badpage: remove vma from page_remove_rmap
[linux-2.6/mini2440.git] / mm / memory.c
blob0f9abbaf618cb8b21ceb7145b53d955a64f462db
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/tlb.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
65 #include "internal.h"
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
76 unsigned long num_physpages;
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
84 void * high_memory;
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
90 * Randomize the address space (stacks, mmaps, brk, etc.).
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
98 #else
100 #endif
102 static int __init disable_randmaps(char *s)
104 randomize_va_space = 0;
105 return 1;
107 __setup("norandmaps", disable_randmaps);
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
116 void pgd_clear_bad(pgd_t *pgd)
118 pgd_ERROR(*pgd);
119 pgd_clear(pgd);
122 void pud_clear_bad(pud_t *pud)
124 pud_ERROR(*pud);
125 pud_clear(pud);
128 void pmd_clear_bad(pmd_t *pmd)
130 pmd_ERROR(*pmd);
131 pmd_clear(pmd);
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
140 pgtable_t token = pmd_pgtable(*pmd);
141 pmd_clear(pmd);
142 pte_free_tlb(tlb, token);
143 tlb->mm->nr_ptes--;
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 unsigned long addr, unsigned long end,
148 unsigned long floor, unsigned long ceiling)
150 pmd_t *pmd;
151 unsigned long next;
152 unsigned long start;
154 start = addr;
155 pmd = pmd_offset(pud, addr);
156 do {
157 next = pmd_addr_end(addr, end);
158 if (pmd_none_or_clear_bad(pmd))
159 continue;
160 free_pte_range(tlb, pmd);
161 } while (pmd++, addr = next, addr != end);
163 start &= PUD_MASK;
164 if (start < floor)
165 return;
166 if (ceiling) {
167 ceiling &= PUD_MASK;
168 if (!ceiling)
169 return;
171 if (end - 1 > ceiling - 1)
172 return;
174 pmd = pmd_offset(pud, start);
175 pud_clear(pud);
176 pmd_free_tlb(tlb, pmd);
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 unsigned long addr, unsigned long end,
181 unsigned long floor, unsigned long ceiling)
183 pud_t *pud;
184 unsigned long next;
185 unsigned long start;
187 start = addr;
188 pud = pud_offset(pgd, addr);
189 do {
190 next = pud_addr_end(addr, end);
191 if (pud_none_or_clear_bad(pud))
192 continue;
193 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 } while (pud++, addr = next, addr != end);
196 start &= PGDIR_MASK;
197 if (start < floor)
198 return;
199 if (ceiling) {
200 ceiling &= PGDIR_MASK;
201 if (!ceiling)
202 return;
204 if (end - 1 > ceiling - 1)
205 return;
207 pud = pud_offset(pgd, start);
208 pgd_clear(pgd);
209 pud_free_tlb(tlb, pud);
213 * This function frees user-level page tables of a process.
215 * Must be called with pagetable lock held.
217 void free_pgd_range(struct mmu_gather *tlb,
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
221 pgd_t *pgd;
222 unsigned long next;
223 unsigned long start;
226 * The next few lines have given us lots of grief...
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
251 addr &= PMD_MASK;
252 if (addr < floor) {
253 addr += PMD_SIZE;
254 if (!addr)
255 return;
257 if (ceiling) {
258 ceiling &= PMD_MASK;
259 if (!ceiling)
260 return;
262 if (end - 1 > ceiling - 1)
263 end -= PMD_SIZE;
264 if (addr > end - 1)
265 return;
267 start = addr;
268 pgd = pgd_offset(tlb->mm, addr);
269 do {
270 next = pgd_addr_end(addr, end);
271 if (pgd_none_or_clear_bad(pgd))
272 continue;
273 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 } while (pgd++, addr = next, addr != end);
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 unsigned long floor, unsigned long ceiling)
280 while (vma) {
281 struct vm_area_struct *next = vma->vm_next;
282 unsigned long addr = vma->vm_start;
285 * Hide vma from rmap and vmtruncate before freeing pgtables
287 anon_vma_unlink(vma);
288 unlink_file_vma(vma);
290 if (is_vm_hugetlb_page(vma)) {
291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 floor, next? next->vm_start: ceiling);
293 } else {
295 * Optimization: gather nearby vmas into one call down
297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 && !is_vm_hugetlb_page(next)) {
299 vma = next;
300 next = vma->vm_next;
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
304 free_pgd_range(tlb, addr, vma->vm_end,
305 floor, next? next->vm_start: ceiling);
307 vma = next;
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
313 pgtable_t new = pte_alloc_one(mm, address);
314 if (!new)
315 return -ENOMEM;
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
332 spin_lock(&mm->page_table_lock);
333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
334 mm->nr_ptes++;
335 pmd_populate(mm, pmd, new);
336 new = NULL;
338 spin_unlock(&mm->page_table_lock);
339 if (new)
340 pte_free(mm, new);
341 return 0;
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
346 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 if (!new)
348 return -ENOMEM;
350 smp_wmb(); /* See comment in __pte_alloc */
352 spin_lock(&init_mm.page_table_lock);
353 if (!pmd_present(*pmd)) { /* Has another populated it ? */
354 pmd_populate_kernel(&init_mm, pmd, new);
355 new = NULL;
357 spin_unlock(&init_mm.page_table_lock);
358 if (new)
359 pte_free_kernel(&init_mm, new);
360 return 0;
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
365 if (file_rss)
366 add_mm_counter(mm, file_rss, file_rss);
367 if (anon_rss)
368 add_mm_counter(mm, anon_rss, anon_rss);
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
376 * The calling function must still handle the error.
378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379 pte_t pte, struct page *page)
381 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382 pud_t *pud = pud_offset(pgd, addr);
383 pmd_t *pmd = pmd_offset(pud, addr);
384 struct address_space *mapping;
385 pgoff_t index;
387 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
388 index = linear_page_index(vma, addr);
390 printk(KERN_EMERG "Bad page map in process %s pte:%08llx pmd:%08llx\n",
391 current->comm,
392 (long long)pte_val(pte), (long long)pmd_val(*pmd));
393 if (page) {
394 printk(KERN_EMERG
395 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
396 page, (void *)page->flags, page_count(page),
397 page_mapcount(page), page->mapping, page->index);
399 printk(KERN_EMERG
400 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
401 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
403 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
405 if (vma->vm_ops)
406 print_symbol(KERN_EMERG "vma->vm_ops->fault: %s\n",
407 (unsigned long)vma->vm_ops->fault);
408 if (vma->vm_file && vma->vm_file->f_op)
409 print_symbol(KERN_EMERG "vma->vm_file->f_op->mmap: %s\n",
410 (unsigned long)vma->vm_file->f_op->mmap);
411 dump_stack();
412 add_taint(TAINT_BAD_PAGE);
415 static inline int is_cow_mapping(unsigned int flags)
417 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
421 * vm_normal_page -- This function gets the "struct page" associated with a pte.
423 * "Special" mappings do not wish to be associated with a "struct page" (either
424 * it doesn't exist, or it exists but they don't want to touch it). In this
425 * case, NULL is returned here. "Normal" mappings do have a struct page.
427 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
428 * pte bit, in which case this function is trivial. Secondly, an architecture
429 * may not have a spare pte bit, which requires a more complicated scheme,
430 * described below.
432 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
433 * special mapping (even if there are underlying and valid "struct pages").
434 * COWed pages of a VM_PFNMAP are always normal.
436 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
437 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
438 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
439 * mapping will always honor the rule
441 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
443 * And for normal mappings this is false.
445 * This restricts such mappings to be a linear translation from virtual address
446 * to pfn. To get around this restriction, we allow arbitrary mappings so long
447 * as the vma is not a COW mapping; in that case, we know that all ptes are
448 * special (because none can have been COWed).
451 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
453 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
454 * page" backing, however the difference is that _all_ pages with a struct
455 * page (that is, those where pfn_valid is true) are refcounted and considered
456 * normal pages by the VM. The disadvantage is that pages are refcounted
457 * (which can be slower and simply not an option for some PFNMAP users). The
458 * advantage is that we don't have to follow the strict linearity rule of
459 * PFNMAP mappings in order to support COWable mappings.
462 #ifdef __HAVE_ARCH_PTE_SPECIAL
463 # define HAVE_PTE_SPECIAL 1
464 #else
465 # define HAVE_PTE_SPECIAL 0
466 #endif
467 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
468 pte_t pte)
470 unsigned long pfn = pte_pfn(pte);
472 if (HAVE_PTE_SPECIAL) {
473 if (likely(!pte_special(pte)))
474 goto check_pfn;
475 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
476 print_bad_pte(vma, addr, pte, NULL);
477 return NULL;
480 /* !HAVE_PTE_SPECIAL case follows: */
482 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
483 if (vma->vm_flags & VM_MIXEDMAP) {
484 if (!pfn_valid(pfn))
485 return NULL;
486 goto out;
487 } else {
488 unsigned long off;
489 off = (addr - vma->vm_start) >> PAGE_SHIFT;
490 if (pfn == vma->vm_pgoff + off)
491 return NULL;
492 if (!is_cow_mapping(vma->vm_flags))
493 return NULL;
497 check_pfn:
498 if (unlikely(pfn > highest_memmap_pfn)) {
499 print_bad_pte(vma, addr, pte, NULL);
500 return NULL;
504 * NOTE! We still have PageReserved() pages in the page tables.
505 * eg. VDSO mappings can cause them to exist.
507 out:
508 return pfn_to_page(pfn);
512 * copy one vm_area from one task to the other. Assumes the page tables
513 * already present in the new task to be cleared in the whole range
514 * covered by this vma.
517 static inline void
518 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
519 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
520 unsigned long addr, int *rss)
522 unsigned long vm_flags = vma->vm_flags;
523 pte_t pte = *src_pte;
524 struct page *page;
526 /* pte contains position in swap or file, so copy. */
527 if (unlikely(!pte_present(pte))) {
528 if (!pte_file(pte)) {
529 swp_entry_t entry = pte_to_swp_entry(pte);
531 swap_duplicate(entry);
532 /* make sure dst_mm is on swapoff's mmlist. */
533 if (unlikely(list_empty(&dst_mm->mmlist))) {
534 spin_lock(&mmlist_lock);
535 if (list_empty(&dst_mm->mmlist))
536 list_add(&dst_mm->mmlist,
537 &src_mm->mmlist);
538 spin_unlock(&mmlist_lock);
540 if (is_write_migration_entry(entry) &&
541 is_cow_mapping(vm_flags)) {
543 * COW mappings require pages in both parent
544 * and child to be set to read.
