[S390] smp: fix sigp stop handling
[linux-2.6/mini2440.git] / arch / s390 / kernel / smp.c
blobc99c45b848e34f7ee01e81dcb4a7f2bb24b378a4
1 /*
2 * arch/s390/kernel/smp.c
4 * Copyright IBM Corp. 1999, 2009
5 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 * Heiko Carstens (heiko.carstens@de.ibm.com)
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
13 * We work with logical cpu numbering everywhere we can. The only
14 * functions using the real cpu address (got from STAP) are the sigp
15 * functions. For all other functions we use the identity mapping.
16 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17 * used e.g. to find the idle task belonging to a logical cpu. Every array
18 * in the kernel is sorted by the logical cpu number and not by the physical
19 * one which is causing all the confusion with __cpu_logical_map and
20 * cpu_number_map in other architectures.
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/sigp.h>
42 #include <asm/pgalloc.h>
43 #include <asm/irq.h>
44 #include <asm/s390_ext.h>
45 #include <asm/cpcmd.h>
46 #include <asm/tlbflush.h>
47 #include <asm/timer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/cputime.h>
51 #include <asm/vdso.h>
52 #include <asm/cpu.h>
53 #include "entry.h"
55 static struct task_struct *current_set[NR_CPUS];
57 static u8 smp_cpu_type;
58 static int smp_use_sigp_detection;
60 enum s390_cpu_state {
61 CPU_STATE_STANDBY,
62 CPU_STATE_CONFIGURED,
65 DEFINE_MUTEX(smp_cpu_state_mutex);
66 int smp_cpu_polarization[NR_CPUS];
67 static int smp_cpu_state[NR_CPUS];
68 static int cpu_management;
70 static DEFINE_PER_CPU(struct cpu, cpu_devices);
72 static void smp_ext_bitcall(int, ec_bit_sig);
74 static int cpu_stopped(int cpu)
76 __u32 status;
78 switch (signal_processor_ps(&status, 0, cpu, sigp_sense)) {
79 case sigp_order_code_accepted:
80 case sigp_status_stored:
81 /* Check for stopped and check stop state */
82 if (status & 0x50)
83 return 1;
84 break;
85 default:
86 break;
88 return 0;
91 void smp_send_stop(void)
93 int cpu, rc;
95 /* Disable all interrupts/machine checks */
96 __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
97 trace_hardirqs_off();
99 /* stop all processors */
100 for_each_online_cpu(cpu) {
101 if (cpu == smp_processor_id())
102 continue;
103 do {
104 rc = signal_processor(cpu, sigp_stop);
105 } while (rc == sigp_busy);
107 while (!cpu_stopped(cpu))
108 cpu_relax();
113 * This is the main routine where commands issued by other
114 * cpus are handled.
117 static void do_ext_call_interrupt(__u16 code)
119 unsigned long bits;
122 * handle bit signal external calls
124 * For the ec_schedule signal we have to do nothing. All the work
125 * is done automatically when we return from the interrupt.
127 bits = xchg(&S390_lowcore.ext_call_fast, 0);
129 if (test_bit(ec_call_function, &bits))
130 generic_smp_call_function_interrupt();
132 if (test_bit(ec_call_function_single, &bits))
133 generic_smp_call_function_single_interrupt();
137 * Send an external call sigp to another cpu and return without waiting
138 * for its completion.
140 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
143 * Set signaling bit in lowcore of target cpu and kick it
145 set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
146 while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
147 udelay(10);
150 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
152 int cpu;
154 for_each_cpu(cpu, mask)
155 smp_ext_bitcall(cpu, ec_call_function);
158 void arch_send_call_function_single_ipi(int cpu)
160 smp_ext_bitcall(cpu, ec_call_function_single);
163 #ifndef CONFIG_64BIT
165 * this function sends a 'purge tlb' signal to another CPU.
167 static void smp_ptlb_callback(void *info)
169 __tlb_flush_local();
172 void smp_ptlb_all(void)
174 on_each_cpu(smp_ptlb_callback, NULL, 1);
176 EXPORT_SYMBOL(smp_ptlb_all);
177 #endif /* ! CONFIG_64BIT */
180 * this function sends a 'reschedule' IPI to another CPU.
