SELinux: remove unused av.decided field
[linux-2.6/mini2440.git] / security / selinux / avc.c
blob326aa78bd4215cd37f0d124867bf6e4d35034f86
1 /*
2 * Implementation of the kernel access vector cache (AVC).
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
35 static const struct av_perm_to_string av_perm_to_string[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
38 #undef S_
41 static const char *class_to_string[] = {
42 #define S_(s) s,
43 #include "class_to_string.h"
44 #undef S_
47 #define TB_(s) static const char *s[] = {
48 #define TE_(s) };
49 #define S_(s) s,
50 #include "common_perm_to_string.h"
51 #undef TB_
52 #undef TE_
53 #undef S_
55 static const struct av_inherit av_inherit[] = {
56 #define S_(c, i, b) { .tclass = c,\
57 .common_pts = common_##i##_perm_to_string,\
58 .common_base = b },
59 #include "av_inherit.h"
60 #undef S_
63 const struct selinux_class_perm selinux_class_perm = {
64 .av_perm_to_string = av_perm_to_string,
65 .av_pts_len = ARRAY_SIZE(av_perm_to_string),
66 .class_to_string = class_to_string,
67 .cts_len = ARRAY_SIZE(class_to_string),
68 .av_inherit = av_inherit,
69 .av_inherit_len = ARRAY_SIZE(av_inherit)
72 #define AVC_CACHE_SLOTS 512
73 #define AVC_DEF_CACHE_THRESHOLD 512
74 #define AVC_CACHE_RECLAIM 16
76 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77 #define avc_cache_stats_incr(field) \
78 do { \
79 per_cpu(avc_cache_stats, get_cpu()).field++; \
80 put_cpu(); \
81 } while (0)
82 #else
83 #define avc_cache_stats_incr(field) do {} while (0)
84 #endif
86 struct avc_entry {
87 u32 ssid;
88 u32 tsid;
89 u16 tclass;
90 struct av_decision avd;
93 struct avc_node {
94 struct avc_entry ae;
95 struct list_head list;
96 struct rcu_head rhead;
99 struct avc_cache {
100 struct list_head slots[AVC_CACHE_SLOTS];
101 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
102 atomic_t lru_hint; /* LRU hint for reclaim scan */
103 atomic_t active_nodes;
104 u32 latest_notif; /* latest revocation notification */
107 struct avc_callback_node {
108 int (*callback) (u32 event, u32 ssid, u32 tsid,
109 u16 tclass, u32 perms,
110 u32 *out_retained);
111 u32 events;
112 u32 ssid;
113 u32 tsid;
114 u16 tclass;
115 u32 perms;
116 struct avc_callback_node *next;
119 /* Exported via selinufs */
120 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
122 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
123 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
124 #endif
126 static struct avc_cache avc_cache;
127 static struct avc_callback_node *avc_callbacks;
128 static struct kmem_cache *avc_node_cachep;
130 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
132 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
136 * avc_dump_av - Display an access vector in human-readable form.
137 * @tclass: target security class
138 * @av: access vector
140 void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
142 const char **common_pts = NULL;
143 u32 common_base = 0;
144 int i, i2, perm;
146 if (av == 0) {
147 audit_log_format(ab, " null");
148 return;
151 for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
152 if (av_inherit[i].tclass == tclass) {
153 common_pts = av_inherit[i].common_pts;
154 common_base = av_inherit[i].common_base;
155 break;
159 audit_log_format(ab, " {");
160 i = 0;
161 perm = 1;
162 while (perm < common_base) {
163 if (perm & av) {
164 audit_log_format(ab, " %s", common_pts[i]);
165 av &= ~perm;
167 i++;
168 perm <<= 1;
171 while (i < sizeof(av) * 8) {
172 if (perm & av) {
173 for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
174 if ((av_perm_to_string[i2].tclass == tclass) &&
175 (av_perm_to_string[i2].value == perm))
176 break;
178 if (i2 < ARRAY_SIZE(av_perm_to_string)) {
179 audit_log_format(ab, " %s",
180 av_perm_to_string[i2].name);
181 av &= ~perm;
184 i++;
185 perm <<= 1;
188 if (av)
189 audit_log_format(ab, " 0x%x", av);
191 audit_log_format(ab, " }");
195 * avc_dump_query - Display a SID pair and a class in human-readable form.
