from many pieces of data. Each pieces will be holded on the socket
769 * until ip_push_pending_frames() is called. Each piece can be a page
770 * or non-page data.
772 * Not only UDP, other transport protocols - e.g. raw sockets - can use
773 * this interface potentially.
775 * LATER: length must be adjusted by pad at tail, when it is required.
777 int ip_append_data(struct sock *sk,
778 int getfrag(void *from, char *to, int offset, int len,
779 int odd, struct sk_buff *skb),
780 void *from, int length, int transhdrlen,
781 struct ipcm_cookie *ipc, struct rtable **rtp,
782 unsigned int flags)
784 struct inet_sock *inet = inet_sk(sk);
785 struct sk_buff *skb;
787 struct ip_options *opt = NULL;
788 int hh_len;
789 int exthdrlen;
790 int mtu;
791 int copy;
792 int err;
793 int offset = 0;
794 unsigned int maxfraglen, fragheaderlen;
795 int csummode = CHECKSUM_NONE;
796 struct rtable *rt;
798 if (flags&MSG_PROBE)
799 return 0;
801 if (skb_queue_empty(&sk->sk_write_queue)) {
803 * setup for corking.
805 opt = ipc->opt;
806 if (opt) {
807 if (inet->cork.opt == NULL) {
808 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
809 if (unlikely(inet->cork.opt == NULL))
810 return -ENOBUFS;
812 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
813 inet->cork.flags |= IPCORK_OPT;
814 inet->cork.addr = ipc->addr;
816 rt = *rtp;
818 * We steal reference to this route, caller should not release it
820 *rtp = NULL;
821 inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
822 rt->u.dst.dev->mtu :
823 dst_mtu(rt->u.dst.path);
824 inet->cork.dst = &rt->u.dst;
825 inet->cork.length = 0;
826 sk->sk_sndmsg_page = NULL;
827 sk->sk_sndmsg_off = 0;
828 if ((exthdrlen = rt->u.dst.header_len) != 0) {
829 length += exthdrlen;
830 transhdrlen += exthdrlen;
832 } else {
833 rt = (struct rtable *)inet->cork.dst;
834 if (inet->cork.flags & IPCORK_OPT)
835 opt = inet->cork.opt;
837 transhdrlen = 0;
838 exthdrlen = 0;
839 mtu = inet->cork.fragsize;
841 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
843 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
844 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
846 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
847 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
848 return -EMSGSIZE;
852 * transhdrlen > 0 means that this is the first fragment and we wish
853 * it won't be fragmented in the future.
855 if (transhdrlen &&
856 length + fragheaderlen <= mtu &&
857 rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
858 !exthdrlen)
859 csummode = CHECKSUM_PARTIAL;
861 inet->cork.length += length;
862 if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
863 (sk->sk_protocol == IPPROTO_UDP) &&
864 (rt->u.dst.dev->features & NETIF_F_UFO)) {
865 err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
866 fragheaderlen, transhdrlen, mtu,
867 flags);
868 if (err)
869 goto error;
870 return 0;
873 /* So, what's going on in the loop below?
875 * We use calculated fragment length to generate chained skb,
876 * each of segments is IP fragment ready for sending to network after
877 * adding appropriate IP header.
880 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
881 goto alloc_new_skb;
883 while (length > 0) {
884 /* Check if the remaining data fits into current packet. */
885 copy = mtu - skb->len;
886 if (copy < length)
887 copy = maxfraglen - skb->len;
888 if (copy <= 0) {
889 char *data;
890 unsigned int datalen;
891 unsigned int fraglen;
892 unsigned int fraggap;
893 unsigned int alloclen;
894 struct sk_buff *skb_prev;
895 alloc_new_skb:
896 skb_prev = skb;
897 if (skb_prev)
898 fraggap = skb_prev->len - maxfraglen;
899 else
900 fraggap = 0;
903 * If remaining data exceeds the mtu,
904 * we know we need more fragment(s).