181 * it goes straight through and wastes no time serializing
182 * anything. Worst case is that we lose a reschedule ...
184 void smp_send_reschedule(int cpu)
186 smp_ext_bitcall(cpu, ec_schedule);
190 * parameter area for the set/clear control bit callbacks
192 struct ec_creg_mask_parms {
193 unsigned long orvals[16];
194 unsigned long andvals[16];
198 * callback for setting/clearing control bits
200 static void smp_ctl_bit_callback(void *info)
202 struct ec_creg_mask_parms *pp = info;
203 unsigned long cregs[16];
204 int i;
206 __ctl_store(cregs, 0, 15);
207 for (i = 0; i <= 15; i++)
208 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
209 __ctl_load(cregs, 0, 15);
213 * Set a bit in a control register of all cpus
215 void smp_ctl_set_bit(int cr, int bit)
217 struct ec_creg_mask_parms parms;
219 memset(&parms.orvals, 0, sizeof(parms.orvals));
220 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
221 parms.orvals[cr] = 1 << bit;
222 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
224 EXPORT_SYMBOL(smp_ctl_set_bit);
227 * Clear a bit in a control register of all cpus
229 void smp_ctl_clear_bit(int cr, int bit)
231 struct ec_creg_mask_parms parms;
233 memset(&parms.orvals, 0, sizeof(parms.orvals));
234 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
235 parms.andvals[cr] = ~(1L << bit);
236 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
238 EXPORT_SYMBOL(smp_ctl_clear_bit);
241 * In early ipl state a temp. logically cpu number is needed, so the sigp
242 * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
243 * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
245 #define CPU_INIT_NO 1
247 #ifdef CONFIG_ZFCPDUMP
250 * zfcpdump_prefix_array holds prefix registers for the following scenario:
251 * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
252 * save its prefix registers, since they get lost, when switching from 31 bit
253 * to 64 bit.
255 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
256 __attribute__((__section__(".data")));
258 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
260 if (ipl_info.type != IPL_TYPE_FCP_DUMP)
261 return;
262 if (cpu >= NR_CPUS) {
263 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
264 "the dump\n", cpu, NR_CPUS - 1);
265 return;
267 zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
268 __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
269 while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
270 sigp_busy)
271 cpu_relax();
272 memcpy(zfcpdump_save_areas[cpu],
273 (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
274 SAVE_AREA_SIZE);
275 #ifdef CONFIG_64BIT
276 /* copy original prefix register */
277 zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
278 #endif
281 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
282 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
284 #else
286 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
288 #endif /* CONFIG_ZFCPDUMP */
290 static int cpu_known(int cpu_id)
292 int cpu;
294 for_each_present_cpu(cpu) {
295 if (__cpu_logical_map[cpu] == cpu_id)
296 return 1;
298 return 0;
301 static int smp_rescan_cpus_sigp(cpumask_t avail)
303 int cpu_id, logical_cpu;
305 logical_cpu = cpumask_first(&avail);
306 if (logical_cpu >= nr_cpu_ids)
307 return 0;
308 for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
309 if (cpu_known(cpu_id))
310 continue;
311 __cpu_logical_map[logical_cpu] = cpu_id;
312 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
313 if (!cpu_stopped(logical_cpu))
314 continue;
315 cpu_set(logical_cpu, cpu_present_map);
316 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
317 logical_cpu = cpumask_next(logical_cpu, &avail);
318 if (logical_cpu >= nr_cpu_ids)