196 * @ssid: source security identifier
197 * @tsid: target security identifier
198 * @tclass: target security class
200 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
202 int rc;
203 char *scontext;
204 u32 scontext_len;
206 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
207 if (rc)
208 audit_log_format(ab, "ssid=%d", ssid);
209 else {
210 audit_log_format(ab, "scontext=%s", scontext);
211 kfree(scontext);
214 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
215 if (rc)
216 audit_log_format(ab, " tsid=%d", tsid);
217 else {
218 audit_log_format(ab, " tcontext=%s", scontext);
219 kfree(scontext);
222 BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
223 audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
227 * avc_init - Initialize the AVC.
229 * Initialize the access vector cache.
231 void __init avc_init(void)
233 int i;
235 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
236 INIT_LIST_HEAD(&avc_cache.slots[i]);
237 spin_lock_init(&avc_cache.slots_lock[i]);
239 atomic_set(&avc_cache.active_nodes, 0);
240 atomic_set(&avc_cache.lru_hint, 0);
242 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
243 0, SLAB_PANIC, NULL);
245 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
248 int avc_get_hash_stats(char *page)
250 int i, chain_len, max_chain_len, slots_used;
251 struct avc_node *node;
253 rcu_read_lock();
255 slots_used = 0;
256 max_chain_len = 0;
257 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
258 if (!list_empty(&avc_cache.slots[i])) {
259 slots_used++;
260 chain_len = 0;
261 list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
262 chain_len++;
263 if (chain_len > max_chain_len)
264 max_chain_len = chain_len;
268 rcu_read_unlock();
270 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
271 "longest chain: %d\n",
272 atomic_read(&avc_cache.active_nodes),
273 slots_used, AVC_CACHE_SLOTS, max_chain_len);
276 static void avc_node_free(struct rcu_head *rhead)
278 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
279 kmem_cache_free(avc_node_cachep, node);
280 avc_cache_stats_incr(frees);
283 static void avc_node_delete(struct avc_node *node)
285 list_del_rcu(&node->list);
286 call_rcu(&node->rhead, avc_node_free);
287 atomic_dec(&avc_cache.active_nodes);
290 static void avc_node_kill(struct avc_node *node)
292 kmem_cache_free(avc_node_cachep, node);
293 avc_cache_stats_incr(frees);
294 atomic_dec(&avc_cache.active_nodes);
297 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
299 list_replace_rcu(&old->list, &new->list);
300 call_rcu(&old->rhead, avc_node_free);
301 atomic_dec(&avc_cache.active_nodes);
304 static inline int avc_reclaim_node(void)
306 struct avc_node *node;
307 int hvalue, try, ecx;
308 unsigned long flags;
310 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
311 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
313 if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
314 continue;
316 rcu_read_lock();
317 list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
318 avc_node_delete(node);
319 avc_cache_stats_incr(reclaims);
320 ecx++;
321 if (ecx >= AVC_CACHE_RECLAIM) {
322 rcu_read_unlock();
323 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
324 goto out;
327 rcu_read_unlock();
328 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
330 out:
331 return ecx;
334 static struct avc_node *avc_alloc_node(void)
336 struct avc_node *node;
338 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
339 if (!node)
340 goto out;
342 INIT_RCU_HEAD(&node->rhead);
343 INIT_LIST_HEAD(&node->list);
344 avc_cache_stats_incr(allocations);
346 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
347 avc_reclaim_node();
349 out:
350 return node;
353 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
355 node->ae.ssid = ssid;
356 node->ae.tsid = tsid;
357 node->ae.tclass = tclass;
358 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
361 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
363 struct avc_node *node, *ret = NULL;
364 int hvalue;
366 hvalue = avc_hash(ssid, tsid, tclass);
367 list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
368 if (ssid == node->ae.ssid &&
369 tclass == node->ae.tclass &&
370 tsid == node->ae.tsid) {
371 ret = node;
372 break;
376 return ret;
380 * avc_lookup - Look up an AVC entry.
