PCI: add routines for debugging and handling lost interrupts
[linux-2.6/sactl.git] / mm / filemap.c
blobab8553658af3fb2fcfac7b0c80bc2ed8d1343721
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
44 #include <asm/mman.h>
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
124 mem_cgroup_uncharge_cache_page(page);
127 * Some filesystems seem to re-dirty the page even after
128 * the VM has canceled the dirty bit (eg ext3 journaling).
130 * Fix it up by doing a final dirty accounting check after
131 * having removed the page entirely.
133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 dec_zone_page_state(page, NR_FILE_DIRTY);
135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
139 void remove_from_page_cache(struct page *page)
141 struct address_space *mapping = page->mapping;
143 BUG_ON(!PageLocked(page));
145 spin_lock_irq(&mapping->tree_lock);
146 __remove_from_page_cache(page);
147 spin_unlock_irq(&mapping->tree_lock);
150 static int sync_page(void *word)
152 struct address_space *mapping;
153 struct page *page;
155 page = container_of((unsigned long *)word, struct page, flags);
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
173 * ignore it for all cases but swap, where only page_private(page) is
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
176 * -- wli
178 smp_mb();
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
182 io_schedule();
183 return 0;
186 static int sync_page_killable(void *word)
188 sync_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = mapping->nrpages * 2,
214 .range_start = start,
215 .range_end = end,
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
221 ret = do_writepages(mapping, &wbc);
222 return ret;
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 int filemap_fdatawrite(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
235 EXPORT_SYMBOL(filemap_fdatawrite);
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 loff_t end)
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space *mapping)
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 EXPORT_SYMBOL(filemap_flush);
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
274 if (end < start)
275 return 0;
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
296 pagevec_release(&pvec);
297 cond_resched();
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
306 return ret;
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 int ret;
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
331 return 0;
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 if (ret == 0) {
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
338 if (ret == 0)
339 ret = wait_on_page_writeback_range(mapping, start, end);
340 return ret;
342 EXPORT_SYMBOL(sync_page_range);
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 int ret;
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
363 return 0;
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 if (ret == 0)
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 if (ret == 0)
368 ret = wait_on_page_writeback_range(mapping, start, end);
369 return ret;
371 EXPORT_SYMBOL(sync_page_range_nolock);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space *mapping)
382 loff_t i_size = i_size_read(mapping->host);
384 if (i_size == 0)
385 return 0;
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
390 EXPORT_SYMBOL(filemap_fdatawait);
392 int filemap_write_and_wait(struct address_space *mapping)
394 int err = 0;
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
410 return err;
412 EXPORT_SYMBOL(filemap_write_and_wait);
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
420 * Write out and wait upon file offsets lstart->lend, inclusive.
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
428 int err = 0;
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 WB_SYNC_ALL);
433 /* See comment of filemap_write_and_wait() */
434 if (err != -EIO) {
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
438 if (!err)
439 err = err2;
442 return err;
446 * add_to_page_cache_locked - add a locked page to the pagecache
447 * @page: page to add
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
452 * This function is used to add a page to the pagecache. It must be locked.
453 * This function does not add the page to the LRU. The caller must do that.
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 pgoff_t offset, gfp_t gfp_mask)
458 int error;
460 VM_BUG_ON(!PageLocked(page));
462 error = mem_cgroup_cache_charge(page, current->mm,
463 gfp_mask & ~__GFP_HIGHMEM);
464 if (error)
465 goto out;
467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 if (error == 0) {
469 page_cache_get(page);
470 page->mapping = mapping;
471 page->index = offset;
473 spin_lock_irq(&mapping->tree_lock);
474 error = radix_tree_insert(&mapping->page_tree, offset, page);
475 if (likely(!error)) {
476 mapping->nrpages++;
477 __inc_zone_page_state(page, NR_FILE_PAGES);
478 } else {
479 page->mapping = NULL;
480 mem_cgroup_uncharge_cache_page(page);
481 page_cache_release(page);
484 spin_unlock_irq(&mapping->tree_lock);
485 radix_tree_preload_end();
486 } else
487 mem_cgroup_uncharge_cache_page(page);
488 out:
489 return error;
491 EXPORT_SYMBOL(add_to_page_cache_locked);
493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494 pgoff_t offset, gfp_t gfp_mask)
496 int ret;
499 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 * (called in add_to_page_cache) needs to know where they're going too.
504 if (mapping_cap_swap_backed(mapping))
505 SetPageSwapBacked(page);
507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 if (ret == 0) {
509 if (page_is_file_cache(page))
510 lru_cache_add_file(page);
511 else
512 lru_cache_add_active_anon(page);
514 return ret;
517 #ifdef CONFIG_NUMA
518 struct page *__page_cache_alloc(gfp_t gfp)
520 if (cpuset_do_page_mem_spread()) {
521 int n = cpuset_mem_spread_node();
522 return alloc_pages_node(n, gfp, 0);
524 return alloc_pages(gfp, 0);
526 EXPORT_SYMBOL(__page_cache_alloc);
527 #endif
529 static int __sleep_on_page_lock(void *word)
531 io_schedule();
532 return 0;
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
545 static wait_queue_head_t *page_waitqueue(struct page *page)
547 const struct zone *zone = page_zone(page);
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
552 static inline void wake_up_page(struct page *page, int bit)
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
557 void wait_on_page_bit(struct page *page, int bit_nr)
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
561 if (test_bit(bit_nr, &page->flags))
562 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
563 TASK_UNINTERRUPTIBLE);
565 EXPORT_SYMBOL(wait_on_page_bit);
568 * unlock_page - unlock a locked page
569 * @page: the page
571 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
572 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
573 * mechananism between PageLocked pages and PageWriteback pages is shared.
574 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
576 * The mb is necessary to enforce ordering between the clear_bit and the read
577 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
579 void unlock_page(struct page *page)
581 VM_BUG_ON(!PageLocked(page));
582 clear_bit_unlock(PG_locked, &page->flags);
583 smp_mb__after_clear_bit();
584 wake_up_page(page, PG_locked);
586 EXPORT_SYMBOL(unlock_page);
589 * end_page_writeback - end writeback against a page
590 * @page: the page
592 void end_page_writeback(struct page *page)
594 if (TestClearPageReclaim(page))
595 rotate_reclaimable_page(page);
597 if (!test_clear_page_writeback(page))
598 BUG();
600 smp_mb__after_clear_bit();
601 wake_up_page(page, PG_writeback);
603 EXPORT_SYMBOL(end_page_writeback);
606 * __lock_page - get a lock on the page, assuming we need to sleep to get it
607 * @page: the page to lock
609 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
610 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
611 * chances are that on the second loop, the block layer's plug list is empty,
612 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
614 void __lock_page(struct page *page)
616 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
618 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
619 TASK_UNINTERRUPTIBLE);
621 EXPORT_SYMBOL(__lock_page);
623 int __lock_page_killable(struct page *page)
625 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
627 return __wait_on_bit_lock(page_waitqueue(page), &wait,
628 sync_page_killable, TASK_KILLABLE);
632 * __lock_page_nosync - get a lock on the page, without calling sync_page()
633 * @page: the page to lock
635 * Variant of lock_page that does not require the caller to hold a reference
636 * on the page's mapping.
638 void __lock_page_nosync(struct page *page)
640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
642 TASK_UNINTERRUPTIBLE);
646 * find_get_page - find and get a page reference
647 * @mapping: the address_space to search
648 * @offset: the page index
650 * Is there a pagecache struct page at the given (mapping, offset) tuple?
651 * If yes, increment its refcount and return it; if no, return NULL.
653 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
655 void **pagep;
656 struct page *page;
658 rcu_read_lock();
659 repeat:
660 page = NULL;
661 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
662 if (pagep) {
663 page = radix_tree_deref_slot(pagep);
664 if (unlikely(!page || page == RADIX_TREE_RETRY))
665 goto repeat;
667 if (!page_cache_get_speculative(page))
668 goto repeat;
671 * Has the page moved?
