MERGE-master-patchset-edits
[linux-2.6/openmoko-kernel.git] / drivers / net / fs_enet / fs_enet-main.c
blobce900e54d8d1dfa7db79e016472c7ce4996631c1
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of_platform.h>
40 #include <linux/of_gpio.h>
42 #include <linux/vmalloc.h>
43 #include <asm/pgtable.h>
44 #include <asm/irq.h>
45 #include <asm/uaccess.h>
47 #include "fs_enet.h"
49 /*************************************************/
51 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
52 MODULE_DESCRIPTION("Freescale Ethernet Driver");
53 MODULE_LICENSE("GPL");
54 MODULE_VERSION(DRV_MODULE_VERSION);
56 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
57 module_param(fs_enet_debug, int, 0);
58 MODULE_PARM_DESC(fs_enet_debug,
59 "Freescale bitmapped debugging message enable value");
61 #ifdef CONFIG_NET_POLL_CONTROLLER
62 static void fs_enet_netpoll(struct net_device *dev);
63 #endif
65 static void fs_set_multicast_list(struct net_device *dev)
67 struct fs_enet_private *fep = netdev_priv(dev);
69 (*fep->ops->set_multicast_list)(dev);
72 static void skb_align(struct sk_buff *skb, int align)
74 int off = ((unsigned long)skb->data) & (align - 1);
76 if (off)
77 skb_reserve(skb, align - off);
80 /* NAPI receive function */
81 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
83 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
84 struct net_device *dev = fep->ndev;
85 const struct fs_platform_info *fpi = fep->fpi;
86 cbd_t __iomem *bdp;
87 struct sk_buff *skb, *skbn, *skbt;
88 int received = 0;
89 u16 pkt_len, sc;
90 int curidx;
93 * First, grab all of the stats for the incoming packet.
94 * These get messed up if we get called due to a busy condition.
96 bdp = fep->cur_rx;
98 /* clear RX status bits for napi*/
99 (*fep->ops->napi_clear_rx_event)(dev);
101 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
102 curidx = bdp - fep->rx_bd_base;
105 * Since we have allocated space to hold a complete frame,
106 * the last indicator should be set.
108 if ((sc & BD_ENET_RX_LAST) == 0)
109 printk(KERN_WARNING DRV_MODULE_NAME
110 ": %s rcv is not +last\n",
111 dev->name);
114 * Check for errors.
116 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
117 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
118 fep->stats.rx_errors++;
119 /* Frame too long or too short. */
120 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
121 fep->stats.rx_length_errors++;
122 /* Frame alignment */
123 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
124 fep->stats.rx_frame_errors++;
125 /* CRC Error */
126 if (sc & BD_ENET_RX_CR)
127 fep->stats.rx_crc_errors++;
128 /* FIFO overrun */
129 if (sc & BD_ENET_RX_OV)
130 fep->stats.rx_crc_errors++;
132 skb = fep->rx_skbuff[curidx];
134 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
135 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
136 DMA_FROM_DEVICE);
138 skbn = skb;
140 } else {
141 skb = fep->rx_skbuff[curidx];
143 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
144 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
145 DMA_FROM_DEVICE);
148 * Process the incoming frame.
150 fep->stats.rx_packets++;
151 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
152 fep->stats.rx_bytes += pkt_len + 4;
154 if (pkt_len <= fpi->rx_copybreak) {
155 /* +2 to make IP header L1 cache aligned */
156 skbn = dev_alloc_skb(pkt_len + 2);
157 if (skbn != NULL) {
158 skb_reserve(skbn, 2); /* align IP header */
159 skb_copy_from_linear_data(skb,
160 skbn->data, pkt_len);
161 /* swap */
162 skbt = skb;
163 skb = skbn;
164 skbn = skbt;
166 } else {
167 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
169 if (skbn)
170 skb_align(skbn, ENET_RX_ALIGN);
173 if (skbn != NULL) {
174 skb_put(skb, pkt_len); /* Make room */
175 skb->protocol = eth_type_trans(skb, dev);
176 received++;
177 netif_receive_skb(skb);
178 } else {
179 printk(KERN_WARNING DRV_MODULE_NAME
180 ": %s Memory squeeze, dropping packet.\n",
181 dev->name);
182 fep->stats.rx_dropped++;
183 skbn = skb;
187 fep->rx_skbuff[curidx] = skbn;
188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190 DMA_FROM_DEVICE));
191 CBDW_DATLEN(bdp, 0);
192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
195 * Update BD pointer to next entry.
