Merge branch 'mini2440-dev-unlikely' into mini2440-dev
[linux-2.6/mini2440.git] / drivers / edac / amd64_edac.c
blobe2a10bcba7a14d511ada5eada69cc329a81ab36c
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 /* Lookup table for all possible MC control instances */
17 struct amd64_pvt;
18 static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
19 static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
22 * Memory scrubber control interface. For K8, memory scrubbing is handled by
23 * hardware and can involve L2 cache, dcache as well as the main memory. With
24 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
25 * functionality.
27 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
28 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
29 * bytes/sec for the setting.
31 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
32 * other archs, we might not have access to the caches directly.
36 * scan the scrub rate mapping table for a close or matching bandwidth value to
37 * issue. If requested is too big, then use last maximum value found.
39 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
40 u32 min_scrubrate)
42 u32 scrubval;
43 int i;
46 * map the configured rate (new_bw) to a value specific to the AMD64
47 * memory controller and apply to register. Search for the first
48 * bandwidth entry that is greater or equal than the setting requested
49 * and program that. If at last entry, turn off DRAM scrubbing.
51 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
53 * skip scrub rates which aren't recommended
54 * (see F10 BKDG, F3x58)
56 if (scrubrates[i].scrubval < min_scrubrate)
57 continue;
59 if (scrubrates[i].bandwidth <= new_bw)
60 break;
63 * if no suitable bandwidth found, turn off DRAM scrubbing
64 * entirely by falling back to the last element in the
65 * scrubrates array.
69 scrubval = scrubrates[i].scrubval;
70 if (scrubval)
71 edac_printk(KERN_DEBUG, EDAC_MC,
72 "Setting scrub rate bandwidth: %u\n",
73 scrubrates[i].bandwidth);
74 else
75 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
77 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
79 return 0;
82 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
84 struct amd64_pvt *pvt = mci->pvt_info;
85 u32 min_scrubrate = 0x0;
87 switch (boot_cpu_data.x86) {
88 case 0xf:
89 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
90 break;
91 case 0x10:
92 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
93 break;
94 case 0x11:
95 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
96 break;
98 default:
99 amd64_printk(KERN_ERR, "Unsupported family!\n");
100 break;
102 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
103 min_scrubrate);
106 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
108 struct amd64_pvt *pvt = mci->pvt_info;
109 u32 scrubval = 0;
110 int status = -1, i, ret = 0;
112 ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
113 if (ret)
114 debugf0("Reading K8_SCRCTRL failed\n");
116 scrubval = scrubval & 0x001F;
118 edac_printk(KERN_DEBUG, EDAC_MC,
119 "pci-read, sdram scrub control value: %d \n", scrubval);
121 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
122 if (scrubrates[i].scrubval == scrubval) {
123 *bw = scrubrates[i].bandwidth;
124 status = 0;
125 break;
129 return status;
132 /* Map from a CSROW entry to the mask entry that operates on it */
133 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
135 return csrow >> (pvt->num_dcsm >> 3);
138 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
139 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
141 if (dct == 0)
142 return pvt->dcsb0[csrow];
143 else
144 return pvt->dcsb1[csrow];
148 * Return the 'mask' address the i'th CS entry. This function is needed because
149 * there number of DCSM registers on Rev E and prior vs Rev F and later is
150 * different.
152 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
154 if (dct == 0)
155 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
156 else
157 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
162 * In *base and *limit, pass back the full 40-bit base and limit physical
163 * addresses for the node given by node_id. This information is obtained from
164 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
165 * base and limit addresses are of type SysAddr, as defined at the start of
166 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
167 * in the address range they represent.
169 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
170 u64 *base, u64 *limit)
172 *base = pvt->dram_base[node_id];
173 *limit = pvt->dram_limit[node_id];
177 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
178 * with node_id
180 static int amd64_base_limit_match(struct amd64_pvt *pvt,
181 u64 sys_addr, int node_id)
183 u64 base, limit, addr;
185 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
187 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
188 * all ones if the most significant implemented address bit is 1.
189 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
190 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
191 * Application Programming.
193 addr = sys_addr & 0x000000ffffffffffull;
195 return (addr >= base) && (addr <= limit);
199 * Attempt to map a SysAddr to a node. On success, return a pointer to the
200 * mem_ctl_info structure for the node that the SysAddr maps to.
202 * On failure, return NULL.
204 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
205 u64 sys_addr)
207 struct amd64_pvt *pvt;
208 int node_id;
209 u32 intlv_en, bits;
212 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
213 * 3.4.4.2) registers to map the SysAddr to a node ID.
215 pvt = mci->pvt_info;
218 * The value of this field should be the same for all DRAM Base
219 * registers. Therefore we arbitrarily choose to read it from the
220 * register for node 0.
222 intlv_en = pvt->dram_IntlvEn[0];
224 if (intlv_en == 0) {
225 for (node_id = 0; ; ) {
226 if (amd64_base_limit_match(pvt, sys_addr, node_id))
227 break;
229 if (++node_id >= DRAM_REG_COUNT)
230 goto err_no_match;
232 goto found;
235 if (unlikely((intlv_en != (0x01 << 8)) &&
236 (intlv_en != (0x03 << 8)) &&
237 (intlv_en != (0x07 << 8)))) {
238 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
239 "IntlvEn field of DRAM Base Register for node 0: "
240 "This probably indicates a BIOS bug.\n", intlv_en);
241 return NULL;
244 bits = (((u32) sys_addr) >> 12) & intlv_en;
246 for (node_id = 0; ; ) {
247 if ((pvt->dram_limit[node_id] & intlv_en) == bits)
248 break; /* intlv_sel field matches */
250 if (++node_id >= DRAM_REG_COUNT)
251 goto err_no_match;
254 /* sanity test for sys_addr */
255 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
256 amd64_printk(KERN_WARNING,
257 "%s(): sys_addr 0x%lx falls outside base/limit "
258 "address range for node %d with node interleaving "
259 "enabled.\n", __func__, (unsigned long)sys_addr,
260 node_id);
261 return NULL;
264 found:
265 return edac_mc_find(node_id);
267 err_no_match:
268 debugf2("sys_addr 0x%lx doesn't match any node\n",
269 (unsigned long)sys_addr);
271 return NULL;
275 * Extract the DRAM CS base address from selected csrow register.
277 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
279 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
280 pvt->dcs_shift;
284 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
286 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
288 u64 dcsm_bits, other_bits;
289 u64 mask;
291 /* Extract bits from DRAM CS Mask. */
292 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
294 other_bits = pvt->dcsm_mask;
295 other_bits = ~(other_bits << pvt->dcs_shift);
298 * The extracted bits from DCSM belong in the spaces represented by
299 * the cleared bits in other_bits.
301 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
303 return mask;
307 * @input_addr is an InputAddr associated with the node given by mci. Return the
308 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
310 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
312 struct amd64_pvt *pvt;
313 int csrow;
314 u64 base, mask;
316 pvt = mci->pvt_info;
319 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
320 * base/mask register pair, test the condition shown near the start of
321 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
323 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
325 /* This DRAM chip select is disabled on this node */
326 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
327 continue;
329 base = base_from_dct_base(pvt, csrow);
330 mask = ~mask_from_dct_mask(pvt, csrow);
332 if ((input_addr & mask) == (base & mask)) {
333 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
334 (unsigned long)input_addr, csrow,
335 pvt->mc_node_id);
337 return csrow;
341 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
342 (unsigned long)input_addr, pvt->mc_node_id);
344 return -1;
348 * Return the base value defined by the DRAM Base register for the node
349 * represented by mci. This function returns the full 40-bit value despite the
350 * fact that the register only stores bits 39-24 of the value. See section
351 * 3.4.4.1 (BKDG #26094, K8, revA-E)
353 static inline u64 get_dram_base(struct mem_ctl_info *mci)
355 struct amd64_pvt *pvt = mci->pvt_info;
357 return pvt->dram_base[pvt->mc_node_id];
361 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
362 * for the node represented by mci. Info is passed back in *hole_base,
363 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
364 * info is invalid. Info may be invalid for either of the following reasons:
366 * - The revision of the node is not E or greater. In this case, the DRAM Hole
367 * Address Register does not exist.
369 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
370 * indicating that its contents are not valid.
372 * The values passed back in *hole_base, *hole_offset, and *hole_size are
373 * complete 32-bit values despite the fact that the bitfields in the DHAR
374 * only represent bits 31-24 of the base and offset values.
376 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
377 u64 *hole_offset, u64 *hole_size)
379 struct amd64_pvt *pvt = mci->pvt_info;
380 u64 base;
382 /* only revE and later have the DRAM Hole Address Register */
383 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
384 debugf1(" revision %d for node %d does not support DHAR\n",
385 pvt->ext_model, pvt->mc_node_id);
386 return 1;
389 /* only valid for Fam10h */
390 if (boot_cpu_data.x86 == 0x10 &&
391 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
392 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
393 return 1;
396 if ((pvt->dhar & DHAR_VALID) == 0) {
397 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
398 pvt->mc_node_id);
399 return 1;
402 /* This node has Memory Hoisting */
404 /* +------------------+--------------------+--------------------+-----
405 * | memory | DRAM hole | relocated |
406 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
407 * | | | DRAM hole |
408 * | | | [0x100000000, |
409 * | | | (0x100000000+ |
410 * | | | (0xffffffff-x))] |
411 * +------------------+--------------------+--------------------+-----
413 * Above is a diagram of physical memory showing the DRAM hole and the
414 * relocated addresses from the DRAM hole. As shown, the DRAM hole
415 * starts at address x (the base address) and extends through address
416 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
417 * addresses in the hole so that they start at 0x100000000.
420 base = dhar_base(pvt->dhar);
422 *hole_base = base;
423 *hole_size = (0x1ull << 32) - base;
425 if (boot_cpu_data.x86 > 0xf)
426 *hole_offset = f10_dhar_offset(pvt->dhar);
427 else
428 *hole_offset = k8_dhar_offset(pvt->dhar);
430 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
431 pvt->mc_node_id, (unsigned long)*hole_base,
432 (unsigned long)*hole_offset, (unsigned long)*hole_size);
434 return 0;
436 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
439 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
440 * assumed that sys_addr maps to the node given by mci.
442 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
443 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
444 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
445 * then it is also involved in translating a SysAddr to a DramAddr. Sections
446 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
447 * These parts of the documentation are unclear. I interpret them as follows:
449 * When node n receives a SysAddr, it processes the SysAddr as follows:
451 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
452 * Limit registers for node n. If the SysAddr is not within the range
453 * specified by the base and limit values, then node n ignores the Sysaddr
454 * (since it does not map to node n). Otherwise continue to step 2 below.
456 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
457 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
458 * the range of relocated addresses (starting at 0x100000000) from the DRAM
459 * hole. If not, skip to step 3 below. Else get the value of the
460 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
461 * offset defined by this value from the SysAddr.