672 * This is part of the lockless pagecache protocol. See
673 * include/linux/pagemap.h for details.
675 if (unlikely(page != *pagep)) {
676 page_cache_release(page);
677 goto repeat;
680 rcu_read_unlock();
682 return page;
684 EXPORT_SYMBOL(find_get_page);
687 * find_lock_page - locate, pin and lock a pagecache page
688 * @mapping: the address_space to search
689 * @offset: the page index
691 * Locates the desired pagecache page, locks it, increments its reference
692 * count and returns its address.
694 * Returns zero if the page was not present. find_lock_page() may sleep.
696 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
698 struct page *page;
700 repeat:
701 page = find_get_page(mapping, offset);
702 if (page) {
703 lock_page(page);
704 /* Has the page been truncated? */
705 if (unlikely(page->mapping != mapping)) {
706 unlock_page(page);
707 page_cache_release(page);
708 goto repeat;
710 VM_BUG_ON(page->index != offset);
712 return page;
714 EXPORT_SYMBOL(find_lock_page);
717 * find_or_create_page - locate or add a pagecache page
718 * @mapping: the page's address_space
719 * @index: the page's index into the mapping
720 * @gfp_mask: page allocation mode
722 * Locates a page in the pagecache. If the page is not present, a new page
723 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
724 * LRU list. The returned page is locked and has its reference count
725 * incremented.
727 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
728 * allocation!
730 * find_or_create_page() returns the desired page's address, or zero on
731 * memory exhaustion.
733 struct page *find_or_create_page(struct address_space *mapping,
734 pgoff_t index, gfp_t gfp_mask)
736 struct page *page;
737 int err;
738 repeat:
739 page = find_lock_page(mapping, index);
740 if (!page) {
741 page = __page_cache_alloc(gfp_mask);
742 if (!page)
743 return NULL;
744 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
745 if (unlikely(err)) {
746 page_cache_release(page);
747 page = NULL;
748 if (err == -EEXIST)
749 goto repeat;
752 return page;
754 EXPORT_SYMBOL(find_or_create_page);
757 * find_get_pages - gang pagecache lookup
758 * @mapping: The address_space to search
759 * @start: The starting page index
760 * @nr_pages: The maximum number of pages
761 * @pages: Where the resulting pages are placed
763 * find_get_pages() will search for and return a group of up to
764 * @nr_pages pages in the mapping. The pages are placed at @pages.
765 * find_get_pages() takes a reference against the returned pages.
767 * The search returns a group of mapping-contiguous pages with ascending
768 * indexes. There may be holes in the indices due to not-present pages.
770 * find_get_pages() returns the number of pages which were found.
772 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
773 unsigned int nr_pages, struct page **pages)
775 unsigned int i;
776 unsigned int ret;
777 unsigned int nr_found;
779 rcu_read_lock();
780 restart:
781 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
782 (void ***)pages, start, nr_pages);
783 ret = 0;
784 for (i = 0; i < nr_found; i++) {
785 struct page *page;
786 repeat:
787 page = radix_tree_deref_slot((void **)pages[i]);
788 if (unlikely(!page))
789 continue;
791 * this can only trigger if nr_found == 1, making livelock
792 * a non issue.
794 if (unlikely(page == RADIX_TREE_RETRY))
795 goto restart;
797 if (!page_cache_get_speculative(page))
798 goto repeat;
800 /* Has the page moved? */
801 if (unlikely(page != *((void **)pages[i]))) {
802 page_cache_release(page);
803 goto repeat;
806 pages[ret] = page;
807 ret++;
809 rcu_read_unlock();
810 return ret;
814 * find_get_pages_contig - gang contiguous pagecache lookup
815 * @mapping: The address_space to search
816 * @index: The starting page index
817 * @nr_pages: The maximum number of pages
818 * @pages: Where the resulting pages are placed
820 * find_get_pages_contig() works exactly like find_get_pages(), except
821 * that the returned number of pages are guaranteed to be contiguous.
823 * find_get_pages_contig() returns the number of pages which were found.
825 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
826 unsigned int nr_pages, struct page **pages)
828 unsigned int i;
829 unsigned int ret;
830 unsigned int nr_found;
832 rcu_read_lock();
833 restart:
834 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
835 (void ***)pages, index, nr_pages);
836 ret = 0;
837 for (i = 0; i < nr_found; i++) {
838 struct page *page;
839 repeat:
840 page = radix_tree_deref_slot((void **)pages[i]);
841 if (unlikely(!page))
842 continue;
844 * this can only trigger if nr_found == 1, making livelock
845 * a non issue.
847 if (unlikely(page == RADIX_TREE_RETRY))
848 goto restart;
850 if (page->mapping == NULL || page->index != index)
851 break;
853 if (!page_cache_get_speculative(page))
854 goto repeat;
856 /* Has the page moved? */
857 if (unlikely(page != *((void **)pages[i]))) {
858 page_cache_release(page);
859 goto repeat;
862 pages[ret] = page;
863 ret++;
864 index++;
866 rcu_read_unlock();
867 return ret;
869 EXPORT_SYMBOL(find_get_pages_contig);
872 * find_get_pages_tag - find and return pages that match @tag
873 * @mapping: the address_space to search
874 * @index: the starting page index
875 * @tag: the tag index
876 * @nr_pages: the maximum number of pages
877 * @pages: where the resulting pages are placed
879 * Like find_get_pages, except we only return pages which are tagged with
880 * @tag. We update @index to index the next page for the traversal.
882 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
883 int tag, unsigned int nr_pages, struct page **pages)
885 unsigned int i;
886 unsigned int ret;
887 unsigned int nr_found;
889 rcu_read_lock();
890 restart:
891 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
892 (void ***)pages, *index, nr_pages, tag);
893 ret = 0;
894 for (i = 0; i < nr_found; i++) {
895 struct page *page;
896 repeat:
897 page = radix_tree_deref_slot((void **)pages[i]);
898 if (unlikely(!page))
899 continue;
901 * this can only trigger if nr_found == 1, making livelock
902 * a non issue.
904 if (unlikely(page == RADIX_TREE_RETRY))
905 goto restart;
907 if (!page_cache_get_speculative(page))
908 goto repeat;
910 /* Has the page moved? */
911 if (unlikely(page != *((void **)pages[i]))) {
912 page_cache_release(page);
913 goto repeat;
916 pages[ret] = page;
917 ret++;
919 rcu_read_unlock();
921 if (ret)
922 *index = pages[ret - 1]->index + 1;
924 return ret;
926 EXPORT_SYMBOL(find_get_pages_tag);
929 * grab_cache_page_nowait - returns locked page at given index in given cache
930 * @mapping: target address_space
931 * @index: the page index
933 * Same as grab_cache_page(), but do not wait if the page is unavailable.
934 * This is intended for speculative data generators, where the data can
935 * be regenerated if the page couldn't be grabbed. This routine should
936 * be safe to call while holding the lock for another page.
938 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
939 * and deadlock against the caller's locked page.
941 struct page *
942 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
944 struct page *page = find_get_page(mapping, index);
946 if (page) {
947 if (trylock_page(page))
948 return page;
949 page_cache_release(page);
950 return NULL;
952 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
953 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
954 page_cache_release(page);
955 page = NULL;
957 return page;
959 EXPORT_SYMBOL(grab_cache_page_nowait);
962 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
963 * a _large_ part of the i/o request. Imagine the worst scenario:
965 * ---R__________________________________________B__________
966 * ^ reading here ^ bad block(assume 4k)
968 * read(R) => miss => readahead(R...B) => media error => frustrating retries
969 * => failing the whole request => read(R) => read(R+1) =>
970 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
971 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
972 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
974 * It is going insane. Fix it by quickly scaling down the readahead size.