197 if ((sc & BD_ENET_RX_WRAP) == 0)
198 bdp++;
199 else
200 bdp = fep->rx_bd_base;
202 (*fep->ops->rx_bd_done)(dev);
204 if (received >= budget)
205 break;
208 fep->cur_rx = bdp;
210 if (received < budget) {
211 /* done */
212 netif_rx_complete(napi);
213 (*fep->ops->napi_enable_rx)(dev);
215 return received;
218 /* non NAPI receive function */
219 static int fs_enet_rx_non_napi(struct net_device *dev)
221 struct fs_enet_private *fep = netdev_priv(dev);
222 const struct fs_platform_info *fpi = fep->fpi;
223 cbd_t __iomem *bdp;
224 struct sk_buff *skb, *skbn, *skbt;
225 int received = 0;
226 u16 pkt_len, sc;
227 int curidx;
229 * First, grab all of the stats for the incoming packet.
230 * These get messed up if we get called due to a busy condition.
232 bdp = fep->cur_rx;
234 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
236 curidx = bdp - fep->rx_bd_base;
239 * Since we have allocated space to hold a complete frame,
240 * the last indicator should be set.
242 if ((sc & BD_ENET_RX_LAST) == 0)
243 printk(KERN_WARNING DRV_MODULE_NAME
244 ": %s rcv is not +last\n",
245 dev->name);
248 * Check for errors.
250 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
251 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
252 fep->stats.rx_errors++;
253 /* Frame too long or too short. */
254 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
255 fep->stats.rx_length_errors++;
256 /* Frame alignment */
257 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
258 fep->stats.rx_frame_errors++;
259 /* CRC Error */
260 if (sc & BD_ENET_RX_CR)
261 fep->stats.rx_crc_errors++;
262 /* FIFO overrun */
263 if (sc & BD_ENET_RX_OV)
264 fep->stats.rx_crc_errors++;
266 skb = fep->rx_skbuff[curidx];
268 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
269 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
270 DMA_FROM_DEVICE);
272 skbn = skb;
274 } else {
276 skb = fep->rx_skbuff[curidx];
278 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
279 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
280 DMA_FROM_DEVICE);
283 * Process the incoming frame.
285 fep->stats.rx_packets++;
286 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
287 fep->stats.rx_bytes += pkt_len + 4;
289 if (pkt_len <= fpi->rx_copybreak) {
290 /* +2 to make IP header L1 cache aligned */
291 skbn = dev_alloc_skb(pkt_len + 2);
292 if (skbn != NULL) {
293 skb_reserve(skbn, 2); /* align IP header */
294 skb_copy_from_linear_data(skb,
295 skbn->data, pkt_len);
296 /* swap */
297 skbt = skb;
298 skb = skbn;
299 skbn = skbt;
301 } else {
302 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
304 if (skbn)
305 skb_align(skbn, ENET_RX_ALIGN);
308 if (skbn != NULL) {
309 skb_put(skb, pkt_len); /* Make room */
310 skb->protocol = eth_type_trans(skb, dev);
311 received++;
312 netif_rx(skb);
313 } else {
314 printk(KERN_WARNING DRV_MODULE_NAME
315 ": %s Memory squeeze, dropping packet.\n",
316 dev->name);
317 fep->stats.rx_dropped++;
318 skbn = skb;
322 fep->rx_skbuff[curidx] = skbn;
323 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
324 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
325 DMA_FROM_DEVICE));
326 CBDW_DATLEN(bdp, 0);
327 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
330 * Update BD pointer to next entry.