381 * @ssid: source security identifier
382 * @tsid: target security identifier
383 * @tclass: target security class
385 * Look up an AVC entry that is valid for the
386 * (@ssid, @tsid), interpreting the permissions
387 * based on @tclass. If a valid AVC entry exists,
388 * then this function return the avc_node.
389 * Otherwise, this function returns NULL.
391 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
393 struct avc_node *node;
395 avc_cache_stats_incr(lookups);
396 node = avc_search_node(ssid, tsid, tclass);
398 if (node)
399 avc_cache_stats_incr(hits);
400 else
401 avc_cache_stats_incr(misses);
403 return node;
406 static int avc_latest_notif_update(int seqno, int is_insert)
408 int ret = 0;
409 static DEFINE_SPINLOCK(notif_lock);
410 unsigned long flag;
412 spin_lock_irqsave(&notif_lock, flag);
413 if (is_insert) {
414 if (seqno < avc_cache.latest_notif) {
415 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
416 seqno, avc_cache.latest_notif);
417 ret = -EAGAIN;
419 } else {
420 if (seqno > avc_cache.latest_notif)
421 avc_cache.latest_notif = seqno;
423 spin_unlock_irqrestore(&notif_lock, flag);
425 return ret;
429 * avc_insert - Insert an AVC entry.
430 * @ssid: source security identifier
431 * @tsid: target security identifier
432 * @tclass: target security class
433 * @avd: resulting av decision
435 * Insert an AVC entry for the SID pair
436 * (@ssid, @tsid) and class @tclass.
437 * The access vectors and the sequence number are
438 * normally provided by the security server in
439 * response to a security_compute_av() call. If the
440 * sequence number @avd->seqno is not less than the latest
441 * revocation notification, then the function copies
442 * the access vectors into a cache entry, returns
443 * avc_node inserted. Otherwise, this function returns NULL.
445 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
447 struct avc_node *pos, *node = NULL;
448 int hvalue;
449 unsigned long flag;
451 if (avc_latest_notif_update(avd->seqno, 1))
452 goto out;
454 node = avc_alloc_node();
455 if (node) {
456 hvalue = avc_hash(ssid, tsid, tclass);
457 avc_node_populate(node, ssid, tsid, tclass, avd);
459 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
460 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
461 if (pos->ae.ssid == ssid &&
462 pos->ae.tsid == tsid &&
463 pos->ae.tclass == tclass) {
464 avc_node_replace(node, pos);
465 goto found;
468 list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
469 found:
470 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
472 out:
473 return node;
476 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
477 struct in6_addr *addr, __be16 port,
478 char *name1, char *name2)
480 if (!ipv6_addr_any(addr))
481 audit_log_format(ab, " %s=%pI6", name1, addr);
482 if (port)
483 audit_log_format(ab, " %s=%d", name2, ntohs(port));
486 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
487 __be16 port, char *name1, char *name2)
489 if (addr)
490 audit_log_format(ab, " %s=%pI4", name1, &addr);
491 if (port)
492 audit_log_format(ab, " %s=%d", name2, ntohs(port));
496 * avc_audit - Audit the granting or denial of permissions.
497 * @ssid: source security identifier
498 * @tsid: target security identifier
499 * @tclass: target security class
500 * @requested: requested permissions
501 * @avd: access vector decisions
502 * @result: result from avc_has_perm_noaudit
503 * @a: auxiliary audit data
505 * Audit the granting or denial of permissions in accordance
506 * with the policy. This function is typically called by
507 * avc_has_perm() after a permission check, but can also be
508 * called directly by callers who use avc_has_perm_noaudit()
509 * in order to separate the permission check from the auditing.
510 * For example, this separation is useful when the permission check must
511 * be performed under a lock, to allow the lock to be released
512 * before calling the auditing code.