976 static void shrink_readahead_size_eio(struct file *filp,
977 struct file_ra_state *ra)
979 if (!ra->ra_pages)
980 return;
982 ra->ra_pages /= 4;
986 * do_generic_file_read - generic file read routine
987 * @filp: the file to read
988 * @ppos: current file position
989 * @desc: read_descriptor
990 * @actor: read method
992 * This is a generic file read routine, and uses the
993 * mapping->a_ops->readpage() function for the actual low-level stuff.
995 * This is really ugly. But the goto's actually try to clarify some
996 * of the logic when it comes to error handling etc.
998 static void do_generic_file_read(struct file *filp, loff_t *ppos,
999 read_descriptor_t *desc, read_actor_t actor)
1001 struct address_space *mapping = filp->f_mapping;
1002 struct inode *inode = mapping->host;
1003 struct file_ra_state *ra = &filp->f_ra;
1004 pgoff_t index;
1005 pgoff_t last_index;
1006 pgoff_t prev_index;
1007 unsigned long offset; /* offset into pagecache page */
1008 unsigned int prev_offset;
1009 int error;
1011 index = *ppos >> PAGE_CACHE_SHIFT;
1012 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1013 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1014 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1015 offset = *ppos & ~PAGE_CACHE_MASK;
1017 for (;;) {
1018 struct page *page;
1019 pgoff_t end_index;
1020 loff_t isize;
1021 unsigned long nr, ret;
1023 cond_resched();
1024 find_page:
1025 page = find_get_page(mapping, index);
1026 if (!page) {
1027 page_cache_sync_readahead(mapping,
1028 ra, filp,
1029 index, last_index - index);
1030 page = find_get_page(mapping, index);
1031 if (unlikely(page == NULL))
1032 goto no_cached_page;
1034 if (PageReadahead(page)) {
1035 page_cache_async_readahead(mapping,
1036 ra, filp, page,
1037 index, last_index - index);
1039 if (!PageUptodate(page)) {
1040 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1041 !mapping->a_ops->is_partially_uptodate)
1042 goto page_not_up_to_date;
1043 if (!trylock_page(page))
1044 goto page_not_up_to_date;
1045 if (!mapping->a_ops->is_partially_uptodate(page,
1046 desc, offset))
1047 goto page_not_up_to_date_locked;
1048 unlock_page(page);
1050 page_ok:
1052 * i_size must be checked after we know the page is Uptodate.
1054 * Checking i_size after the check allows us to calculate
1055 * the correct value for "nr", which means the zero-filled
1056 * part of the page is not copied back to userspace (unless
1057 * another truncate extends the file - this is desired though).
1060 isize = i_size_read(inode);
1061 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1062 if (unlikely(!isize || index > end_index)) {
1063 page_cache_release(page);
1064 goto out;
1067 /* nr is the maximum number of bytes to copy from this page */
1068 nr = PAGE_CACHE_SIZE;
1069 if (index == end_index) {
1070 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1071 if (nr <= offset) {
1072 page_cache_release(page);
1073 goto out;
1076 nr = nr - offset;
1078 /* If users can be writing to this page using arbitrary
1079 * virtual addresses, take care about potential aliasing
1080 * before reading the page on the kernel side.
1082 if (mapping_writably_mapped(mapping))
1083 flush_dcache_page(page);
1086 * When a sequential read accesses a page several times,
1087 * only mark it as accessed the first time.
1089 if (prev_index != index || offset != prev_offset)
1090 mark_page_accessed(page);
1091 prev_index = index;
1094 * Ok, we have the page, and it's up-to-date, so
1095 * now we can copy it to user space...
1097 * The actor routine returns how many bytes were actually used..
1098 * NOTE! This may not be the same as how much of a user buffer
1099 * we filled up (we may be padding etc), so we can only update
1100 * "pos" here (the actor routine has to update the user buffer
1101 * pointers and the remaining count).
1103 ret = actor(desc, page, offset, nr);
1104 offset += ret;
1105 index += offset >> PAGE_CACHE_SHIFT;
1106 offset &= ~PAGE_CACHE_MASK;
1107 prev_offset = offset;
1109 page_cache_release(page);
1110 if (ret == nr && desc->count)
1111 continue;
1112 goto out;
1114 page_not_up_to_date:
1115 /* Get exclusive access to the page ... */
1116 error = lock_page_killable(page);
1117 if (unlikely(error))
1118 goto readpage_error;
1120 page_not_up_to_date_locked:
1121 /* Did it get truncated before we got the lock? */
1122 if (!page->mapping) {
1123 unlock_page(page);
1124 page_cache_release(page);
1125 continue;
1128 /* Did somebody else fill it already? */
1129 if (PageUptodate(page)) {
1130 unlock_page(page);
1131 goto page_ok;
1134 readpage:
1135 /* Start the actual read. The read will unlock the page. */
1136 error = mapping->a_ops->readpage(filp, page);
1138 if (unlikely(error)) {
1139 if (error == AOP_TRUNCATED_PAGE) {
1140 page_cache_release(page);
1141 goto find_page;
1143 goto readpage_error;
1146 if (!PageUptodate(page)) {
1147 error = lock_page_killable(page);
1148 if (unlikely(error))
1149 goto readpage_error;
1150 if (!PageUptodate(page)) {
1151 if (page->mapping == NULL) {
1153 * invalidate_inode_pages got it
1155 unlock_page(page);
1156 page_cache_release(page);
1157 goto find_page;
1159 unlock_page(page);
1160 shrink_readahead_size_eio(filp, ra);
1161 error = -EIO;
1162 goto readpage_error;
1164 unlock_page(page);
1167 goto page_ok;
1169 readpage_error:
1170 /* UHHUH! A synchronous read error occurred. Report it */
1171 desc->error = error;
1172 page_cache_release(page);
1173 goto out;
1175 no_cached_page:
1177 * Ok, it wasn't cached, so we need to create a new
1178 * page..
1180 page = page_cache_alloc_cold(mapping);
1181 if (!page) {
1182 desc->error = -ENOMEM;
1183 goto out;
1185 error = add_to_page_cache_lru(page, mapping,
1186 index, GFP_KERNEL);
1187 if (error) {
1188 page_cache_release(page);
1189 if (error == -EEXIST)
1190 goto find_page;
1191 desc->error = error;
1192 goto out;
1194 goto readpage;
1197 out:
1198 ra->prev_pos = prev_index;
1199 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1200 ra->prev_pos |= prev_offset;
1202 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1203 file_accessed(filp);
1206 int file_read_actor(read_descriptor_t *desc, struct page *page,
1207 unsigned long offset, unsigned long size)
1209 char *kaddr;
1210 unsigned long left, count = desc->count;
1212 if (size > count)
1213 size = count;
1216 * Faults on the destination of a read are common, so do it before
1217 * taking the kmap.
1219 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1220 kaddr = kmap_atomic(page, KM_USER0);
1221 left = __copy_to_user_inatomic(desc->arg.buf,
1222 kaddr + offset, size);
1223 kunmap_atomic(kaddr, KM_USER0);
1224 if (left == 0)
1225 goto success;
1228 /* Do it the slow way */
1229 kaddr = kmap(page);
1230 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1231 kunmap(page);
1233 if (left) {
1234 size -= left;
1235 desc->error = -EFAULT;
1237 success:
1238 desc->count = count - size;
1239 desc->written += size;
1240 desc->arg.buf += size;
1241 return size;
1245 * Performs necessary checks before doing a write
1246 * @iov: io vector request
1247 * @nr_segs: number of segments in the iovec
1248 * @count: number of bytes to write
1249 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1251 * Adjust number of segments and amount of bytes to write (nr_segs should be
1252 * properly initialized first). Returns appropriate error code that caller
1253 * should return or zero in case that write should be allowed.
1255 int generic_segment_checks(const struct iovec *iov,
1256 unsigned long *nr_segs, size_t *count, int access_flags)
1258 unsigned long seg;
1259 size_t cnt = 0;
1260 for (seg = 0; seg < *nr_segs; seg++) {
1261 const struct iovec *iv = &iov[seg];
1264 * If any segment has a negative length, or the cumulative
1265 * length ever wraps negative then return -EINVAL.