332 if ((sc & BD_ENET_RX_WRAP) == 0)
333 bdp++;
334 else
335 bdp = fep->rx_bd_base;
337 (*fep->ops->rx_bd_done)(dev);
340 fep->cur_rx = bdp;
342 return 0;
345 static void fs_enet_tx(struct net_device *dev)
347 struct fs_enet_private *fep = netdev_priv(dev);
348 cbd_t __iomem *bdp;
349 struct sk_buff *skb;
350 int dirtyidx, do_wake, do_restart;
351 u16 sc;
353 spin_lock(&fep->tx_lock);
354 bdp = fep->dirty_tx;
356 do_wake = do_restart = 0;
357 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
358 dirtyidx = bdp - fep->tx_bd_base;
360 if (fep->tx_free == fep->tx_ring)
361 break;
363 skb = fep->tx_skbuff[dirtyidx];
366 * Check for errors.
368 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
369 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
371 if (sc & BD_ENET_TX_HB) /* No heartbeat */
372 fep->stats.tx_heartbeat_errors++;
373 if (sc & BD_ENET_TX_LC) /* Late collision */
374 fep->stats.tx_window_errors++;
375 if (sc & BD_ENET_TX_RL) /* Retrans limit */
376 fep->stats.tx_aborted_errors++;
377 if (sc & BD_ENET_TX_UN) /* Underrun */
378 fep->stats.tx_fifo_errors++;
379 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
380 fep->stats.tx_carrier_errors++;
382 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
383 fep->stats.tx_errors++;
384 do_restart = 1;
386 } else
387 fep->stats.tx_packets++;
389 if (sc & BD_ENET_TX_READY)
390 printk(KERN_WARNING DRV_MODULE_NAME
391 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
392 dev->name);
395 * Deferred means some collisions occurred during transmit,
396 * but we eventually sent the packet OK.
398 if (sc & BD_ENET_TX_DEF)
399 fep->stats.collisions++;
401 /* unmap */
402 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
403 skb->len, DMA_TO_DEVICE);
406 * Free the sk buffer associated with this last transmit.
408 dev_kfree_skb_irq(skb);
409 fep->tx_skbuff[dirtyidx] = NULL;
412 * Update pointer to next buffer descriptor to be transmitted.
414 if ((sc & BD_ENET_TX_WRAP) == 0)
415 bdp++;
416 else
417 bdp = fep->tx_bd_base;
420 * Since we have freed up a buffer, the ring is no longer
421 * full.
423 if (!fep->tx_free++)
424 do_wake = 1;
427 fep->dirty_tx = bdp;
429 if (do_restart)
430 (*fep->ops->tx_restart)(dev);
432 spin_unlock(&fep->tx_lock);
434 if (do_wake)
435 netif_wake_queue(dev);
439 * The interrupt handler.
440 * This is called from the MPC core interrupt.
442 static irqreturn_t
443 fs_enet_interrupt(int irq, void *dev_id)
445 struct net_device *dev = dev_id;
446 struct fs_enet_private *fep;
447 const struct fs_platform_info *fpi;
448 u32 int_events;
449 u32 int_clr_events;
450 int nr, napi_ok;
451 int handled;
453 fep = netdev_priv(dev);
454 fpi = fep->fpi;
456 nr = 0;
457 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
458 nr++;
460 int_clr_events = int_events;
461 if (fpi->use_napi)
462 int_clr_events &= ~fep->ev_napi_rx;
464 (*fep->ops->clear_int_events)(dev, int_clr_events);
466 if (int_events & fep->ev_err)
467 (*fep->ops->ev_error)(dev, int_events);
469 if (int_events & fep->ev_rx) {
470 if (!fpi->use_napi)
471 fs_enet_rx_non_napi(dev);
472 else {
473 napi_ok = napi_schedule_prep(&fep->napi);
475 (*fep->ops->napi_disable_rx)(dev);
476 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
478 /* NOTE: it is possible for FCCs in NAPI mode */
479 /* to submit a spurious interrupt while in poll */
480 if (napi_ok)
481 __netif_rx_schedule(&fep->napi);
485 if (int_events & fep->ev_tx)
486 fs_enet_tx(dev);
489 handled = nr > 0;
490 return IRQ_RETVAL(handled);
493 void fs_init_bds(struct net_device *dev)
495 struct fs_enet_private *fep = netdev_priv(dev);
496 cbd_t __iomem *bdp;
497 struct sk_buff *skb;
498 int i;
500 fs_cleanup_bds(dev);
502 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
503 fep->tx_free = fep->tx_ring;
504 fep->cur_rx = fep->rx_bd_base;
507 * Initialize the receive buffer descriptors.