514 void avc_audit(u32 ssid, u32 tsid,
515 u16 tclass, u32 requested,
516 struct av_decision *avd, int result, struct avc_audit_data *a)
518 struct task_struct *tsk = current;
519 struct inode *inode = NULL;
520 u32 denied, audited;
521 struct audit_buffer *ab;
523 denied = requested & ~avd->allowed;
524 if (denied) {
525 audited = denied;
526 if (!(audited & avd->auditdeny))
527 return;
528 } else if (result) {
529 audited = denied = requested;
530 } else {
531 audited = requested;
532 if (!(audited & avd->auditallow))
533 return;
536 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
537 if (!ab)
538 return; /* audit_panic has been called */
539 audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
540 avc_dump_av(ab, tclass, audited);
541 audit_log_format(ab, " for ");
542 if (a && a->tsk)
543 tsk = a->tsk;
544 if (tsk && tsk->pid) {
545 audit_log_format(ab, " pid=%d comm=", tsk->pid);
546 audit_log_untrustedstring(ab, tsk->comm);
548 if (a) {
549 switch (a->type) {
550 case AVC_AUDIT_DATA_IPC:
551 audit_log_format(ab, " key=%d", a->u.ipc_id);
552 break;
553 case AVC_AUDIT_DATA_CAP:
554 audit_log_format(ab, " capability=%d", a->u.cap);
555 break;
556 case AVC_AUDIT_DATA_FS:
557 if (a->u.fs.path.dentry) {
558 struct dentry *dentry = a->u.fs.path.dentry;
559 if (a->u.fs.path.mnt) {
560 audit_log_d_path(ab, "path=",
561 &a->u.fs.path);
562 } else {
563 audit_log_format(ab, " name=");
564 audit_log_untrustedstring(ab, dentry->d_name.name);
566 inode = dentry->d_inode;
567 } else if (a->u.fs.inode) {
568 struct dentry *dentry;
569 inode = a->u.fs.inode;
570 dentry = d_find_alias(inode);
571 if (dentry) {
572 audit_log_format(ab, " name=");
573 audit_log_untrustedstring(ab, dentry->d_name.name);
574 dput(dentry);
577 if (inode)
578 audit_log_format(ab, " dev=%s ino=%lu",
579 inode->i_sb->s_id,
580 inode->i_ino);
581 break;
582 case AVC_AUDIT_DATA_NET:
583 if (a->u.net.sk) {
584 struct sock *sk = a->u.net.sk;
585 struct unix_sock *u;
586 int len = 0;
587 char *p = NULL;
589 switch (sk->sk_family) {
590 case AF_INET: {
591 struct inet_sock *inet = inet_sk(sk);
593 avc_print_ipv4_addr(ab, inet->rcv_saddr,
594 inet->sport,
595 "laddr", "lport");
596 avc_print_ipv4_addr(ab, inet->daddr,
597 inet->dport,
598 "faddr", "fport");
599 break;
601 case AF_INET6: {
602 struct inet_sock *inet = inet_sk(sk);
603 struct ipv6_pinfo *inet6 = inet6_sk(sk);
605 avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
606 inet->sport,
607 "laddr", "lport");
608 avc_print_ipv6_addr(ab, &inet6->daddr,
609 inet->dport,
610 "faddr", "fport");
611 break;
613 case AF_UNIX:
614 u = unix_sk(sk);
615 if (u->dentry) {
616 struct path path = {
617 .dentry = u->dentry,
618 .mnt = u->mnt
620 audit_log_d_path(ab, "path=",
621 &path);
622 break;
624 if (!u->addr)
625 break;
626 len = u->addr->len-sizeof(short);
627 p = &u->addr->name->sun_path[0];
628 audit_log_format(ab, " path=");
629 if (*p)
630 audit_log_untrustedstring(ab, p);
631 else
632 audit_log_n_hex(ab, p, len);
633 break;
637 switch (a->u.net.family) {
638 case AF_INET:
639 avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
640 a->u.net.sport,
641 "saddr", "src");
642 avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
643 a->u.net.dport,
644 "daddr", "dest");
645 break;
646 case AF_INET6:
647 avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
648 a->u.net.sport,
649 "saddr", "src");
650 avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
651 a->u.net.dport,
652 "daddr", "dest");
653 break;
655 if (a->u.net.netif > 0) {
656 struct net_device *dev;
658 /* NOTE: we always use init's namespace */
659 dev = dev_get_by_index(&init_net,
660 a->u.net.netif);
661 if (dev) {
662 audit_log_format(ab, " netif=%s",
663 dev->name);
664 dev_put(dev);
667 break;
670 audit_log_format(ab, " ");
671 avc_dump_query(ab, ssid, tsid, tclass);
672 audit_log_end(ab);
676 * avc_add_callback - Register a callback for security events.