463 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
464 * Base register for node n. To obtain the DramAddr, subtract the base
465 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
467 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
469 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
470 int ret = 0;
472 dram_base = get_dram_base(mci);
474 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
475 &hole_size);
476 if (!ret) {
477 if ((sys_addr >= (1ull << 32)) &&
478 (sys_addr < ((1ull << 32) + hole_size))) {
479 /* use DHAR to translate SysAddr to DramAddr */
480 dram_addr = sys_addr - hole_offset;
482 debugf2("using DHAR to translate SysAddr 0x%lx to "
483 "DramAddr 0x%lx\n",
484 (unsigned long)sys_addr,
485 (unsigned long)dram_addr);
487 return dram_addr;
492 * Translate the SysAddr to a DramAddr as shown near the start of
493 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
494 * only deals with 40-bit values. Therefore we discard bits 63-40 of
495 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
496 * discard are all 1s. Otherwise the bits we discard are all 0s. See
497 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
498 * Programmer's Manual Volume 1 Application Programming.
500 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
502 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
503 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
504 (unsigned long)dram_addr);
505 return dram_addr;
509 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
510 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
511 * for node interleaving.
513 static int num_node_interleave_bits(unsigned intlv_en)
515 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
516 int n;
518 BUG_ON(intlv_en > 7);
519 n = intlv_shift_table[intlv_en];
520 return n;
523 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
524 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
526 struct amd64_pvt *pvt;
527 int intlv_shift;
528 u64 input_addr;
530 pvt = mci->pvt_info;
533 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
534 * concerning translating a DramAddr to an InputAddr.
536 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
537 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
538 (dram_addr & 0xfff);
540 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
541 intlv_shift, (unsigned long)dram_addr,
542 (unsigned long)input_addr);
544 return input_addr;
548 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
549 * assumed that @sys_addr maps to the node given by mci.
551 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
553 u64 input_addr;
555 input_addr =
556 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
558 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
559 (unsigned long)sys_addr, (unsigned long)input_addr);
561 return input_addr;
566 * @input_addr is an InputAddr associated with the node represented by mci.
567 * Translate @input_addr to a DramAddr and return the result.
569 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
571 struct amd64_pvt *pvt;
572 int node_id, intlv_shift;
573 u64 bits, dram_addr;
574 u32 intlv_sel;
577 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
578 * shows how to translate a DramAddr to an InputAddr. Here we reverse
579 * this procedure. When translating from a DramAddr to an InputAddr, the
580 * bits used for node interleaving are discarded. Here we recover these
581 * bits from the IntlvSel field of the DRAM Limit register (section
582 * 3.4.4.2) for the node that input_addr is associated with.
584 pvt = mci->pvt_info;
585 node_id = pvt->mc_node_id;
586 BUG_ON((node_id < 0) || (node_id > 7));
588 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
590 if (intlv_shift == 0) {
591 debugf1(" InputAddr 0x%lx translates to DramAddr of "
592 "same value\n", (unsigned long)input_addr);
594 return input_addr;
597 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
598 (input_addr & 0xfff);
600 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
601 dram_addr = bits + (intlv_sel << 12);
603 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
604 "(%d node interleave bits)\n", (unsigned long)input_addr,
605 (unsigned long)dram_addr, intlv_shift);
607 return dram_addr;
611 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
612 * @dram_addr to a SysAddr.
614 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
616 struct amd64_pvt *pvt = mci->pvt_info;
617 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
618 int ret = 0;
620 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
621 &hole_size);
622 if (!ret) {
623 if ((dram_addr >= hole_base) &&
624 (dram_addr < (hole_base + hole_size))) {
625 sys_addr = dram_addr + hole_offset;
627 debugf1("using DHAR to translate DramAddr 0x%lx to "
628 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
629 (unsigned long)sys_addr);
631 return sys_addr;
635 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
636 sys_addr = dram_addr + base;
639 * The sys_addr we have computed up to this point is a 40-bit value
640 * because the k8 deals with 40-bit values. However, the value we are
641 * supposed to return is a full 64-bit physical address. The AMD
642 * x86-64 architecture specifies that the most significant implemented
643 * address bit through bit 63 of a physical address must be either all
644 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
645 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
646 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
647 * Programming.
649 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
651 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
652 pvt->mc_node_id, (unsigned long)dram_addr,
653 (unsigned long)sys_addr);
655 return sys_addr;
659 * @input_addr is an InputAddr associated with the node given by mci. Translate
660 * @input_addr to a SysAddr.
662 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
663 u64 input_addr)
665 return dram_addr_to_sys_addr(mci,
666 input_addr_to_dram_addr(mci, input_addr));
670 * Find the minimum and maximum InputAddr values that map to the given @csrow.
671 * Pass back these values in *input_addr_min and *input_addr_max.
673 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
674 u64 *input_addr_min, u64 *input_addr_max)
676 struct amd64_pvt *pvt;
677 u64 base, mask;
679 pvt = mci->pvt_info;
680 BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
682 base = base_from_dct_base(pvt, csrow);
683 mask = mask_from_dct_mask(pvt, csrow);
685 *input_addr_min = base & ~mask;
686 *input_addr_max = base | mask | pvt->dcs_mask_notused;
690 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
691 * Address High (section 3.6.4.6) register values and return the result. Address
692 * is located in the info structure (nbeah and nbeal), the encoding is device
693 * specific.
695 static u64 extract_error_address(struct mem_ctl_info *mci,
696 struct amd64_error_info_regs *info)
698 struct amd64_pvt *pvt = mci->pvt_info;
700 return pvt->ops->get_error_address(mci, info);
704 /* Map the Error address to a PAGE and PAGE OFFSET. */
705 static inline void error_address_to_page_and_offset(u64 error_address,
706 u32 *page, u32 *offset)
708 *page = (u32) (error_address >> PAGE_SHIFT);
709 *offset = ((u32) error_address) & ~PAGE_MASK;
713 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
714 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
715 * of a node that detected an ECC memory error. mci represents the node that
716 * the error address maps to (possibly different from the node that detected
717 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
718 * error.
720 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
722 int csrow;
724 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
726 if (csrow == -1)
727 amd64_mc_printk(mci, KERN_ERR,
728 "Failed to translate InputAddr to csrow for "
729 "address 0x%lx\n", (unsigned long)sys_addr);
730 return csrow;
733 static int get_channel_from_ecc_syndrome(unsigned short syndrome);
735 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
737 if (boot_cpu_data.x86 == 0x11)
738 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
739 else if (boot_cpu_data.x86 == 0x10)
740 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
741 else if (boot_cpu_data.x86 == 0xf)
742 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
743 (pvt->ext_model >= OPTERON_CPU_REV_F) ?
744 "Rev F or later" : "Rev E or earlier");
745 else
746 /* we'll hardly ever ever get here */
747 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
751 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
752 * are ECC capable.
754 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
756 int bit;
757 enum dev_type edac_cap = EDAC_FLAG_NONE;
759 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
760 ? 19
761 : 17;
763 if (pvt->dclr0 & BIT(bit))
764 edac_cap = EDAC_FLAG_SECDED;
766 return edac_cap;
770 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
771 int ganged);
773 /* Display and decode various NB registers for debug purposes. */
774 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
776 int ganged;
778 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
779 pvt->nbcap,
780 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
781 (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
782 (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
783 debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
784 (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
785 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
786 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
787 pvt->dclr0,
788 (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
789 (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
790 (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
791 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
792 (pvt->dclr0 & BIT(12)) ? "Y" : "N",
793 (pvt->dclr0 & BIT(13)) ? "Y" : "N",
794 (pvt->dclr0 & BIT(14)) ? "Y" : "N",
795 (pvt->dclr0 & BIT(15)) ? "Y" : "N",
796 (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
799 debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
801 if (boot_cpu_data.x86 == 0xf) {
802 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
803 pvt->dhar, dhar_base(pvt->dhar),
804 k8_dhar_offset(pvt->dhar));
805 debugf1(" DramHoleValid=%s\n",
806 (pvt->dhar & DHAR_VALID) ? "True" : "False");
808 debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
810 /* everything below this point is Fam10h and above */
811 return;
813 } else {
814 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
815 pvt->dhar, dhar_base(pvt->dhar),
816 f10_dhar_offset(pvt->dhar));
817 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
818 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
819 "True" : "False",
820 (pvt->dhar & DHAR_VALID) ?
821 "True" : "False");
824 /* Only if NOT ganged does dcl1 have valid info */
825 if (!dct_ganging_enabled(pvt)) {
826 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
827 "Width=%s\n", pvt->dclr1,
828 (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
829 (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
830 (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
831 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
832 "DIMM Type=%s\n",
833 (pvt->dclr1 & BIT(12)) ? "Y" : "N",
834 (pvt->dclr1 & BIT(13)) ? "Y" : "N",
835 (pvt->dclr1 & BIT(14)) ? "Y" : "N",
836 (pvt->dclr1 & BIT(15)) ? "Y" : "N",
837 (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
841 * Determine if ganged and then dump memory sizes for first controller,
842 * and if NOT ganged dump info for 2nd controller.
844 ganged = dct_ganging_enabled(pvt);
846 f10_debug_display_dimm_sizes(0, pvt, ganged);
848 if (!ganged)
849 f10_debug_display_dimm_sizes(1, pvt, ganged);
852 /* Read in both of DBAM registers */
853 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
855 int err = 0;
856 unsigned int reg;
858 reg = DBAM0;
859 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
860 if (err)
861 goto err_reg;
863 if (boot_cpu_data.x86 >= 0x10) {
864 reg = DBAM1;
865 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
867 if (err)
868 goto err_reg;
871 return;
873 err_reg:
874 debugf0("Error reading F2x%03x.\n", reg);
878 * NOTE: CPU Revision Dependent code: Rev E and Rev F
880 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
881 * set the shift factor for the DCSB and DCSM values.
883 * ->dcs_mask_notused, RevE:
885 * To find the max InputAddr for the csrow, start with the base address and set
886 * all bits that are "don't care" bits in the test at the start of section
887 * 3.5.4 (p. 84).
889 * The "don't care" bits are all set bits in the mask and all bits in the gaps
890 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
891 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
892 * gaps.
894 * ->dcs_mask_notused, RevF and later:
896 * To find the max InputAddr for the csrow, start with the base address and set
897 * all bits that are "don't care" bits in the test at the start of NPT section
898 * 4.5.4 (p. 87).
900 * The "don't care" bits are all set bits in the mask and all bits in the gaps
901 * between bit ranges [36:27] and [21:13].
903 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
904 * which are all bits in the above-mentioned gaps.