546 make_migration_entry_read(&entry);
547 pte = swp_entry_to_pte(entry);
548 set_pte_at(src_mm, addr, src_pte, pte);
551 goto out_set_pte;
555 * If it's a COW mapping, write protect it both
556 * in the parent and the child
558 if (is_cow_mapping(vm_flags)) {
559 ptep_set_wrprotect(src_mm, addr, src_pte);
560 pte = pte_wrprotect(pte);
564 * If it's a shared mapping, mark it clean in
565 * the child
567 if (vm_flags & VM_SHARED)
568 pte = pte_mkclean(pte);
569 pte = pte_mkold(pte);
571 page = vm_normal_page(vma, addr, pte);
572 if (page) {
573 get_page(page);
574 page_dup_rmap(page, vma, addr);
575 rss[!!PageAnon(page)]++;
578 out_set_pte:
579 set_pte_at(dst_mm, addr, dst_pte, pte);
582 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
583 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
584 unsigned long addr, unsigned long end)
586 pte_t *src_pte, *dst_pte;
587 spinlock_t *src_ptl, *dst_ptl;
588 int progress = 0;
589 int rss[2];
591 again:
592 rss[1] = rss[0] = 0;
593 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
594 if (!dst_pte)
595 return -ENOMEM;
596 src_pte = pte_offset_map_nested(src_pmd, addr);
597 src_ptl = pte_lockptr(src_mm, src_pmd);
598 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
599 arch_enter_lazy_mmu_mode();
601 do {
603 * We are holding two locks at this point - either of them
604 * could generate latencies in another task on another CPU.
606 if (progress >= 32) {
607 progress = 0;
608 if (need_resched() ||
609 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
610 break;
612 if (pte_none(*src_pte)) {
613 progress++;
614 continue;
616 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
617 progress += 8;
618 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
620 arch_leave_lazy_mmu_mode();
621 spin_unlock(src_ptl);
622 pte_unmap_nested(src_pte - 1);
623 add_mm_rss(dst_mm, rss[0], rss[1]);
624 pte_unmap_unlock(dst_pte - 1, dst_ptl);
625 cond_resched();
626 if (addr != end)
627 goto again;
628 return 0;
631 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
632 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
633 unsigned long addr, unsigned long end)
635 pmd_t *src_pmd, *dst_pmd;
636 unsigned long next;
638 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
639 if (!dst_pmd)
640 return -ENOMEM;
641 src_pmd = pmd_offset(src_pud, addr);
642 do {
643 next = pmd_addr_end(addr, end);
644 if (pmd_none_or_clear_bad(src_pmd))
645 continue;
646 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
647 vma, addr, next))
648 return -ENOMEM;
649 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
650 return 0;
653 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
654 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
655 unsigned long addr, unsigned long end)
657 pud_t *src_pud, *dst_pud;
658 unsigned long next;
660 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
661 if (!dst_pud)
662 return -ENOMEM;
663 src_pud = pud_offset(src_pgd, addr);
664 do {
665 next = pud_addr_end(addr, end);
666 if (pud_none_or_clear_bad(src_pud))
667 continue;
668 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
669 vma, addr, next))
670 return -ENOMEM;
671 } while (dst_pud++, src_pud++, addr = next, addr != end);
672 return 0;
675 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
676 struct vm_area_struct *vma)
678 pgd_t *src_pgd, *dst_pgd;
679 unsigned long next;
680 unsigned long addr = vma->vm_start;
681 unsigned long end = vma->vm_end;
682 int ret;
685 * Don't copy ptes where a page fault will fill them correctly.
686 * Fork becomes much lighter when there are big shared or private
687 * readonly mappings. The tradeoff is that copy_page_range is more
688 * efficient than faulting.
690 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
691 if (!vma->anon_vma)
692 return 0;
695 if (is_vm_hugetlb_page(vma))
696 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
698 if (unlikely(is_pfn_mapping(vma))) {
700 * We do not free on error cases below as remove_vma
701 * gets called on error from higher level routine
703 ret = track_pfn_vma_copy(vma);
704 if (ret)
705 return ret;
709 * We need to invalidate the secondary MMU mappings only when
710 * there could be a permission downgrade on the ptes of the
711 * parent mm. And a permission downgrade will only happen if
712 * is_cow_mapping() returns true.
714 if (is_cow_mapping(vma->vm_flags))
715 mmu_notifier_invalidate_range_start(src_mm, addr, end);
717 ret = 0;
718 dst_pgd = pgd_offset(dst_mm, addr);
719 src_pgd = pgd_offset(src_mm, addr);
720 do {
721 next = pgd_addr_end(addr, end);
722 if (pgd_none_or_clear_bad(src_pgd))
723 continue;
724 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
725 vma, addr, next))) {
726 ret = -ENOMEM;
727 break;
729 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
731 if (is_cow_mapping(vma->vm_flags))
732 mmu_notifier_invalidate_range_end(src_mm,
733 vma->vm_start, end);
734 return ret;
737 static unsigned long zap_pte_range(struct mmu_gather *tlb,
738 struct vm_area_struct *vma, pmd_t *pmd,
739 unsigned long addr, unsigned long end,
740 long *zap_work, struct zap_details *details)
742 struct mm_struct *mm = tlb->mm;
743 pte_t *pte;
744 spinlock_t *ptl;
745 int file_rss = 0;
746 int anon_rss = 0;
748 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
749 arch_enter_lazy_mmu_mode();
750 do {
751 pte_t ptent = *pte;
752 if (pte_none(ptent)) {
753 (*zap_work)--;
754 continue;
757 (*zap_work) -= PAGE_SIZE;
759 if (pte_present(ptent)) {
760 struct page *page;
762 page = vm_normal_page(vma, addr, ptent);
763 if (unlikely(details) && page) {
765 * unmap_shared_mapping_pages() wants to
766 * invalidate cache without truncating:
767 * unmap shared but keep private pages.
769 if (details->check_mapping &&
770 details->check_mapping != page->mapping)
771 continue;
773 * Each page->index must be checked when
774 * invalidating or truncating nonlinear.
776 if (details->nonlinear_vma &&
777 (page->index < details->first_index ||
778 page->index > details->last_index))
779 continue;
781 ptent = ptep_get_and_clear_full(mm, addr, pte,
782 tlb->fullmm);
783 tlb_remove_tlb_entry(tlb, pte, addr);
784 if (unlikely(!page))
785 continue;
786 if (unlikely(details) && details->nonlinear_vma
787 && linear_page_index(details->nonlinear_vma,
788 addr) != page->index)
789 set_pte_at(mm, addr, pte,
790 pgoff_to_pte(page->index));
791 if (PageAnon(page))
792 anon_rss--;
793 else {
794 if (pte_dirty(ptent))
795 set_page_dirty(page);
796 if (pte_young(ptent) &&
797 likely(!VM_SequentialReadHint(vma)))
798 mark_page_accessed(page);
799 file_rss--;
801 page_remove_rmap(page);
802 if (unlikely(page_mapcount(page) < 0))
803 print_bad_pte(vma, addr, ptent, page);
804 tlb_remove_page(tlb, page);
805 continue;
808 * If details->check_mapping, we leave swap entries;
809 * if details->nonlinear_vma, we leave file entries.
811 if (unlikely(details))
812 continue;
813 if (pte_file(ptent)) {
814 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
815 print_bad_pte(vma, addr, ptent, NULL);
816 } else if
817 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
818 print_bad_pte(vma, addr, ptent, NULL);
819 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
820 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
822 add_mm_rss(mm, file_rss, anon_rss);
823 arch_leave_lazy_mmu_mode();
824 pte_unmap_unlock(pte - 1, ptl);
826 return addr;
829 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
830 struct vm_area_struct *vma, pud_t *pud,
831 unsigned long addr, unsigned long end,
832 long *zap_work, struct zap_details *details)
834 pmd_t *pmd;
835 unsigned long next;
837 pmd = pmd_offset(pud, addr);
838 do {
839 next = pmd_addr_end(addr, end);
840 if (pmd_none_or_clear_bad(pmd)) {
841 (*zap_work)--;
842 continue;
844 next = zap_pte_range(tlb, vma, pmd, addr, next,
845 zap_work, details);
846 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
848 return addr;
851 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
852 struct vm_area_struct *vma, pgd_t *pgd,
853 unsigned long addr, unsigned long end,
854 long *zap_work, struct zap_details *details)
856 pud_t *pud;
857 unsigned long next;
859 pud = pud_offset(pgd, addr);
860 do {
861 next = pud_addr_end(addr, end);
862 if (pud_none_or_clear_bad(pud)) {
863 (*zap_work)--;
864 continue;
866 next = zap_pmd_range(tlb, vma, pud, addr, next,
867 zap_work, details);
868 } while (pud++, addr = next, (addr != end && *zap_work > 0));
870 return addr;
873 static unsigned long unmap_page_range(struct mmu_gather *tlb,
874 struct vm_area_struct *vma,
875 unsigned long addr, unsigned long end,
876 long *zap_work, struct zap_details *details)
878 pgd_t *pgd;
879 unsigned long next;
881 if (details && !details->check_mapping && !details->nonlinear_vma)
882 details = NULL;
884 BUG_ON(addr >= end);
885 tlb_start_vma(tlb, vma);
886 pgd = pgd_offset(vma->vm_mm, addr);
887 do {
888 next = pgd_addr_end(addr, end);
889 if (pgd_none_or_clear_bad(pgd)) {
890 (*zap_work)--;
891 continue;
893 next = zap_pud_range(tlb, vma, pgd, addr, next,
894 zap_work, details);
895 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
896 tlb_end_vma(tlb, vma);
898 return addr;
901 #ifdef CONFIG_PREEMPT
902 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
903 #else
904 /* No preempt: go for improved straight-line efficiency */
905 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
906 #endif
909 * unmap_vmas - unmap a range of memory covered by a list of vma's
910 * @tlbp: address of the caller's struct mmu_gather
911 * @vma: the starting vma
912 * @start_addr: virtual address at which to start unmapping
913 * @end_addr: virtual address at which to end unmapping
914 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
915 * @details: details of nonlinear truncation or shared cache invalidation
917 * Returns the end address of the unmapping (restart addr if interrupted).
919 * Unmap all pages in the vma list.
921 * We aim to not hold locks for too long (for scheduling latency reasons).
922 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
923 * return the ending mmu_gather to the caller.
925 * Only addresses between `start' and `end' will be unmapped.
927 * The VMA list must be sorted in ascending virtual address order.
929 * unmap_vmas() assumes that the caller will flush the whole unmapped address
930 * range after unmap_vmas() returns. So the only responsibility here is to
931 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
932 * drops the lock and schedules.