1267 cnt += iv->iov_len;
1268 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1269 return -EINVAL;
1270 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1271 continue;
1272 if (seg == 0)
1273 return -EFAULT;
1274 *nr_segs = seg;
1275 cnt -= iv->iov_len; /* This segment is no good */
1276 break;
1278 *count = cnt;
1279 return 0;
1281 EXPORT_SYMBOL(generic_segment_checks);
1284 * generic_file_aio_read - generic filesystem read routine
1285 * @iocb: kernel I/O control block
1286 * @iov: io vector request
1287 * @nr_segs: number of segments in the iovec
1288 * @pos: current file position
1290 * This is the "read()" routine for all filesystems
1291 * that can use the page cache directly.
1293 ssize_t
1294 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1295 unsigned long nr_segs, loff_t pos)
1297 struct file *filp = iocb->ki_filp;
1298 ssize_t retval;
1299 unsigned long seg;
1300 size_t count;
1301 loff_t *ppos = &iocb->ki_pos;
1303 count = 0;
1304 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1305 if (retval)
1306 return retval;
1308 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1309 if (filp->f_flags & O_DIRECT) {
1310 loff_t size;
1311 struct address_space *mapping;
1312 struct inode *inode;
1314 mapping = filp->f_mapping;
1315 inode = mapping->host;
1316 if (!count)
1317 goto out; /* skip atime */
1318 size = i_size_read(inode);
1319 if (pos < size) {
1320 retval = filemap_write_and_wait(mapping);
1321 if (!retval) {
1322 retval = mapping->a_ops->direct_IO(READ, iocb,
1323 iov, pos, nr_segs);
1325 if (retval > 0)
1326 *ppos = pos + retval;
1327 if (retval) {
1328 file_accessed(filp);
1329 goto out;
1334 for (seg = 0; seg < nr_segs; seg++) {
1335 read_descriptor_t desc;
1337 desc.written = 0;
1338 desc.arg.buf = iov[seg].iov_base;
1339 desc.count = iov[seg].iov_len;
1340 if (desc.count == 0)
1341 continue;
1342 desc.error = 0;
1343 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1344 retval += desc.written;
1345 if (desc.error) {
1346 retval = retval ?: desc.error;
1347 break;
1349 if (desc.count > 0)
1350 break;
1352 out:
1353 return retval;
1355 EXPORT_SYMBOL(generic_file_aio_read);
1357 static ssize_t
1358 do_readahead(struct address_space *mapping, struct file *filp,
1359 pgoff_t index, unsigned long nr)
1361 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1362 return -EINVAL;
1364 force_page_cache_readahead(mapping, filp, index,
1365 max_sane_readahead(nr));
1366 return 0;
1369 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1371 ssize_t ret;
1372 struct file *file;
1374 ret = -EBADF;
1375 file = fget(fd);
1376 if (file) {
1377 if (file->f_mode & FMODE_READ) {
1378 struct address_space *mapping = file->f_mapping;
1379 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1380 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1381 unsigned long len = end - start + 1;
1382 ret = do_readahead(mapping, file, start, len);
1384 fput(file);
1386 return ret;
1389 #ifdef CONFIG_MMU
1391 * page_cache_read - adds requested page to the page cache if not already there
1392 * @file: file to read
1393 * @offset: page index
1395 * This adds the requested page to the page cache if it isn't already there,
1396 * and schedules an I/O to read in its contents from disk.
1398 static int page_cache_read(struct file *file, pgoff_t offset)
1400 struct address_space *mapping = file->f_mapping;
1401 struct page *page;
1402 int ret;
1404 do {
1405 page = page_cache_alloc_cold(mapping);
1406 if (!page)
1407 return -ENOMEM;
1409 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1410 if (ret == 0)
1411 ret = mapping->a_ops->readpage(file, page);
1412 else if (ret == -EEXIST)
1413 ret = 0; /* losing race to add is OK */
1415 page_cache_release(page);
1417 } while (ret == AOP_TRUNCATED_PAGE);
1419 return ret;
1422 #define MMAP_LOTSAMISS (100)
1425 * filemap_fault - read in file data for page fault handling
1426 * @vma: vma in which the fault was taken
1427 * @vmf: struct vm_fault containing details of the fault
1429 * filemap_fault() is invoked via the vma operations vector for a
1430 * mapped memory region to read in file data during a page fault.
1432 * The goto's are kind of ugly, but this streamlines the normal case of having
1433 * it in the page cache, and handles the special cases reasonably without
1434 * having a lot of duplicated code.
1436 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1438 int error;
1439 struct file *file = vma->vm_file;
1440 struct address_space *mapping = file->f_mapping;
1441 struct file_ra_state *ra = &file->f_ra;
1442 struct inode *inode = mapping->host;
1443 struct page *page;
1444 pgoff_t size;
1445 int did_readaround = 0;
1446 int ret = 0;
1448 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1449 if (vmf->pgoff >= size)
1450 return VM_FAULT_SIGBUS;
1452 /* If we don't want any read-ahead, don't bother */
1453 if (VM_RandomReadHint(vma))
1454 goto no_cached_page;
1457 * Do we have something in the page cache already?
1459 retry_find:
1460 page = find_lock_page(mapping, vmf->pgoff);
1462 * For sequential accesses, we use the generic readahead logic.
1464 if (VM_SequentialReadHint(vma)) {
1465 if (!page) {
1466 page_cache_sync_readahead(mapping, ra, file,
1467 vmf->pgoff, 1);
1468 page = find_lock_page(mapping, vmf->pgoff);
1469 if (!page)
1470 goto no_cached_page;
1472 if (PageReadahead(page)) {
1473 page_cache_async_readahead(mapping, ra, file, page,
1474 vmf->pgoff, 1);
1478 if (!page) {
1479 unsigned long ra_pages;
1481 ra->mmap_miss++;
1484 * Do we miss much more than hit in this file? If so,
1485 * stop bothering with read-ahead. It will only hurt.
1487 if (ra->mmap_miss > MMAP_LOTSAMISS)
1488 goto no_cached_page;
1491 * To keep the pgmajfault counter straight, we need to
1492 * check did_readaround, as this is an inner loop.
1494 if (!did_readaround) {
1495 ret = VM_FAULT_MAJOR;
1496 count_vm_event(PGMAJFAULT);
1498 did_readaround = 1;
1499 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1500 if (ra_pages) {
1501 pgoff_t start = 0;
1503 if (vmf->pgoff > ra_pages / 2)
1504 start = vmf->pgoff - ra_pages / 2;
1505 do_page_cache_readahead(mapping, file, start, ra_pages);
1507 page = find_lock_page(mapping, vmf->pgoff);
1508 if (!page)
1509 goto no_cached_page;
1512 if (!did_readaround)
1513 ra->mmap_miss--;
1516 * We have a locked page in the page cache, now we need to check
1517 * that it's up-to-date. If not, it is going to be due to an error.
1519 if (unlikely(!PageUptodate(page)))
1520 goto page_not_uptodate;
1522 /* Must recheck i_size under page lock */
1523 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1524 if (unlikely(vmf->pgoff >= size)) {
1525 unlock_page(page);
1526 page_cache_release(page);
1527 return VM_FAULT_SIGBUS;
1531 * Found the page and have a reference on it.
1533 mark_page_accessed(page);
1534 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1535 vmf->page = page;
1536 return ret | VM_FAULT_LOCKED;
1538 no_cached_page:
1540 * We're only likely to ever get here if MADV_RANDOM is in
1541 * effect.
1543 error = page_cache_read(file, vmf->pgoff);
1546 * The page we want has now been added to the page cache.
1547 * In the unlikely event that someone removed it in the
1548 * meantime, we'll just come back here and read it again.
1550 if (error >= 0)
1551 goto retry_find;
1554 * An error return from page_cache_read can result if the
1555 * system is low on memory, or a problem occurs while trying
1556 * to schedule I/O.