906 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
908 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
909 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
910 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
911 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
912 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
914 switch (boot_cpu_data.x86) {
915 case 0xf:
916 pvt->num_dcsm = REV_F_DCSM_COUNT;
917 break;
919 case 0x10:
920 pvt->num_dcsm = F10_DCSM_COUNT;
921 break;
923 case 0x11:
924 pvt->num_dcsm = F11_DCSM_COUNT;
925 break;
927 default:
928 amd64_printk(KERN_ERR, "Unsupported family!\n");
929 break;
931 } else {
932 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
933 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
934 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
935 pvt->dcs_shift = REV_E_DCS_SHIFT;
936 pvt->num_dcsm = REV_E_DCSM_COUNT;
941 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
943 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
945 int cs, reg, err = 0;
947 amd64_set_dct_base_and_mask(pvt);
949 for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
950 reg = K8_DCSB0 + (cs * 4);
951 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
952 &pvt->dcsb0[cs]);
953 if (unlikely(err))
954 debugf0("Reading K8_DCSB0[%d] failed\n", cs);
955 else
956 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
957 cs, pvt->dcsb0[cs], reg);
959 /* If DCT are NOT ganged, then read in DCT1's base */
960 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
961 reg = F10_DCSB1 + (cs * 4);
962 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
963 &pvt->dcsb1[cs]);
964 if (unlikely(err))
965 debugf0("Reading F10_DCSB1[%d] failed\n", cs);
966 else
967 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
968 cs, pvt->dcsb1[cs], reg);
969 } else {
970 pvt->dcsb1[cs] = 0;
974 for (cs = 0; cs < pvt->num_dcsm; cs++) {
975 reg = K8_DCSM0 + (cs * 4);
976 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
977 &pvt->dcsm0[cs]);
978 if (unlikely(err))
979 debugf0("Reading K8_DCSM0 failed\n");
980 else
981 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
982 cs, pvt->dcsm0[cs], reg);
984 /* If DCT are NOT ganged, then read in DCT1's mask */
985 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
986 reg = F10_DCSM1 + (cs * 4);
987 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
988 &pvt->dcsm1[cs]);
989 if (unlikely(err))
990 debugf0("Reading F10_DCSM1[%d] failed\n", cs);
991 else
992 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
993 cs, pvt->dcsm1[cs], reg);
994 } else
995 pvt->dcsm1[cs] = 0;
999 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1001 enum mem_type type;
1003 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1004 /* Rev F and later */
1005 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1006 } else {
1007 /* Rev E and earlier */
1008 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1011 debugf1(" Memory type is: %s\n",
1012 (type == MEM_DDR2) ? "MEM_DDR2" :
1013 (type == MEM_RDDR2) ? "MEM_RDDR2" :
1014 (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1016 return type;
1020 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1021 * and the later RevF memory controllers (DDR vs DDR2)
1023 * Return:
1024 * number of memory channels in operation
1025 * Pass back:
1026 * contents of the DCL0_LOW register
1028 static int k8_early_channel_count(struct amd64_pvt *pvt)
1030 int flag, err = 0;
1032 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1033 if (err)
1034 return err;
1036 if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
1037 /* RevF (NPT) and later */
1038 flag = pvt->dclr0 & F10_WIDTH_128;
1039 } else {
1040 /* RevE and earlier */
1041 flag = pvt->dclr0 & REVE_WIDTH_128;
1044 /* not used */
1045 pvt->dclr1 = 0;
1047 return (flag) ? 2 : 1;
1050 /* extract the ERROR ADDRESS for the K8 CPUs */
1051 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1052 struct amd64_error_info_regs *info)
1054 return (((u64) (info->nbeah & 0xff)) << 32) +
1055 (info->nbeal & ~0x03);
1059 * Read the Base and Limit registers for K8 based Memory controllers; extract
1060 * fields from the 'raw' reg into separate data fields
1062 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1064 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1066 u32 low;
1067 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1068 int err;
1070 err = pci_read_config_dword(pvt->addr_f1_ctl,
1071 K8_DRAM_BASE_LOW + off, &low);
1072 if (err)
1073 debugf0("Reading K8_DRAM_BASE_LOW failed\n");
1075 /* Extract parts into separate data entries */
1076 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1077 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1078 pvt->dram_rw_en[dram] = (low & 0x3);
1080 err = pci_read_config_dword(pvt->addr_f1_ctl,
1081 K8_DRAM_LIMIT_LOW + off, &low);
1082 if (err)
1083 debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
1086 * Extract parts into separate data entries. Limit is the HIGHEST memory
1087 * location of the region, so lower 24 bits need to be all ones
1089 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1090 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1091 pvt->dram_DstNode[dram] = (low & 0x7);
1094 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1095 struct amd64_error_info_regs *info,
1096 u64 SystemAddress)
1098 struct mem_ctl_info *src_mci;
1099 unsigned short syndrome;
1100 int channel, csrow;
1101 u32 page, offset;
1103 /* Extract the syndrome parts and form a 16-bit syndrome */
1104 syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
1105 syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
1107 /* CHIPKILL enabled */
1108 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1109 channel = get_channel_from_ecc_syndrome(syndrome);
1110 if (channel < 0) {
1112 * Syndrome didn't map, so we don't know which of the
1113 * 2 DIMMs is in error. So we need to ID 'both' of them
1114 * as suspect.
1116 amd64_mc_printk(mci, KERN_WARNING,
1117 "unknown syndrome 0x%x - possible error "
1118 "reporting race\n", syndrome);
1119 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1120 return;
1122 } else {
1124 * non-chipkill ecc mode
1126 * The k8 documentation is unclear about how to determine the
1127 * channel number when using non-chipkill memory. This method
1128 * was obtained from email communication with someone at AMD.
1129 * (Wish the email was placed in this comment - norsk)
1131 channel = ((SystemAddress & BIT(3)) != 0);
1135 * Find out which node the error address belongs to. This may be
1136 * different from the node that detected the error.
1138 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
1139 if (src_mci) {
1140 amd64_mc_printk(mci, KERN_ERR,
1141 "failed to map error address 0x%lx to a node\n",
1142 (unsigned long)SystemAddress);
1143 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1144 return;
1147 /* Now map the SystemAddress to a CSROW */
1148 csrow = sys_addr_to_csrow(src_mci, SystemAddress);
1149 if (csrow < 0) {
1150 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1151 } else {
1152 error_address_to_page_and_offset(SystemAddress, &page, &offset);
1154 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1155 channel, EDAC_MOD_STR);
1160 * determrine the number of PAGES in for this DIMM's size based on its DRAM
1161 * Address Mapping.
1163 * First step is to calc the number of bits to shift a value of 1 left to
1164 * indicate show many pages. Start with the DBAM value as the starting bits,
1165 * then proceed to adjust those shift bits, based on CPU rev and the table.
1166 * See BKDG on the DBAM
1168 static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1170 int nr_pages;
1172 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
1173 nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1174 } else {
1176 * RevE and less section; this line is tricky. It collapses the
1177 * table used by RevD and later to one that matches revisions CG
1178 * and earlier.
1180 dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
1181 (dram_map > 8 ? 4 : (dram_map > 5 ?
1182 3 : (dram_map > 2 ? 1 : 0))) : 0;
1184 /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1185 nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
1188 return nr_pages;
1192 * Get the number of DCT channels in use.
1194 * Return:
1195 * number of Memory Channels in operation
1196 * Pass back:
1197 * contents of the DCL0_LOW register
1199 static int f10_early_channel_count(struct amd64_pvt *pvt)
1201 int err = 0, channels = 0;
1202 u32 dbam;
1204 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1205 if (err)
1206 goto err_reg;
1208 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
1209 if (err)
1210 goto err_reg;
1212 /* If we are in 128 bit mode, then we are using 2 channels */
1213 if (pvt->dclr0 & F10_WIDTH_128) {
1214 debugf0("Data WIDTH is 128 bits - 2 channels\n");
1215 channels = 2;
1216 return channels;
1220 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1221 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1222 * will be OFF.
1224 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1225 * their CSEnable bit on. If so, then SINGLE DIMM case.
1227 debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1230 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1231 * is more than just one DIMM present in unganged mode. Need to check
1232 * both controllers since DIMMs can be placed in either one.
1234 channels = 0;
1235 err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
1236 if (err)
1237 goto err_reg;
1239 if (DBAM_DIMM(0, dbam) > 0)
1240 channels++;
1241 if (DBAM_DIMM(1, dbam) > 0)
1242 channels++;
1243 if (DBAM_DIMM(2, dbam) > 0)
1244 channels++;
1245 if (DBAM_DIMM(3, dbam) > 0)
1246 channels++;
1248 /* If more than 2 DIMMs are present, then we have 2 channels */
1249 if (channels > 2)
1250 channels = 2;
1251 else if (channels == 0) {
1252 /* No DIMMs on DCT0, so look at DCT1 */
1253 err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
1254 if (err)
1255 goto err_reg;
1257 if (DBAM_DIMM(0, dbam) > 0)
1258 channels++;
1259 if (DBAM_DIMM(1, dbam) > 0)
1260 channels++;
1261 if (DBAM_DIMM(2, dbam) > 0)
1262 channels++;
1263 if (DBAM_DIMM(3, dbam) > 0)
1264 channels++;
1266 if (channels > 2)
1267 channels = 2;
1270 /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
1271 if (channels == 0)
1272 channels = 1;
1274 debugf0("MCT channel count: %d\n", channels);
1276 return channels;
1278 err_reg:
1279 return -1;
1283 static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1285 return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1288 /* Enable extended configuration access via 0xCF8 feature */
1289 static void amd64_setup(struct amd64_pvt *pvt)
1291 u32 reg;
1293 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1295 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1296 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1297 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1300 /* Restore the extended configuration access via 0xCF8 feature */
1301 static void amd64_teardown(struct amd64_pvt *pvt)
1303 u32 reg;
1305 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1307 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1308 if (pvt->flags.cf8_extcfg)
1309 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1310 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1313 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1314 struct amd64_error_info_regs *info)
1316 return (((u64) (info->nbeah & 0xffff)) << 32) +
1317 (info->nbeal & ~0x01);
1321 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1322 * fields from the 'raw' reg into separate data fields.
1324 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1326 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1328 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1330 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1331 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1333 /* read the 'raw' DRAM BASE Address register */
1334 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
1336 /* Read from the ECS data register */
1337 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
1339 /* Extract parts into separate data entries */
1340 pvt->dram_rw_en[dram] = (low_base & 0x3);
1342 if (pvt->dram_rw_en[dram] == 0)
1343 return;
1345 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1347 pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
1348 ((u64) low_base & 0xFFFF0000))) << 8;
1350 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1351 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1353 /* read the 'raw' LIMIT registers */
1354 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
1356 /* Read from the ECS data register for the HIGH portion */
1357 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
1359 debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
1360 high_base, low_base, high_limit, low_limit);
1362 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1363 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1366 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1367 * memory location of the region, so low 24 bits need to be all ones.
1369 low_limit |= 0x0000FFFF;
1370 pvt->dram_limit[dram] =
1371 ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
1374 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1376 int err = 0;
1378 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1379 &pvt->dram_ctl_select_low);
1380 if (err) {
1381 debugf0("Reading F10_DCTL_SEL_LOW failed\n");
1382 } else {
1383 debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
1384 pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
1386 debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
1387 "sel-hi-range=%s\n",
1388 (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
1389 (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
1390 (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
1392 debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
1393 (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
1394 (dct_memory_cleared(pvt) ? "True " : "False "),
1395 dct_sel_interleave_addr(pvt));
1398 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1399 &pvt->dram_ctl_select_high);
1400 if (err)
1401 debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
1405 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1406 * Interleaving Modes.