934 unsigned long unmap_vmas(struct mmu_gather **tlbp,
935 struct vm_area_struct *vma, unsigned long start_addr,
936 unsigned long end_addr, unsigned long *nr_accounted,
937 struct zap_details *details)
939 long zap_work = ZAP_BLOCK_SIZE;
940 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
941 int tlb_start_valid = 0;
942 unsigned long start = start_addr;
943 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
944 int fullmm = (*tlbp)->fullmm;
945 struct mm_struct *mm = vma->vm_mm;
947 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
948 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
949 unsigned long end;
951 start = max(vma->vm_start, start_addr);
952 if (start >= vma->vm_end)
953 continue;
954 end = min(vma->vm_end, end_addr);
955 if (end <= vma->vm_start)
956 continue;
958 if (vma->vm_flags & VM_ACCOUNT)
959 *nr_accounted += (end - start) >> PAGE_SHIFT;
961 if (unlikely(is_pfn_mapping(vma)))
962 untrack_pfn_vma(vma, 0, 0);
964 while (start != end) {
965 if (!tlb_start_valid) {
966 tlb_start = start;
967 tlb_start_valid = 1;
970 if (unlikely(is_vm_hugetlb_page(vma))) {
972 * It is undesirable to test vma->vm_file as it
973 * should be non-null for valid hugetlb area.
974 * However, vm_file will be NULL in the error
975 * cleanup path of do_mmap_pgoff. When
976 * hugetlbfs ->mmap method fails,
977 * do_mmap_pgoff() nullifies vma->vm_file
978 * before calling this function to clean up.
979 * Since no pte has actually been setup, it is
980 * safe to do nothing in this case.
982 if (vma->vm_file) {
983 unmap_hugepage_range(vma, start, end, NULL);
984 zap_work -= (end - start) /
985 pages_per_huge_page(hstate_vma(vma));
988 start = end;
989 } else
990 start = unmap_page_range(*tlbp, vma,
991 start, end, &zap_work, details);
993 if (zap_work > 0) {
994 BUG_ON(start != end);
995 break;
998 tlb_finish_mmu(*tlbp, tlb_start, start);
1000 if (need_resched() ||
1001 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1002 if (i_mmap_lock) {
1003 *tlbp = NULL;
1004 goto out;
1006 cond_resched();
1009 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1010 tlb_start_valid = 0;
1011 zap_work = ZAP_BLOCK_SIZE;
1014 out:
1015 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1016 return start; /* which is now the end (or restart) address */
1020 * zap_page_range - remove user pages in a given range
1021 * @vma: vm_area_struct holding the applicable pages
1022 * @address: starting address of pages to zap
1023 * @size: number of bytes to zap
1024 * @details: details of nonlinear truncation or shared cache invalidation
1026 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1027 unsigned long size, struct zap_details *details)
1029 struct mm_struct *mm = vma->vm_mm;
1030 struct mmu_gather *tlb;
1031 unsigned long end = address + size;
1032 unsigned long nr_accounted = 0;
1034 lru_add_drain();
1035 tlb = tlb_gather_mmu(mm, 0);
1036 update_hiwater_rss(mm);
1037 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1038 if (tlb)
1039 tlb_finish_mmu(tlb, address, end);
1040 return end;
1044 * zap_vma_ptes - remove ptes mapping the vma
1045 * @vma: vm_area_struct holding ptes to be zapped
1046 * @address: starting address of pages to zap
1047 * @size: number of bytes to zap
1049 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1051 * The entire address range must be fully contained within the vma.
1053 * Returns 0 if successful.
1055 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1056 unsigned long size)
1058 if (address < vma->vm_start || address + size > vma->vm_end ||
1059 !(vma->vm_flags & VM_PFNMAP))
1060 return -1;
1061 zap_page_range(vma, address, size, NULL);
1062 return 0;
1064 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1067 * Do a quick page-table lookup for a single page.
1069 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1070 unsigned int flags)
1072 pgd_t *pgd;
1073 pud_t *pud;
1074 pmd_t *pmd;
1075 pte_t *ptep, pte;
1076 spinlock_t *ptl;
1077 struct page *page;
1078 struct mm_struct *mm = vma->vm_mm;
1080 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1081 if (!IS_ERR(page)) {
1082 BUG_ON(flags & FOLL_GET);
1083 goto out;
1086 page = NULL;
1087 pgd = pgd_offset(mm, address);
1088 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1089 goto no_page_table;
1091 pud = pud_offset(pgd, address);
1092 if (pud_none(*pud))
1093 goto no_page_table;
1094 if (pud_huge(*pud)) {
1095 BUG_ON(flags & FOLL_GET);
1096 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1097 goto out;
1099 if (unlikely(pud_bad(*pud)))
1100 goto no_page_table;
1102 pmd = pmd_offset(pud, address);
1103 if (pmd_none(*pmd))
1104 goto no_page_table;
1105 if (pmd_huge(*pmd)) {
1106 BUG_ON(flags & FOLL_GET);
1107 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1108 goto out;
1110 if (unlikely(pmd_bad(*pmd)))
1111 goto no_page_table;
1113 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1115 pte = *ptep;
1116 if (!pte_present(pte))
1117 goto no_page;
1118 if ((flags & FOLL_WRITE) && !pte_write(pte))
1119 goto unlock;
1120 page = vm_normal_page(vma, address, pte);
1121 if (unlikely(!page))
1122 goto bad_page;
1124 if (flags & FOLL_GET)
1125 get_page(page);
1126 if (flags & FOLL_TOUCH) {
1127 if ((flags & FOLL_WRITE) &&
1128 !pte_dirty(pte) && !PageDirty(page))
1129 set_page_dirty(page);
1130 mark_page_accessed(page);
1132 unlock:
1133 pte_unmap_unlock(ptep, ptl);
1134 out:
1135 return page;
1137 bad_page:
1138 pte_unmap_unlock(ptep, ptl);
1139 return ERR_PTR(-EFAULT);
1141 no_page:
1142 pte_unmap_unlock(ptep, ptl);
1143 if (!pte_none(pte))
1144 return page;
1145 /* Fall through to ZERO_PAGE handling */
1146 no_page_table:
1148 * When core dumping an enormous anonymous area that nobody
1149 * has touched so far, we don't want to allocate page tables.
1151 if (flags & FOLL_ANON) {
1152 page = ZERO_PAGE(0);
1153 if (flags & FOLL_GET)
1154 get_page(page);
1155 BUG_ON(flags & FOLL_WRITE);
1157 return page;
1160 /* Can we do the FOLL_ANON optimization? */
1161 static inline int use_zero_page(struct vm_area_struct *vma)
1164 * We don't want to optimize FOLL_ANON for make_pages_present()
1165 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1166 * we want to get the page from the page tables to make sure
1167 * that we serialize and update with any other user of that
1168 * mapping.
1170 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1171 return 0;
1173 * And if we have a fault routine, it's not an anonymous region.
1175 return !vma->vm_ops || !vma->vm_ops->fault;
1180 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1181 unsigned long start, int len, int flags,
1182 struct page **pages, struct vm_area_struct **vmas)
1184 int i;
1185 unsigned int vm_flags = 0;
1186 int write = !!(flags & GUP_FLAGS_WRITE);
1187 int force = !!(flags & GUP_FLAGS_FORCE);
1188 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1190 if (len <= 0)
1191 return 0;
1193 * Require read or write permissions.
1194 * If 'force' is set, we only require the "MAY" flags.
1196 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1197 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1198 i = 0;
1200 do {
1201 struct vm_area_struct *vma;
1202 unsigned int foll_flags;
1204 vma = find_extend_vma(mm, start);
1205 if (!vma && in_gate_area(tsk, start)) {
1206 unsigned long pg = start & PAGE_MASK;
1207 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1208 pgd_t *pgd;
1209 pud_t *pud;
1210 pmd_t *pmd;
1211 pte_t *pte;
1213 /* user gate pages are read-only */
1214 if (!ignore && write)
1215 return i ? : -EFAULT;
1216 if (pg > TASK_SIZE)
1217 pgd = pgd_offset_k(pg);
1218 else
1219 pgd = pgd_offset_gate(mm, pg);
1220 BUG_ON(pgd_none(*pgd));
1221 pud = pud_offset(pgd, pg);
1222 BUG_ON(pud_none(*pud));
1223 pmd = pmd_offset(pud, pg);
1224 if (pmd_none(*pmd))
1225 return i ? : -EFAULT;
1226 pte = pte_offset_map(pmd, pg);
1227 if (pte_none(*pte)) {
1228 pte_unmap(pte);
1229 return i ? : -EFAULT;
1231 if (pages) {
1232 struct page *page = vm_normal_page(gate_vma, start, *pte);
1233 pages[i] = page;
1234 if (page)
1235 get_page(page);
1237 pte_unmap(pte);
1238 if (vmas)
1239 vmas[i] = gate_vma;
1240 i++;
1241 start += PAGE_SIZE;
1242 len--;
1243 continue;
1246 if (!vma ||
1247 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1248 (!ignore && !(vm_flags & vma->vm_flags)))
1249 return i ? : -EFAULT;
1251 if (is_vm_hugetlb_page(vma)) {
1252 i = follow_hugetlb_page(mm, vma, pages, vmas,
1253 &start, &len, i, write);
1254 continue;
1257 foll_flags = FOLL_TOUCH;
1258 if (pages)
1259 foll_flags |= FOLL_GET;
1260 if (!write && use_zero_page(vma))
1261 foll_flags |= FOLL_ANON;
1263 do {
1264 struct page *page;
1267 * If tsk is ooming, cut off its access to large memory
1268 * allocations. It has a pending SIGKILL, but it can't
1269 * be processed until returning to user space.
1271 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1272 return i ? i : -ENOMEM;
1274 if (write)
1275 foll_flags |= FOLL_WRITE;
1277 cond_resched();
1278 while (!(page = follow_page(vma, start, foll_flags))) {
1279 int ret;
1280 ret = handle_mm_fault(mm, vma, start,
1281 foll_flags & FOLL_WRITE);
1282 if (ret & VM_FAULT_ERROR) {
1283 if (ret & VM_FAULT_OOM)
1284 return i ? i : -ENOMEM;
1285 else if (ret & VM_FAULT_SIGBUS)
1286 return i ? i : -EFAULT;
1287 BUG();
1289 if (ret & VM_FAULT_MAJOR)
1290 tsk->maj_flt++;
1291 else
1292 tsk->min_flt++;
1295 * The VM_FAULT_WRITE bit tells us that
1296 * do_wp_page has broken COW when necessary,
1297 * even if maybe_mkwrite decided not to set
1298 * pte_write. We can thus safely do subsequent
1299 * page lookups as if they were reads. But only
1300 * do so when looping for pte_write is futile:
1301 * in some cases userspace may also be wanting
1302 * to write to the gotten user page, which a
1303 * read fault here might prevent (a readonly
1304 * page might get reCOWed by userspace write).