1558 if (error == -ENOMEM)
1559 return VM_FAULT_OOM;
1560 return VM_FAULT_SIGBUS;
1562 page_not_uptodate:
1563 /* IO error path */
1564 if (!did_readaround) {
1565 ret = VM_FAULT_MAJOR;
1566 count_vm_event(PGMAJFAULT);
1570 * Umm, take care of errors if the page isn't up-to-date.
1571 * Try to re-read it _once_. We do this synchronously,
1572 * because there really aren't any performance issues here
1573 * and we need to check for errors.
1575 ClearPageError(page);
1576 error = mapping->a_ops->readpage(file, page);
1577 if (!error) {
1578 wait_on_page_locked(page);
1579 if (!PageUptodate(page))
1580 error = -EIO;
1582 page_cache_release(page);
1584 if (!error || error == AOP_TRUNCATED_PAGE)
1585 goto retry_find;
1587 /* Things didn't work out. Return zero to tell the mm layer so. */
1588 shrink_readahead_size_eio(file, ra);
1589 return VM_FAULT_SIGBUS;
1591 EXPORT_SYMBOL(filemap_fault);
1593 struct vm_operations_struct generic_file_vm_ops = {
1594 .fault = filemap_fault,
1597 /* This is used for a general mmap of a disk file */
1599 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1601 struct address_space *mapping = file->f_mapping;
1603 if (!mapping->a_ops->readpage)
1604 return -ENOEXEC;
1605 file_accessed(file);
1606 vma->vm_ops = &generic_file_vm_ops;
1607 vma->vm_flags |= VM_CAN_NONLINEAR;
1608 return 0;
1612 * This is for filesystems which do not implement ->writepage.
1614 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1616 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1617 return -EINVAL;
1618 return generic_file_mmap(file, vma);
1620 #else
1621 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1623 return -ENOSYS;
1625 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1627 return -ENOSYS;
1629 #endif /* CONFIG_MMU */
1631 EXPORT_SYMBOL(generic_file_mmap);
1632 EXPORT_SYMBOL(generic_file_readonly_mmap);
1634 static struct page *__read_cache_page(struct address_space *mapping,
1635 pgoff_t index,
1636 int (*filler)(void *,struct page*),
1637 void *data)
1639 struct page *page;
1640 int err;
1641 repeat:
1642 page = find_get_page(mapping, index);
1643 if (!page) {
1644 page = page_cache_alloc_cold(mapping);
1645 if (!page)
1646 return ERR_PTR(-ENOMEM);
1647 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1648 if (unlikely(err)) {
1649 page_cache_release(page);
1650 if (err == -EEXIST)
1651 goto repeat;
1652 /* Presumably ENOMEM for radix tree node */
1653 return ERR_PTR(err);
1655 err = filler(data, page);
1656 if (err < 0) {
1657 page_cache_release(page);
1658 page = ERR_PTR(err);
1661 return page;
1665 * read_cache_page_async - read into page cache, fill it if needed
1666 * @mapping: the page's address_space
1667 * @index: the page index
1668 * @filler: function to perform the read
1669 * @data: destination for read data
1671 * Same as read_cache_page, but don't wait for page to become unlocked
1672 * after submitting it to the filler.
1674 * Read into the page cache. If a page already exists, and PageUptodate() is
1675 * not set, try to fill the page but don't wait for it to become unlocked.
1677 * If the page does not get brought uptodate, return -EIO.
1679 struct page *read_cache_page_async(struct address_space *mapping,
1680 pgoff_t index,
1681 int (*filler)(void *,struct page*),
1682 void *data)
1684 struct page *page;
1685 int err;
1687 retry:
1688 page = __read_cache_page(mapping, index, filler, data);
1689 if (IS_ERR(page))
1690 return page;
1691 if (PageUptodate(page))
1692 goto out;
1694 lock_page(page);
1695 if (!page->mapping) {
1696 unlock_page(page);
1697 page_cache_release(page);
1698 goto retry;
1700 if (PageUptodate(page)) {
1701 unlock_page(page);
1702 goto out;
1704 err = filler(data, page);
1705 if (err < 0) {
1706 page_cache_release(page);
1707 return ERR_PTR(err);
1709 out:
1710 mark_page_accessed(page);
1711 return page;
1713 EXPORT_SYMBOL(read_cache_page_async);
1716 * read_cache_page - read into page cache, fill it if needed
1717 * @mapping: the page's address_space
1718 * @index: the page index
1719 * @filler: function to perform the read
1720 * @data: destination for read data
1722 * Read into the page cache. If a page already exists, and PageUptodate() is
1723 * not set, try to fill the page then wait for it to become unlocked.
1725 * If the page does not get brought uptodate, return -EIO.
1727 struct page *read_cache_page(struct address_space *mapping,
1728 pgoff_t index,
1729 int (*filler)(void *,struct page*),
1730 void *data)
1732 struct page *page;
1734 page = read_cache_page_async(mapping, index, filler, data);
1735 if (IS_ERR(page))
1736 goto out;
1737 wait_on_page_locked(page);
1738 if (!PageUptodate(page)) {
1739 page_cache_release(page);
1740 page = ERR_PTR(-EIO);
1742 out:
1743 return page;
1745 EXPORT_SYMBOL(read_cache_page);
1748 * The logic we want is
1750 * if suid or (sgid and xgrp)
1751 * remove privs
1753 int should_remove_suid(struct dentry *dentry)
1755 mode_t mode = dentry->d_inode->i_mode;
1756 int kill = 0;
1758 /* suid always must be killed */
1759 if (unlikely(mode & S_ISUID))
1760 kill = ATTR_KILL_SUID;
1763 * sgid without any exec bits is just a mandatory locking mark; leave
1764 * it alone. If some exec bits are set, it's a real sgid; kill it.
1766 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1767 kill |= ATTR_KILL_SGID;
1769 if (unlikely(kill && !capable(CAP_FSETID)))
1770 return kill;
1772 return 0;
1774 EXPORT_SYMBOL(should_remove_suid);
1776 static int __remove_suid(struct dentry *dentry, int kill)
1778 struct iattr newattrs;
1780 newattrs.ia_valid = ATTR_FORCE | kill;
1781 return notify_change(dentry, &newattrs);
1784 int file_remove_suid(struct file *file)
1786 struct dentry *dentry = file->f_path.dentry;
1787 int killsuid = should_remove_suid(dentry);
1788 int killpriv = security_inode_need_killpriv(dentry);
1789 int error = 0;
1791 if (killpriv < 0)
1792 return killpriv;
1793 if (killpriv)
1794 error = security_inode_killpriv(dentry);
1795 if (!error && killsuid)
1796 error = __remove_suid(dentry, killsuid);
1798 return error;
1800 EXPORT_SYMBOL(file_remove_suid);
1802 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1803 const struct iovec *iov, size_t base, size_t bytes)
1805 size_t copied = 0, left = 0;
1807 while (bytes) {
1808 char __user *buf = iov->iov_base + base;
1809 int copy = min(bytes, iov->iov_len - base);
1811 base = 0;
1812 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1813 copied += copy;
1814 bytes -= copy;
1815 vaddr += copy;
1816 iov++;
1818 if (unlikely(left))
1819 break;
1821 return copied - left;
1825 * Copy as much as we can into the page and return the number of bytes which
1826 * were sucessfully copied. If a fault is encountered then return the number of
1827 * bytes which were copied.
1829 size_t iov_iter_copy_from_user_atomic(struct page *page,
1830 struct iov_iter *i, unsigned long offset, size_t bytes)
1832 char *kaddr;
1833 size_t copied;
1835 BUG_ON(!in_atomic());
1836 kaddr = kmap_atomic(page, KM_USER0);
1837 if (likely(i->nr_segs == 1)) {
1838 int left;
1839 char __user *buf = i->iov->iov_base + i->iov_offset;
1840 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1841 buf, bytes);
1842 copied = bytes - left;
1843 } else {
1844 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1845 i->iov, i->iov_offset, bytes);
1847 kunmap_atomic(kaddr, KM_USER0);
1849 return copied;
1851 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1854 * This has the same sideeffects and return value as
1855 * iov_iter_copy_from_user_atomic().