1408 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1409 int hi_range_sel, u32 intlv_en)
1411 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1413 if (dct_ganging_enabled(pvt))
1414 cs = 0;
1415 else if (hi_range_sel)
1416 cs = dct_sel_high;
1417 else if (dct_interleave_enabled(pvt)) {
1419 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1421 if (dct_sel_interleave_addr(pvt) == 0)
1422 cs = sys_addr >> 6 & 1;
1423 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1424 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1426 if (dct_sel_interleave_addr(pvt) & 1)
1427 cs = (sys_addr >> 9 & 1) ^ temp;
1428 else
1429 cs = (sys_addr >> 6 & 1) ^ temp;
1430 } else if (intlv_en & 4)
1431 cs = sys_addr >> 15 & 1;
1432 else if (intlv_en & 2)
1433 cs = sys_addr >> 14 & 1;
1434 else if (intlv_en & 1)
1435 cs = sys_addr >> 13 & 1;
1436 else
1437 cs = sys_addr >> 12 & 1;
1438 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1439 cs = ~dct_sel_high & 1;
1440 else
1441 cs = 0;
1443 return cs;
1446 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1448 if (intlv_en == 1)
1449 return 1;
1450 else if (intlv_en == 3)
1451 return 2;
1452 else if (intlv_en == 7)
1453 return 3;
1455 return 0;
1458 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1459 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1460 u32 dct_sel_base_addr,
1461 u64 dct_sel_base_off,
1462 u32 hole_valid, u32 hole_off,
1463 u64 dram_base)
1465 u64 chan_off;
1467 if (hi_range_sel) {
1468 if (!(dct_sel_base_addr & 0xFFFFF800) &&
1469 hole_valid && (sys_addr >= 0x100000000ULL))
1470 chan_off = hole_off << 16;
1471 else
1472 chan_off = dct_sel_base_off;
1473 } else {
1474 if (hole_valid && (sys_addr >= 0x100000000ULL))
1475 chan_off = hole_off << 16;
1476 else
1477 chan_off = dram_base & 0xFFFFF8000000ULL;
1480 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1481 (chan_off & 0x0000FFFFFF800000ULL);
1484 /* Hack for the time being - Can we get this from BIOS?? */
1485 #define CH0SPARE_RANK 0
1486 #define CH1SPARE_RANK 1
1489 * checks if the csrow passed in is marked as SPARED, if so returns the new
1490 * spare row
1492 static inline int f10_process_possible_spare(int csrow,
1493 u32 cs, struct amd64_pvt *pvt)
1495 u32 swap_done;
1496 u32 bad_dram_cs;
1498 /* Depending on channel, isolate respective SPARING info */
1499 if (cs) {
1500 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1501 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1502 if (swap_done && (csrow == bad_dram_cs))
1503 csrow = CH1SPARE_RANK;
1504 } else {
1505 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1506 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1507 if (swap_done && (csrow == bad_dram_cs))
1508 csrow = CH0SPARE_RANK;
1510 return csrow;
1514 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1515 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1517 * Return:
1518 * -EINVAL: NOT FOUND
1519 * 0..csrow = Chip-Select Row
1521 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1523 struct mem_ctl_info *mci;
1524 struct amd64_pvt *pvt;
1525 u32 cs_base, cs_mask;
1526 int cs_found = -EINVAL;
1527 int csrow;
1529 mci = mci_lookup[nid];
1530 if (!mci)
1531 return cs_found;
1533 pvt = mci->pvt_info;
1535 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1537 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
1539 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1540 if (!(cs_base & K8_DCSB_CS_ENABLE))
1541 continue;
1544 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1545 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1546 * of the actual address.
1548 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1551 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1552 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1554 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1556 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1557 csrow, cs_base, cs_mask);
1559 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1561 debugf1(" Final CSMask=0x%x\n", cs_mask);
1562 debugf1(" (InputAddr & ~CSMask)=0x%x "
1563 "(CSBase & ~CSMask)=0x%x\n",
1564 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1566 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1567 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1569 debugf1(" MATCH csrow=%d\n", cs_found);
1570 break;
1573 return cs_found;
1576 /* For a given @dram_range, check if @sys_addr falls within it. */
1577 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1578 u64 sys_addr, int *nid, int *chan_sel)
1580 int node_id, cs_found = -EINVAL, high_range = 0;
1581 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1582 u32 hole_valid, tmp, dct_sel_base, channel;
1583 u64 dram_base, chan_addr, dct_sel_base_off;
1585 dram_base = pvt->dram_base[dram_range];
1586 intlv_en = pvt->dram_IntlvEn[dram_range];
1588 node_id = pvt->dram_DstNode[dram_range];
1589 intlv_sel = pvt->dram_IntlvSel[dram_range];
1591 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1592 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1595 * This assumes that one node's DHAR is the same as all the other
1596 * nodes' DHAR.
1598 hole_off = (pvt->dhar & 0x0000FF80);
1599 hole_valid = (pvt->dhar & 0x1);
1600 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1602 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1603 hole_off, hole_valid, intlv_sel);
1605 if (intlv_en ||
1606 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1607 return -EINVAL;
1609 dct_sel_base = dct_sel_baseaddr(pvt);
1612 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1613 * select between DCT0 and DCT1.
1615 if (dct_high_range_enabled(pvt) &&
1616 !dct_ganging_enabled(pvt) &&
1617 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1618 high_range = 1;
1620 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1622 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1623 dct_sel_base_off, hole_valid,
1624 hole_off, dram_base);
1626 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1628 /* remove Node ID (in case of memory interleaving) */
1629 tmp = chan_addr & 0xFC0;
1631 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1633 /* remove channel interleave and hash */
1634 if (dct_interleave_enabled(pvt) &&
1635 !dct_high_range_enabled(pvt) &&
1636 !dct_ganging_enabled(pvt)) {
1637 if (dct_sel_interleave_addr(pvt) != 1)
1638 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1639 else {
1640 tmp = chan_addr & 0xFC0;
1641 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1642 | tmp;
1646 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1647 chan_addr, (u32)(chan_addr >> 8));
1649 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1651 if (cs_found >= 0) {
1652 *nid = node_id;
1653 *chan_sel = channel;
1655 return cs_found;
1658 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1659 int *node, int *chan_sel)
1661 int dram_range, cs_found = -EINVAL;
1662 u64 dram_base, dram_limit;
1664 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1666 if (!pvt->dram_rw_en[dram_range])
1667 continue;
1669 dram_base = pvt->dram_base[dram_range];
1670 dram_limit = pvt->dram_limit[dram_range];
1672 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1674 cs_found = f10_match_to_this_node(pvt, dram_range,
1675 sys_addr, node,
1676 chan_sel);
1677 if (cs_found >= 0)
1678 break;
1681 return cs_found;
1685 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1686 * CSROW, Channel.
1688 * The @sys_addr is usually an error address received from the hardware.
1690 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1691 struct amd64_error_info_regs *info,
1692 u64 sys_addr)
1694 struct amd64_pvt *pvt = mci->pvt_info;
1695 u32 page, offset;
1696 unsigned short syndrome;
1697 int nid, csrow, chan = 0;
1699 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1701 if (csrow >= 0) {
1702 error_address_to_page_and_offset(sys_addr, &page, &offset);
1704 syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
1705 syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
1708 * Is CHIPKILL on? If so, then we can attempt to use the
1709 * syndrome to isolate which channel the error was on.
1711 if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1712 chan = get_channel_from_ecc_syndrome(syndrome);
1714 if (chan >= 0) {
1715 edac_mc_handle_ce(mci, page, offset, syndrome,
1716 csrow, chan, EDAC_MOD_STR);
1717 } else {
1719 * Channel unknown, report all channels on this
1720 * CSROW as failed.
1722 for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1723 chan++) {
1724 edac_mc_handle_ce(mci, page, offset,
1725 syndrome,
1726 csrow, chan,
1727 EDAC_MOD_STR);
1731 } else {
1732 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1737 * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
1738 * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
1739 * indicates an empty DIMM slot, as reported by Hardware on empty slots.
1741 * Normalize to 128MB by subracting 27 bit shift.
1743 static int map_dbam_to_csrow_size(int index)
1745 int mega_bytes = 0;
1747 if (index > 0 && index <= DBAM_MAX_VALUE)
1748 mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
1750 return mega_bytes;
1754 * debug routine to display the memory sizes of a DIMM (ganged or not) and it
1755 * CSROWs as well
1757 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
1758 int ganged)
1760 int dimm, size0, size1;
1761 u32 dbam;
1762 u32 *dcsb;
1764 debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
1765 ctrl ? pvt->dbam1 : pvt->dbam0,
1766 ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
1768 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1769 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1771 /* Dump memory sizes for DIMM and its CSROWs */
1772 for (dimm = 0; dimm < 4; dimm++) {
1774 size0 = 0;
1775 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1776 size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1778 size1 = 0;
1779 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1780 size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1782 debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
1783 "CSROW-%d=%5dMB\n",
1784 ctrl,
1785 dimm,
1786 size0 + size1,
1787 dimm * 2,
1788 size0,
1789 dimm * 2 + 1,
1790 size1);
1795 * Very early hardware probe on pci_probe thread to determine if this module
1796 * supports the hardware.
1798 * Return:
1799 * 0 for OK
1800 * 1 for error
1802 static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
1804 int ret = 0;
1807 * If we are on a DDR3 machine, we don't know yet if
1808 * we support that properly at this time
1810 if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
1811 (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
1813 amd64_printk(KERN_WARNING,
1814 "%s() This machine is running with DDR3 memory. "
1815 "This is not currently supported. "
1816 "DCHR0=0x%x DCHR1=0x%x\n",
1817 __func__, pvt->dchr0, pvt->dchr1);
1819 amd64_printk(KERN_WARNING,
1820 " Contact '%s' module MAINTAINER to help add"
1821 " support.\n",
1822 EDAC_MOD_STR);
1824 ret = 1;
1827 return ret;
1831 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1832 * (as per PCI DEVICE_IDs):
1834 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1835 * DEVICE ID, even though there is differences between the different Revisions
1836 * (CG,D,E,F).
1838 * Family F10h and F11h.
