MINI2440: Added new T35 (QVGA) and Innolux 5.6" (VGA) TFTs
[linux-2.6/mini2440.git] / net / core / dev.c
blobfe10551d3671053ea6d6a6da57de037f43ad78d0
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
131 #include "net-sysfs.h"
133 /* Instead of increasing this, you should create a hash table. */
134 #define MAX_GRO_SKBS 8
136 /* This should be increased if a protocol with a bigger head is added. */
137 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
167 #define PTYPE_HASH_SIZE (16)
168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
170 static DEFINE_SPINLOCK(ptype_lock);
171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 static struct list_head ptype_all __read_mostly; /* Taps */
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
178 * Pure readers hold dev_base_lock for reading.
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
193 DEFINE_RWLOCK(dev_base_lock);
194 EXPORT_SYMBOL(dev_base_lock);
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
213 struct net *net = dev_net(dev);
215 ASSERT_RTNL();
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
228 ASSERT_RTNL();
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
239 * Our notifier list
242 static RAW_NOTIFIER_HEAD(netdev_chain);
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
252 #ifdef CONFIG_LOCKDEP
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
273 ARPHRD_VOID, ARPHRD_NONE};
275 static const char *const netdev_lock_name[] =
276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
291 "_xmit_VOID", "_xmit_NONE"};
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
298 int i;
300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
301 if (netdev_lock_type[i] == dev_type)
302 return i;
303 /* the last key is used by default */
304 return ARRAY_SIZE(netdev_lock_type) - 1;
307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
308 unsigned short dev_type)
310 int i;
312 i = netdev_lock_pos(dev_type);
313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
314 netdev_lock_name[i]);
317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
319 int i;
321 i = netdev_lock_pos(dev->type);
322 lockdep_set_class_and_name(&dev->addr_list_lock,
323 &netdev_addr_lock_key[i],
324 netdev_lock_name[i]);
326 #else
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 #endif
336 /*******************************************************************************
338 Protocol management and registration routines
340 *******************************************************************************/
343 * Add a protocol ID to the list. Now that the input handler is
344 * smarter we can dispense with all the messy stuff that used to be
345 * here.
347 * BEWARE!!! Protocol handlers, mangling input packets,
348 * MUST BE last in hash buckets and checking protocol handlers
349 * MUST start from promiscuous ptype_all chain in net_bh.
350 * It is true now, do not change it.
351 * Explanation follows: if protocol handler, mangling packet, will
352 * be the first on list, it is not able to sense, that packet
353 * is cloned and should be copied-on-write, so that it will
354 * change it and subsequent readers will get broken packet.
355 * --ANK (980803)
359 * dev_add_pack - add packet handler
360 * @pt: packet type declaration
362 * Add a protocol handler to the networking stack. The passed &packet_type
363 * is linked into kernel lists and may not be freed until it has been
364 * removed from the kernel lists.
366 * This call does not sleep therefore it can not
367 * guarantee all CPU's that are in middle of receiving packets
368 * will see the new packet type (until the next received packet).
371 void dev_add_pack(struct packet_type *pt)
373 int hash;
375 spin_lock_bh(&ptype_lock);
376 if (pt->type == htons(ETH_P_ALL))
377 list_add_rcu(&pt->list, &ptype_all);
378 else {
379 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
380 list_add_rcu(&pt->list, &ptype_base[hash]);
382 spin_unlock_bh(&ptype_lock);
384 EXPORT_SYMBOL(dev_add_pack);
387 * __dev_remove_pack - remove packet handler
388 * @pt: packet type declaration
390 * Remove a protocol handler that was previously added to the kernel
391 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
392 * from the kernel lists and can be freed or reused once this function
393 * returns.
395 * The packet type might still be in use by receivers
396 * and must not be freed until after all the CPU's have gone
397 * through a quiescent state.
399 void __dev_remove_pack(struct packet_type *pt)
401 struct list_head *head;
402 struct packet_type *pt1;
404 spin_lock_bh(&ptype_lock);
406 if (pt->type == htons(ETH_P_ALL))
407 head = &ptype_all;
408 else
409 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
411 list_for_each_entry(pt1, head, list) {
412 if (pt == pt1) {
413 list_del_rcu(&pt->list);
414 goto out;
418 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
419 out:
420 spin_unlock_bh(&ptype_lock);
422 EXPORT_SYMBOL(__dev_remove_pack);
425 * dev_remove_pack - remove packet handler
426 * @pt: packet type declaration
428 * Remove a protocol handler that was previously added to the kernel
429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
430 * from the kernel lists and can be freed or reused once this function
431 * returns.