1856 * The difference is that it attempts to resolve faults.
1857 * Page must not be locked.
1859 size_t iov_iter_copy_from_user(struct page *page,
1860 struct iov_iter *i, unsigned long offset, size_t bytes)
1862 char *kaddr;
1863 size_t copied;
1865 kaddr = kmap(page);
1866 if (likely(i->nr_segs == 1)) {
1867 int left;
1868 char __user *buf = i->iov->iov_base + i->iov_offset;
1869 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1870 copied = bytes - left;
1871 } else {
1872 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1873 i->iov, i->iov_offset, bytes);
1875 kunmap(page);
1876 return copied;
1878 EXPORT_SYMBOL(iov_iter_copy_from_user);
1880 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1882 BUG_ON(i->count < bytes);
1884 if (likely(i->nr_segs == 1)) {
1885 i->iov_offset += bytes;
1886 i->count -= bytes;
1887 } else {
1888 const struct iovec *iov = i->iov;
1889 size_t base = i->iov_offset;
1892 * The !iov->iov_len check ensures we skip over unlikely
1893 * zero-length segments (without overruning the iovec).
1895 while (bytes || unlikely(i->count && !iov->iov_len)) {
1896 int copy;
1898 copy = min(bytes, iov->iov_len - base);
1899 BUG_ON(!i->count || i->count < copy);
1900 i->count -= copy;
1901 bytes -= copy;
1902 base += copy;
1903 if (iov->iov_len == base) {
1904 iov++;
1905 base = 0;
1908 i->iov = iov;
1909 i->iov_offset = base;
1912 EXPORT_SYMBOL(iov_iter_advance);
1915 * Fault in the first iovec of the given iov_iter, to a maximum length
1916 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1917 * accessed (ie. because it is an invalid address).
1919 * writev-intensive code may want this to prefault several iovecs -- that
1920 * would be possible (callers must not rely on the fact that _only_ the
1921 * first iovec will be faulted with the current implementation).
1923 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1925 char __user *buf = i->iov->iov_base + i->iov_offset;
1926 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1927 return fault_in_pages_readable(buf, bytes);
1929 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1932 * Return the count of just the current iov_iter segment.
1934 size_t iov_iter_single_seg_count(struct iov_iter *i)
1936 const struct iovec *iov = i->iov;
1937 if (i->nr_segs == 1)
1938 return i->count;
1939 else
1940 return min(i->count, iov->iov_len - i->iov_offset);
1942 EXPORT_SYMBOL(iov_iter_single_seg_count);
1945 * Performs necessary checks before doing a write
1947 * Can adjust writing position or amount of bytes to write.
1948 * Returns appropriate error code that caller should return or
1949 * zero in case that write should be allowed.
1951 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1953 struct inode *inode = file->f_mapping->host;
1954 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1956 if (unlikely(*pos < 0))
1957 return -EINVAL;
1959 if (!isblk) {
1960 /* FIXME: this is for backwards compatibility with 2.4 */
1961 if (file->f_flags & O_APPEND)
1962 *pos = i_size_read(inode);
1964 if (limit != RLIM_INFINITY) {
1965 if (*pos >= limit) {
1966 send_sig(SIGXFSZ, current, 0);
1967 return -EFBIG;
1969 if (*count > limit - (typeof(limit))*pos) {
1970 *count = limit - (typeof(limit))*pos;
1976 * LFS rule
1978 if (unlikely(*pos + *count > MAX_NON_LFS &&
1979 !(file->f_flags & O_LARGEFILE))) {
1980 if (*pos >= MAX_NON_LFS) {
1981 return -EFBIG;
1983 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1984 *count = MAX_NON_LFS - (unsigned long)*pos;
1989 * Are we about to exceed the fs block limit ?
1991 * If we have written data it becomes a short write. If we have
1992 * exceeded without writing data we send a signal and return EFBIG.
1993 * Linus frestrict idea will clean these up nicely..
1995 if (likely(!isblk)) {
1996 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1997 if (*count || *pos > inode->i_sb->s_maxbytes) {
1998 return -EFBIG;
2000 /* zero-length writes at ->s_maxbytes are OK */
2003 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2004 *count = inode->i_sb->s_maxbytes - *pos;
2005 } else {
2006 #ifdef CONFIG_BLOCK
2007 loff_t isize;
2008 if (bdev_read_only(I_BDEV(inode)))
2009 return -EPERM;
2010 isize = i_size_read(inode);
2011 if (*pos >= isize) {
2012 if (*count || *pos > isize)
2013 return -ENOSPC;
2016 if (*pos + *count > isize)
2017 *count = isize - *pos;
2018 #else
2019 return -EPERM;
2020 #endif
2022 return 0;
2024 EXPORT_SYMBOL(generic_write_checks);
2026 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2027 loff_t pos, unsigned len, unsigned flags,
2028 struct page **pagep, void **fsdata)
2030 const struct address_space_operations *aops = mapping->a_ops;
2032 if (aops->write_begin) {
2033 return aops->write_begin(file, mapping, pos, len, flags,
2034 pagep, fsdata);
2035 } else {
2036 int ret;
2037 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2038 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2039 struct inode *inode = mapping->host;
2040 struct page *page;
2041 again:
2042 page = __grab_cache_page(mapping, index);
2043 *pagep = page;
2044 if (!page)
2045 return -ENOMEM;
2047 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
2049 * There is no way to resolve a short write situation
2050 * for a !Uptodate page (except by double copying in
2051 * the caller done by generic_perform_write_2copy).
2053 * Instead, we have to bring it uptodate here.
2055 ret = aops->readpage(file, page);
2056 page_cache_release(page);
2057 if (ret) {
2058 if (ret == AOP_TRUNCATED_PAGE)
2059 goto again;
2060 return ret;
2062 goto again;
2065 ret = aops->prepare_write(file, page, offset, offset+len);
2066 if (ret) {
2067 unlock_page(page);
2068 page_cache_release(page);
2069 if (pos + len > inode->i_size)
2070 vmtruncate(inode, inode->i_size);
2072 return ret;
2075 EXPORT_SYMBOL(pagecache_write_begin);
2077 int pagecache_write_end(struct file *file, struct address_space *mapping,
2078 loff_t pos, unsigned len, unsigned copied,
2079 struct page *page, void *fsdata)
2081 const struct address_space_operations *aops = mapping->a_ops;
2082 int ret;
2084 if (aops->write_end) {
2085 mark_page_accessed(page);
2086 ret = aops->write_end(file, mapping, pos, len, copied,
2087 page, fsdata);
2088 } else {
2089 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2090 struct inode *inode = mapping->host;
2092 flush_dcache_page(page);
2093 ret = aops->commit_write(file, page, offset, offset+len);
2094 unlock_page(page);
2095 mark_page_accessed(page);
2096 page_cache_release(page);
2098 if (ret < 0) {
2099 if (pos + len > inode->i_size)
2100 vmtruncate(inode, inode->i_size);
2101 } else if (ret > 0)
2102 ret = min_t(size_t, copied, ret);
2103 else
2104 ret = copied;
2107 return ret;
2109 EXPORT_SYMBOL(pagecache_write_end);
2111 ssize_t
2112 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2113 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2114 size_t count, size_t ocount)
2116 struct file *file = iocb->ki_filp;
2117 struct address_space *mapping = file->f_mapping;
2118 struct inode *inode = mapping->host;
2119 ssize_t written;
2120 size_t write_len;
2121 pgoff_t end;
2123 if (count != ocount)
2124 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2127 * Unmap all mmappings of the file up-front.
2129 * This will cause any pte dirty bits to be propagated into the
2130 * pageframes for the subsequent filemap_write_and_wait().