1841 static struct amd64_family_type amd64_family_types[] = {
1842 [K8_CPUS] = {
1843 .ctl_name = "RevF",
1844 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1845 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1846 .ops = {
1847 .early_channel_count = k8_early_channel_count,
1848 .get_error_address = k8_get_error_address,
1849 .read_dram_base_limit = k8_read_dram_base_limit,
1850 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1851 .dbam_map_to_pages = k8_dbam_map_to_pages,
1854 [F10_CPUS] = {
1855 .ctl_name = "Family 10h",
1856 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1857 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1858 .ops = {
1859 .probe_valid_hardware = f10_probe_valid_hardware,
1860 .early_channel_count = f10_early_channel_count,
1861 .get_error_address = f10_get_error_address,
1862 .read_dram_base_limit = f10_read_dram_base_limit,
1863 .read_dram_ctl_register = f10_read_dram_ctl_register,
1864 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1865 .dbam_map_to_pages = f10_dbam_map_to_pages,
1868 [F11_CPUS] = {
1869 .ctl_name = "Family 11h",
1870 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1871 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1872 .ops = {
1873 .probe_valid_hardware = f10_probe_valid_hardware,
1874 .early_channel_count = f10_early_channel_count,
1875 .get_error_address = f10_get_error_address,
1876 .read_dram_base_limit = f10_read_dram_base_limit,
1877 .read_dram_ctl_register = f10_read_dram_ctl_register,
1878 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1879 .dbam_map_to_pages = f10_dbam_map_to_pages,
1884 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1885 unsigned int device,
1886 struct pci_dev *related)
1888 struct pci_dev *dev = NULL;
1890 dev = pci_get_device(vendor, device, dev);
1891 while (dev) {
1892 if ((dev->bus->number == related->bus->number) &&
1893 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1894 break;
1895 dev = pci_get_device(vendor, device, dev);
1898 return dev;
1902 * syndrome mapping table for ECC ChipKill devices
1904 * The comment in each row is the token (nibble) number that is in error.
1905 * The least significant nibble of the syndrome is the mask for the bits
1906 * that are in error (need to be toggled) for the particular nibble.
1908 * Each row contains 16 entries.
1909 * The first entry (0th) is the channel number for that row of syndromes.
1910 * The remaining 15 entries are the syndromes for the respective Error
1911 * bit mask index.
1913 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1914 * bit in error.
1915 * The 2nd index entry is 0x0010 that the second bit is damaged.
1916 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1917 * are damaged.
1918 * Thus so on until index 15, 0x1111, whose entry has the syndrome
1919 * indicating that all 4 bits are damaged.
1921 * A search is performed on this table looking for a given syndrome.
1923 * See the AMD documentation for ECC syndromes. This ECC table is valid
1924 * across all the versions of the AMD64 processors.
1926 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1927 * COLUMN index, then search all ROWS of that column, looking for a match
1928 * with the input syndrome. The ROW value will be the token number.
1930 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1931 * error.
1933 #define NUMBER_ECC_ROWS 36
1934 static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
1935 /* Channel 0 syndromes */
1936 {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1937 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1938 {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1939 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1940 {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1941 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1942 {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
1943 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
1944 {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
1945 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
1946 {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
1947 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
1948 {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
1949 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
1950 {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
1951 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
1952 {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
1953 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
1954 {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
1955 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
1956 {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
1957 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
1958 {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
1959 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
1960 {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
1961 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
1962 {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
1963 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
1964 {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
1965 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
1966 {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
1967 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
1969 /* Channel 1 syndromes */
1970 {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
1971 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
1972 {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
1973 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
1974 {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
1975 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
1976 {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
1977 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
1978 {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
1979 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
1980 {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
1981 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
1982 {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
1983 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
1984 {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
1985 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
1986 {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
1987 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
1988 {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
1989 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
1990 {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
1991 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
1992 {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
1993 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
1994 {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
1995 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
1996 {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
1997 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
1998 {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
1999 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
2000 {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
2001 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
2003 /* ECC bits are also in the set of tokens and they too can go bad
2004 * first 2 cover channel 0, while the second 2 cover channel 1
2006 {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
2007 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
2008 {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
2009 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
2010 {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
2011 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
2012 {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
2013 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
2017 * Given the syndrome argument, scan each of the channel tables for a syndrome
2018 * match. Depending on which table it is found, return the channel number.
2020 static int get_channel_from_ecc_syndrome(unsigned short syndrome)
2022 int row;
2023 int column;
2025 /* Determine column to scan */
2026 column = syndrome & 0xF;
2028 /* Scan all rows, looking for syndrome, or end of table */
2029 for (row = 0; row < NUMBER_ECC_ROWS; row++) {
2030 if (ecc_chipkill_syndromes[row][column] == syndrome)
2031 return ecc_chipkill_syndromes[row][0];
2034 debugf0("syndrome(%x) not found\n", syndrome);
2035 return -1;
2039 * Check for valid error in the NB Status High register. If so, proceed to read
2040 * NB Status Low, NB Address Low and NB Address High registers and store data
2041 * into error structure.
2043 * Returns:
2044 * - 1: if hardware regs contains valid error info
2045 * - 0: if no valid error is indicated
2047 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
2048 struct amd64_error_info_regs *regs)
2050 struct amd64_pvt *pvt;
2051 struct pci_dev *misc_f3_ctl;
2052 int err = 0;
2054 pvt = mci->pvt_info;
2055 misc_f3_ctl = pvt->misc_f3_ctl;
2057 err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
2058 if (err)
2059 goto err_reg;
2061 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
2062 return 0;
2064 /* valid error, read remaining error information registers */
2065 err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
2066 if (err)
2067 goto err_reg;
2069 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
2070 if (err)
2071 goto err_reg;
2073 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
2074 if (err)
2075 goto err_reg;
2077 err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
2078 if (err)
2079 goto err_reg;
2081 return 1;
2083 err_reg:
2084 debugf0("Reading error info register failed\n");
2085 return 0;
2089 * This function is called to retrieve the error data from hardware and store it
2090 * in the info structure.
2092 * Returns:
2093 * - 1: if a valid error is found
2094 * - 0: if no error is found
2096 static int amd64_get_error_info(struct mem_ctl_info *mci,
2097 struct amd64_error_info_regs *info)
2099 struct amd64_pvt *pvt;
2100 struct amd64_error_info_regs regs;
2102 pvt = mci->pvt_info;
2104 if (!amd64_get_error_info_regs(mci, info))
2105 return 0;
2108 * Here's the problem with the K8's EDAC reporting: There are four
2109 * registers which report pieces of error information. They are shared
2110 * between CEs and UEs. Furthermore, contrary to what is stated in the
2111 * BKDG, the overflow bit is never used! Every error always updates the
2112 * reporting registers.
2114 * Can you see the race condition? All four error reporting registers
2115 * must be read before a new error updates them! There is no way to read
2116 * all four registers atomically. The best than can be done is to detect
2117 * that a race has occured and then report the error without any kind of
2118 * precision.
2120 * What is still positive is that errors are still reported and thus
2121 * problems can still be detected - just not localized because the
2122 * syndrome and address are spread out across registers.
2124 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2125 * UEs and CEs should have separate register sets with proper overflow
2126 * bits that are used! At very least the problem can be fixed by
2127 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2128 * set the overflow bit - unless the current error is CE and the new
2129 * error is UE which would be the only situation for overwriting the
2130 * current values.
2133 regs = *info;
2135 /* Use info from the second read - most current */
2136 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2137 return 0;
2139 /* clear the error bits in hardware */
2140 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2142 /* Check for the possible race condition */
2143 if ((regs.nbsh != info->nbsh) ||
2144 (regs.nbsl != info->nbsl) ||
2145 (regs.nbeah != info->nbeah) ||
2146 (regs.nbeal != info->nbeal)) {
2147 amd64_mc_printk(mci, KERN_WARNING,
2148 "hardware STATUS read access race condition "
2149 "detected!\n");
2150 return 0;
2152 return 1;
2155 static inline void amd64_decode_gart_tlb_error(struct mem_ctl_info *mci,
2156 struct amd64_error_info_regs *info)
2158 u32 err_code;
2159 u32 ec_tt; /* error code transaction type (2b) */
2160 u32 ec_ll; /* error code cache level (2b) */
2162 err_code = EXTRACT_ERROR_CODE(info->nbsl);
2163 ec_ll = EXTRACT_LL_CODE(err_code);
2164 ec_tt = EXTRACT_TT_CODE(err_code);
2166 amd64_mc_printk(mci, KERN_ERR,
2167 "GART TLB event: transaction type(%s), "
2168 "cache level(%s)\n", tt_msgs[ec_tt], ll_msgs[ec_ll]);
2171 static inline void amd64_decode_mem_cache_error(struct mem_ctl_info *mci,
2172 struct amd64_error_info_regs *info)
2174 u32 err_code;
2175 u32 ec_rrrr; /* error code memory transaction (4b) */
2176 u32 ec_tt; /* error code transaction type (2b) */
2177 u32 ec_ll; /* error code cache level (2b) */
2179 err_code = EXTRACT_ERROR_CODE(info->nbsl);
2180 ec_ll = EXTRACT_LL_CODE(err_code);
2181 ec_tt = EXTRACT_TT_CODE(err_code);
2182 ec_rrrr = EXTRACT_RRRR_CODE(err_code);
2184 amd64_mc_printk(mci, KERN_ERR,
2185 "cache hierarchy error: memory transaction type(%s), "
2186 "transaction type(%s), cache level(%s)\n",
2187 rrrr_msgs[ec_rrrr], tt_msgs[ec_tt], ll_msgs[ec_ll]);
2192 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2193 * ADDRESS and process.
2195 static void amd64_handle_ce(struct mem_ctl_info *mci,
2196 struct amd64_error_info_regs *info)
2198 struct amd64_pvt *pvt = mci->pvt_info;
2199 u64 SystemAddress;
2201 /* Ensure that the Error Address is VALID */
2202 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2203 amd64_mc_printk(mci, KERN_ERR,
2204 "HW has no ERROR_ADDRESS available\n");
2205 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2206 return;
2209 SystemAddress = extract_error_address(mci, info);
2211 amd64_mc_printk(mci, KERN_ERR,
2212 "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
2214 pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
2217 /* Handle any Un-correctable Errors (UEs) */
2218 static void amd64_handle_ue(struct mem_ctl_info *mci,
2219 struct amd64_error_info_regs *info)
2221 int csrow;
2222 u64 SystemAddress;
2223 u32 page, offset;
2224 struct mem_ctl_info *log_mci, *src_mci = NULL;
2226 log_mci = mci;
2228 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2229 amd64_mc_printk(mci, KERN_CRIT,
2230 "HW has no ERROR_ADDRESS available\n");
2231 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2232 return;
2235 SystemAddress = extract_error_address(mci, info);
2238 * Find out which node the error address belongs to. This may be
2239 * different from the node that detected the error.