906 datalen = length + fraggap;
907 if (datalen > mtu - fragheaderlen)
908 datalen = maxfraglen - fragheaderlen;
909 fraglen = datalen + fragheaderlen;
911 if ((flags & MSG_MORE) &&
912 !(rt->u.dst.dev->features&NETIF_F_SG))
913 alloclen = mtu;
914 else
915 alloclen = datalen + fragheaderlen;
917 /* The last fragment gets additional space at tail.
918 * Note, with MSG_MORE we overallocate on fragments,
919 * because we have no idea what fragment will be
920 * the last.
922 if (datalen == length + fraggap)
923 alloclen += rt->u.dst.trailer_len;
925 if (transhdrlen) {
926 skb = sock_alloc_send_skb(sk,
927 alloclen + hh_len + 15,
928 (flags & MSG_DONTWAIT), &err);
929 } else {
930 skb = NULL;
931 if (atomic_read(&sk->sk_wmem_alloc) <=
932 2 * sk->sk_sndbuf)
933 skb = sock_wmalloc(sk,
934 alloclen + hh_len + 15, 1,
935 sk->sk_allocation);
936 if (unlikely(skb == NULL))
937 err = -ENOBUFS;
939 if (skb == NULL)
940 goto error;
943 * Fill in the control structures
945 skb->ip_summed = csummode;
946 skb->csum = 0;
947 skb_reserve(skb, hh_len);
950 * Find where to start putting bytes.
952 data = skb_put(skb, fraglen);
953 skb_set_network_header(skb, exthdrlen);
954 skb->transport_header = (skb->network_header +
955 fragheaderlen);
956 data += fragheaderlen;
958 if (fraggap) {
959 skb->csum = skb_copy_and_csum_bits(
960 skb_prev, maxfraglen,
961 data + transhdrlen, fraggap, 0);
962 skb_prev->csum = csum_sub(skb_prev->csum,
963 skb->csum);
964 data += fraggap;
965 pskb_trim_unique(skb_prev, maxfraglen);
968 copy = datalen - transhdrlen - fraggap;
969 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
970 err = -EFAULT;
971 kfree_skb(skb);
972 goto error;
975 offset += copy;
976 length -= datalen - fraggap;
977 transhdrlen = 0;
978 exthdrlen = 0;
979 csummode = CHECKSUM_NONE;
982 * Put the packet on the pending queue.
984 __skb_queue_tail(&sk->sk_write_queue, skb);
985 continue;
988 if (copy > length)
989 copy = length;
991 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
992 unsigned int off;
994 off = skb->len;
995 if (getfrag(from, skb_put(skb, copy),
996 offset, copy, off, skb) < 0) {
997 __skb_trim(skb, off);
998 err = -EFAULT;
999 goto error;
1001 } else {
1002 int i = skb_shinfo(skb)->nr_frags;
1003 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1004 struct page *page = sk->sk_sndmsg_page;
1005 int off = sk->sk_sndmsg_off;
1006 unsigned int left;
1008 if (page && (left = PAGE_SIZE - off) > 0) {
1009 if (copy >= left)
1010 copy = left;
1011 if (page != frag->page) {
1012 if (i == MAX_SKB_FRAGS) {
1013 err = -EMSGSIZE;
1014 goto error;
1016 get_page(page);
1017 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1018 frag = &skb_shinfo(skb)->frags[i];
1020 } else if (i < MAX_SKB_FRAGS) {
1021 if (copy > PAGE_SIZE)
1022 copy = PAGE_SIZE;
1023 page = alloc_pages(sk->sk_allocation, 0);
1024 if (page == NULL) {
1025 err = -ENOMEM;
1026 goto error;
1028 sk->sk_sndmsg_page = page;
1029 sk->sk_sndmsg_off = 0;
1031 skb_fill_page_desc(skb, i, page, 0, 0);
1032 frag = &skb_shinfo(skb)->frags[i];