319 break;
321 return 0;
324 static int smp_rescan_cpus_sclp(cpumask_t avail)
326 struct sclp_cpu_info *info;
327 int cpu_id, logical_cpu, cpu;
328 int rc;
330 logical_cpu = cpumask_first(&avail);
331 if (logical_cpu >= nr_cpu_ids)
332 return 0;
333 info = kmalloc(sizeof(*info), GFP_KERNEL);
334 if (!info)
335 return -ENOMEM;
336 rc = sclp_get_cpu_info(info);
337 if (rc)
338 goto out;
339 for (cpu = 0; cpu < info->combined; cpu++) {
340 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
341 continue;
342 cpu_id = info->cpu[cpu].address;
343 if (cpu_known(cpu_id))
344 continue;
345 __cpu_logical_map[logical_cpu] = cpu_id;
346 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
347 cpu_set(logical_cpu, cpu_present_map);
348 if (cpu >= info->configured)
349 smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
350 else
351 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
352 logical_cpu = cpumask_next(logical_cpu, &avail);
353 if (logical_cpu >= nr_cpu_ids)
354 break;
356 out:
357 kfree(info);
358 return rc;
361 static int __smp_rescan_cpus(void)
363 cpumask_t avail;
365 cpus_xor(avail, cpu_possible_map, cpu_present_map);
366 if (smp_use_sigp_detection)
367 return smp_rescan_cpus_sigp(avail);
368 else
369 return smp_rescan_cpus_sclp(avail);
372 static void __init smp_detect_cpus(void)
374 unsigned int cpu, c_cpus, s_cpus;
375 struct sclp_cpu_info *info;
376 u16 boot_cpu_addr, cpu_addr;
378 c_cpus = 1;
379 s_cpus = 0;
380 boot_cpu_addr = __cpu_logical_map[0];
381 info = kmalloc(sizeof(*info), GFP_KERNEL);
382 if (!info)
383 panic("smp_detect_cpus failed to allocate memory\n");
384 /* Use sigp detection algorithm if sclp doesn't work. */
385 if (sclp_get_cpu_info(info)) {
386 smp_use_sigp_detection = 1;
387 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
388 if (cpu == boot_cpu_addr)
389 continue;
390 __cpu_logical_map[CPU_INIT_NO] = cpu;
391 if (!cpu_stopped(CPU_INIT_NO))
392 continue;
393 smp_get_save_area(c_cpus, cpu);
394 c_cpus++;
396 goto out;
399 if (info->has_cpu_type) {
400 for (cpu = 0; cpu < info->combined; cpu++) {
401 if (info->cpu[cpu].address == boot_cpu_addr) {
402 smp_cpu_type = info->cpu[cpu].type;
403 break;
408 for (cpu = 0; cpu < info->combined; cpu++) {
409 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
410 continue;
411 cpu_addr = info->cpu[cpu].address;
412 if (cpu_addr == boot_cpu_addr)
413 continue;
414 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
415 if (!cpu_stopped(CPU_INIT_NO)) {
416 s_cpus++;
417 continue;
419 smp_get_save_area(c_cpus, cpu_addr);
420 c_cpus++;
422 out:
423 kfree(info);
424 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
425 get_online_cpus();
426 __smp_rescan_cpus();
427 put_online_cpus();
431 * Activate a secondary processor.
433 int __cpuinit start_secondary(void *cpuvoid)
435 /* Setup the cpu */
436 cpu_init();
437 preempt_disable();
438 /* Enable TOD clock interrupts on the secondary cpu. */
439 init_cpu_timer();
440 /* Enable cpu timer interrupts on the secondary cpu. */
441 init_cpu_vtimer();
442 /* Enable pfault pseudo page faults on this cpu. */
443 pfault_init();
445 /* call cpu notifiers */
446 notify_cpu_starting(smp_processor_id());
447 /* Mark this cpu as online */
448 ipi_call_lock();
449 cpu_set(smp_processor_id(), cpu_online_map);
450 ipi_call_unlock();
451 /* Switch on interrupts */
452 local_irq_enable();
453 /* Print info about this processor */
454 print_cpu_info();
455 /* cpu_idle will call schedule for us */
456 cpu_idle();
457 return 0;
460 static void __init smp_create_idle(unsigned int cpu)
462 struct task_struct *p;
465 * don't care about the psw and regs settings since we'll never
466 * reschedule the forked task.