1306 if ((ret & VM_FAULT_WRITE) &&
1307 !(vma->vm_flags & VM_WRITE))
1308 foll_flags &= ~FOLL_WRITE;
1310 cond_resched();
1312 if (IS_ERR(page))
1313 return i ? i : PTR_ERR(page);
1314 if (pages) {
1315 pages[i] = page;
1317 flush_anon_page(vma, page, start);
1318 flush_dcache_page(page);
1320 if (vmas)
1321 vmas[i] = vma;
1322 i++;
1323 start += PAGE_SIZE;
1324 len--;
1325 } while (len && start < vma->vm_end);
1326 } while (len);
1327 return i;
1330 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1331 unsigned long start, int len, int write, int force,
1332 struct page **pages, struct vm_area_struct **vmas)
1334 int flags = 0;
1336 if (write)
1337 flags |= GUP_FLAGS_WRITE;
1338 if (force)
1339 flags |= GUP_FLAGS_FORCE;
1341 return __get_user_pages(tsk, mm,
1342 start, len, flags,
1343 pages, vmas);
1346 EXPORT_SYMBOL(get_user_pages);
1348 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1349 spinlock_t **ptl)
1351 pgd_t * pgd = pgd_offset(mm, addr);
1352 pud_t * pud = pud_alloc(mm, pgd, addr);
1353 if (pud) {
1354 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1355 if (pmd)
1356 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1358 return NULL;
1362 * This is the old fallback for page remapping.
1364 * For historical reasons, it only allows reserved pages. Only
1365 * old drivers should use this, and they needed to mark their
1366 * pages reserved for the old functions anyway.
1368 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1369 struct page *page, pgprot_t prot)
1371 struct mm_struct *mm = vma->vm_mm;
1372 int retval;
1373 pte_t *pte;
1374 spinlock_t *ptl;
1376 retval = -EINVAL;
1377 if (PageAnon(page))
1378 goto out;
1379 retval = -ENOMEM;
1380 flush_dcache_page(page);
1381 pte = get_locked_pte(mm, addr, &ptl);
1382 if (!pte)
1383 goto out;
1384 retval = -EBUSY;
1385 if (!pte_none(*pte))
1386 goto out_unlock;
1388 /* Ok, finally just insert the thing.. */
1389 get_page(page);
1390 inc_mm_counter(mm, file_rss);
1391 page_add_file_rmap(page);
1392 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1394 retval = 0;
1395 pte_unmap_unlock(pte, ptl);
1396 return retval;
1397 out_unlock:
1398 pte_unmap_unlock(pte, ptl);
1399 out:
1400 return retval;
1404 * vm_insert_page - insert single page into user vma
1405 * @vma: user vma to map to
1406 * @addr: target user address of this page
1407 * @page: source kernel page
1409 * This allows drivers to insert individual pages they've allocated
1410 * into a user vma.
1412 * The page has to be a nice clean _individual_ kernel allocation.
1413 * If you allocate a compound page, you need to have marked it as
1414 * such (__GFP_COMP), or manually just split the page up yourself
1415 * (see split_page()).
1417 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1418 * took an arbitrary page protection parameter. This doesn't allow
1419 * that. Your vma protection will have to be set up correctly, which
1420 * means that if you want a shared writable mapping, you'd better
1421 * ask for a shared writable mapping!
1423 * The page does not need to be reserved.
1425 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1426 struct page *page)
1428 if (addr < vma->vm_start || addr >= vma->vm_end)
1429 return -EFAULT;
1430 if (!page_count(page))
1431 return -EINVAL;
1432 vma->vm_flags |= VM_INSERTPAGE;
1433 return insert_page(vma, addr, page, vma->vm_page_prot);
1435 EXPORT_SYMBOL(vm_insert_page);
1437 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1438 unsigned long pfn, pgprot_t prot)
1440 struct mm_struct *mm = vma->vm_mm;
1441 int retval;
1442 pte_t *pte, entry;
1443 spinlock_t *ptl;
1445 retval = -ENOMEM;
1446 pte = get_locked_pte(mm, addr, &ptl);
1447 if (!pte)
1448 goto out;
1449 retval = -EBUSY;
1450 if (!pte_none(*pte))
1451 goto out_unlock;
1453 /* Ok, finally just insert the thing.. */
1454 entry = pte_mkspecial(pfn_pte(pfn, prot));
1455 set_pte_at(mm, addr, pte, entry);
1456 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1458 retval = 0;
1459 out_unlock:
1460 pte_unmap_unlock(pte, ptl);
1461 out:
1462 return retval;
1466 * vm_insert_pfn - insert single pfn into user vma
1467 * @vma: user vma to map to
1468 * @addr: target user address of this page
1469 * @pfn: source kernel pfn
1471 * Similar to vm_inert_page, this allows drivers to insert individual pages
1472 * they've allocated into a user vma. Same comments apply.
1474 * This function should only be called from a vm_ops->fault handler, and
1475 * in that case the handler should return NULL.
1477 * vma cannot be a COW mapping.
1479 * As this is called only for pages that do not currently exist, we
1480 * do not need to flush old virtual caches or the TLB.
1482 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1483 unsigned long pfn)
1485 int ret;
1487 * Technically, architectures with pte_special can avoid all these
1488 * restrictions (same for remap_pfn_range). However we would like
1489 * consistency in testing and feature parity among all, so we should
1490 * try to keep these invariants in place for everybody.
1492 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1493 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1494 (VM_PFNMAP|VM_MIXEDMAP));
1495 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1496 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1498 if (addr < vma->vm_start || addr >= vma->vm_end)
1499 return -EFAULT;
1500 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1501 return -EINVAL;
1503 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1505 if (ret)
1506 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1508 return ret;
1510 EXPORT_SYMBOL(vm_insert_pfn);
1512 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1513 unsigned long pfn)
1515 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1517 if (addr < vma->vm_start || addr >= vma->vm_end)
1518 return -EFAULT;
1521 * If we don't have pte special, then we have to use the pfn_valid()
1522 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1523 * refcount the page if pfn_valid is true (hence insert_page rather
1524 * than insert_pfn).
1526 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1527 struct page *page;
1529 page = pfn_to_page(pfn);
1530 return insert_page(vma, addr, page, vma->vm_page_prot);
1532 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1534 EXPORT_SYMBOL(vm_insert_mixed);
1537 * maps a range of physical memory into the requested pages. the old
1538 * mappings are removed. any references to nonexistent pages results
1539 * in null mappings (currently treated as "copy-on-access")
1541 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1542 unsigned long addr, unsigned long end,
1543 unsigned long pfn, pgprot_t prot)
1545 pte_t *pte;
1546 spinlock_t *ptl;
1548 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1549 if (!pte)
1550 return -ENOMEM;
1551 arch_enter_lazy_mmu_mode();
1552 do {
1553 BUG_ON(!pte_none(*pte));
1554 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1555 pfn++;
1556 } while (pte++, addr += PAGE_SIZE, addr != end);
1557 arch_leave_lazy_mmu_mode();
1558 pte_unmap_unlock(pte - 1, ptl);
1559 return 0;
1562 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1563 unsigned long addr, unsigned long end,
1564 unsigned long pfn, pgprot_t prot)
1566 pmd_t *pmd;
1567 unsigned long next;
1569 pfn -= addr >> PAGE_SHIFT;
1570 pmd = pmd_alloc(mm, pud, addr);
1571 if (!pmd)
1572 return -ENOMEM;
1573 do {
1574 next = pmd_addr_end(addr, end);
1575 if (remap_pte_range(mm, pmd, addr, next,
1576 pfn + (addr >> PAGE_SHIFT), prot))
1577 return -ENOMEM;
1578 } while (pmd++, addr = next, addr != end);
1579 return 0;
1582 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1583 unsigned long addr, unsigned long end,
1584 unsigned long pfn, pgprot_t prot)
1586 pud_t *pud;
1587 unsigned long next;
1589 pfn -= addr >> PAGE_SHIFT;
1590 pud = pud_alloc(mm, pgd, addr);
1591 if (!pud)
1592 return -ENOMEM;
1593 do {
1594 next = pud_addr_end(addr, end);
1595 if (remap_pmd_range(mm, pud, addr, next,
1596 pfn + (addr >> PAGE_SHIFT), prot))
1597 return -ENOMEM;
1598 } while (pud++, addr = next, addr != end);
1599 return 0;
1603 * remap_pfn_range - remap kernel memory to userspace
1604 * @vma: user vma to map to
1605 * @addr: target user address to start at
1606 * @pfn: physical address of kernel memory
1607 * @size: size of map area
1608 * @prot: page protection flags for this mapping
1610 * Note: this is only safe if the mm semaphore is held when called.
1612 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1613 unsigned long pfn, unsigned long size, pgprot_t prot)
1615 pgd_t *pgd;
1616 unsigned long next;
1617 unsigned long end = addr + PAGE_ALIGN(size);
1618 struct mm_struct *mm = vma->vm_mm;
1619 int err;
1622 * Physically remapped pages are special. Tell the
1623 * rest of the world about it:
1624 * VM_IO tells people not to look at these pages
1625 * (accesses can have side effects).
1626 * VM_RESERVED is specified all over the place, because
1627 * in 2.4 it kept swapout's vma scan off this vma; but
1628 * in 2.6 the LRU scan won't even find its pages, so this
1629 * flag means no more than count its pages in reserved_vm,
1630 * and omit it from core dump, even when VM_IO turned off.
1631 * VM_PFNMAP tells the core MM that the base pages are just
1632 * raw PFN mappings, and do not have a "struct page" associated
1633 * with them.
1635 * There's a horrible special case to handle copy-on-write
1636 * behaviour that some programs depend on. We mark the "original"
1637 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1639 if (addr == vma->vm_start && end == vma->vm_end)
1640 vma->vm_pgoff = pfn;
1641 else if (is_cow_mapping(vma->vm_flags))
1642 return -EINVAL;
1644 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1646 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1647 if (err)
1648 return -EINVAL;
1650 BUG_ON(addr >= end);
1651 pfn -= addr >> PAGE_SHIFT;
1652 pgd = pgd_offset(mm, addr);
1653 flush_cache_range(vma, addr, end);
1654 do {
1655 next = pgd_addr_end(addr, end);
1656 err = remap_pud_range(mm, pgd, addr, next,
1657 pfn + (addr >> PAGE_SHIFT), prot);
1658 if (err)
1659 break;
1660 } while (pgd++, addr = next, addr != end);
1662 if (err)
1663 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1665 return err;
1667 EXPORT_SYMBOL(remap_pfn_range);
1669 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1670 unsigned long addr, unsigned long end,
1671 pte_fn_t fn, void *data)
1673 pte_t *pte;
1674 int err;
1675 pgtable_t token;
1676 spinlock_t *uninitialized_var(ptl);
1678 pte = (mm == &init_mm) ?