677 * @callback: callback function
678 * @events: security events
679 * @ssid: source security identifier or %SECSID_WILD
680 * @tsid: target security identifier or %SECSID_WILD
681 * @tclass: target security class
682 * @perms: permissions
684 * Register a callback function for events in the set @events
685 * related to the SID pair (@ssid, @tsid) and
686 * and the permissions @perms, interpreting
687 * @perms based on @tclass. Returns %0 on success or
688 * -%ENOMEM if insufficient memory exists to add the callback.
690 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
691 u16 tclass, u32 perms,
692 u32 *out_retained),
693 u32 events, u32 ssid, u32 tsid,
694 u16 tclass, u32 perms)
696 struct avc_callback_node *c;
697 int rc = 0;
699 c = kmalloc(sizeof(*c), GFP_ATOMIC);
700 if (!c) {
701 rc = -ENOMEM;
702 goto out;
705 c->callback = callback;
706 c->events = events;
707 c->ssid = ssid;
708 c->tsid = tsid;
709 c->perms = perms;
710 c->next = avc_callbacks;
711 avc_callbacks = c;
712 out:
713 return rc;
716 static inline int avc_sidcmp(u32 x, u32 y)
718 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
722 * avc_update_node Update an AVC entry
723 * @event : Updating event
724 * @perms : Permission mask bits
725 * @ssid,@tsid,@tclass : identifier of an AVC entry
726 * @seqno : sequence number when decision was made
728 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
729 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
730 * otherwise, this function update the AVC entry. The original AVC-entry object
731 * will release later by RCU.
733 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
734 u32 seqno)
736 int hvalue, rc = 0;
737 unsigned long flag;
738 struct avc_node *pos, *node, *orig = NULL;
740 node = avc_alloc_node();
741 if (!node) {
742 rc = -ENOMEM;
743 goto out;
746 /* Lock the target slot */
747 hvalue = avc_hash(ssid, tsid, tclass);
748 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
750 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
751 if (ssid == pos->ae.ssid &&
752 tsid == pos->ae.tsid &&
753 tclass == pos->ae.tclass &&
754 seqno == pos->ae.avd.seqno){
755 orig = pos;
756 break;
760 if (!orig) {
761 rc = -ENOENT;
762 avc_node_kill(node);
763 goto out_unlock;
767 * Copy and replace original node.
770 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
772 switch (event) {
773 case AVC_CALLBACK_GRANT:
774 node->ae.avd.allowed |= perms;
775 break;
776 case AVC_CALLBACK_TRY_REVOKE:
777 case AVC_CALLBACK_REVOKE:
778 node->ae.avd.allowed &= ~perms;
779 break;
780 case AVC_CALLBACK_AUDITALLOW_ENABLE:
781 node->ae.avd.auditallow |= perms;
782 break;
783 case AVC_CALLBACK_AUDITALLOW_DISABLE:
784 node->ae.avd.auditallow &= ~perms;
785 break;
786 case AVC_CALLBACK_AUDITDENY_ENABLE:
787 node->ae.avd.auditdeny |= perms;
788 break;
789 case AVC_CALLBACK_AUDITDENY_DISABLE:
790 node->ae.avd.auditdeny &= ~perms;
791 break;
793 avc_node_replace(node, orig);
794 out_unlock:
795 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
796 out:
797 return rc;
801 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
802 * @seqno: policy sequence number
804 int avc_ss_reset(u32 seqno)
806 struct avc_callback_node *c;
807 int i, rc = 0, tmprc;
808 unsigned long flag;
809 struct avc_node *node;
811 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
812 spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
814 * With preemptable RCU, the outer spinlock does not
815 * prevent RCU grace periods from ending.