509 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
510 skb = dev_alloc_skb(ENET_RX_FRSIZE);
511 if (skb == NULL) {
512 printk(KERN_WARNING DRV_MODULE_NAME
513 ": %s Memory squeeze, unable to allocate skb\n",
514 dev->name);
515 break;
517 skb_align(skb, ENET_RX_ALIGN);
518 fep->rx_skbuff[i] = skb;
519 CBDW_BUFADDR(bdp,
520 dma_map_single(fep->dev, skb->data,
521 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
522 DMA_FROM_DEVICE));
523 CBDW_DATLEN(bdp, 0); /* zero */
524 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
525 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
528 * if we failed, fillup remainder
530 for (; i < fep->rx_ring; i++, bdp++) {
531 fep->rx_skbuff[i] = NULL;
532 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
536 * ...and the same for transmit.
538 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
539 fep->tx_skbuff[i] = NULL;
540 CBDW_BUFADDR(bdp, 0);
541 CBDW_DATLEN(bdp, 0);
542 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
546 void fs_cleanup_bds(struct net_device *dev)
548 struct fs_enet_private *fep = netdev_priv(dev);
549 struct sk_buff *skb;
550 cbd_t __iomem *bdp;
551 int i;
554 * Reset SKB transmit buffers.
556 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
557 if ((skb = fep->tx_skbuff[i]) == NULL)
558 continue;
560 /* unmap */
561 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
562 skb->len, DMA_TO_DEVICE);
564 fep->tx_skbuff[i] = NULL;
565 dev_kfree_skb(skb);
569 * Reset SKB receive buffers
571 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
572 if ((skb = fep->rx_skbuff[i]) == NULL)
573 continue;
575 /* unmap */
576 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
577 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
578 DMA_FROM_DEVICE);
580 fep->rx_skbuff[i] = NULL;
582 dev_kfree_skb(skb);
586 /**********************************************************************************/
588 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
590 struct fs_enet_private *fep = netdev_priv(dev);
591 cbd_t __iomem *bdp;
592 int curidx;
593 u16 sc;
594 unsigned long flags;
596 spin_lock_irqsave(&fep->tx_lock, flags);
599 * Fill in a Tx ring entry
601 bdp = fep->cur_tx;
603 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
604 netif_stop_queue(dev);
605 spin_unlock_irqrestore(&fep->tx_lock, flags);
608 * Ooops. All transmit buffers are full. Bail out.
609 * This should not happen, since the tx queue should be stopped.
611 printk(KERN_WARNING DRV_MODULE_NAME
612 ": %s tx queue full!.\n", dev->name);
613 return NETDEV_TX_BUSY;
616 curidx = bdp - fep->tx_bd_base;
618 * Clear all of the status flags.
620 CBDC_SC(bdp, BD_ENET_TX_STATS);
623 * Save skb pointer.
625 fep->tx_skbuff[curidx] = skb;
627 fep->stats.tx_bytes += skb->len;
630 * Push the data cache so the CPM does not get stale memory data.
632 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
633 skb->data, skb->len, DMA_TO_DEVICE));
634 CBDW_DATLEN(bdp, skb->len);
636 dev->trans_start = jiffies;
639 * If this was the last BD in the ring, start at the beginning again.