1679 pte_alloc_kernel(pmd, addr) :
1680 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1681 if (!pte)
1682 return -ENOMEM;
1684 BUG_ON(pmd_huge(*pmd));
1686 arch_enter_lazy_mmu_mode();
1688 token = pmd_pgtable(*pmd);
1690 do {
1691 err = fn(pte, token, addr, data);
1692 if (err)
1693 break;
1694 } while (pte++, addr += PAGE_SIZE, addr != end);
1696 arch_leave_lazy_mmu_mode();
1698 if (mm != &init_mm)
1699 pte_unmap_unlock(pte-1, ptl);
1700 return err;
1703 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1704 unsigned long addr, unsigned long end,
1705 pte_fn_t fn, void *data)
1707 pmd_t *pmd;
1708 unsigned long next;
1709 int err;
1711 BUG_ON(pud_huge(*pud));
1713 pmd = pmd_alloc(mm, pud, addr);
1714 if (!pmd)
1715 return -ENOMEM;
1716 do {
1717 next = pmd_addr_end(addr, end);
1718 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1719 if (err)
1720 break;
1721 } while (pmd++, addr = next, addr != end);
1722 return err;
1725 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1726 unsigned long addr, unsigned long end,
1727 pte_fn_t fn, void *data)
1729 pud_t *pud;
1730 unsigned long next;
1731 int err;
1733 pud = pud_alloc(mm, pgd, addr);
1734 if (!pud)
1735 return -ENOMEM;
1736 do {
1737 next = pud_addr_end(addr, end);
1738 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1739 if (err)
1740 break;
1741 } while (pud++, addr = next, addr != end);
1742 return err;
1746 * Scan a region of virtual memory, filling in page tables as necessary
1747 * and calling a provided function on each leaf page table.
1749 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1750 unsigned long size, pte_fn_t fn, void *data)
1752 pgd_t *pgd;
1753 unsigned long next;
1754 unsigned long start = addr, end = addr + size;
1755 int err;
1757 BUG_ON(addr >= end);
1758 mmu_notifier_invalidate_range_start(mm, start, end);
1759 pgd = pgd_offset(mm, addr);
1760 do {
1761 next = pgd_addr_end(addr, end);
1762 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1763 if (err)
1764 break;
1765 } while (pgd++, addr = next, addr != end);
1766 mmu_notifier_invalidate_range_end(mm, start, end);
1767 return err;
1769 EXPORT_SYMBOL_GPL(apply_to_page_range);
1772 * handle_pte_fault chooses page fault handler according to an entry
1773 * which was read non-atomically. Before making any commitment, on
1774 * those architectures or configurations (e.g. i386 with PAE) which
1775 * might give a mix of unmatched parts, do_swap_page and do_file_page
1776 * must check under lock before unmapping the pte and proceeding
1777 * (but do_wp_page is only called after already making such a check;
1778 * and do_anonymous_page and do_no_page can safely check later on).
1780 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1781 pte_t *page_table, pte_t orig_pte)
1783 int same = 1;
1784 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1785 if (sizeof(pte_t) > sizeof(unsigned long)) {
1786 spinlock_t *ptl = pte_lockptr(mm, pmd);
1787 spin_lock(ptl);
1788 same = pte_same(*page_table, orig_pte);
1789 spin_unlock(ptl);
1791 #endif
1792 pte_unmap(page_table);
1793 return same;
1797 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1798 * servicing faults for write access. In the normal case, do always want
1799 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1800 * that do not have writing enabled, when used by access_process_vm.
1802 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1804 if (likely(vma->vm_flags & VM_WRITE))
1805 pte = pte_mkwrite(pte);
1806 return pte;
1809 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1812 * If the source page was a PFN mapping, we don't have
1813 * a "struct page" for it. We do a best-effort copy by
1814 * just copying from the original user address. If that
1815 * fails, we just zero-fill it. Live with it.
1817 if (unlikely(!src)) {
1818 void *kaddr = kmap_atomic(dst, KM_USER0);
1819 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1822 * This really shouldn't fail, because the page is there
1823 * in the page tables. But it might just be unreadable,
1824 * in which case we just give up and fill the result with
1825 * zeroes.
1827 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1828 memset(kaddr, 0, PAGE_SIZE);
1829 kunmap_atomic(kaddr, KM_USER0);
1830 flush_dcache_page(dst);
1831 } else
1832 copy_user_highpage(dst, src, va, vma);
1836 * This routine handles present pages, when users try to write
1837 * to a shared page. It is done by copying the page to a new address
1838 * and decrementing the shared-page counter for the old page.
1840 * Note that this routine assumes that the protection checks have been
1841 * done by the caller (the low-level page fault routine in most cases).
1842 * Thus we can safely just mark it writable once we've done any necessary
1843 * COW.
1845 * We also mark the page dirty at this point even though the page will
1846 * change only once the write actually happens. This avoids a few races,
1847 * and potentially makes it more efficient.
1849 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1850 * but allow concurrent faults), with pte both mapped and locked.
1851 * We return with mmap_sem still held, but pte unmapped and unlocked.
1853 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1854 unsigned long address, pte_t *page_table, pmd_t *pmd,
1855 spinlock_t *ptl, pte_t orig_pte)
1857 struct page *old_page, *new_page;
1858 pte_t entry;
1859 int reuse = 0, ret = 0;
1860 int page_mkwrite = 0;
1861 struct page *dirty_page = NULL;
1863 old_page = vm_normal_page(vma, address, orig_pte);
1864 if (!old_page) {
1866 * VM_MIXEDMAP !pfn_valid() case
1868 * We should not cow pages in a shared writeable mapping.
1869 * Just mark the pages writable as we can't do any dirty
1870 * accounting on raw pfn maps.
1872 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1873 (VM_WRITE|VM_SHARED))
1874 goto reuse;
1875 goto gotten;
1879 * Take out anonymous pages first, anonymous shared vmas are
1880 * not dirty accountable.
1882 if (PageAnon(old_page)) {
1883 if (!trylock_page(old_page)) {
1884 page_cache_get(old_page);
1885 pte_unmap_unlock(page_table, ptl);
1886 lock_page(old_page);
1887 page_table = pte_offset_map_lock(mm, pmd, address,
1888 &ptl);
1889 if (!pte_same(*page_table, orig_pte)) {
1890 unlock_page(old_page);
1891 page_cache_release(old_page);
1892 goto unlock;
1894 page_cache_release(old_page);
1896 reuse = reuse_swap_page(old_page);
1897 unlock_page(old_page);
1898 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1899 (VM_WRITE|VM_SHARED))) {
1901 * Only catch write-faults on shared writable pages,
1902 * read-only shared pages can get COWed by
1903 * get_user_pages(.write=1, .force=1).
1905 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1907 * Notify the address space that the page is about to
1908 * become writable so that it can prohibit this or wait
1909 * for the page to get into an appropriate state.
1911 * We do this without the lock held, so that it can
1912 * sleep if it needs to.
1914 page_cache_get(old_page);
1915 pte_unmap_unlock(page_table, ptl);
1917 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1918 goto unwritable_page;
1921 * Since we dropped the lock we need to revalidate
1922 * the PTE as someone else may have changed it. If
1923 * they did, we just return, as we can count on the
1924 * MMU to tell us if they didn't also make it writable.
1926 page_table = pte_offset_map_lock(mm, pmd, address,
1927 &ptl);
1928 page_cache_release(old_page);
1929 if (!pte_same(*page_table, orig_pte))
1930 goto unlock;
1932 page_mkwrite = 1;
1934 dirty_page = old_page;
1935 get_page(dirty_page);
1936 reuse = 1;
1939 if (reuse) {
1940 reuse:
1941 flush_cache_page(vma, address, pte_pfn(orig_pte));
1942 entry = pte_mkyoung(orig_pte);
1943 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1944 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1945 update_mmu_cache(vma, address, entry);
1946 ret |= VM_FAULT_WRITE;
1947 goto unlock;
1951 * Ok, we need to copy. Oh, well..
1953 page_cache_get(old_page);
1954 gotten:
1955 pte_unmap_unlock(page_table, ptl);
1957 if (unlikely(anon_vma_prepare(vma)))
1958 goto oom;
1959 VM_BUG_ON(old_page == ZERO_PAGE(0));
1960 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1961 if (!new_page)
1962 goto oom;
1964 * Don't let another task, with possibly unlocked vma,
1965 * keep the mlocked page.
1967 if (vma->vm_flags & VM_LOCKED) {
1968 lock_page(old_page); /* for LRU manipulation */
1969 clear_page_mlock(old_page);
1970 unlock_page(old_page);
1972 cow_user_page(new_page, old_page, address, vma);
1973 __SetPageUptodate(new_page);
1975 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1976 goto oom_free_new;
1979 * Re-check the pte - we dropped the lock
1981 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1982 if (likely(pte_same(*page_table, orig_pte))) {
1983 if (old_page) {
1984 if (!PageAnon(old_page)) {
1985 dec_mm_counter(mm, file_rss);
1986 inc_mm_counter(mm, anon_rss);
1988 } else
1989 inc_mm_counter(mm, anon_rss);
1990 flush_cache_page(vma, address, pte_pfn(orig_pte));
1991 entry = mk_pte(new_page, vma->vm_page_prot);
1992 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1994 * Clear the pte entry and flush it first, before updating the
1995 * pte with the new entry. This will avoid a race condition
1996 * seen in the presence of one thread doing SMC and another
1997 * thread doing COW.
1999 ptep_clear_flush_notify(vma, address, page_table);
2000 page_add_new_anon_rmap(new_page, vma, address);
2001 set_pte_at(mm, address, page_table, entry);
2002 update_mmu_cache(vma, address, entry);
2003 if (old_page) {
2005 * Only after switching the pte to the new page may
2006 * we remove the mapcount here. Otherwise another
2007 * process may come and find the rmap count decremented
2008 * before the pte is switched to the new page, and
2009 * "reuse" the old page writing into it while our pte
2010 * here still points into it and can be read by other
2011 * threads.
2013 * The critical issue is to order this
2014 * page_remove_rmap with the ptp_clear_flush above.
2015 * Those stores are ordered by (if nothing else,)
2016 * the barrier present in the atomic_add_negative
2017 * in page_remove_rmap.
2019 * Then the TLB flush in ptep_clear_flush ensures that
2020 * no process can access the old page before the
2021 * decremented mapcount is visible. And the old page
2022 * cannot be reused until after the decremented
2023 * mapcount is visible. So transitively, TLBs to
2024 * old page will be flushed before it can be reused.