1033 } else {
1034 err = -EMSGSIZE;
1035 goto error;
1037 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1038 err = -EFAULT;
1039 goto error;
1041 sk->sk_sndmsg_off += copy;
1042 frag->size += copy;
1043 skb->len += copy;
1044 skb->data_len += copy;
1045 skb->truesize += copy;
1046 atomic_add(copy, &sk->sk_wmem_alloc);
1048 offset += copy;
1049 length -= copy;
1052 return 0;
1054 error:
1055 inet->cork.length -= length;
1056 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1057 return err;
1060 ssize_t ip_append_page(struct sock *sk, struct page *page,
1061 int offset, size_t size, int flags)
1063 struct inet_sock *inet = inet_sk(sk);
1064 struct sk_buff *skb;
1065 struct rtable *rt;
1066 struct ip_options *opt = NULL;
1067 int hh_len;
1068 int mtu;
1069 int len;
1070 int err;
1071 unsigned int maxfraglen, fragheaderlen, fraggap;
1073 if (inet->hdrincl)
1074 return -EPERM;
1076 if (flags&MSG_PROBE)
1077 return 0;
1079 if (skb_queue_empty(&sk->sk_write_queue))
1080 return -EINVAL;
1082 rt = (struct rtable *)inet->cork.dst;
1083 if (inet->cork.flags & IPCORK_OPT)
1084 opt = inet->cork.opt;
1086 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1087 return -EOPNOTSUPP;
1089 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1090 mtu = inet->cork.fragsize;
1092 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1093 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1095 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1096 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1097 return -EMSGSIZE;
1100 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1101 return -EINVAL;
1103 inet->cork.length += size;
1104 if ((sk->sk_protocol == IPPROTO_UDP) &&
1105 (rt->u.dst.dev->features & NETIF_F_UFO)) {
1106 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1107 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1111 while (size > 0) {
1112 int i;
1114 if (skb_is_gso(skb))
1115 len = size;
1116 else {
1118 /* Check if the remaining data fits into current packet. */
1119 len = mtu - skb->len;
1120 if (len < size)
1121 len = maxfraglen - skb->len;
1123 if (len <= 0) {
1124 struct sk_buff *skb_prev;
1125 int alloclen;
1127 skb_prev = skb;
1128 fraggap = skb_prev->len - maxfraglen;
1130 alloclen = fragheaderlen + hh_len + fraggap + 15;
1131 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1132 if (unlikely(!skb)) {
1133 err = -ENOBUFS;
1134 goto error;
1138 * Fill in the control structures
1140 skb->ip_summed = CHECKSUM_NONE;
1141 skb->csum = 0;
1142 skb_reserve(skb, hh_len);
1145 * Find where to start putting bytes.
1147 skb_put(skb, fragheaderlen + fraggap);
1148 skb_reset_network_header(skb);
1149 skb->transport_header = (skb->network_header +
1150 fragheaderlen);
1151 if (fraggap) {
1152 skb->csum = skb_copy_and_csum_bits(skb_prev,
1153 maxfraglen,
1154 skb_transport_header(skb),
1155 fraggap, 0);
1156 skb_prev->csum = csum_sub(skb_prev->csum,
1157 skb->csum);
1158 pskb_trim_unique(skb_prev, maxfraglen);
1162 * Put the packet on the pending queue.