2241 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
2242 if (!src_mci) {
2243 amd64_mc_printk(mci, KERN_CRIT,
2244 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2245 (unsigned long)SystemAddress);
2246 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2247 return;
2250 log_mci = src_mci;
2252 csrow = sys_addr_to_csrow(log_mci, SystemAddress);
2253 if (csrow < 0) {
2254 amd64_mc_printk(mci, KERN_CRIT,
2255 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2256 (unsigned long)SystemAddress);
2257 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2258 } else {
2259 error_address_to_page_and_offset(SystemAddress, &page, &offset);
2260 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2264 static void amd64_decode_bus_error(struct mem_ctl_info *mci,
2265 struct amd64_error_info_regs *info)
2267 u32 err_code, ext_ec;
2268 u32 ec_pp; /* error code participating processor (2p) */
2269 u32 ec_to; /* error code timed out (1b) */
2270 u32 ec_rrrr; /* error code memory transaction (4b) */
2271 u32 ec_ii; /* error code memory or I/O (2b) */
2272 u32 ec_ll; /* error code cache level (2b) */
2274 ext_ec = EXTRACT_EXT_ERROR_CODE(info->nbsl);
2275 err_code = EXTRACT_ERROR_CODE(info->nbsl);
2277 ec_ll = EXTRACT_LL_CODE(err_code);
2278 ec_ii = EXTRACT_II_CODE(err_code);
2279 ec_rrrr = EXTRACT_RRRR_CODE(err_code);
2280 ec_to = EXTRACT_TO_CODE(err_code);
2281 ec_pp = EXTRACT_PP_CODE(err_code);
2283 amd64_mc_printk(mci, KERN_ERR,
2284 "BUS ERROR:\n"
2285 " time-out(%s) mem or i/o(%s)\n"
2286 " participating processor(%s)\n"
2287 " memory transaction type(%s)\n"
2288 " cache level(%s) Error Found by: %s\n",
2289 to_msgs[ec_to],
2290 ii_msgs[ec_ii],
2291 pp_msgs[ec_pp],
2292 rrrr_msgs[ec_rrrr],
2293 ll_msgs[ec_ll],
2294 (info->nbsh & K8_NBSH_ERR_SCRUBER) ?
2295 "Scrubber" : "Normal Operation");
2297 /* If this was an 'observed' error, early out */
2298 if (ec_pp == K8_NBSL_PP_OBS)
2299 return; /* We aren't the node involved */
2301 /* Parse out the extended error code for ECC events */
2302 switch (ext_ec) {
2303 /* F10 changed to one Extended ECC error code */
2304 case F10_NBSL_EXT_ERR_RES: /* Reserved field */
2305 case F10_NBSL_EXT_ERR_ECC: /* F10 ECC ext err code */
2306 break;
2308 default:
2309 amd64_mc_printk(mci, KERN_ERR, "NOT ECC: no special error "
2310 "handling for this error\n");
2311 return;
2314 if (info->nbsh & K8_NBSH_CECC)
2315 amd64_handle_ce(mci, info);
2316 else if (info->nbsh & K8_NBSH_UECC)
2317 amd64_handle_ue(mci, info);
2320 * If main error is CE then overflow must be CE. If main error is UE
2321 * then overflow is unknown. We'll call the overflow a CE - if
2322 * panic_on_ue is set then we're already panic'ed and won't arrive
2323 * here. Else, then apparently someone doesn't think that UE's are
2324 * catastrophic.
2326 if (info->nbsh & K8_NBSH_OVERFLOW)
2327 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR
2328 "Error Overflow set");
2331 int amd64_process_error_info(struct mem_ctl_info *mci,
2332 struct amd64_error_info_regs *info,
2333 int handle_errors)
2335 struct amd64_pvt *pvt;
2336 struct amd64_error_info_regs *regs;
2337 u32 err_code, ext_ec;
2338 int gart_tlb_error = 0;
2340 pvt = mci->pvt_info;
2342 /* If caller doesn't want us to process the error, return */
2343 if (!handle_errors)
2344 return 1;
2346 regs = info;
2348 debugf1("NorthBridge ERROR: mci(0x%p)\n", mci);
2349 debugf1(" MC node(%d) Error-Address(0x%.8x-%.8x)\n",
2350 pvt->mc_node_id, regs->nbeah, regs->nbeal);
2351 debugf1(" nbsh(0x%.8x) nbsl(0x%.8x)\n",
2352 regs->nbsh, regs->nbsl);
2353 debugf1(" Valid Error=%s Overflow=%s\n",
2354 (regs->nbsh & K8_NBSH_VALID_BIT) ? "True" : "False",
2355 (regs->nbsh & K8_NBSH_OVERFLOW) ? "True" : "False");
2356 debugf1(" Err Uncorrected=%s MCA Error Reporting=%s\n",
2357 (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) ?
2358 "True" : "False",
2359 (regs->nbsh & K8_NBSH_ERR_ENABLE) ?
2360 "True" : "False");
2361 debugf1(" MiscErr Valid=%s ErrAddr Valid=%s PCC=%s\n",
2362 (regs->nbsh & K8_NBSH_MISC_ERR_VALID) ?
2363 "True" : "False",
2364 (regs->nbsh & K8_NBSH_VALID_ERROR_ADDR) ?
2365 "True" : "False",
2366 (regs->nbsh & K8_NBSH_PCC) ?
2367 "True" : "False");
2368 debugf1(" CECC=%s UECC=%s Found by Scruber=%s\n",
2369 (regs->nbsh & K8_NBSH_CECC) ?
2370 "True" : "False",
2371 (regs->nbsh & K8_NBSH_UECC) ?
2372 "True" : "False",
2373 (regs->nbsh & K8_NBSH_ERR_SCRUBER) ?
2374 "True" : "False");
2375 debugf1(" CORE0=%s CORE1=%s CORE2=%s CORE3=%s\n",
2376 (regs->nbsh & K8_NBSH_CORE0) ? "True" : "False",
2377 (regs->nbsh & K8_NBSH_CORE1) ? "True" : "False",
2378 (regs->nbsh & K8_NBSH_CORE2) ? "True" : "False",
2379 (regs->nbsh & K8_NBSH_CORE3) ? "True" : "False");
2382 err_code = EXTRACT_ERROR_CODE(regs->nbsl);
2384 /* Determine which error type:
2385 * 1) GART errors - non-fatal, developmental events
2386 * 2) MEMORY errors
2387 * 3) BUS errors
2388 * 4) Unknown error
2390 if (TEST_TLB_ERROR(err_code)) {
2392 * GART errors are intended to help graphics driver developers
2393 * to detect bad GART PTEs. It is recommended by AMD to disable
2394 * GART table walk error reporting by default[1] (currently
2395 * being disabled in mce_cpu_quirks()) and according to the
2396 * comment in mce_cpu_quirks(), such GART errors can be
2397 * incorrectly triggered. We may see these errors anyway and
2398 * unless requested by the user, they won't be reported.
2400 * [1] section 13.10.1 on BIOS and Kernel Developers Guide for
2401 * AMD NPT family 0Fh processors
2403 if (report_gart_errors == 0)
2404 return 1;
2407 * Only if GART error reporting is requested should we generate
2408 * any logs.
2410 gart_tlb_error = 1;
2412 debugf1("GART TLB error\n");
2413 amd64_decode_gart_tlb_error(mci, info);
2414 } else if (TEST_MEM_ERROR(err_code)) {
2415 debugf1("Memory/Cache error\n");
2416 amd64_decode_mem_cache_error(mci, info);
2417 } else if (TEST_BUS_ERROR(err_code)) {
2418 debugf1("Bus (Link/DRAM) error\n");
2419 amd64_decode_bus_error(mci, info);
2420 } else {
2421 /* shouldn't reach here! */
2422 amd64_mc_printk(mci, KERN_WARNING,
2423 "%s(): unknown MCE error 0x%x\n", __func__,
2424 err_code);
2427 ext_ec = EXTRACT_EXT_ERROR_CODE(regs->nbsl);
2428 amd64_mc_printk(mci, KERN_ERR,
2429 "ExtErr=(0x%x) %s\n", ext_ec, ext_msgs[ext_ec]);
2431 if (((ext_ec >= F10_NBSL_EXT_ERR_CRC &&
2432 ext_ec <= F10_NBSL_EXT_ERR_TGT) ||
2433 (ext_ec == F10_NBSL_EXT_ERR_RMW)) &&
2434 EXTRACT_LDT_LINK(info->nbsh)) {
2436 amd64_mc_printk(mci, KERN_ERR,
2437 "Error on hypertransport link: %s\n",
2438 htlink_msgs[
2439 EXTRACT_LDT_LINK(info->nbsh)]);
2443 * Check the UE bit of the NB status high register, if set generate some
2444 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2445 * If it was a GART error, skip that process.
2447 if (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) {
2448 amd64_mc_printk(mci, KERN_CRIT, "uncorrected error\n");
2449 if (!gart_tlb_error)
2450 edac_mc_handle_ue_no_info(mci, "UE bit is set\n");
2453 if (regs->nbsh & K8_NBSH_PCC)
2454 amd64_mc_printk(mci, KERN_CRIT,
2455 "PCC (processor context corrupt) set\n");
2457 return 1;
2459 EXPORT_SYMBOL_GPL(amd64_process_error_info);
2462 * The main polling 'check' function, called FROM the edac core to perform the
2463 * error checking and if an error is encountered, error processing.
2465 static void amd64_check(struct mem_ctl_info *mci)
2467 struct amd64_error_info_regs info;
2469 if (amd64_get_error_info(mci, &info))
2470 amd64_process_error_info(mci, &info, 1);
2474 * Input:
2475 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2476 * 2) AMD Family index value
2478 * Ouput:
2479 * Upon return of 0, the following filled in:
2481 * struct pvt->addr_f1_ctl
2482 * struct pvt->misc_f3_ctl
2484 * Filled in with related device funcitions of 'dram_f2_ctl'
2485 * These devices are "reserved" via the pci_get_device()
2487 * Upon return of 1 (error status):
2489 * Nothing reserved
2491 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2493 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2495 /* Reserve the ADDRESS MAP Device */
2496 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2497 amd64_dev->addr_f1_ctl,
2498 pvt->dram_f2_ctl);
2500 if (!pvt->addr_f1_ctl) {
2501 amd64_printk(KERN_ERR, "error address map device not found: "
2502 "vendor %x device 0x%x (broken BIOS?)\n",
2503 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2504 return 1;
2507 /* Reserve the MISC Device */
2508 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2509 amd64_dev->misc_f3_ctl,
2510 pvt->dram_f2_ctl);
2512 if (!pvt->misc_f3_ctl) {
2513 pci_dev_put(pvt->addr_f1_ctl);
2514 pvt->addr_f1_ctl = NULL;
2516 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2517 "vendor %x device 0x%x (broken BIOS?)\n",
2518 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2519 return 1;
2522 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2523 pci_name(pvt->addr_f1_ctl));
2524 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2525 pci_name(pvt->dram_f2_ctl));
2526 debugf1(" Misc device PCI Bus ID:\t%s\n",
2527 pci_name(pvt->misc_f3_ctl));
2529 return 0;
2532 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2534 pci_dev_put(pvt->addr_f1_ctl);
2535 pci_dev_put(pvt->misc_f3_ctl);
2539 * Retrieve the hardware registers of the memory controller (this includes the
2540 * 'Address Map' and 'Misc' device regs)
2542 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2544 u64 msr_val;
2545 int dram, err = 0;
2548 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2549 * those are Read-As-Zero
2551 rdmsrl(MSR_K8_TOP_MEM1, msr_val);
2552 pvt->top_mem = msr_val >> 23;
2553 debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
2555 /* check first whether TOP_MEM2 is enabled */
2556 rdmsrl(MSR_K8_SYSCFG, msr_val);
2557 if (msr_val & (1U << 21)) {
2558 rdmsrl(MSR_K8_TOP_MEM2, msr_val);
2559 pvt->top_mem2 = msr_val >> 23;
2560 debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
2561 } else
2562 debugf0(" TOP_MEM2 disabled.\n");
2564 amd64_cpu_display_info(pvt);
2566 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2567 if (err)
2568 goto err_reg;
2570 if (pvt->ops->read_dram_ctl_register)
2571 pvt->ops->read_dram_ctl_register(pvt);
2573 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2575 * Call CPU specific READ function to get the DRAM Base and
2576 * Limit values from the DCT.