2026 page_remove_rmap(old_page);
2029 /* Free the old page.. */
2030 new_page = old_page;
2031 ret |= VM_FAULT_WRITE;
2032 } else
2033 mem_cgroup_uncharge_page(new_page);
2035 if (new_page)
2036 page_cache_release(new_page);
2037 if (old_page)
2038 page_cache_release(old_page);
2039 unlock:
2040 pte_unmap_unlock(page_table, ptl);
2041 if (dirty_page) {
2042 if (vma->vm_file)
2043 file_update_time(vma->vm_file);
2046 * Yes, Virginia, this is actually required to prevent a race
2047 * with clear_page_dirty_for_io() from clearing the page dirty
2048 * bit after it clear all dirty ptes, but before a racing
2049 * do_wp_page installs a dirty pte.
2051 * do_no_page is protected similarly.
2053 wait_on_page_locked(dirty_page);
2054 set_page_dirty_balance(dirty_page, page_mkwrite);
2055 put_page(dirty_page);
2057 return ret;
2058 oom_free_new:
2059 page_cache_release(new_page);
2060 oom:
2061 if (old_page)
2062 page_cache_release(old_page);
2063 return VM_FAULT_OOM;
2065 unwritable_page:
2066 page_cache_release(old_page);
2067 return VM_FAULT_SIGBUS;
2071 * Helper functions for unmap_mapping_range().
2073 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2075 * We have to restart searching the prio_tree whenever we drop the lock,
2076 * since the iterator is only valid while the lock is held, and anyway
2077 * a later vma might be split and reinserted earlier while lock dropped.
2079 * The list of nonlinear vmas could be handled more efficiently, using
2080 * a placeholder, but handle it in the same way until a need is shown.
2081 * It is important to search the prio_tree before nonlinear list: a vma
2082 * may become nonlinear and be shifted from prio_tree to nonlinear list
2083 * while the lock is dropped; but never shifted from list to prio_tree.
2085 * In order to make forward progress despite restarting the search,
2086 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2087 * quickly skip it next time around. Since the prio_tree search only
2088 * shows us those vmas affected by unmapping the range in question, we
2089 * can't efficiently keep all vmas in step with mapping->truncate_count:
2090 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2091 * mapping->truncate_count and vma->vm_truncate_count are protected by
2092 * i_mmap_lock.
2094 * In order to make forward progress despite repeatedly restarting some
2095 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2096 * and restart from that address when we reach that vma again. It might
2097 * have been split or merged, shrunk or extended, but never shifted: so
2098 * restart_addr remains valid so long as it remains in the vma's range.
2099 * unmap_mapping_range forces truncate_count to leap over page-aligned
2100 * values so we can save vma's restart_addr in its truncate_count field.
2102 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2104 static void reset_vma_truncate_counts(struct address_space *mapping)
2106 struct vm_area_struct *vma;
2107 struct prio_tree_iter iter;
2109 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2110 vma->vm_truncate_count = 0;
2111 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2112 vma->vm_truncate_count = 0;
2115 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2116 unsigned long start_addr, unsigned long end_addr,
2117 struct zap_details *details)
2119 unsigned long restart_addr;
2120 int need_break;
2123 * files that support invalidating or truncating portions of the
2124 * file from under mmaped areas must have their ->fault function
2125 * return a locked page (and set VM_FAULT_LOCKED in the return).
2126 * This provides synchronisation against concurrent unmapping here.
2129 again:
2130 restart_addr = vma->vm_truncate_count;
2131 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2132 start_addr = restart_addr;
2133 if (start_addr >= end_addr) {
2134 /* Top of vma has been split off since last time */
2135 vma->vm_truncate_count = details->truncate_count;
2136 return 0;
2140 restart_addr = zap_page_range(vma, start_addr,
2141 end_addr - start_addr, details);
2142 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2144 if (restart_addr >= end_addr) {
2145 /* We have now completed this vma: mark it so */
2146 vma->vm_truncate_count = details->truncate_count;
2147 if (!need_break)
2148 return 0;
2149 } else {
2150 /* Note restart_addr in vma's truncate_count field */
2151 vma->vm_truncate_count = restart_addr;
2152 if (!need_break)
2153 goto again;
2156 spin_unlock(details->i_mmap_lock);
2157 cond_resched();
2158 spin_lock(details->i_mmap_lock);
2159 return -EINTR;
2162 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2163 struct zap_details *details)
2165 struct vm_area_struct *vma;
2166 struct prio_tree_iter iter;
2167 pgoff_t vba, vea, zba, zea;
2169 restart:
2170 vma_prio_tree_foreach(vma, &iter, root,
2171 details->first_index, details->last_index) {
2172 /* Skip quickly over those we have already dealt with */
2173 if (vma->vm_truncate_count == details->truncate_count)
2174 continue;
2176 vba = vma->vm_pgoff;
2177 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2178 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2179 zba = details->first_index;
2180 if (zba < vba)
2181 zba = vba;
2182 zea = details->last_index;
2183 if (zea > vea)
2184 zea = vea;
2186 if (unmap_mapping_range_vma(vma,
2187 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2188 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2189 details) < 0)
2190 goto restart;
2194 static inline void unmap_mapping_range_list(struct list_head *head,
2195 struct zap_details *details)
2197 struct vm_area_struct *vma;
2200 * In nonlinear VMAs there is no correspondence between virtual address
2201 * offset and file offset. So we must perform an exhaustive search
2202 * across *all* the pages in each nonlinear VMA, not just the pages
2203 * whose virtual address lies outside the file truncation point.
2205 restart:
2206 list_for_each_entry(vma, head, shared.vm_set.list) {
2207 /* Skip quickly over those we have already dealt with */
2208 if (vma->vm_truncate_count == details->truncate_count)
2209 continue;
2210 details->nonlinear_vma = vma;
2211 if (unmap_mapping_range_vma(vma, vma->vm_start,
2212 vma->vm_end, details) < 0)
2213 goto restart;
2218 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2219 * @mapping: the address space containing mmaps to be unmapped.
2220 * @holebegin: byte in first page to unmap, relative to the start of
2221 * the underlying file. This will be rounded down to a PAGE_SIZE
2222 * boundary. Note that this is different from vmtruncate(), which
2223 * must keep the partial page. In contrast, we must get rid of
2224 * partial pages.
2225 * @holelen: size of prospective hole in bytes. This will be rounded
2226 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2227 * end of the file.
2228 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2229 * but 0 when invalidating pagecache, don't throw away private data.
2231 void unmap_mapping_range(struct address_space *mapping,
2232 loff_t const holebegin, loff_t const holelen, int even_cows)
2234 struct zap_details details;
2235 pgoff_t hba = holebegin >> PAGE_SHIFT;
2236 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2238 /* Check for overflow. */
2239 if (sizeof(holelen) > sizeof(hlen)) {
2240 long long holeend =
2241 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2242 if (holeend & ~(long long)ULONG_MAX)
2243 hlen = ULONG_MAX - hba + 1;
2246 details.check_mapping = even_cows? NULL: mapping;
2247 details.nonlinear_vma = NULL;
2248 details.first_index = hba;
2249 details.last_index = hba + hlen - 1;
2250 if (details.last_index < details.first_index)
2251 details.last_index = ULONG_MAX;
2252 details.i_mmap_lock = &mapping->i_mmap_lock;
2254 spin_lock(&mapping->i_mmap_lock);
2256 /* Protect against endless unmapping loops */
2257 mapping->truncate_count++;
2258 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2259 if (mapping->truncate_count == 0)
2260 reset_vma_truncate_counts(mapping);
2261 mapping->truncate_count++;
2263 details.truncate_count = mapping->truncate_count;
2265 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2266 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2267 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2268 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2269 spin_unlock(&mapping->i_mmap_lock);
2271 EXPORT_SYMBOL(unmap_mapping_range);
2274 * vmtruncate - unmap mappings "freed" by truncate() syscall
2275 * @inode: inode of the file used
2276 * @offset: file offset to start truncating
2278 * NOTE! We have to be ready to update the memory sharing
2279 * between the file and the memory map for a potential last
2280 * incomplete page. Ugly, but necessary.
2282 int vmtruncate(struct inode * inode, loff_t offset)
2284 if (inode->i_size < offset) {
2285 unsigned long limit;
2287 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2288 if (limit != RLIM_INFINITY && offset > limit)
2289 goto out_sig;
2290 if (offset > inode->i_sb->s_maxbytes)
2291 goto out_big;
2292 i_size_write(inode, offset);
2293 } else {
2294 struct address_space *mapping = inode->i_mapping;
2297 * truncation of in-use swapfiles is disallowed - it would
2298 * cause subsequent swapout to scribble on the now-freed
2299 * blocks.
2301 if (IS_SWAPFILE(inode))
2302 return -ETXTBSY;
2303 i_size_write(inode, offset);
2306 * unmap_mapping_range is called twice, first simply for
2307 * efficiency so that truncate_inode_pages does fewer
2308 * single-page unmaps. However after this first call, and
2309 * before truncate_inode_pages finishes, it is possible for
2310 * private pages to be COWed, which remain after
2311 * truncate_inode_pages finishes, hence the second
2312 * unmap_mapping_range call must be made for correctness.
2314 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2315 truncate_inode_pages(mapping, offset);
2316 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2319 if (inode->i_op->truncate)
2320 inode->i_op->truncate(inode);
2321 return 0;
2323 out_sig:
2324 send_sig(SIGXFSZ, current, 0);
2325 out_big:
2326 return -EFBIG;
2328 EXPORT_SYMBOL(vmtruncate);
2330 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2332 struct address_space *mapping = inode->i_mapping;
2335 * If the underlying filesystem is not going to provide
2336 * a way to truncate a range of blocks (punch a hole) -
2337 * we should return failure right now.
2339 if (!inode->i_op->truncate_range)
2340 return -ENOSYS;
2342 mutex_lock(&inode->i_mutex);
2343 down_write(&inode->i_alloc_sem);
2344 unmap_mapping_range(mapping, offset, (end - offset), 1);
2345 truncate_inode_pages_range(mapping, offset, end);
2346 unmap_mapping_range(mapping, offset, (end - offset), 1);
2347 inode->i_op->truncate_range(inode, offset, end);
2348 up_write(&inode->i_alloc_sem);
2349 mutex_unlock(&inode->i_mutex);
2351 return 0;
2355 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2356 * but allow concurrent faults), and pte mapped but not yet locked.
2357 * We return with mmap_sem still held, but pte unmapped and unlocked.
2359 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2360 unsigned long address, pte_t *page_table, pmd_t *pmd,
2361 int write_access, pte_t orig_pte)
2363 spinlock_t *ptl;
2364 struct page *page;
2365 swp_entry_t entry;
2366 pte_t pte;
2367 int ret = 0;
2369 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2370 goto out;
2372 entry = pte_to_swp_entry(orig_pte);
2373 if (is_migration_entry(entry)) {
2374 migration_entry_wait(mm, pmd, address);
2375 goto out;
2377 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2378 page = lookup_swap_cache(entry);
2379 if (!page) {
2380 grab_swap_token(); /* Contend for token _before_ read-in */
2381 page = swapin_readahead(entry,
2382 GFP_HIGHUSER_MOVABLE, vma, address);
2383 if (!page) {
2385 * Back out if somebody else faulted in this pte
2386 * while we released the pte lock.