433 * This call sleeps to guarantee that no CPU is looking at the packet
434 * type after return.
436 void dev_remove_pack(struct packet_type *pt)
438 __dev_remove_pack(pt);
440 synchronize_net();
442 EXPORT_SYMBOL(dev_remove_pack);
444 /******************************************************************************
446 Device Boot-time Settings Routines
448 *******************************************************************************/
450 /* Boot time configuration table */
451 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454 * netdev_boot_setup_add - add new setup entry
455 * @name: name of the device
456 * @map: configured settings for the device
458 * Adds new setup entry to the dev_boot_setup list. The function
459 * returns 0 on error and 1 on success. This is a generic routine to
460 * all netdevices.
462 static int netdev_boot_setup_add(char *name, struct ifmap *map)
464 struct netdev_boot_setup *s;
465 int i;
467 s = dev_boot_setup;
468 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
469 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
470 memset(s[i].name, 0, sizeof(s[i].name));
471 strlcpy(s[i].name, name, IFNAMSIZ);
472 memcpy(&s[i].map, map, sizeof(s[i].map));
473 break;
477 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
481 * netdev_boot_setup_check - check boot time settings
482 * @dev: the netdevice
484 * Check boot time settings for the device.
485 * The found settings are set for the device to be used
486 * later in the device probing.
487 * Returns 0 if no settings found, 1 if they are.
489 int netdev_boot_setup_check(struct net_device *dev)
491 struct netdev_boot_setup *s = dev_boot_setup;
492 int i;
494 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
495 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
496 !strcmp(dev->name, s[i].name)) {
497 dev->irq = s[i].map.irq;
498 dev->base_addr = s[i].map.base_addr;
499 dev->mem_start = s[i].map.mem_start;
500 dev->mem_end = s[i].map.mem_end;
501 return 1;
504 return 0;
506 EXPORT_SYMBOL(netdev_boot_setup_check);
510 * netdev_boot_base - get address from boot time settings
511 * @prefix: prefix for network device
512 * @unit: id for network device
514 * Check boot time settings for the base address of device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found.
519 unsigned long netdev_boot_base(const char *prefix, int unit)
521 const struct netdev_boot_setup *s = dev_boot_setup;
522 char name[IFNAMSIZ];
523 int i;
525 sprintf(name, "%s%d", prefix, unit);
528 * If device already registered then return base of 1
529 * to indicate not to probe for this interface
531 if (__dev_get_by_name(&init_net, name))
532 return 1;
534 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
535 if (!strcmp(name, s[i].name))
536 return s[i].map.base_addr;
537 return 0;
541 * Saves at boot time configured settings for any netdevice.
543 int __init netdev_boot_setup(char *str)
545 int ints[5];
546 struct ifmap map;
548 str = get_options(str, ARRAY_SIZE(ints), ints);
549 if (!str || !*str)
550 return 0;
552 /* Save settings */
553 memset(&map, 0, sizeof(map));
554 if (ints[0] > 0)
555 map.irq = ints[1];
556 if (ints[0] > 1)
557 map.base_addr = ints[2];
558 if (ints[0] > 2)
559 map.mem_start = ints[3];
560 if (ints[0] > 3)
561 map.mem_end = ints[4];
563 /* Add new entry to the list */
564 return netdev_boot_setup_add(str, &map);
567 __setup("netdev=", netdev_boot_setup);
569 /*******************************************************************************
571 Device Interface Subroutines
573 *******************************************************************************/
576 * __dev_get_by_name - find a device by its name
577 * @net: the applicable net namespace
578 * @name: name to find
580 * Find an interface by name. Must be called under RTNL semaphore
581 * or @dev_base_lock. If the name is found a pointer to the device
582 * is returned. If the name is not found then %NULL is returned. The
583 * reference counters are not incremented so the caller must be
584 * careful with locks.