2578 pvt->ops->read_dram_base_limit(pvt, dram);
2581 * Only print out debug info on rows with both R and W Enabled.
2582 * Normal processing, compiler should optimize this whole 'if'
2583 * debug output block away.
2585 if (pvt->dram_rw_en[dram] != 0) {
2586 debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
2587 "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
2588 dram,
2589 (u32)(pvt->dram_base[dram] >> 32),
2590 (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
2591 (u32)(pvt->dram_limit[dram] >> 32),
2592 (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
2593 debugf1(" IntlvEn=%s %s %s "
2594 "IntlvSel=%d DstNode=%d\n",
2595 pvt->dram_IntlvEn[dram] ?
2596 "Enabled" : "Disabled",
2597 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2598 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2599 pvt->dram_IntlvSel[dram],
2600 pvt->dram_DstNode[dram]);
2604 amd64_read_dct_base_mask(pvt);
2606 err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2607 if (err)
2608 goto err_reg;
2610 amd64_read_dbam_reg(pvt);
2612 err = pci_read_config_dword(pvt->misc_f3_ctl,
2613 F10_ONLINE_SPARE, &pvt->online_spare);
2614 if (err)
2615 goto err_reg;
2617 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2618 if (err)
2619 goto err_reg;
2621 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2622 if (err)
2623 goto err_reg;
2625 if (!dct_ganging_enabled(pvt)) {
2626 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
2627 &pvt->dclr1);
2628 if (err)
2629 goto err_reg;
2631 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
2632 &pvt->dchr1);
2633 if (err)
2634 goto err_reg;
2637 amd64_dump_misc_regs(pvt);
2639 return;
2641 err_reg:
2642 debugf0("Reading an MC register failed\n");
2647 * NOTE: CPU Revision Dependent code
2649 * Input:
2650 * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
2651 * k8 private pointer to -->
2652 * DRAM Bank Address mapping register
2653 * node_id
2654 * DCL register where dual_channel_active is
2656 * The DBAM register consists of 4 sets of 4 bits each definitions:
2658 * Bits: CSROWs
2659 * 0-3 CSROWs 0 and 1
2660 * 4-7 CSROWs 2 and 3
2661 * 8-11 CSROWs 4 and 5
2662 * 12-15 CSROWs 6 and 7
2664 * Values range from: 0 to 15
2665 * The meaning of the values depends on CPU revision and dual-channel state,
2666 * see relevant BKDG more info.
2668 * The memory controller provides for total of only 8 CSROWs in its current
2669 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2670 * single channel or two (2) DIMMs in dual channel mode.
2672 * The following code logic collapses the various tables for CSROW based on CPU
2673 * revision.
2675 * Returns:
2676 * The number of PAGE_SIZE pages on the specified CSROW number it
2677 * encompasses
2680 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2682 u32 dram_map, nr_pages;
2685 * The math on this doesn't look right on the surface because x/2*4 can
2686 * be simplified to x*2 but this expression makes use of the fact that
2687 * it is integral math where 1/2=0. This intermediate value becomes the
2688 * number of bits to shift the DBAM register to extract the proper CSROW
2689 * field.
2691 dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2693 nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
2696 * If dual channel then double the memory size of single channel.
2697 * Channel count is 1 or 2
2699 nr_pages <<= (pvt->channel_count - 1);
2701 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
2702 debugf0(" nr_pages= %u channel-count = %d\n",
2703 nr_pages, pvt->channel_count);
2705 return nr_pages;
2709 * Initialize the array of csrow attribute instances, based on the values
2710 * from pci config hardware registers.
2712 static int amd64_init_csrows(struct mem_ctl_info *mci)
2714 struct csrow_info *csrow;
2715 struct amd64_pvt *pvt;
2716 u64 input_addr_min, input_addr_max, sys_addr;
2717 int i, err = 0, empty = 1;
2719 pvt = mci->pvt_info;
2721 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2722 if (err)
2723 debugf0("Reading K8_NBCFG failed\n");
2725 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2726 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2727 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2730 for (i = 0; i < CHIPSELECT_COUNT; i++) {
2731 csrow = &mci->csrows[i];
2733 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2734 debugf1("----CSROW %d EMPTY for node %d\n", i,
2735 pvt->mc_node_id);
2736 continue;
2739 debugf1("----CSROW %d VALID for MC node %d\n",
2740 i, pvt->mc_node_id);
2742 empty = 0;
2743 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2744 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2745 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2746 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2747 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2748 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2749 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2750 /* 8 bytes of resolution */
2752 csrow->mtype = amd64_determine_memory_type(pvt);
2754 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2755 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2756 (unsigned long)input_addr_min,
2757 (unsigned long)input_addr_max);
2758 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2759 (unsigned long)sys_addr, csrow->page_mask);
2760 debugf1(" nr_pages: %u first_page: 0x%lx "
2761 "last_page: 0x%lx\n",
2762 (unsigned)csrow->nr_pages,
2763 csrow->first_page, csrow->last_page);
2766 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2768 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2769 csrow->edac_mode =
2770 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2771 EDAC_S4ECD4ED : EDAC_SECDED;
2772 else
2773 csrow->edac_mode = EDAC_NONE;
2776 return empty;
2780 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2781 * enable it.
2783 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2785 struct amd64_pvt *pvt = mci->pvt_info;
2786 const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
2787 int cpu, idx = 0, err = 0;
2788 struct msr msrs[cpumask_weight(cpumask)];
2789 u32 value;
2790 u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2792 if (!ecc_enable_override)
2793 return;
2795 memset(msrs, 0, sizeof(msrs));
2797 amd64_printk(KERN_WARNING,
2798 "'ecc_enable_override' parameter is active, "
2799 "Enabling AMD ECC hardware now: CAUTION\n");
2801 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2802 if (err)
2803 debugf0("Reading K8_NBCTL failed\n");
2805 /* turn on UECCn and CECCEn bits */
2806 pvt->old_nbctl = value & mask;
2807 pvt->nbctl_mcgctl_saved = 1;
2809 value |= mask;
2810 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2812 rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2814 for_each_cpu(cpu, cpumask) {
2815 if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
2816 set_bit(idx, &pvt->old_mcgctl);
2818 msrs[idx].l |= K8_MSR_MCGCTL_NBE;
2819 idx++;
2821 wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2823 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2824 if (err)
2825 debugf0("Reading K8_NBCFG failed\n");
2827 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2828 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2829 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2831 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2832 amd64_printk(KERN_WARNING,
2833 "This node reports that DRAM ECC is "
2834 "currently Disabled; ENABLING now\n");
2836 /* Attempt to turn on DRAM ECC Enable */
2837 value |= K8_NBCFG_ECC_ENABLE;
2838 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2840 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2841 if (err)
2842 debugf0("Reading K8_NBCFG failed\n");
2844 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2845 amd64_printk(KERN_WARNING,
2846 "Hardware rejects Enabling DRAM ECC checking\n"
2847 "Check memory DIMM configuration\n");
2848 } else {
2849 amd64_printk(KERN_DEBUG,
2850 "Hardware accepted DRAM ECC Enable\n");
2853 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2854 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2855 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2857 pvt->ctl_error_info.nbcfg = value;
2860 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2862 const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
2863 int cpu, idx = 0, err = 0;
2864 struct msr msrs[cpumask_weight(cpumask)];
2865 u32 value;
2866 u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2868 if (!pvt->nbctl_mcgctl_saved)
2869 return;
2871 memset(msrs, 0, sizeof(msrs));
2873 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2874 if (err)
2875 debugf0("Reading K8_NBCTL failed\n");
2876 value &= ~mask;
2877 value |= pvt->old_nbctl;
2879 /* restore the NB Enable MCGCTL bit */
2880 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2882 rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2884 for_each_cpu(cpu, cpumask) {
2885 msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
2886 msrs[idx].l |=
2887 test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
2888 idx++;
2891 wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2894 static void check_mcg_ctl(void *ret)
2896 u64 msr_val = 0;
2897 u8 nbe;
2899 rdmsrl(MSR_IA32_MCG_CTL, msr_val);
2900 nbe = msr_val & K8_MSR_MCGCTL_NBE;
2902 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2903 raw_smp_processor_id(), msr_val,
2904 (nbe ? "enabled" : "disabled"));
2906 if (!nbe)
2907 *(int *)ret = 0;
2910 /* check MCG_CTL on all the cpus on this node */
2911 static int amd64_mcg_ctl_enabled_on_cpus(const cpumask_t *mask)
2913 int ret = 1;
2914 preempt_disable();
2915 smp_call_function_many(mask, check_mcg_ctl, &ret, 1);
2916 preempt_enable();
2918 return ret;
2922 * EDAC requires that the BIOS have ECC enabled before taking over the
2923 * processing of ECC errors. This is because the BIOS can properly initialize
2924 * the memory system completely. A command line option allows to force-enable
2925 * hardware ECC later in amd64_enable_ecc_error_reporting().
2927 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2929 u32 value;
2930 int err = 0, ret = 0;
2931 u8 ecc_enabled = 0;
2933 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2934 if (err)
2935 debugf0("Reading K8_NBCTL failed\n");
2937 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2939 ret = amd64_mcg_ctl_enabled_on_cpus(cpumask_of_node(pvt->mc_node_id));
2941 debugf0("K8_NBCFG=0x%x, DRAM ECC is %s\n", value,
2942 (value & K8_NBCFG_ECC_ENABLE ? "enabled" : "disabled"));
2944 if (!ecc_enabled || !ret) {
2945 if (!ecc_enabled) {
2946 amd64_printk(KERN_WARNING, "This node reports that "
2947 "Memory ECC is currently "
2948 "disabled.\n");
2950 amd64_printk(KERN_WARNING, "bit 0x%lx in register "
2951 "F3x%x of the MISC_CONTROL device (%s) "
2952 "should be enabled\n", K8_NBCFG_ECC_ENABLE,
2953 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2955 if (!ret) {
2956 amd64_printk(KERN_WARNING, "bit 0x%016lx in MSR 0x%08x "
2957 "of node %d should be enabled\n",
2958 K8_MSR_MCGCTL_NBE, MSR_IA32_MCG_CTL,
2959 pvt->mc_node_id);
2961 if (!ecc_enable_override) {
2962 amd64_printk(KERN_WARNING, "WARNING: ECC is NOT "
2963 "currently enabled by the BIOS. Module "
2964 "will NOT be loaded.\n"
2965 " Either Enable ECC in the BIOS, "
2966 "or use the 'ecc_enable_override' "
2967 "parameter.\n"
2968 " Might be a BIOS bug, if BIOS says "
2969 "ECC is enabled\n"
2970 " Use of the override can cause "
2971 "unknown side effects.\n");
2972 ret = -ENODEV;
2973 } else
2975 * enable further driver loading if ECC enable is
2976 * overridden.