1164 __skb_queue_tail(&sk->sk_write_queue, skb);
1165 continue;
1168 i = skb_shinfo(skb)->nr_frags;
1169 if (len > size)
1170 len = size;
1171 if (skb_can_coalesce(skb, i, page, offset)) {
1172 skb_shinfo(skb)->frags[i-1].size += len;
1173 } else if (i < MAX_SKB_FRAGS) {
1174 get_page(page);
1175 skb_fill_page_desc(skb, i, page, offset, len);
1176 } else {
1177 err = -EMSGSIZE;
1178 goto error;
1181 if (skb->ip_summed == CHECKSUM_NONE) {
1182 __wsum csum;
1183 csum = csum_page(page, offset, len);
1184 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1187 skb->len += len;
1188 skb->data_len += len;
1189 skb->truesize += len;
1190 atomic_add(len, &sk->sk_wmem_alloc);
1191 offset += len;
1192 size -= len;
1194 return 0;
1196 error:
1197 inet->cork.length -= size;
1198 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1199 return err;
1202 static void ip_cork_release(struct inet_sock *inet)
1204 inet->cork.flags &= ~IPCORK_OPT;
1205 kfree(inet->cork.opt);
1206 inet->cork.opt = NULL;
1207 dst_release(inet->cork.dst);
1208 inet->cork.dst = NULL;
1212 * Combined all pending IP fragments on the socket as one IP datagram
1213 * and push them out.
1215 int ip_push_pending_frames(struct sock *sk)
1217 struct sk_buff *skb, *tmp_skb;
1218 struct sk_buff **tail_skb;
1219 struct inet_sock *inet = inet_sk(sk);
1220 struct net *net = sock_net(sk);
1221 struct ip_options *opt = NULL;
1222 struct rtable *rt = (struct rtable *)inet->cork.dst;
1223 struct iphdr *iph;
1224 __be16 df = 0;
1225 __u8 ttl;
1226 int err = 0;
1228 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1229 goto out;
1230 tail_skb = &(skb_shinfo(skb)->frag_list);
1232 /* move skb->data to ip header from ext header */
1233 if (skb->data < skb_network_header(skb))
1234 __skb_pull(skb, skb_network_offset(skb));
1235 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1236 __skb_pull(tmp_skb, skb_network_header_len(skb));
1237 *tail_skb = tmp_skb;
1238 tail_skb = &(tmp_skb->next);
1239 skb->len += tmp_skb->len;
1240 skb->data_len += tmp_skb->len;
1241 skb->truesize += tmp_skb->truesize;
1242 __sock_put(tmp_skb->sk);
1243 tmp_skb->destructor = NULL;
1244 tmp_skb->sk = NULL;
1247 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1248 * to fragment the frame generated here. No matter, what transforms
1249 * how transforms change size of the packet, it will come out.
1251 if (inet->pmtudisc < IP_PMTUDISC_DO)
1252 skb->local_df = 1;
1254 /* DF bit is set when we want to see DF on outgoing frames.
1255 * If local_df is set too, we still allow to fragment this frame
1256 * locally. */
1257 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1258 (skb->len <= dst_mtu(&rt->u.dst) &&
1259 ip_dont_fragment(sk, &rt->u.dst)))
1260 df = htons(IP_DF);
1262 if (inet->cork.flags & IPCORK_OPT)
1263 opt = inet->cork.opt;
1265 if (rt->rt_type == RTN_MULTICAST)
1266 ttl = inet->mc_ttl;
1267 else
1268 ttl = ip_select_ttl(inet, &rt->u.dst);
1270 iph = (struct iphdr *)skb->data;
1271 iph->version = 4;
1272 iph->ihl = 5;
1273 if (opt) {
1274 iph->ihl += opt->optlen>>2;
1275 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1277 iph->tos = inet->tos;
1278 iph->frag_off = df;
1279 ip_select_ident(iph, &rt->u.dst, sk);
1280 iph->ttl = ttl;
1281 iph->protocol = sk->sk_protocol;
1282 iph->saddr = rt->rt_src;
1283 iph->daddr = rt->rt_dst;
1285 skb->priority = sk->sk_priority;
1286 skb->mark = sk->sk_mark;
1288 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1289 * on dst refcount
1291 inet->cork.dst = NULL;
1292 skb->dst = &rt->u.dst;
1294 if (iph->protocol == IPPROTO_ICMP)
1295 icmp_out_count(net, ((struct icmphdr *)
1296 skb_transport_header(skb))->type);
1298 /* Netfilter gets whole the not fragmented skb. */
1299 err = ip_local_out(skb);
1300 if (err) {
1301 if (err > 0)
1302 err = inet->recverr ? net_xmit_errno(err) : 0;
1303 if (err)
1304 goto error;
1307 out:
1308 ip_cork_release(inet);
1309 return err;
1311 error:
1312 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1313 goto out;
1317 * Throw away all pending data on the socket.