587 struct net_device *__dev_get_by_name(struct net *net, const char *name)
589 struct hlist_node *p;
591 hlist_for_each(p, dev_name_hash(net, name)) {
592 struct net_device *dev
593 = hlist_entry(p, struct net_device, name_hlist);
594 if (!strncmp(dev->name, name, IFNAMSIZ))
595 return dev;
597 return NULL;
599 EXPORT_SYMBOL(__dev_get_by_name);
602 * dev_get_by_name - find a device by its name
603 * @net: the applicable net namespace
604 * @name: name to find
606 * Find an interface by name. This can be called from any
607 * context and does its own locking. The returned handle has
608 * the usage count incremented and the caller must use dev_put() to
609 * release it when it is no longer needed. %NULL is returned if no
610 * matching device is found.
613 struct net_device *dev_get_by_name(struct net *net, const char *name)
615 struct net_device *dev;
617 read_lock(&dev_base_lock);
618 dev = __dev_get_by_name(net, name);
619 if (dev)
620 dev_hold(dev);
621 read_unlock(&dev_base_lock);
622 return dev;
624 EXPORT_SYMBOL(dev_get_by_name);
627 * __dev_get_by_index - find a device by its ifindex
628 * @net: the applicable net namespace
629 * @ifindex: index of device
631 * Search for an interface by index. Returns %NULL if the device
632 * is not found or a pointer to the device. The device has not
633 * had its reference counter increased so the caller must be careful
634 * about locking. The caller must hold either the RTNL semaphore
635 * or @dev_base_lock.
638 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
640 struct hlist_node *p;
642 hlist_for_each(p, dev_index_hash(net, ifindex)) {
643 struct net_device *dev
644 = hlist_entry(p, struct net_device, index_hlist);
645 if (dev->ifindex == ifindex)
646 return dev;
648 return NULL;
650 EXPORT_SYMBOL(__dev_get_by_index);
654 * dev_get_by_index - find a device by its ifindex
655 * @net: the applicable net namespace
656 * @ifindex: index of device
658 * Search for an interface by index. Returns NULL if the device
659 * is not found or a pointer to the device. The device returned has
660 * had a reference added and the pointer is safe until the user calls
661 * dev_put to indicate they have finished with it.
664 struct net_device *dev_get_by_index(struct net *net, int ifindex)
666 struct net_device *dev;
668 read_lock(&dev_base_lock);
669 dev = __dev_get_by_index(net, ifindex);
670 if (dev)
671 dev_hold(dev);
672 read_unlock(&dev_base_lock);
673 return dev;
675 EXPORT_SYMBOL(dev_get_by_index);
678 * dev_getbyhwaddr - find a device by its hardware address
679 * @net: the applicable net namespace
680 * @type: media type of device
681 * @ha: hardware address
683 * Search for an interface by MAC address. Returns NULL if the device
684 * is not found or a pointer to the device. The caller must hold the
685 * rtnl semaphore. The returned device has not had its ref count increased
686 * and the caller must therefore be careful about locking
688 * BUGS:
689 * If the API was consistent this would be __dev_get_by_hwaddr
692 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
694 struct net_device *dev;
696 ASSERT_RTNL();
698 for_each_netdev(net, dev)
699 if (dev->type == type &&
700 !memcmp(dev->dev_addr, ha, dev->addr_len))
701 return dev;
703 return NULL;
705 EXPORT_SYMBOL(dev_getbyhwaddr);
707 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
709 struct net_device *dev;
711 ASSERT_RTNL();
712 for_each_netdev(net, dev)
713 if (dev->type == type)
714 return dev;
716 return NULL;
718 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
720 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
722 struct net_device *dev;
724 rtnl_lock();
725 dev = __dev_getfirstbyhwtype(net, type);
726 if (dev)
727 dev_hold(dev);
728 rtnl_unlock();
729 return dev;
731 EXPORT_SYMBOL(dev_getfirstbyhwtype);
734 * dev_get_by_flags - find any device with given flags
735 * @net: the applicable net namespace
736 * @if_flags: IFF_* values
737 * @mask: bitmask of bits in if_flags to check
739 * Search for any interface with the given flags. Returns NULL if a device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
745 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
746 unsigned short mask)
748 struct net_device *dev, *ret;
750 ret = NULL;
751 read_lock(&dev_base_lock);
752 for_each_netdev(net, dev) {
753 if (((dev->flags ^ if_flags) & mask) == 0) {
754 dev_hold(dev);
755 ret = dev;
756 break;
759 read_unlock(&dev_base_lock);
760 return ret;
762 EXPORT_SYMBOL(dev_get_by_flags);
765 * dev_valid_name - check if name is okay for network device
766 * @name: name string
768 * Network device names need to be valid file names to
769 * to allow sysfs to work. We also disallow any kind of
770 * whitespace.