2978 ret = 0;
2979 } else {
2980 amd64_printk(KERN_INFO,
2981 "ECC is enabled by BIOS, Proceeding "
2982 "with EDAC module initialization\n");
2984 /* Signal good ECC status */
2985 ret = 0;
2987 /* CLEAR the override, since BIOS controlled it */
2988 ecc_enable_override = 0;
2991 return ret;
2994 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2995 ARRAY_SIZE(amd64_inj_attrs) +
2998 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
3000 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
3002 unsigned int i = 0, j = 0;
3004 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
3005 sysfs_attrs[i] = amd64_dbg_attrs[i];
3007 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
3008 sysfs_attrs[i] = amd64_inj_attrs[j];
3010 sysfs_attrs[i] = terminator;
3012 mci->mc_driver_sysfs_attributes = sysfs_attrs;
3015 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
3017 struct amd64_pvt *pvt = mci->pvt_info;
3019 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
3020 mci->edac_ctl_cap = EDAC_FLAG_NONE;
3022 if (pvt->nbcap & K8_NBCAP_SECDED)
3023 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3025 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
3026 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3028 mci->edac_cap = amd64_determine_edac_cap(pvt);
3029 mci->mod_name = EDAC_MOD_STR;
3030 mci->mod_ver = EDAC_AMD64_VERSION;
3031 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
3032 mci->dev_name = pci_name(pvt->dram_f2_ctl);
3033 mci->ctl_page_to_phys = NULL;
3035 /* IMPORTANT: Set the polling 'check' function in this module */
3036 mci->edac_check = amd64_check;
3038 /* memory scrubber interface */
3039 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
3040 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
3044 * Init stuff for this DRAM Controller device.
3046 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
3047 * Space feature MUST be enabled on ALL Processors prior to actually reading
3048 * from the ECS registers. Since the loading of the module can occur on any
3049 * 'core', and cores don't 'see' all the other processors ECS data when the
3050 * others are NOT enabled. Our solution is to first enable ECS access in this
3051 * routine on all processors, gather some data in a amd64_pvt structure and
3052 * later come back in a finish-setup function to perform that final
3053 * initialization. See also amd64_init_2nd_stage() for that.
3055 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
3056 int mc_type_index)
3058 struct amd64_pvt *pvt = NULL;
3059 int err = 0, ret;
3061 ret = -ENOMEM;
3062 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
3063 if (!pvt)
3064 goto err_exit;
3066 pvt->mc_node_id = get_node_id(dram_f2_ctl);
3068 pvt->dram_f2_ctl = dram_f2_ctl;
3069 pvt->ext_model = boot_cpu_data.x86_model >> 4;
3070 pvt->mc_type_index = mc_type_index;
3071 pvt->ops = family_ops(mc_type_index);
3072 pvt->old_mcgctl = 0;
3075 * We have the dram_f2_ctl device as an argument, now go reserve its
3076 * sibling devices from the PCI system.
3078 ret = -ENODEV;
3079 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
3080 if (err)
3081 goto err_free;
3083 ret = -EINVAL;
3084 err = amd64_check_ecc_enabled(pvt);
3085 if (err)
3086 goto err_put;
3089 * Key operation here: setup of HW prior to performing ops on it. Some
3090 * setup is required to access ECS data. After this is performed, the
3091 * 'teardown' function must be called upon error and normal exit paths.
3093 if (boot_cpu_data.x86 >= 0x10)
3094 amd64_setup(pvt);
3097 * Save the pointer to the private data for use in 2nd initialization
3098 * stage
3100 pvt_lookup[pvt->mc_node_id] = pvt;
3102 return 0;
3104 err_put:
3105 amd64_free_mc_sibling_devices(pvt);
3107 err_free:
3108 kfree(pvt);
3110 err_exit:
3111 return ret;
3115 * This is the finishing stage of the init code. Needs to be performed after all
3116 * MCs' hardware have been prepped for accessing extended config space.
3118 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
3120 int node_id = pvt->mc_node_id;
3121 struct mem_ctl_info *mci;
3122 int ret, err = 0;
3124 amd64_read_mc_registers(pvt);
3126 ret = -ENODEV;
3127 if (pvt->ops->probe_valid_hardware) {
3128 err = pvt->ops->probe_valid_hardware(pvt);
3129 if (err)
3130 goto err_exit;
3134 * We need to determine how many memory channels there are. Then use
3135 * that information for calculating the size of the dynamic instance
3136 * tables in the 'mci' structure
3138 pvt->channel_count = pvt->ops->early_channel_count(pvt);
3139 if (pvt->channel_count < 0)
3140 goto err_exit;
3142 ret = -ENOMEM;
3143 mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
3144 if (!mci)
3145 goto err_exit;
3147 mci->pvt_info = pvt;
3149 mci->dev = &pvt->dram_f2_ctl->dev;
3150 amd64_setup_mci_misc_attributes(mci);
3152 if (amd64_init_csrows(mci))
3153 mci->edac_cap = EDAC_FLAG_NONE;
3155 amd64_enable_ecc_error_reporting(mci);
3156 amd64_set_mc_sysfs_attributes(mci);
3158 ret = -ENODEV;
3159 if (edac_mc_add_mc(mci)) {
3160 debugf1("failed edac_mc_add_mc()\n");
3161 goto err_add_mc;
3164 mci_lookup[node_id] = mci;
3165 pvt_lookup[node_id] = NULL;
3166 return 0;
3168 err_add_mc:
3169 edac_mc_free(mci);
3171 err_exit:
3172 debugf0("failure to init 2nd stage: ret=%d\n", ret);
3174 amd64_restore_ecc_error_reporting(pvt);
3176 if (boot_cpu_data.x86 > 0xf)
3177 amd64_teardown(pvt);
3179 amd64_free_mc_sibling_devices(pvt);
3181 kfree(pvt_lookup[pvt->mc_node_id]);
3182 pvt_lookup[node_id] = NULL;
3184 return ret;
3188 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
3189 const struct pci_device_id *mc_type)
3191 int ret = 0;
3193 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
3194 get_amd_family_name(mc_type->driver_data));
3196 ret = pci_enable_device(pdev);
3197 if (ret < 0)
3198 ret = -EIO;
3199 else
3200 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
3202 if (ret < 0)
3203 debugf0("ret=%d\n", ret);
3205 return ret;
3208 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
3210 struct mem_ctl_info *mci;
3211 struct amd64_pvt *pvt;
3213 /* Remove from EDAC CORE tracking list */
3214 mci = edac_mc_del_mc(&pdev->dev);
3215 if (!mci)
3216 return;
3218 pvt = mci->pvt_info;
3220 amd64_restore_ecc_error_reporting(pvt);
3222 if (boot_cpu_data.x86 > 0xf)
3223 amd64_teardown(pvt);
3225 amd64_free_mc_sibling_devices(pvt);
3227 kfree(pvt);
3228 mci->pvt_info = NULL;
3230 mci_lookup[pvt->mc_node_id] = NULL;
3232 /* Free the EDAC CORE resources */
3233 edac_mc_free(mci);
3237 * This table is part of the interface for loading drivers for PCI devices. The
3238 * PCI core identifies what devices are on a system during boot, and then
3239 * inquiry this table to see if this driver is for a given device found.
3241 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
3243 .vendor = PCI_VENDOR_ID_AMD,
3244 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
3245 .subvendor = PCI_ANY_ID,
3246 .subdevice = PCI_ANY_ID,
3247 .class = 0,
3248 .class_mask = 0,
3249 .driver_data = K8_CPUS
3252 .vendor = PCI_VENDOR_ID_AMD,
3253 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
3254 .subvendor = PCI_ANY_ID,
3255 .subdevice = PCI_ANY_ID,
3256 .class = 0,
3257 .class_mask = 0,
3258 .driver_data = F10_CPUS
3261 .vendor = PCI_VENDOR_ID_AMD,
3262 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
3263 .subvendor = PCI_ANY_ID,
3264 .subdevice = PCI_ANY_ID,
3265 .class = 0,
3266 .class_mask = 0,
3267 .driver_data = F11_CPUS
3269 {0, }
3271 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
3273 static struct pci_driver amd64_pci_driver = {
3274 .name = EDAC_MOD_STR,
3275 .probe = amd64_init_one_instance,
3276 .remove = __devexit_p(amd64_remove_one_instance),
3277 .id_table = amd64_pci_table,
3280 static void amd64_setup_pci_device(void)
3282 struct mem_ctl_info *mci;
3283 struct amd64_pvt *pvt;
3285 if (amd64_ctl_pci)
3286 return;
3288 mci = mci_lookup[0];
3289 if (mci) {
3291 pvt = mci->pvt_info;
3292 amd64_ctl_pci =
3293 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3294 EDAC_MOD_STR);
3296 if (!amd64_ctl_pci) {
3297 pr_warning("%s(): Unable to create PCI control\n",
3298 __func__);
3300 pr_warning("%s(): PCI error report via EDAC not set\n",
3301 __func__);
3306 static int __init amd64_edac_init(void)
3308 int nb, err = -ENODEV;
3310 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3312 opstate_init();
3314 if (cache_k8_northbridges() < 0)
3315 goto err_exit;
3317 err = pci_register_driver(&amd64_pci_driver);
3318 if (err)
3319 return err;
3322 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3323 * amd64_pvt structs. These will be used in the 2nd stage init function
3324 * to finish initialization of the MC instances.
3326 for (nb = 0; nb < num_k8_northbridges; nb++) {
3327 if (!pvt_lookup[nb])
3328 continue;
3330 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3331 if (err)
3332 goto err_2nd_stage;
3335 amd64_setup_pci_device();
3337 return 0;
3339 err_2nd_stage:
3340 debugf0("2nd stage failed\n");
3342 err_exit:
3343 pci_unregister_driver(&amd64_pci_driver);
3345 return err;
3348 static void __exit amd64_edac_exit(void)
3350 if (amd64_ctl_pci)
3351 edac_pci_release_generic_ctl(amd64_ctl_pci);
3353 pci_unregister_driver(&amd64_pci_driver);
3356 module_init(amd64_edac_init);
3357 module_exit(amd64_edac_exit);
3359 MODULE_LICENSE("GPL");
3360 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3361 "Dave Peterson, Thayne Harbaugh");
3362 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3363 EDAC_AMD64_VERSION);
3365 module_param(edac_op_state, int, 0444);
3366 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");