468 p = fork_idle(cpu);
469 if (IS_ERR(p))
470 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
471 current_set[cpu] = p;
474 static int __cpuinit smp_alloc_lowcore(int cpu)
476 unsigned long async_stack, panic_stack;
477 struct _lowcore *lowcore;
479 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
480 if (!lowcore)
481 return -ENOMEM;
482 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
483 panic_stack = __get_free_page(GFP_KERNEL);
484 if (!panic_stack || !async_stack)
485 goto out;
486 memcpy(lowcore, &S390_lowcore, 512);
487 memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
488 lowcore->async_stack = async_stack + ASYNC_SIZE;
489 lowcore->panic_stack = panic_stack + PAGE_SIZE;
491 #ifndef CONFIG_64BIT
492 if (MACHINE_HAS_IEEE) {
493 unsigned long save_area;
495 save_area = get_zeroed_page(GFP_KERNEL);
496 if (!save_area)
497 goto out;
498 lowcore->extended_save_area_addr = (u32) save_area;
500 #else
501 if (vdso_alloc_per_cpu(cpu, lowcore))
502 goto out;
503 #endif
504 lowcore_ptr[cpu] = lowcore;
505 return 0;
507 out:
508 free_page(panic_stack);
509 free_pages(async_stack, ASYNC_ORDER);
510 free_pages((unsigned long) lowcore, LC_ORDER);
511 return -ENOMEM;
514 static void smp_free_lowcore(int cpu)
516 struct _lowcore *lowcore;
518 lowcore = lowcore_ptr[cpu];
519 #ifndef CONFIG_64BIT
520 if (MACHINE_HAS_IEEE)
521 free_page((unsigned long) lowcore->extended_save_area_addr);
522 #else
523 vdso_free_per_cpu(cpu, lowcore);
524 #endif
525 free_page(lowcore->panic_stack - PAGE_SIZE);
526 free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
527 free_pages((unsigned long) lowcore, LC_ORDER);
528 lowcore_ptr[cpu] = NULL;
531 /* Upping and downing of CPUs */
532 int __cpuinit __cpu_up(unsigned int cpu)
534 struct task_struct *idle;
535 struct _lowcore *cpu_lowcore;
536 struct stack_frame *sf;
537 sigp_ccode ccode;
538 u32 lowcore;
540 if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
541 return -EIO;
542 if (smp_alloc_lowcore(cpu))
543 return -ENOMEM;
544 do {
545 ccode = signal_processor(cpu, sigp_initial_cpu_reset);
546 if (ccode == sigp_busy)
547 udelay(10);
548 if (ccode == sigp_not_operational)
549 goto err_out;
550 } while (ccode == sigp_busy);
552 lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
553 while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
554 udelay(10);
556 idle = current_set[cpu];
557 cpu_lowcore = lowcore_ptr[cpu];
558 cpu_lowcore->kernel_stack = (unsigned long)
559 task_stack_page(idle) + THREAD_SIZE;
560 cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
561 sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
562 - sizeof(struct pt_regs)
563 - sizeof(struct stack_frame));
564 memset(sf, 0, sizeof(struct stack_frame));
565 sf->gprs[9] = (unsigned long) sf;
566 cpu_lowcore->save_area[15] = (unsigned long) sf;
567 __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
568 asm volatile(
569 " stam 0,15,0(%0)"
570 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
571 cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
572 cpu_lowcore->current_task = (unsigned long) idle;
573 cpu_lowcore->cpu_nr = cpu;
574 cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
575 cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
576 cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
577 eieio();
579 while (signal_processor(cpu, sigp_restart) == sigp_busy)
580 udelay(10);
582 while (!cpu_online(cpu))
583 cpu_relax();
584 return 0;
586 err_out:
587 smp_free_lowcore(cpu);
588 return -EIO;
591 static int __init setup_possible_cpus(char *s)
593 int pcpus, cpu;
595 pcpus = simple_strtoul(s, NULL, 0);