1319 void ip_flush_pending_frames(struct sock *sk)
1321 struct sk_buff *skb;
1323 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1324 kfree_skb(skb);
1326 ip_cork_release(inet_sk(sk));
1331 * Fetch data from kernel space and fill in checksum if needed.
1333 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1334 int len, int odd, struct sk_buff *skb)
1336 __wsum csum;
1338 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1339 skb->csum = csum_block_add(skb->csum, csum, odd);
1340 return 0;
1344 * Generic function to send a packet as reply to another packet.
1345 * Used to send TCP resets so far. ICMP should use this function too.
1347 * Should run single threaded per socket because it uses the sock
1348 * structure to pass arguments.
1350 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1351 unsigned int len)
1353 struct inet_sock *inet = inet_sk(sk);
1354 struct {
1355 struct ip_options opt;
1356 char data[40];
1357 } replyopts;
1358 struct ipcm_cookie ipc;
1359 __be32 daddr;
1360 struct rtable *rt = skb->rtable;
1362 if (ip_options_echo(&replyopts.opt, skb))
1363 return;
1365 daddr = ipc.addr = rt->rt_src;
1366 ipc.opt = NULL;
1368 if (replyopts.opt.optlen) {
1369 ipc.opt = &replyopts.opt;
1371 if (ipc.opt->srr)
1372 daddr = replyopts.opt.faddr;
1376 struct flowi fl = { .oif = arg->bound_dev_if,
1377 .nl_u = { .ip4_u =
1378 { .daddr = daddr,
1379 .saddr = rt->rt_spec_dst,
1380 .tos = RT_TOS(ip_hdr(skb)->tos) } },
1381 /* Not quite clean, but right. */
1382 .uli_u = { .ports =
1383 { .sport = tcp_hdr(skb)->dest,
1384 .dport = tcp_hdr(skb)->source } },
1385 .proto = sk->sk_protocol,
1386 .flags = ip_reply_arg_flowi_flags(arg) };
1387 security_skb_classify_flow(skb, &fl);
1388 if (ip_route_output_key(sock_net(sk), &rt, &fl))
1389 return;
1392 /* And let IP do all the hard work.
1394 This chunk is not reenterable, hence spinlock.
1395 Note that it uses the fact, that this function is called
1396 with locally disabled BH and that sk cannot be already spinlocked.
1398 bh_lock_sock(sk);
1399 inet->tos = ip_hdr(skb)->tos;
1400 sk->sk_priority = skb->priority;
1401 sk->sk_protocol = ip_hdr(skb)->protocol;
1402 sk->sk_bound_dev_if = arg->bound_dev_if;
1403 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1404 &ipc, &rt, MSG_DONTWAIT);
1405 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1406 if (arg->csumoffset >= 0)
1407 *((__sum16 *)skb_transport_header(skb) +
1408 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1409 arg->csum));
1410 skb->ip_summed = CHECKSUM_NONE;
1411 ip_push_pending_frames(sk);
1414 bh_unlock_sock(sk);
1416 ip_rt_put(rt);
1419 void __init ip_init(void)
1421 ip_rt_init();
1422 inet_initpeers();
1424 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1425 igmp_mc_proc_init();
1426 #endif
1429 EXPORT_SYMBOL(ip_generic_getfrag);
1430 EXPORT_SYMBOL(ip_queue_xmit);
1431 EXPORT_SYMBOL(ip_send_check);