772 int dev_valid_name(const char *name)
774 if (*name == '\0')
775 return 0;
776 if (strlen(name) >= IFNAMSIZ)
777 return 0;
778 if (!strcmp(name, ".") || !strcmp(name, ".."))
779 return 0;
781 while (*name) {
782 if (*name == '/' || isspace(*name))
783 return 0;
784 name++;
786 return 1;
788 EXPORT_SYMBOL(dev_valid_name);
791 * __dev_alloc_name - allocate a name for a device
792 * @net: network namespace to allocate the device name in
793 * @name: name format string
794 * @buf: scratch buffer and result name string
796 * Passed a format string - eg "lt%d" it will try and find a suitable
797 * id. It scans list of devices to build up a free map, then chooses
798 * the first empty slot. The caller must hold the dev_base or rtnl lock
799 * while allocating the name and adding the device in order to avoid
800 * duplicates.
801 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
802 * Returns the number of the unit assigned or a negative errno code.
805 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
807 int i = 0;
808 const char *p;
809 const int max_netdevices = 8*PAGE_SIZE;
810 unsigned long *inuse;
811 struct net_device *d;
813 p = strnchr(name, IFNAMSIZ-1, '%');
814 if (p) {
816 * Verify the string as this thing may have come from
817 * the user. There must be either one "%d" and no other "%"
818 * characters.
820 if (p[1] != 'd' || strchr(p + 2, '%'))
821 return -EINVAL;
823 /* Use one page as a bit array of possible slots */
824 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
825 if (!inuse)
826 return -ENOMEM;
828 for_each_netdev(net, d) {
829 if (!sscanf(d->name, name, &i))
830 continue;
831 if (i < 0 || i >= max_netdevices)
832 continue;
834 /* avoid cases where sscanf is not exact inverse of printf */
835 snprintf(buf, IFNAMSIZ, name, i);
836 if (!strncmp(buf, d->name, IFNAMSIZ))
837 set_bit(i, inuse);
840 i = find_first_zero_bit(inuse, max_netdevices);
841 free_page((unsigned long) inuse);
844 snprintf(buf, IFNAMSIZ, name, i);
845 if (!__dev_get_by_name(net, buf))
846 return i;
848 /* It is possible to run out of possible slots
849 * when the name is long and there isn't enough space left
850 * for the digits, or if all bits are used.
852 return -ENFILE;
856 * dev_alloc_name - allocate a name for a device
857 * @dev: device
858 * @name: name format string
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
869 int dev_alloc_name(struct net_device *dev, const char *name)
871 char buf[IFNAMSIZ];
872 struct net *net;
873 int ret;
875 BUG_ON(!dev_net(dev));
876 net = dev_net(dev);
877 ret = __dev_alloc_name(net, name, buf);
878 if (ret >= 0)
879 strlcpy(dev->name, buf, IFNAMSIZ);
880 return ret;
882 EXPORT_SYMBOL(dev_alloc_name);
886 * dev_change_name - change name of a device
887 * @dev: device
888 * @newname: name (or format string) must be at least IFNAMSIZ
890 * Change name of a device, can pass format strings "eth%d".
891 * for wildcarding.
893 int dev_change_name(struct net_device *dev, const char *newname)
895 char oldname[IFNAMSIZ];
896 int err = 0;
897 int ret;
898 struct net *net;
900 ASSERT_RTNL();
901 BUG_ON(!dev_net(dev));
903 net = dev_net(dev);
904 if (dev->flags & IFF_UP)
905 return -EBUSY;
907 if (!dev_valid_name(newname))
908 return -EINVAL;
910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 return 0;
913 memcpy(oldname, dev->name, IFNAMSIZ);
915 if (strchr(newname, '%')) {
916 err = dev_alloc_name(dev, newname);
917 if (err < 0)
918 return err;
919 } else if (__dev_get_by_name(net, newname))
920 return -EEXIST;
921 else
922 strlcpy(dev->name, newname, IFNAMSIZ);
924 rollback:
925 /* For now only devices in the initial network namespace
926 * are in sysfs.