596 init_cpu_possible(cpumask_of(0));
597 for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
598 set_cpu_possible(cpu, true);
599 return 0;
601 early_param("possible_cpus", setup_possible_cpus);
603 #ifdef CONFIG_HOTPLUG_CPU
605 int __cpu_disable(void)
607 struct ec_creg_mask_parms cr_parms;
608 int cpu = smp_processor_id();
610 cpu_clear(cpu, cpu_online_map);
612 /* Disable pfault pseudo page faults on this cpu. */
613 pfault_fini();
615 memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
616 memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
618 /* disable all external interrupts */
619 cr_parms.orvals[0] = 0;
620 cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
621 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4);
622 /* disable all I/O interrupts */
623 cr_parms.orvals[6] = 0;
624 cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
625 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
626 /* disable most machine checks */
627 cr_parms.orvals[14] = 0;
628 cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
629 1 << 25 | 1 << 24);
631 smp_ctl_bit_callback(&cr_parms);
633 return 0;
636 void __cpu_die(unsigned int cpu)
638 /* Wait until target cpu is down */
639 while (!cpu_stopped(cpu))
640 cpu_relax();
641 while (signal_processor_p(0, cpu, sigp_set_prefix) == sigp_busy)
642 udelay(10);
643 smp_free_lowcore(cpu);
644 pr_info("Processor %d stopped\n", cpu);
647 void cpu_die(void)
649 idle_task_exit();
650 while (signal_processor(smp_processor_id(), sigp_stop) == sigp_busy)
651 cpu_relax();
652 for (;;);
655 #endif /* CONFIG_HOTPLUG_CPU */
657 void __init smp_prepare_cpus(unsigned int max_cpus)
659 #ifndef CONFIG_64BIT
660 unsigned long save_area = 0;
661 #endif
662 unsigned long async_stack, panic_stack;
663 struct _lowcore *lowcore;
664 unsigned int cpu;
666 smp_detect_cpus();
668 /* request the 0x1201 emergency signal external interrupt */
669 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
670 panic("Couldn't request external interrupt 0x1201");
671 print_cpu_info();
673 /* Reallocate current lowcore, but keep its contents. */
674 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
675 panic_stack = __get_free_page(GFP_KERNEL);
676 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
677 BUG_ON(!lowcore || !panic_stack || !async_stack);
678 #ifndef CONFIG_64BIT
679 if (MACHINE_HAS_IEEE)
680 save_area = get_zeroed_page(GFP_KERNEL);
681 #endif
682 local_irq_disable();
683 local_mcck_disable();
684 lowcore_ptr[smp_processor_id()] = lowcore;
685 *lowcore = S390_lowcore;
686 lowcore->panic_stack = panic_stack + PAGE_SIZE;
687 lowcore->async_stack = async_stack + ASYNC_SIZE;
688 #ifndef CONFIG_64BIT
689 if (MACHINE_HAS_IEEE)
690 lowcore->extended_save_area_addr = (u32) save_area;
691 #endif
692 set_prefix((u32)(unsigned long) lowcore);
693 local_mcck_enable();
694 local_irq_enable();
695 #ifdef CONFIG_64BIT
696 if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
697 BUG();
698 #endif
699 for_each_possible_cpu(cpu)
700 if (cpu != smp_processor_id())
701 smp_create_idle(cpu);
704 void __init smp_prepare_boot_cpu(void)
706 BUG_ON(smp_processor_id() != 0);
708 current_thread_info()->cpu = 0;
709 cpu_set(0, cpu_present_map);
710 cpu_set(0, cpu_online_map);
711 S390_lowcore.percpu_offset = __per_cpu_offset[0];
712 current_set[0] = current;
713 smp_cpu_state[0] = CPU_STATE_CONFIGURED;
714 smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
717 void __init smp_cpus_done(unsigned int max_cpus)
722 * the frequency of the profiling timer can be changed
723 * by writing a multiplier value into /proc/profile.