641 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
642 fep->cur_tx++;
643 else
644 fep->cur_tx = fep->tx_bd_base;
646 if (!--fep->tx_free)
647 netif_stop_queue(dev);
649 /* Trigger transmission start */
650 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
651 BD_ENET_TX_LAST | BD_ENET_TX_TC;
653 /* note that while FEC does not have this bit
654 * it marks it as available for software use
655 * yay for hw reuse :) */
656 if (skb->len <= 60)
657 sc |= BD_ENET_TX_PAD;
658 CBDS_SC(bdp, sc);
660 (*fep->ops->tx_kickstart)(dev);
662 spin_unlock_irqrestore(&fep->tx_lock, flags);
664 return NETDEV_TX_OK;
667 static void fs_timeout(struct net_device *dev)
669 struct fs_enet_private *fep = netdev_priv(dev);
670 unsigned long flags;
671 int wake = 0;
673 fep->stats.tx_errors++;
675 spin_lock_irqsave(&fep->lock, flags);
677 if (dev->flags & IFF_UP) {
678 phy_stop(fep->phydev);
679 (*fep->ops->stop)(dev);
680 (*fep->ops->restart)(dev);
681 phy_start(fep->phydev);
684 phy_start(fep->phydev);
685 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
686 spin_unlock_irqrestore(&fep->lock, flags);
688 if (wake)
689 netif_wake_queue(dev);
692 /*-----------------------------------------------------------------------------
693 * generic link-change handler - should be sufficient for most cases
694 *-----------------------------------------------------------------------------*/
695 static void generic_adjust_link(struct net_device *dev)
697 struct fs_enet_private *fep = netdev_priv(dev);
698 struct phy_device *phydev = fep->phydev;
699 int new_state = 0;
701 if (phydev->link) {
702 /* adjust to duplex mode */
703 if (phydev->duplex != fep->oldduplex) {
704 new_state = 1;
705 fep->oldduplex = phydev->duplex;
708 if (phydev->speed != fep->oldspeed) {
709 new_state = 1;
710 fep->oldspeed = phydev->speed;
713 if (!fep->oldlink) {
714 new_state = 1;
715 fep->oldlink = 1;
718 if (new_state)
719 fep->ops->restart(dev);
720 } else if (fep->oldlink) {
721 new_state = 1;
722 fep->oldlink = 0;
723 fep->oldspeed = 0;
724 fep->oldduplex = -1;
727 if (new_state && netif_msg_link(fep))
728 phy_print_status(phydev);
732 static void fs_adjust_link(struct net_device *dev)
734 struct fs_enet_private *fep = netdev_priv(dev);
735 unsigned long flags;
737 spin_lock_irqsave(&fep->lock, flags);
739 if(fep->ops->adjust_link)
740 fep->ops->adjust_link(dev);
741 else
742 generic_adjust_link(dev);
744 spin_unlock_irqrestore(&fep->lock, flags);
747 static int fs_init_phy(struct net_device *dev)
749 struct fs_enet_private *fep = netdev_priv(dev);
750 struct phy_device *phydev;
752 fep->oldlink = 0;
753 fep->oldspeed = 0;
754 fep->oldduplex = -1;
755 if(fep->fpi->bus_id)
756 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
757 PHY_INTERFACE_MODE_MII);
758 else {
759 printk("No phy bus ID specified in BSP code\n");
760 return -EINVAL;
762 if (IS_ERR(phydev)) {
763 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
764 return PTR_ERR(phydev);
767 fep->phydev = phydev;
769 return 0;
772 static int fs_enet_open(struct net_device *dev)
774 struct fs_enet_private *fep = netdev_priv(dev);
775 int r;
776 int err;
778 /* to initialize the fep->cur_rx,... */
779 /* not doing this, will cause a crash in fs_enet_rx_napi */
780 fs_init_bds(fep->ndev);
782 if (fep->fpi->use_napi)
783 napi_enable(&fep->napi);