928 if (net == &init_net) {
929 ret = device_rename(&dev->dev, dev->name);
930 if (ret) {
931 memcpy(dev->name, oldname, IFNAMSIZ);
932 return ret;
936 write_lock_bh(&dev_base_lock);
937 hlist_del(&dev->name_hlist);
938 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
939 write_unlock_bh(&dev_base_lock);
941 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
942 ret = notifier_to_errno(ret);
944 if (ret) {
945 /* err >= 0 after dev_alloc_name() or stores the first errno */
946 if (err >= 0) {
947 err = ret;
948 memcpy(dev->name, oldname, IFNAMSIZ);
949 goto rollback;
950 } else {
951 printk(KERN_ERR
952 "%s: name change rollback failed: %d.\n",
953 dev->name, ret);
957 return err;
961 * dev_set_alias - change ifalias of a device
962 * @dev: device
963 * @alias: name up to IFALIASZ
964 * @len: limit of bytes to copy from info
966 * Set ifalias for a device,
968 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
970 ASSERT_RTNL();
972 if (len >= IFALIASZ)
973 return -EINVAL;
975 if (!len) {
976 if (dev->ifalias) {
977 kfree(dev->ifalias);
978 dev->ifalias = NULL;
980 return 0;
983 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
984 if (!dev->ifalias)
985 return -ENOMEM;
987 strlcpy(dev->ifalias, alias, len+1);
988 return len;
993 * netdev_features_change - device changes features
994 * @dev: device to cause notification
996 * Called to indicate a device has changed features.
998 void netdev_features_change(struct net_device *dev)
1000 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1002 EXPORT_SYMBOL(netdev_features_change);
1005 * netdev_state_change - device changes state
1006 * @dev: device to cause notification
1008 * Called to indicate a device has changed state. This function calls
1009 * the notifier chains for netdev_chain and sends a NEWLINK message
1010 * to the routing socket.
1012 void netdev_state_change(struct net_device *dev)
1014 if (dev->flags & IFF_UP) {
1015 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1016 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1019 EXPORT_SYMBOL(netdev_state_change);
1021 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1023 call_netdevice_notifiers(event, dev);
1025 EXPORT_SYMBOL(netdev_bonding_change);
1028 * dev_load - load a network module
1029 * @net: the applicable net namespace
1030 * @name: name of interface
1032 * If a network interface is not present and the process has suitable
1033 * privileges this function loads the module. If module loading is not
1034 * available in this kernel then it becomes a nop.
1037 void dev_load(struct net *net, const char *name)
1039 struct net_device *dev;
1041 read_lock(&dev_base_lock);
1042 dev = __dev_get_by_name(net, name);
1043 read_unlock(&dev_base_lock);
1045 if (!dev && capable(CAP_NET_ADMIN))
1046 request_module("%s", name);
1048 EXPORT_SYMBOL(dev_load);
1051 * dev_open - prepare an interface for use.
1052 * @dev: device to open
1054 * Takes a device from down to up state. The device's private open
1055 * function is invoked and then the multicast lists are loaded. Finally
1056 * the device is moved into the up state and a %NETDEV_UP message is
1057 * sent to the netdev notifier chain.
1059 * Calling this function on an active interface is a nop. On a failure
1060 * a negative errno code is returned.
1062 int dev_open(struct net_device *dev)
1064 const struct net_device_ops *ops = dev->netdev_ops;
1065 int ret;
1067 ASSERT_RTNL();
1070 * Is it already up?
1073 if (dev->flags & IFF_UP)
1074 return 0;
1077 * Is it even present?
1079 if (!netif_device_present(dev))
1080 return -ENODEV;
1082 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1083 ret = notifier_to_errno(ret);
1084 if (ret)
1085 return ret;
1088 * Call device private open method
1090 set_bit(__LINK_STATE_START, &dev->state);
1092 if (ops->ndo_validate_addr)
1093 ret = ops->ndo_validate_addr(dev);
1095 if (!ret && ops->ndo_open)
1096 ret = ops->ndo_open(dev);
1099 * If it went open OK then:
1102 if (ret)
1103 clear_bit(__LINK_STATE_START, &dev->state);
1104 else {
1106 * Set the flags.
1108 dev->flags |= IFF_UP;
1111 * Enable NET_DMA
1113 net_dmaengine_get();
1116 * Initialize multicasting status
1118 dev_set_rx_mode(dev);
1121 * Wakeup transmit queue engine
1123 dev_activate(dev);
1126 * ... and announce new interface.
1128 call_netdevice_notifiers(NETDEV_UP, dev);
1131 return ret;
1133 EXPORT_SYMBOL(dev_open);
1136 * dev_close - shutdown an interface.