817 rcu_read_lock();
818 list_for_each_entry(node, &avc_cache.slots[i], list)
819 avc_node_delete(node);
820 rcu_read_unlock();
821 spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
824 for (c = avc_callbacks; c; c = c->next) {
825 if (c->events & AVC_CALLBACK_RESET) {
826 tmprc = c->callback(AVC_CALLBACK_RESET,
827 0, 0, 0, 0, NULL);
828 /* save the first error encountered for the return
829 value and continue processing the callbacks */
830 if (!rc)
831 rc = tmprc;
835 avc_latest_notif_update(seqno, 0);
836 return rc;
840 * avc_has_perm_noaudit - Check permissions but perform no auditing.
841 * @ssid: source security identifier
842 * @tsid: target security identifier
843 * @tclass: target security class
844 * @requested: requested permissions, interpreted based on @tclass
845 * @flags: AVC_STRICT or 0
846 * @avd: access vector decisions
848 * Check the AVC to determine whether the @requested permissions are granted
849 * for the SID pair (@ssid, @tsid), interpreting the permissions
850 * based on @tclass, and call the security server on a cache miss to obtain
851 * a new decision and add it to the cache. Return a copy of the decisions
852 * in @avd. Return %0 if all @requested permissions are granted,
853 * -%EACCES if any permissions are denied, or another -errno upon
854 * other errors. This function is typically called by avc_has_perm(),
855 * but may also be called directly to separate permission checking from
856 * auditing, e.g. in cases where a lock must be held for the check but
857 * should be released for the auditing.
859 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
860 u16 tclass, u32 requested,
861 unsigned flags,
862 struct av_decision *in_avd)
864 struct avc_node *node;
865 struct av_decision avd_entry, *avd;
866 int rc = 0;
867 u32 denied;
869 BUG_ON(!requested);
871 rcu_read_lock();
873 node = avc_lookup(ssid, tsid, tclass);
874 if (!node) {
875 rcu_read_unlock();
877 if (in_avd)
878 avd = in_avd;
879 else
880 avd = &avd_entry;
882 rc = security_compute_av(ssid, tsid, tclass, requested, avd);
883 if (rc)
884 goto out;
885 rcu_read_lock();
886 node = avc_insert(ssid, tsid, tclass, avd);
887 } else {
888 if (in_avd)
889 memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
890 avd = &node->ae.avd;
893 denied = requested & ~(avd->allowed);
895 if (denied) {
896 if (flags & AVC_STRICT)
897 rc = -EACCES;
898 else if (!selinux_enforcing || security_permissive_sid(ssid))
899 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
900 tsid, tclass, avd->seqno);
901 else
902 rc = -EACCES;
905 rcu_read_unlock();
906 out:
907 return rc;
911 * avc_has_perm - Check permissions and perform any appropriate auditing.
912 * @ssid: source security identifier
913 * @tsid: target security identifier
914 * @tclass: target security class
915 * @requested: requested permissions, interpreted based on @tclass
916 * @auditdata: auxiliary audit data
918 * Check the AVC to determine whether the @requested permissions are granted
919 * for the SID pair (@ssid, @tsid), interpreting the permissions
920 * based on @tclass, and call the security server on a cache miss to obtain
921 * a new decision and add it to the cache. Audit the granting or denial of
922 * permissions in accordance with the policy. Return %0 if all @requested
923 * permissions are granted, -%EACCES if any permissions are denied, or
924 * another -errno upon other errors.
926 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
927 u32 requested, struct avc_audit_data *auditdata)
929 struct av_decision avd;
930 int rc;
932 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
933 avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
934 return rc;
937 u32 avc_policy_seqno(void)
939 return avc_cache.latest_notif;