725 * usually you want to run this on all CPUs ;)
727 int setup_profiling_timer(unsigned int multiplier)
729 return 0;
732 #ifdef CONFIG_HOTPLUG_CPU
733 static ssize_t cpu_configure_show(struct sys_device *dev,
734 struct sysdev_attribute *attr, char *buf)
736 ssize_t count;
738 mutex_lock(&smp_cpu_state_mutex);
739 count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
740 mutex_unlock(&smp_cpu_state_mutex);
741 return count;
744 static ssize_t cpu_configure_store(struct sys_device *dev,
745 struct sysdev_attribute *attr,
746 const char *buf, size_t count)
748 int cpu = dev->id;
749 int val, rc;
750 char delim;
752 if (sscanf(buf, "%d %c", &val, &delim) != 1)
753 return -EINVAL;
754 if (val != 0 && val != 1)
755 return -EINVAL;
757 get_online_cpus();
758 mutex_lock(&smp_cpu_state_mutex);
759 rc = -EBUSY;
760 if (cpu_online(cpu))
761 goto out;
762 rc = 0;
763 switch (val) {
764 case 0:
765 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
766 rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
767 if (!rc) {
768 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
769 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
772 break;
773 case 1:
774 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
775 rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
776 if (!rc) {
777 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
778 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
781 break;
782 default:
783 break;
785 out:
786 mutex_unlock(&smp_cpu_state_mutex);
787 put_online_cpus();
788 return rc ? rc : count;
790 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
791 #endif /* CONFIG_HOTPLUG_CPU */
793 static ssize_t cpu_polarization_show(struct sys_device *dev,
794 struct sysdev_attribute *attr, char *buf)
796 int cpu = dev->id;
797 ssize_t count;
799 mutex_lock(&smp_cpu_state_mutex);
800 switch (smp_cpu_polarization[cpu]) {
801 case POLARIZATION_HRZ:
802 count = sprintf(buf, "horizontal\n");
803 break;
804 case POLARIZATION_VL:
805 count = sprintf(buf, "vertical:low\n");
806 break;
807 case POLARIZATION_VM:
808 count = sprintf(buf, "vertical:medium\n");
809 break;
810 case POLARIZATION_VH:
811 count = sprintf(buf, "vertical:high\n");
812 break;
813 default:
814 count = sprintf(buf, "unknown\n");
815 break;
817 mutex_unlock(&smp_cpu_state_mutex);
818 return count;
820 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
822 static ssize_t show_cpu_address(struct sys_device *dev,
823 struct sysdev_attribute *attr, char *buf)
825 return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
827 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
830 static struct attribute *cpu_common_attrs[] = {
831 #ifdef CONFIG_HOTPLUG_CPU
832 &attr_configure.attr,
833 #endif
834 &attr_address.attr,
835 &attr_polarization.attr,
836 NULL,
839 static struct attribute_group cpu_common_attr_group = {
840 .attrs = cpu_common_attrs,
843 static ssize_t show_capability(struct sys_device *dev,
844 struct sysdev_attribute *attr, char *buf)
846 unsigned int capability;
847 int rc;
849 rc = get_cpu_capability(&capability);
850 if (rc)
851 return rc;
852 return sprintf(buf, "%u\n", capability);
854 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
856 static ssize_t show_idle_count(struct sys_device *dev,
857 struct sysdev_attribute *attr, char *buf)
859 struct s390_idle_data *idle;
860 unsigned long long idle_count;
861 unsigned int sequence;
863 idle = &per_cpu(s390_idle, dev->id);
864 repeat:
865 sequence = idle->sequence;
866 smp_rmb();
867 if (sequence & 1)
868 goto repeat;
869 idle_count = idle->idle_count;
870 if (idle->idle_enter)
871 idle_count++;
872 smp_rmb();
873 if (idle->sequence != sequence)
874 goto repeat;
875 return sprintf(buf, "%llu\n", idle_count);
877 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
879 static ssize_t show_idle_time(struct sys_device *dev,
880 struct sysdev_attribute *attr, char *buf)
882 struct s390_idle_data *idle;
883 unsigned long long now, idle_time, idle_enter;
884 unsigned int sequence;
886 idle = &per_cpu(s390_idle, dev->id);
887 now = get_clock();
888 repeat:
889 sequence = idle->sequence;
890 smp_rmb();