2388 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2389 if (likely(pte_same(*page_table, orig_pte)))
2390 ret = VM_FAULT_OOM;
2391 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2392 goto unlock;
2395 /* Had to read the page from swap area: Major fault */
2396 ret = VM_FAULT_MAJOR;
2397 count_vm_event(PGMAJFAULT);
2400 mark_page_accessed(page);
2402 lock_page(page);
2403 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2405 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2406 ret = VM_FAULT_OOM;
2407 unlock_page(page);
2408 goto out;
2412 * Back out if somebody else already faulted in this pte.
2414 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2415 if (unlikely(!pte_same(*page_table, orig_pte)))
2416 goto out_nomap;
2418 if (unlikely(!PageUptodate(page))) {
2419 ret = VM_FAULT_SIGBUS;
2420 goto out_nomap;
2423 /* The page isn't present yet, go ahead with the fault. */
2425 inc_mm_counter(mm, anon_rss);
2426 pte = mk_pte(page, vma->vm_page_prot);
2427 if (write_access && reuse_swap_page(page)) {
2428 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2429 write_access = 0;
2432 flush_icache_page(vma, page);
2433 set_pte_at(mm, address, page_table, pte);
2434 page_add_anon_rmap(page, vma, address);
2436 swap_free(entry);
2437 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2438 try_to_free_swap(page);
2439 unlock_page(page);
2441 if (write_access) {
2442 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2443 if (ret & VM_FAULT_ERROR)
2444 ret &= VM_FAULT_ERROR;
2445 goto out;
2448 /* No need to invalidate - it was non-present before */
2449 update_mmu_cache(vma, address, pte);
2450 unlock:
2451 pte_unmap_unlock(page_table, ptl);
2452 out:
2453 return ret;
2454 out_nomap:
2455 mem_cgroup_uncharge_page(page);
2456 pte_unmap_unlock(page_table, ptl);
2457 unlock_page(page);
2458 page_cache_release(page);
2459 return ret;
2463 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2464 * but allow concurrent faults), and pte mapped but not yet locked.
2465 * We return with mmap_sem still held, but pte unmapped and unlocked.
2467 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2468 unsigned long address, pte_t *page_table, pmd_t *pmd,
2469 int write_access)
2471 struct page *page;
2472 spinlock_t *ptl;
2473 pte_t entry;
2475 /* Allocate our own private page. */
2476 pte_unmap(page_table);
2478 if (unlikely(anon_vma_prepare(vma)))
2479 goto oom;
2480 page = alloc_zeroed_user_highpage_movable(vma, address);
2481 if (!page)
2482 goto oom;
2483 __SetPageUptodate(page);
2485 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2486 goto oom_free_page;
2488 entry = mk_pte(page, vma->vm_page_prot);
2489 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2491 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2492 if (!pte_none(*page_table))
2493 goto release;
2494 inc_mm_counter(mm, anon_rss);
2495 page_add_new_anon_rmap(page, vma, address);
2496 set_pte_at(mm, address, page_table, entry);
2498 /* No need to invalidate - it was non-present before */
2499 update_mmu_cache(vma, address, entry);
2500 unlock:
2501 pte_unmap_unlock(page_table, ptl);
2502 return 0;
2503 release:
2504 mem_cgroup_uncharge_page(page);
2505 page_cache_release(page);
2506 goto unlock;
2507 oom_free_page:
2508 page_cache_release(page);
2509 oom:
2510 return VM_FAULT_OOM;
2514 * __do_fault() tries to create a new page mapping. It aggressively
2515 * tries to share with existing pages, but makes a separate copy if
2516 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2517 * the next page fault.
2519 * As this is called only for pages that do not currently exist, we
2520 * do not need to flush old virtual caches or the TLB.
2522 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2523 * but allow concurrent faults), and pte neither mapped nor locked.
2524 * We return with mmap_sem still held, but pte unmapped and unlocked.
2526 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2527 unsigned long address, pmd_t *pmd,
2528 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2530 pte_t *page_table;
2531 spinlock_t *ptl;
2532 struct page *page;
2533 pte_t entry;
2534 int anon = 0;
2535 int charged = 0;
2536 struct page *dirty_page = NULL;
2537 struct vm_fault vmf;
2538 int ret;
2539 int page_mkwrite = 0;
2541 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2542 vmf.pgoff = pgoff;
2543 vmf.flags = flags;
2544 vmf.page = NULL;
2546 ret = vma->vm_ops->fault(vma, &vmf);
2547 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2548 return ret;
2551 * For consistency in subsequent calls, make the faulted page always
2552 * locked.
2554 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2555 lock_page(vmf.page);
2556 else
2557 VM_BUG_ON(!PageLocked(vmf.page));
2560 * Should we do an early C-O-W break?
2562 page = vmf.page;
2563 if (flags & FAULT_FLAG_WRITE) {
2564 if (!(vma->vm_flags & VM_SHARED)) {
2565 anon = 1;
2566 if (unlikely(anon_vma_prepare(vma))) {
2567 ret = VM_FAULT_OOM;
2568 goto out;
2570 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2571 vma, address);
2572 if (!page) {
2573 ret = VM_FAULT_OOM;
2574 goto out;
2576 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2577 ret = VM_FAULT_OOM;
2578 page_cache_release(page);
2579 goto out;
2581 charged = 1;
2583 * Don't let another task, with possibly unlocked vma,
2584 * keep the mlocked page.
2586 if (vma->vm_flags & VM_LOCKED)
2587 clear_page_mlock(vmf.page);
2588 copy_user_highpage(page, vmf.page, address, vma);
2589 __SetPageUptodate(page);
2590 } else {
2592 * If the page will be shareable, see if the backing
2593 * address space wants to know that the page is about
2594 * to become writable
2596 if (vma->vm_ops->page_mkwrite) {
2597 unlock_page(page);
2598 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2599 ret = VM_FAULT_SIGBUS;
2600 anon = 1; /* no anon but release vmf.page */
2601 goto out_unlocked;
2603 lock_page(page);
2605 * XXX: this is not quite right (racy vs
2606 * invalidate) to unlock and relock the page
2607 * like this, however a better fix requires
2608 * reworking page_mkwrite locking API, which
2609 * is better done later.
2611 if (!page->mapping) {
2612 ret = 0;
2613 anon = 1; /* no anon but release vmf.page */
2614 goto out;
2616 page_mkwrite = 1;
2622 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2625 * This silly early PAGE_DIRTY setting removes a race
2626 * due to the bad i386 page protection. But it's valid
2627 * for other architectures too.
2629 * Note that if write_access is true, we either now have
2630 * an exclusive copy of the page, or this is a shared mapping,
2631 * so we can make it writable and dirty to avoid having to
2632 * handle that later.
2634 /* Only go through if we didn't race with anybody else... */
2635 if (likely(pte_same(*page_table, orig_pte))) {
2636 flush_icache_page(vma, page);
2637 entry = mk_pte(page, vma->vm_page_prot);
2638 if (flags & FAULT_FLAG_WRITE)
2639 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2640 if (anon) {
2641 inc_mm_counter(mm, anon_rss);
2642 page_add_new_anon_rmap(page, vma, address);
2643 } else {
2644 inc_mm_counter(mm, file_rss);
2645 page_add_file_rmap(page);
2646 if (flags & FAULT_FLAG_WRITE) {
2647 dirty_page = page;
2648 get_page(dirty_page);
2651 set_pte_at(mm, address, page_table, entry);
2653 /* no need to invalidate: a not-present page won't be cached */
2654 update_mmu_cache(vma, address, entry);
2655 } else {
2656 if (charged)
2657 mem_cgroup_uncharge_page(page);
2658 if (anon)
2659 page_cache_release(page);
2660 else
2661 anon = 1; /* no anon but release faulted_page */
2664 pte_unmap_unlock(page_table, ptl);
2666 out:
2667 unlock_page(vmf.page);
2668 out_unlocked:
2669 if (anon)
2670 page_cache_release(vmf.page);
2671 else if (dirty_page) {
2672 if (vma->vm_file)
2673 file_update_time(vma->vm_file);
2675 set_page_dirty_balance(dirty_page, page_mkwrite);
2676 put_page(dirty_page);
2679 return ret;
2682 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2683 unsigned long address, pte_t *page_table, pmd_t *pmd,
2684 int write_access, pte_t orig_pte)
2686 pgoff_t pgoff = (((address & PAGE_MASK)
2687 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2688 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2690 pte_unmap(page_table);
2691 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2695 * Fault of a previously existing named mapping. Repopulate the pte
2696 * from the encoded file_pte if possible. This enables swappable
2697 * nonlinear vmas.
2699 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2700 * but allow concurrent faults), and pte mapped but not yet locked.
2701 * We return with mmap_sem still held, but pte unmapped and unlocked.
2703 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2704 unsigned long address, pte_t *page_table, pmd_t *pmd,
2705 int write_access, pte_t orig_pte)
2707 unsigned int flags = FAULT_FLAG_NONLINEAR |
2708 (write_access ? FAULT_FLAG_WRITE : 0);
2709 pgoff_t pgoff;
2711 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2712 return 0;
2714 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2716 * Page table corrupted: show pte and kill process.
2718 print_bad_pte(vma, address, orig_pte, NULL);
2719 return VM_FAULT_OOM;
2722 pgoff = pte_to_pgoff(orig_pte);
2723 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2727 * These routines also need to handle stuff like marking pages dirty
2728 * and/or accessed for architectures that don't do it in hardware (most
2729 * RISC architectures). The early dirtying is also good on the i386.
2731 * There is also a hook called "update_mmu_cache()" that architectures
2732 * with external mmu caches can use to update those (ie the Sparc or
2733 * PowerPC hashed page tables that act as extended TLBs).
2735 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2736 * but allow concurrent faults), and pte mapped but not yet locked.
2737 * We return with mmap_sem still held, but pte unmapped and unlocked.