1137 * @dev: device to shutdown
1139 * This function moves an active device into down state. A
1140 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1141 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1142 * chain.
1144 int dev_close(struct net_device *dev)
1146 const struct net_device_ops *ops = dev->netdev_ops;
1147 ASSERT_RTNL();
1149 might_sleep();
1151 if (!(dev->flags & IFF_UP))
1152 return 0;
1155 * Tell people we are going down, so that they can
1156 * prepare to death, when device is still operating.
1158 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1160 clear_bit(__LINK_STATE_START, &dev->state);
1162 /* Synchronize to scheduled poll. We cannot touch poll list,
1163 * it can be even on different cpu. So just clear netif_running().
1165 * dev->stop() will invoke napi_disable() on all of it's
1166 * napi_struct instances on this device.
1168 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1170 dev_deactivate(dev);
1173 * Call the device specific close. This cannot fail.
1174 * Only if device is UP
1176 * We allow it to be called even after a DETACH hot-plug
1177 * event.
1179 if (ops->ndo_stop)
1180 ops->ndo_stop(dev);
1183 * Device is now down.
1186 dev->flags &= ~IFF_UP;
1189 * Tell people we are down
1191 call_netdevice_notifiers(NETDEV_DOWN, dev);
1194 * Shutdown NET_DMA
1196 net_dmaengine_put();
1198 return 0;
1200 EXPORT_SYMBOL(dev_close);
1204 * dev_disable_lro - disable Large Receive Offload on a device
1205 * @dev: device
1207 * Disable Large Receive Offload (LRO) on a net device. Must be
1208 * called under RTNL. This is needed if received packets may be
1209 * forwarded to another interface.
1211 void dev_disable_lro(struct net_device *dev)
1213 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1214 dev->ethtool_ops->set_flags) {
1215 u32 flags = dev->ethtool_ops->get_flags(dev);
1216 if (flags & ETH_FLAG_LRO) {
1217 flags &= ~ETH_FLAG_LRO;
1218 dev->ethtool_ops->set_flags(dev, flags);
1221 WARN_ON(dev->features & NETIF_F_LRO);
1223 EXPORT_SYMBOL(dev_disable_lro);
1226 static int dev_boot_phase = 1;
1229 * Device change register/unregister. These are not inline or static
1230 * as we export them to the world.
1234 * register_netdevice_notifier - register a network notifier block
1235 * @nb: notifier
1237 * Register a notifier to be called when network device events occur.
1238 * The notifier passed is linked into the kernel structures and must
1239 * not be reused until it has been unregistered. A negative errno code
1240 * is returned on a failure.
1242 * When registered all registration and up events are replayed
1243 * to the new notifier to allow device to have a race free
1244 * view of the network device list.
1247 int register_netdevice_notifier(struct notifier_block *nb)
1249 struct net_device *dev;
1250 struct net_device *last;
1251 struct net *net;
1252 int err;
1254 rtnl_lock();
1255 err = raw_notifier_chain_register(&netdev_chain, nb);
1256 if (err)
1257 goto unlock;
1258 if (dev_boot_phase)
1259 goto unlock;
1260 for_each_net(net) {
1261 for_each_netdev(net, dev) {
1262 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1263 err = notifier_to_errno(err);
1264 if (err)
1265 goto rollback;
1267 if (!(dev->flags & IFF_UP))
1268 continue;
1270 nb->notifier_call(nb, NETDEV_UP, dev);
1274 unlock:
1275 rtnl_unlock();
1276 return err;
1278 rollback:
1279 last = dev;
1280 for_each_net(net) {
1281 for_each_netdev(net, dev) {
1282 if (dev == last)
1283 break;
1285 if (dev->flags & IFF_UP) {
1286 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1287 nb->notifier_call(nb, NETDEV_DOWN, dev);
1289 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1293 raw_notifier_chain_unregister(&netdev_chain, nb);
1294 goto unlock;
1296 EXPORT_SYMBOL(register_netdevice_notifier);
1299 * unregister_netdevice_notifier - unregister a network notifier block
1300 * @nb: notifier
1302 * Unregister a notifier previously registered by
1303 * register_netdevice_notifier(). The notifier is unlinked into the
1304 * kernel structures and may then be reused. A negative errno code
1305 * is returned on a failure.