785 /* Install our interrupt handler. */
786 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
787 "fs_enet-mac", dev);
788 if (r != 0) {
789 printk(KERN_ERR DRV_MODULE_NAME
790 ": %s Could not allocate FS_ENET IRQ!", dev->name);
791 if (fep->fpi->use_napi)
792 napi_disable(&fep->napi);
793 return -EINVAL;
796 err = fs_init_phy(dev);
797 if (err) {
798 free_irq(fep->interrupt, dev);
799 if (fep->fpi->use_napi)
800 napi_disable(&fep->napi);
801 return err;
803 phy_start(fep->phydev);
805 netif_start_queue(dev);
807 return 0;
810 static int fs_enet_close(struct net_device *dev)
812 struct fs_enet_private *fep = netdev_priv(dev);
813 unsigned long flags;
815 netif_stop_queue(dev);
816 netif_carrier_off(dev);
817 if (fep->fpi->use_napi)
818 napi_disable(&fep->napi);
819 phy_stop(fep->phydev);
821 spin_lock_irqsave(&fep->lock, flags);
822 spin_lock(&fep->tx_lock);
823 (*fep->ops->stop)(dev);
824 spin_unlock(&fep->tx_lock);
825 spin_unlock_irqrestore(&fep->lock, flags);
827 /* release any irqs */
828 phy_disconnect(fep->phydev);
829 fep->phydev = NULL;
830 free_irq(fep->interrupt, dev);
832 return 0;
835 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
837 struct fs_enet_private *fep = netdev_priv(dev);
838 return &fep->stats;
841 /*************************************************************************/
843 static void fs_get_drvinfo(struct net_device *dev,
844 struct ethtool_drvinfo *info)
846 strcpy(info->driver, DRV_MODULE_NAME);
847 strcpy(info->version, DRV_MODULE_VERSION);
850 static int fs_get_regs_len(struct net_device *dev)
852 struct fs_enet_private *fep = netdev_priv(dev);
854 return (*fep->ops->get_regs_len)(dev);
857 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
858 void *p)
860 struct fs_enet_private *fep = netdev_priv(dev);
861 unsigned long flags;
862 int r, len;
864 len = regs->len;
866 spin_lock_irqsave(&fep->lock, flags);
867 r = (*fep->ops->get_regs)(dev, p, &len);
868 spin_unlock_irqrestore(&fep->lock, flags);
870 if (r == 0)
871 regs->version = 0;
874 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
876 struct fs_enet_private *fep = netdev_priv(dev);
878 if (!fep->phydev)
879 return -ENODEV;
881 return phy_ethtool_gset(fep->phydev, cmd);
884 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
886 struct fs_enet_private *fep = netdev_priv(dev);
888 if (!fep->phydev)
889 return -ENODEV;
891 return phy_ethtool_sset(fep->phydev, cmd);
894 static int fs_nway_reset(struct net_device *dev)
896 return 0;
899 static u32 fs_get_msglevel(struct net_device *dev)
901 struct fs_enet_private *fep = netdev_priv(dev);
902 return fep->msg_enable;
905 static void fs_set_msglevel(struct net_device *dev, u32 value)
907 struct fs_enet_private *fep = netdev_priv(dev);
908 fep->msg_enable = value;
911 static const struct ethtool_ops fs_ethtool_ops = {
912 .get_drvinfo = fs_get_drvinfo,
913 .get_regs_len = fs_get_regs_len,
914 .get_settings = fs_get_settings,
915 .set_settings = fs_set_settings,
916 .nway_reset = fs_nway_reset,
917 .get_link = ethtool_op_get_link,
918 .get_msglevel = fs_get_msglevel,
919 .set_msglevel = fs_set_msglevel,
920 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
921 .set_sg = ethtool_op_set_sg,
922 .get_regs = fs_get_regs,
925 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
927 struct fs_enet_private *fep = netdev_priv(dev);