2739 static inline int handle_pte_fault(struct mm_struct *mm,
2740 struct vm_area_struct *vma, unsigned long address,
2741 pte_t *pte, pmd_t *pmd, int write_access)
2743 pte_t entry;
2744 spinlock_t *ptl;
2746 entry = *pte;
2747 if (!pte_present(entry)) {
2748 if (pte_none(entry)) {
2749 if (vma->vm_ops) {
2750 if (likely(vma->vm_ops->fault))
2751 return do_linear_fault(mm, vma, address,
2752 pte, pmd, write_access, entry);
2754 return do_anonymous_page(mm, vma, address,
2755 pte, pmd, write_access);
2757 if (pte_file(entry))
2758 return do_nonlinear_fault(mm, vma, address,
2759 pte, pmd, write_access, entry);
2760 return do_swap_page(mm, vma, address,
2761 pte, pmd, write_access, entry);
2764 ptl = pte_lockptr(mm, pmd);
2765 spin_lock(ptl);
2766 if (unlikely(!pte_same(*pte, entry)))
2767 goto unlock;
2768 if (write_access) {
2769 if (!pte_write(entry))
2770 return do_wp_page(mm, vma, address,
2771 pte, pmd, ptl, entry);
2772 entry = pte_mkdirty(entry);
2774 entry = pte_mkyoung(entry);
2775 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2776 update_mmu_cache(vma, address, entry);
2777 } else {
2779 * This is needed only for protection faults but the arch code
2780 * is not yet telling us if this is a protection fault or not.
2781 * This still avoids useless tlb flushes for .text page faults
2782 * with threads.
2784 if (write_access)
2785 flush_tlb_page(vma, address);
2787 unlock:
2788 pte_unmap_unlock(pte, ptl);
2789 return 0;
2793 * By the time we get here, we already hold the mm semaphore
2795 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2796 unsigned long address, int write_access)
2798 pgd_t *pgd;
2799 pud_t *pud;
2800 pmd_t *pmd;
2801 pte_t *pte;
2803 __set_current_state(TASK_RUNNING);
2805 count_vm_event(PGFAULT);
2807 if (unlikely(is_vm_hugetlb_page(vma)))
2808 return hugetlb_fault(mm, vma, address, write_access);
2810 pgd = pgd_offset(mm, address);
2811 pud = pud_alloc(mm, pgd, address);
2812 if (!pud)
2813 return VM_FAULT_OOM;
2814 pmd = pmd_alloc(mm, pud, address);
2815 if (!pmd)
2816 return VM_FAULT_OOM;
2817 pte = pte_alloc_map(mm, pmd, address);
2818 if (!pte)
2819 return VM_FAULT_OOM;
2821 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2824 #ifndef __PAGETABLE_PUD_FOLDED
2826 * Allocate page upper directory.
2827 * We've already handled the fast-path in-line.
2829 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2831 pud_t *new = pud_alloc_one(mm, address);
2832 if (!new)
2833 return -ENOMEM;
2835 smp_wmb(); /* See comment in __pte_alloc */
2837 spin_lock(&mm->page_table_lock);
2838 if (pgd_present(*pgd)) /* Another has populated it */
2839 pud_free(mm, new);
2840 else
2841 pgd_populate(mm, pgd, new);
2842 spin_unlock(&mm->page_table_lock);
2843 return 0;
2845 #endif /* __PAGETABLE_PUD_FOLDED */
2847 #ifndef __PAGETABLE_PMD_FOLDED
2849 * Allocate page middle directory.
2850 * We've already handled the fast-path in-line.
2852 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2854 pmd_t *new = pmd_alloc_one(mm, address);
2855 if (!new)
2856 return -ENOMEM;
2858 smp_wmb(); /* See comment in __pte_alloc */
2860 spin_lock(&mm->page_table_lock);
2861 #ifndef __ARCH_HAS_4LEVEL_HACK
2862 if (pud_present(*pud)) /* Another has populated it */
2863 pmd_free(mm, new);
2864 else
2865 pud_populate(mm, pud, new);
2866 #else
2867 if (pgd_present(*pud)) /* Another has populated it */
2868 pmd_free(mm, new);
2869 else
2870 pgd_populate(mm, pud, new);
2871 #endif /* __ARCH_HAS_4LEVEL_HACK */
2872 spin_unlock(&mm->page_table_lock);
2873 return 0;
2875 #endif /* __PAGETABLE_PMD_FOLDED */
2877 int make_pages_present(unsigned long addr, unsigned long end)
2879 int ret, len, write;
2880 struct vm_area_struct * vma;
2882 vma = find_vma(current->mm, addr);
2883 if (!vma)
2884 return -ENOMEM;
2885 write = (vma->vm_flags & VM_WRITE) != 0;
2886 BUG_ON(addr >= end);
2887 BUG_ON(end > vma->vm_end);
2888 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2889 ret = get_user_pages(current, current->mm, addr,
2890 len, write, 0, NULL, NULL);
2891 if (ret < 0)
2892 return ret;
2893 return ret == len ? 0 : -EFAULT;
2896 #if !defined(__HAVE_ARCH_GATE_AREA)
2898 #if defined(AT_SYSINFO_EHDR)
2899 static struct vm_area_struct gate_vma;
2901 static int __init gate_vma_init(void)
2903 gate_vma.vm_mm = NULL;
2904 gate_vma.vm_start = FIXADDR_USER_START;
2905 gate_vma.vm_end = FIXADDR_USER_END;
2906 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2907 gate_vma.vm_page_prot = __P101;
2909 * Make sure the vDSO gets into every core dump.
2910 * Dumping its contents makes post-mortem fully interpretable later
2911 * without matching up the same kernel and hardware config to see
2912 * what PC values meant.
2914 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2915 return 0;
2917 __initcall(gate_vma_init);
2918 #endif
2920 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2922 #ifdef AT_SYSINFO_EHDR
2923 return &gate_vma;
2924 #else
2925 return NULL;
2926 #endif
2929 int in_gate_area_no_task(unsigned long addr)
2931 #ifdef AT_SYSINFO_EHDR
2932 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2933 return 1;
2934 #endif
2935 return 0;
2938 #endif /* __HAVE_ARCH_GATE_AREA */
2940 #ifdef CONFIG_HAVE_IOREMAP_PROT
2941 int follow_phys(struct vm_area_struct *vma,
2942 unsigned long address, unsigned int flags,
2943 unsigned long *prot, resource_size_t *phys)
2945 pgd_t *pgd;
2946 pud_t *pud;
2947 pmd_t *pmd;
2948 pte_t *ptep, pte;
2949 spinlock_t *ptl;
2950 resource_size_t phys_addr = 0;
2951 struct mm_struct *mm = vma->vm_mm;
2952 int ret = -EINVAL;
2954 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2955 goto out;
2957 pgd = pgd_offset(mm, address);
2958 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2959 goto out;
2961 pud = pud_offset(pgd, address);
2962 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2963 goto out;
2965 pmd = pmd_offset(pud, address);
2966 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2967 goto out;
2969 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2970 if (pmd_huge(*pmd))
2971 goto out;
2973 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2974 if (!ptep)
2975 goto out;
2977 pte = *ptep;
2978 if (!pte_present(pte))
2979 goto unlock;
2980 if ((flags & FOLL_WRITE) && !pte_write(pte))
2981 goto unlock;
2982 phys_addr = pte_pfn(pte);
2983 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2985 *prot = pgprot_val(pte_pgprot(pte));
2986 *phys = phys_addr;
2987 ret = 0;
2989 unlock:
2990 pte_unmap_unlock(ptep, ptl);
2991 out:
2992 return ret;
2995 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2996 void *buf, int len, int write)
2998 resource_size_t phys_addr;
2999 unsigned long prot = 0;
3000 void __iomem *maddr;
3001 int offset = addr & (PAGE_SIZE-1);
3003 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3004 return -EINVAL;
3006 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3007 if (write)
3008 memcpy_toio(maddr + offset, buf, len);
3009 else
3010 memcpy_fromio(buf, maddr + offset, len);
3011 iounmap(maddr);
3013 return len;
3015 #endif
3018 * Access another process' address space.
3019 * Source/target buffer must be kernel space,
3020 * Do not walk the page table directly, use get_user_pages
3022 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3024 struct mm_struct *mm;
3025 struct vm_area_struct *vma;
3026 void *old_buf = buf;
3028 mm = get_task_mm(tsk);
3029 if (!mm)
3030 return 0;
3032 down_read(&mm->mmap_sem);
3033 /* ignore errors, just check how much was successfully transferred */
3034 while (len) {
3035 int bytes, ret, offset;
3036 void *maddr;
3037 struct page *page = NULL;
3039 ret = get_user_pages(tsk, mm, addr, 1,
3040 write, 1, &page, &vma);
3041 if (ret <= 0) {
3043 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3044 * we can access using slightly different code.
3046 #ifdef CONFIG_HAVE_IOREMAP_PROT
3047 vma = find_vma(mm, addr);
3048 if (!vma)
3049 break;
3050 if (vma->vm_ops && vma->vm_ops->access)
3051 ret = vma->vm_ops->access(vma, addr, buf,
3052 len, write);
3053 if (ret <= 0)
3054 #endif
3055 break;
3056 bytes = ret;
3057 } else {
3058 bytes = len;
3059 offset = addr & (PAGE_SIZE-1);
3060 if (bytes > PAGE_SIZE-offset)
3061 bytes = PAGE_SIZE-offset;
3063 maddr = kmap(page);
3064 if (write) {
3065 copy_to_user_page(vma, page, addr,
3066 maddr + offset, buf, bytes);
3067 set_page_dirty_lock(page);
3068 } else {
3069 copy_from_user_page(vma, page, addr,
3070 buf, maddr + offset, bytes);
3072 kunmap(page);
3073 page_cache_release(page);
3075 len -= bytes;
3076 buf += bytes;
3077 addr += bytes;
3079 up_read(&mm->mmap_sem);
3080 mmput(mm);
3082 return buf - old_buf;
3086 * Print the name of a VMA.
3088 void print_vma_addr(char *prefix, unsigned long ip)
3090 struct mm_struct *mm = current->mm;
3091 struct vm_area_struct *vma;
3094 * Do not print if we are in atomic
3095 * contexts (in exception stacks, etc.):
3097 if (preempt_count())
3098 return;
3100 down_read(&mm->mmap_sem);
3101 vma = find_vma(mm, ip);
3102 if (vma && vma->vm_file) {
3103 struct file *f = vma->vm_file;
3104 char *buf = (char *)__get_free_page(GFP_KERNEL);
3105 if (buf) {
3106 char *p, *s;
3108 p = d_path(&f->f_path, buf, PAGE_SIZE);
3109 if (IS_ERR(p))
3110 p = "?";
3111 s = strrchr(p, '/');
3112 if (s)
3113 p = s+1;
3114 printk("%s%s[%lx+%lx]", prefix, p,
3115 vma->vm_start,
3116 vma->vm_end - vma->vm_start);
3117 free_page((unsigned long)buf);
3120 up_read(&current->mm->mmap_sem);
3123 #ifdef CONFIG_PROVE_LOCKING
3124 void might_fault(void)
3126 might_sleep();
3128 * it would be nicer only to annotate paths which are not under
3129 * pagefault_disable, however that requires a larger audit and
3130 * providing helpers like get_user_atomic.
3132 if (!in_atomic() && current->mm)
3133 might_lock_read(&current->mm->mmap_sem);
3135 EXPORT_SYMBOL(might_fault);
3136 #endif