2132 write_len = iov_length(iov, *nr_segs);
2133 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2134 if (mapping_mapped(mapping))
2135 unmap_mapping_range(mapping, pos, write_len, 0);
2137 written = filemap_write_and_wait(mapping);
2138 if (written)
2139 goto out;
2142 * After a write we want buffered reads to be sure to go to disk to get
2143 * the new data. We invalidate clean cached page from the region we're
2144 * about to write. We do this *before* the write so that we can return
2145 * without clobbering -EIOCBQUEUED from ->direct_IO().
2147 if (mapping->nrpages) {
2148 written = invalidate_inode_pages2_range(mapping,
2149 pos >> PAGE_CACHE_SHIFT, end);
2151 * If a page can not be invalidated, return 0 to fall back
2152 * to buffered write.
2154 if (written) {
2155 if (written == -EBUSY)
2156 return 0;
2157 goto out;
2161 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2164 * Finally, try again to invalidate clean pages which might have been
2165 * cached by non-direct readahead, or faulted in by get_user_pages()
2166 * if the source of the write was an mmap'ed region of the file
2167 * we're writing. Either one is a pretty crazy thing to do,
2168 * so we don't support it 100%. If this invalidation
2169 * fails, tough, the write still worked...
2171 if (mapping->nrpages) {
2172 invalidate_inode_pages2_range(mapping,
2173 pos >> PAGE_CACHE_SHIFT, end);
2176 if (written > 0) {
2177 loff_t end = pos + written;
2178 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2179 i_size_write(inode, end);
2180 mark_inode_dirty(inode);
2182 *ppos = end;
2186 * Sync the fs metadata but not the minor inode changes and
2187 * of course not the data as we did direct DMA for the IO.
2188 * i_mutex is held, which protects generic_osync_inode() from
2189 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2191 out:
2192 if ((written >= 0 || written == -EIOCBQUEUED) &&
2193 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2194 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2195 if (err < 0)
2196 written = err;
2198 return written;
2200 EXPORT_SYMBOL(generic_file_direct_write);
2203 * Find or create a page at the given pagecache position. Return the locked
2204 * page. This function is specifically for buffered writes.
2206 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2208 int status;
2209 struct page *page;
2210 repeat:
2211 page = find_lock_page(mapping, index);
2212 if (likely(page))
2213 return page;
2215 page = page_cache_alloc(mapping);
2216 if (!page)
2217 return NULL;
2218 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2219 if (unlikely(status)) {
2220 page_cache_release(page);
2221 if (status == -EEXIST)
2222 goto repeat;
2223 return NULL;
2225 return page;
2227 EXPORT_SYMBOL(__grab_cache_page);
2229 static ssize_t generic_perform_write_2copy(struct file *file,
2230 struct iov_iter *i, loff_t pos)
2232 struct address_space *mapping = file->f_mapping;
2233 const struct address_space_operations *a_ops = mapping->a_ops;
2234 struct inode *inode = mapping->host;
2235 long status = 0;
2236 ssize_t written = 0;
2238 do {
2239 struct page *src_page;
2240 struct page *page;
2241 pgoff_t index; /* Pagecache index for current page */
2242 unsigned long offset; /* Offset into pagecache page */
2243 unsigned long bytes; /* Bytes to write to page */
2244 size_t copied; /* Bytes copied from user */
2246 offset = (pos & (PAGE_CACHE_SIZE - 1));
2247 index = pos >> PAGE_CACHE_SHIFT;
2248 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2249 iov_iter_count(i));
2252 * a non-NULL src_page indicates that we're doing the
2253 * copy via get_user_pages and kmap.
2255 src_page = NULL;
2258 * Bring in the user page that we will copy from _first_.
2259 * Otherwise there's a nasty deadlock on copying from the
2260 * same page as we're writing to, without it being marked
2261 * up-to-date.
2263 * Not only is this an optimisation, but it is also required
2264 * to check that the address is actually valid, when atomic
2265 * usercopies are used, below.
2267 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2268 status = -EFAULT;
2269 break;
2272 page = __grab_cache_page(mapping, index);
2273 if (!page) {
2274 status = -ENOMEM;
2275 break;
2279 * non-uptodate pages cannot cope with short copies, and we
2280 * cannot take a pagefault with the destination page locked.
2281 * So pin the source page to copy it.
2283 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2284 unlock_page(page);
2286 src_page = alloc_page(GFP_KERNEL);
2287 if (!src_page) {
2288 page_cache_release(page);
2289 status = -ENOMEM;
2290 break;
2294 * Cannot get_user_pages with a page locked for the
2295 * same reason as we can't take a page fault with a
2296 * page locked (as explained below).
2298 copied = iov_iter_copy_from_user(src_page, i,
2299 offset, bytes);
2300 if (unlikely(copied == 0)) {
2301 status = -EFAULT;
2302 page_cache_release(page);
2303 page_cache_release(src_page);
2304 break;
2306 bytes = copied;
2308 lock_page(page);
2310 * Can't handle the page going uptodate here, because
2311 * that means we would use non-atomic usercopies, which
2312 * zero out the tail of the page, which can cause
2313 * zeroes to become transiently visible. We could just
2314 * use a non-zeroing copy, but the APIs aren't too
2315 * consistent.
2317 if (unlikely(!page->mapping || PageUptodate(page))) {
2318 unlock_page(page);
2319 page_cache_release(page);
2320 page_cache_release(src_page);
2321 continue;
2325 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2326 if (unlikely(status))
2327 goto fs_write_aop_error;
2329 if (!src_page) {
2331 * Must not enter the pagefault handler here, because
2332 * we hold the page lock, so we might recursively
2333 * deadlock on the same lock, or get an ABBA deadlock
2334 * against a different lock, or against the mmap_sem
2335 * (which nests outside the page lock). So increment
2336 * preempt count, and use _atomic usercopies.
2338 * The page is uptodate so we are OK to encounter a
2339 * short copy: if unmodified parts of the page are
2340 * marked dirty and written out to disk, it doesn't
2341 * really matter.
2343 pagefault_disable();
2344 copied = iov_iter_copy_from_user_atomic(page, i,
2345 offset, bytes);
2346 pagefault_enable();
2347 } else {
2348 void *src, *dst;
2349 src = kmap_atomic(src_page, KM_USER0);
2350 dst = kmap_atomic(page, KM_USER1);
2351 memcpy(dst + offset, src + offset, bytes);
2352 kunmap_atomic(dst, KM_USER1);
2353 kunmap_atomic(src, KM_USER0);
2354 copied = bytes;
2356 flush_dcache_page(page);
2358 status = a_ops->commit_write(file, page, offset, offset+bytes);
2359 if (unlikely(status < 0))
2360 goto fs_write_aop_error;
2361 if (unlikely(status > 0)) /* filesystem did partial write */
2362 copied = min_t(size_t, copied, status);
2364 unlock_page(page);
2365 mark_page_accessed(page);
2366 page_cache_release(page);
2367 if (src_page)
2368 page_cache_release(src_page);
2370 iov_iter_advance(i, copied);
2371 pos += copied;
2372 written += copied;
2374 balance_dirty_pages_ratelimited(mapping);
2375 cond_resched();
2376 continue;
2378 fs_write_aop_error:
2379 unlock_page(page);
2380 page_cache_release(page);
2381 if (src_page)
2382 page_cache_release(src_page);
2385 * prepare_write() may have instantiated a few blocks
2386 * outside i_size. Trim these off again. Don't need
2387 * i_size_read because we hold i_mutex.
2389 if (pos + bytes > inode->i_size)
2390 vmtruncate(inode, inode->i_size);
2391 break;
2392 } while (iov_iter_count(i));
2394 return written ? written : status;
2397 static ssize_t generic_perform_write(struct file *file,
2398 struct iov_iter *i, loff_t pos)
2400 struct address_space *mapping = file->f_mapping;
2401 const struct address_space_operations *a_ops = mapping->a_ops;
2402 long status = 0;
2403 ssize_t written = 0;
2404 unsigned int flags = 0;
2407 * Copies from kernel address space cannot fail (NFSD is a big user).