928 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
930 if (!netif_running(dev))
931 return -EINVAL;
933 return phy_mii_ioctl(fep->phydev, mii, cmd);
936 extern int fs_mii_connect(struct net_device *dev);
937 extern void fs_mii_disconnect(struct net_device *dev);
939 /**************************************************************************************/
941 /* handy pointer to the immap */
942 void __iomem *fs_enet_immap = NULL;
944 static int setup_immap(void)
946 #ifdef CONFIG_CPM1
947 fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
948 WARN_ON(!fs_enet_immap);
949 #elif defined(CONFIG_CPM2)
950 fs_enet_immap = cpm2_immr;
951 #endif
953 return 0;
956 static void cleanup_immap(void)
958 #if defined(CONFIG_CPM1)
959 iounmap(fs_enet_immap);
960 #endif
963 /**************************************************************************************/
965 static int __devinit find_phy(struct device_node *np,
966 struct fs_platform_info *fpi)
968 struct device_node *phynode, *mdionode;
969 int ret = 0, len, bus_id;
970 const u32 *data;
972 data = of_get_property(np, "fixed-link", NULL);
973 if (data) {
974 snprintf(fpi->bus_id, 16, "%x:%02x", 0, *data);
975 return 0;
978 data = of_get_property(np, "phy-handle", &len);
979 if (!data || len != 4)
980 return -EINVAL;
982 phynode = of_find_node_by_phandle(*data);
983 if (!phynode)
984 return -EINVAL;
986 data = of_get_property(phynode, "reg", &len);
987 if (!data || len != 4) {
988 ret = -EINVAL;
989 goto out_put_phy;
992 mdionode = of_get_parent(phynode);
993 if (!mdionode) {
994 ret = -EINVAL;
995 goto out_put_phy;
998 bus_id = of_get_gpio(mdionode, 0);
999 if (bus_id < 0) {
1000 struct resource res;
1001 ret = of_address_to_resource(mdionode, 0, &res);
1002 if (ret)
1003 goto out_put_mdio;
1004 bus_id = res.start;
1007 snprintf(fpi->bus_id, 16, "%x:%02x", bus_id, *data);
1009 out_put_mdio:
1010 of_node_put(mdionode);
1011 out_put_phy:
1012 of_node_put(phynode);
1013 return ret;
1016 #ifdef CONFIG_FS_ENET_HAS_FEC
1017 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
1018 #else
1019 #define IS_FEC(match) 0
1020 #endif
1022 static int __devinit fs_enet_probe(struct of_device *ofdev,
1023 const struct of_device_id *match)
1025 struct net_device *ndev;
1026 struct fs_enet_private *fep;
1027 struct fs_platform_info *fpi;
1028 const u32 *data;
1029 const u8 *mac_addr;
1030 int privsize, len, ret = -ENODEV;
1032 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1033 if (!fpi)
1034 return -ENOMEM;
1036 if (!IS_FEC(match)) {
1037 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
1038 if (!data || len != 4)
1039 goto out_free_fpi;
1041 fpi->cp_command = *data;
1044 fpi->rx_ring = 32;
1045 fpi->tx_ring = 32;
1046 fpi->rx_copybreak = 240;
1047 fpi->use_napi = 1;
1048 fpi->napi_weight = 17;
1050 ret = find_phy(ofdev->node, fpi);
1051 if (ret)
1052 goto out_free_fpi;
1054 privsize = sizeof(*fep) +
1055 sizeof(struct sk_buff **) *
1056 (fpi->rx_ring + fpi->tx_ring);
1058 ndev = alloc_etherdev(privsize);
1059 if (!ndev) {
1060 ret = -ENOMEM;
1061 goto out_free_fpi;
1064 dev_set_drvdata(&ofdev->dev, ndev);
1066 fep = netdev_priv(ndev);
1067 fep->dev = &ofdev->dev;
1068 fep->ndev = ndev;
1069 fep->fpi = fpi;
1070 fep->ops = match->data;
1072 ret = fep->ops->setup_data(ndev);
1073 if (ret)