891 if (sequence & 1)
892 goto repeat;
893 idle_time = idle->idle_time;
894 idle_enter = idle->idle_enter;
895 if (idle_enter != 0ULL && idle_enter < now)
896 idle_time += now - idle_enter;
897 smp_rmb();
898 if (idle->sequence != sequence)
899 goto repeat;
900 return sprintf(buf, "%llu\n", idle_time >> 12);
902 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
904 static struct attribute *cpu_online_attrs[] = {
905 &attr_capability.attr,
906 &attr_idle_count.attr,
907 &attr_idle_time_us.attr,
908 NULL,
911 static struct attribute_group cpu_online_attr_group = {
912 .attrs = cpu_online_attrs,
915 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
916 unsigned long action, void *hcpu)
918 unsigned int cpu = (unsigned int)(long)hcpu;
919 struct cpu *c = &per_cpu(cpu_devices, cpu);
920 struct sys_device *s = &c->sysdev;
921 struct s390_idle_data *idle;
923 switch (action) {
924 case CPU_ONLINE:
925 case CPU_ONLINE_FROZEN:
926 idle = &per_cpu(s390_idle, cpu);
927 memset(idle, 0, sizeof(struct s390_idle_data));
928 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
929 return NOTIFY_BAD;
930 break;
931 case CPU_DEAD:
932 case CPU_DEAD_FROZEN:
933 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
934 break;
936 return NOTIFY_OK;
939 static struct notifier_block __cpuinitdata smp_cpu_nb = {
940 .notifier_call = smp_cpu_notify,
943 static int __devinit smp_add_present_cpu(int cpu)
945 struct cpu *c = &per_cpu(cpu_devices, cpu);
946 struct sys_device *s = &c->sysdev;
947 int rc;
949 c->hotpluggable = 1;
950 rc = register_cpu(c, cpu);
951 if (rc)
952 goto out;
953 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
954 if (rc)
955 goto out_cpu;
956 if (!cpu_online(cpu))
957 goto out;
958 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
959 if (!rc)
960 return 0;
961 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
962 out_cpu:
963 #ifdef CONFIG_HOTPLUG_CPU
964 unregister_cpu(c);
965 #endif
966 out:
967 return rc;
970 #ifdef CONFIG_HOTPLUG_CPU
972 int __ref smp_rescan_cpus(void)
974 cpumask_t newcpus;
975 int cpu;
976 int rc;
978 get_online_cpus();
979 mutex_lock(&smp_cpu_state_mutex);
980 newcpus = cpu_present_map;
981 rc = __smp_rescan_cpus();
982 if (rc)
983 goto out;
984 cpus_andnot(newcpus, cpu_present_map, newcpus);
985 for_each_cpu_mask(cpu, newcpus) {
986 rc = smp_add_present_cpu(cpu);
987 if (rc)
988 cpu_clear(cpu, cpu_present_map);
990 rc = 0;
991 out:
992 mutex_unlock(&smp_cpu_state_mutex);
993 put_online_cpus();
994 if (!cpus_empty(newcpus))
995 topology_schedule_update();
996 return rc;
999 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
1000 size_t count)
1002 int rc;
1004 rc = smp_rescan_cpus();
1005 return rc ? rc : count;
1007 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1008 #endif /* CONFIG_HOTPLUG_CPU */
1010 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
1012 ssize_t count;
1014 mutex_lock(&smp_cpu_state_mutex);
1015 count = sprintf(buf, "%d\n", cpu_management);
1016 mutex_unlock(&smp_cpu_state_mutex);
1017 return count;
1020 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1021 size_t count)
1023 int val, rc;
1024 char delim;
1026 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1027 return -EINVAL;
1028 if (val != 0 && val != 1)
1029 return -EINVAL;
1030 rc = 0;
1031 get_online_cpus();
1032 mutex_lock(&smp_cpu_state_mutex);
1033 if (cpu_management == val)
1034 goto out;
1035 rc = topology_set_cpu_management(val);
1036 if (!rc)
1037 cpu_management = val;
1038 out:
1039 mutex_unlock(&smp_cpu_state_mutex);
1040 put_online_cpus();
1041 return rc ? rc : count;
1043 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1044 dispatching_store);
1046 static int __init topology_init(void)
1048 int cpu;
1049 int rc;
1051 register_cpu_notifier(&smp_cpu_nb);
1053 #ifdef CONFIG_HOTPLUG_CPU
1054 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1055 if (rc)
1056 return rc;
1057 #endif
1058 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1059 if (rc)
1060 return rc;
1061 for_each_present_cpu(cpu) {
1062 rc = smp_add_present_cpu(cpu);
1063 if (rc)
1064 return rc;
1066 return 0;
1068 subsys_initcall(topology_init);