2409 if (segment_eq(get_fs(), KERNEL_DS))
2410 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2412 do {
2413 struct page *page;
2414 pgoff_t index; /* Pagecache index for current page */
2415 unsigned long offset; /* Offset into pagecache page */
2416 unsigned long bytes; /* Bytes to write to page */
2417 size_t copied; /* Bytes copied from user */
2418 void *fsdata;
2420 offset = (pos & (PAGE_CACHE_SIZE - 1));
2421 index = pos >> PAGE_CACHE_SHIFT;
2422 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2423 iov_iter_count(i));
2425 again:
2428 * Bring in the user page that we will copy from _first_.
2429 * Otherwise there's a nasty deadlock on copying from the
2430 * same page as we're writing to, without it being marked
2431 * up-to-date.
2433 * Not only is this an optimisation, but it is also required
2434 * to check that the address is actually valid, when atomic
2435 * usercopies are used, below.
2437 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2438 status = -EFAULT;
2439 break;
2442 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2443 &page, &fsdata);
2444 if (unlikely(status))
2445 break;
2447 pagefault_disable();
2448 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2449 pagefault_enable();
2450 flush_dcache_page(page);
2452 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2453 page, fsdata);
2454 if (unlikely(status < 0))
2455 break;
2456 copied = status;
2458 cond_resched();
2460 iov_iter_advance(i, copied);
2461 if (unlikely(copied == 0)) {
2463 * If we were unable to copy any data at all, we must
2464 * fall back to a single segment length write.
2466 * If we didn't fallback here, we could livelock
2467 * because not all segments in the iov can be copied at
2468 * once without a pagefault.
2470 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2471 iov_iter_single_seg_count(i));
2472 goto again;
2474 pos += copied;
2475 written += copied;
2477 balance_dirty_pages_ratelimited(mapping);
2479 } while (iov_iter_count(i));
2481 return written ? written : status;
2484 ssize_t
2485 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2486 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2487 size_t count, ssize_t written)
2489 struct file *file = iocb->ki_filp;
2490 struct address_space *mapping = file->f_mapping;
2491 const struct address_space_operations *a_ops = mapping->a_ops;
2492 struct inode *inode = mapping->host;
2493 ssize_t status;
2494 struct iov_iter i;
2496 iov_iter_init(&i, iov, nr_segs, count, written);
2497 if (a_ops->write_begin)
2498 status = generic_perform_write(file, &i, pos);
2499 else
2500 status = generic_perform_write_2copy(file, &i, pos);
2502 if (likely(status >= 0)) {
2503 written += status;
2504 *ppos = pos + status;
2507 * For now, when the user asks for O_SYNC, we'll actually give
2508 * O_DSYNC
2510 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2511 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2512 status = generic_osync_inode(inode, mapping,
2513 OSYNC_METADATA|OSYNC_DATA);
2518 * If we get here for O_DIRECT writes then we must have fallen through
2519 * to buffered writes (block instantiation inside i_size). So we sync
2520 * the file data here, to try to honour O_DIRECT expectations.
2522 if (unlikely(file->f_flags & O_DIRECT) && written)
2523 status = filemap_write_and_wait(mapping);
2525 return written ? written : status;
2527 EXPORT_SYMBOL(generic_file_buffered_write);
2529 static ssize_t
2530 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2531 unsigned long nr_segs, loff_t *ppos)
2533 struct file *file = iocb->ki_filp;
2534 struct address_space * mapping = file->f_mapping;
2535 size_t ocount; /* original count */
2536 size_t count; /* after file limit checks */
2537 struct inode *inode = mapping->host;
2538 loff_t pos;
2539 ssize_t written;
2540 ssize_t err;
2542 ocount = 0;
2543 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2544 if (err)
2545 return err;
2547 count = ocount;
2548 pos = *ppos;
2550 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2552 /* We can write back this queue in page reclaim */
2553 current->backing_dev_info = mapping->backing_dev_info;
2554 written = 0;
2556 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2557 if (err)
2558 goto out;
2560 if (count == 0)
2561 goto out;
2563 err = file_remove_suid(file);
2564 if (err)
2565 goto out;
2567 file_update_time(file);
2569 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2570 if (unlikely(file->f_flags & O_DIRECT)) {
2571 loff_t endbyte;
2572 ssize_t written_buffered;
2574 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2575 ppos, count, ocount);
2576 if (written < 0 || written == count)
2577 goto out;
2579 * direct-io write to a hole: fall through to buffered I/O
2580 * for completing the rest of the request.
2582 pos += written;
2583 count -= written;
2584 written_buffered = generic_file_buffered_write(iocb, iov,
2585 nr_segs, pos, ppos, count,
2586 written);
2588 * If generic_file_buffered_write() retuned a synchronous error
2589 * then we want to return the number of bytes which were
2590 * direct-written, or the error code if that was zero. Note
2591 * that this differs from normal direct-io semantics, which
2592 * will return -EFOO even if some bytes were written.
2594 if (written_buffered < 0) {
2595 err = written_buffered;
2596 goto out;
2600 * We need to ensure that the page cache pages are written to
2601 * disk and invalidated to preserve the expected O_DIRECT
2602 * semantics.
2604 endbyte = pos + written_buffered - written - 1;
2605 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2606 SYNC_FILE_RANGE_WAIT_BEFORE|
2607 SYNC_FILE_RANGE_WRITE|
2608 SYNC_FILE_RANGE_WAIT_AFTER);
2609 if (err == 0) {
2610 written = written_buffered;
2611 invalidate_mapping_pages(mapping,
2612 pos >> PAGE_CACHE_SHIFT,
2613 endbyte >> PAGE_CACHE_SHIFT);
2614 } else {
2616 * We don't know how much we wrote, so just return
2617 * the number of bytes which were direct-written
2620 } else {
2621 written = generic_file_buffered_write(iocb, iov, nr_segs,
2622 pos, ppos, count, written);
2624 out:
2625 current->backing_dev_info = NULL;
2626 return written ? written : err;
2629 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2630 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2632 struct file *file = iocb->ki_filp;
2633 struct address_space *mapping = file->f_mapping;
2634 struct inode *inode = mapping->host;
2635 ssize_t ret;
2637 BUG_ON(iocb->ki_pos != pos);
2639 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2640 &iocb->ki_pos);
2642 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2643 ssize_t err;
2645 err = sync_page_range_nolock(inode, mapping, pos, ret);
2646 if (err < 0)
2647 ret = err;
2649 return ret;
2651 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2653 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2654 unsigned long nr_segs, loff_t pos)
2656 struct file *file = iocb->ki_filp;
2657 struct address_space *mapping = file->f_mapping;
2658 struct inode *inode = mapping->host;
2659 ssize_t ret;
2661 BUG_ON(iocb->ki_pos != pos);
2663 mutex_lock(&inode->i_mutex);
2664 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2665 &iocb->ki_pos);
2666 mutex_unlock(&inode->i_mutex);
2668 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2669 ssize_t err;
2671 err = sync_page_range(inode, mapping, pos, ret);
2672 if (err < 0)
2673 ret = err;
2675 return ret;
2677 EXPORT_SYMBOL(generic_file_aio_write);
2680 * try_to_release_page() - release old fs-specific metadata on a page
2682 * @page: the page which the kernel is trying to free
2683 * @gfp_mask: memory allocation flags (and I/O mode)
2685 * The address_space is to try to release any data against the page
2686 * (presumably at page->private). If the release was successful, return `1'.
2687 * Otherwise return zero.
2689 * The @gfp_mask argument specifies whether I/O may be performed to release
2690 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2693 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2695 struct address_space * const mapping = page->mapping;
2697 BUG_ON(!PageLocked(page));
2698 if (PageWriteback(page))
2699 return 0;
2701 if (mapping && mapping->a_ops->releasepage)
2702 return mapping->a_ops->releasepage(page, gfp_mask);
2703 return try_to_free_buffers(page);
2706 EXPORT_SYMBOL(try_to_release_page);