1074 goto out_free_dev;
1076 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1077 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1079 spin_lock_init(&fep->lock);
1080 spin_lock_init(&fep->tx_lock);
1082 mac_addr = of_get_mac_address(ofdev->node);
1083 if (mac_addr)
1084 memcpy(ndev->dev_addr, mac_addr, 6);
1086 ret = fep->ops->allocate_bd(ndev);
1087 if (ret)
1088 goto out_cleanup_data;
1090 fep->rx_bd_base = fep->ring_base;
1091 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1093 fep->tx_ring = fpi->tx_ring;
1094 fep->rx_ring = fpi->rx_ring;
1096 ndev->open = fs_enet_open;
1097 ndev->hard_start_xmit = fs_enet_start_xmit;
1098 ndev->tx_timeout = fs_timeout;
1099 ndev->watchdog_timeo = 2 * HZ;
1100 ndev->stop = fs_enet_close;
1101 ndev->get_stats = fs_enet_get_stats;
1102 ndev->set_multicast_list = fs_set_multicast_list;
1103 #ifdef CONFIG_NET_POLL_CONTROLLER
1104 ndev->poll_controller = fs_enet_netpoll;
1105 #endif
1106 if (fpi->use_napi)
1107 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1108 fpi->napi_weight);
1110 ndev->ethtool_ops = &fs_ethtool_ops;
1111 ndev->do_ioctl = fs_ioctl;
1113 init_timer(&fep->phy_timer_list);
1115 netif_carrier_off(ndev);
1117 ret = register_netdev(ndev);
1118 if (ret)
1119 goto out_free_bd;
1121 printk(KERN_INFO "%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1123 return 0;
1125 out_free_bd:
1126 fep->ops->free_bd(ndev);
1127 out_cleanup_data:
1128 fep->ops->cleanup_data(ndev);
1129 out_free_dev:
1130 free_netdev(ndev);
1131 dev_set_drvdata(&ofdev->dev, NULL);
1132 out_free_fpi:
1133 kfree(fpi);
1134 return ret;
1137 static int fs_enet_remove(struct of_device *ofdev)
1139 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1140 struct fs_enet_private *fep = netdev_priv(ndev);
1142 unregister_netdev(ndev);
1144 fep->ops->free_bd(ndev);
1145 fep->ops->cleanup_data(ndev);
1146 dev_set_drvdata(fep->dev, NULL);
1148 free_netdev(ndev);
1149 return 0;
1152 static struct of_device_id fs_enet_match[] = {
1153 #ifdef CONFIG_FS_ENET_HAS_SCC
1155 .compatible = "fsl,cpm1-scc-enet",
1156 .data = (void *)&fs_scc_ops,
1159 .compatible = "fsl,cpm2-scc-enet",
1160 .data = (void *)&fs_scc_ops,
1162 #endif
1163 #ifdef CONFIG_FS_ENET_HAS_FCC
1165 .compatible = "fsl,cpm2-fcc-enet",
1166 .data = (void *)&fs_fcc_ops,
1168 #endif
1169 #ifdef CONFIG_FS_ENET_HAS_FEC
1171 .compatible = "fsl,pq1-fec-enet",
1172 .data = (void *)&fs_fec_ops,
1174 #endif
1178 static struct of_platform_driver fs_enet_driver = {
1179 .name = "fs_enet",
1180 .match_table = fs_enet_match,
1181 .probe = fs_enet_probe,
1182 .remove = fs_enet_remove,
1185 static int __init fs_init(void)
1187 int r = setup_immap();
1188 if (r != 0)
1189 return r;
1191 r = of_register_platform_driver(&fs_enet_driver);
1192 if (r != 0)
1193 goto out;
1195 return 0;
1197 out:
1198 cleanup_immap();
1199 return r;
1202 static void __exit fs_cleanup(void)
1204 of_unregister_platform_driver(&fs_enet_driver);
1205 cleanup_immap();
1208 #ifdef CONFIG_NET_POLL_CONTROLLER
1209 static void fs_enet_netpoll(struct net_device *dev)
1211 disable_irq(dev->irq);
1212 fs_enet_interrupt(dev->irq, dev);
1213 enable_irq(dev->irq);
1215 #endif
1217 /**************************************************************************************/
1219 module_init(fs_init);
1220 module_exit(fs_cleanup);