1308 int unregister_netdevice_notifier(struct notifier_block *nb)
1310 int err;
1312 rtnl_lock();
1313 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1314 rtnl_unlock();
1315 return err;
1317 EXPORT_SYMBOL(unregister_netdevice_notifier);
1320 * call_netdevice_notifiers - call all network notifier blocks
1321 * @val: value passed unmodified to notifier function
1322 * @dev: net_device pointer passed unmodified to notifier function
1324 * Call all network notifier blocks. Parameters and return value
1325 * are as for raw_notifier_call_chain().
1328 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1330 return raw_notifier_call_chain(&netdev_chain, val, dev);
1333 /* When > 0 there are consumers of rx skb time stamps */
1334 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1336 void net_enable_timestamp(void)
1338 atomic_inc(&netstamp_needed);
1340 EXPORT_SYMBOL(net_enable_timestamp);
1342 void net_disable_timestamp(void)
1344 atomic_dec(&netstamp_needed);
1346 EXPORT_SYMBOL(net_disable_timestamp);
1348 static inline void net_timestamp(struct sk_buff *skb)
1350 if (atomic_read(&netstamp_needed))
1351 __net_timestamp(skb);
1352 else
1353 skb->tstamp.tv64 = 0;
1357 * Support routine. Sends outgoing frames to any network
1358 * taps currently in use.
1361 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1363 struct packet_type *ptype;
1365 #ifdef CONFIG_NET_CLS_ACT
1366 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1367 net_timestamp(skb);
1368 #else
1369 net_timestamp(skb);
1370 #endif
1372 rcu_read_lock();
1373 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1374 /* Never send packets back to the socket
1375 * they originated from - MvS (miquels@drinkel.ow.org)
1377 if ((ptype->dev == dev || !ptype->dev) &&
1378 (ptype->af_packet_priv == NULL ||
1379 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1380 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1381 if (!skb2)
1382 break;
1384 /* skb->nh should be correctly
1385 set by sender, so that the second statement is
1386 just protection against buggy protocols.
1388 skb_reset_mac_header(skb2);
1390 if (skb_network_header(skb2) < skb2->data ||
1391 skb2->network_header > skb2->tail) {
1392 if (net_ratelimit())
1393 printk(KERN_CRIT "protocol %04x is "
1394 "buggy, dev %s\n",
1395 skb2->protocol, dev->name);
1396 skb_reset_network_header(skb2);
1399 skb2->transport_header = skb2->network_header;
1400 skb2->pkt_type = PACKET_OUTGOING;
1401 ptype->func(skb2, skb->dev, ptype, skb->dev);
1404 rcu_read_unlock();
1408 static inline void __netif_reschedule(struct Qdisc *q)
1410 struct softnet_data *sd;
1411 unsigned long flags;
1413 local_irq_save(flags);
1414 sd = &__get_cpu_var(softnet_data);
1415 q->next_sched = sd->output_queue;
1416 sd->output_queue = q;
1417 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1418 local_irq_restore(flags);
1421 void __netif_schedule(struct Qdisc *q)
1423 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1424 __netif_reschedule(q);
1426 EXPORT_SYMBOL(__netif_schedule);
1428 void dev_kfree_skb_irq(struct sk_buff *skb)
1430 if (atomic_dec_and_test(&skb->users)) {
1431 struct softnet_data *sd;
1432 unsigned long flags;
1434 local_irq_save(flags);
1435 sd = &__get_cpu_var(softnet_data);
1436 skb->next = sd->completion_queue;
1437 sd->completion_queue = skb;
1438 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1439 local_irq_restore(flags);
1442 EXPORT_SYMBOL(dev_kfree_skb_irq);
1444 void dev_kfree_skb_any(struct sk_buff *skb)
1446 if (in_irq() || irqs_disabled())
1447 dev_kfree_skb_irq(skb);
1448 else
1449 dev_kfree_skb(skb);
1451 EXPORT_SYMBOL(dev_kfree_skb_any);
1455 * netif_device_detach - mark device as removed
1456 * @dev: network device
1458 * Mark device as removed from system and therefore no longer available.
1460 void netif_device_detach(struct net_device *dev)
1462 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1463 netif_running(dev)) {
1464 netif_tx_stop_all_queues(dev);
1467 EXPORT_SYMBOL(netif_device_detach);
1470 * netif_device_attach - mark device as attached
1471 * @dev: network device
1473 * Mark device as attached from system and restart if needed.
1475 void netif_device_attach(struct net_device *dev)
1477 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1478 netif_running(dev)) {
1479 netif_tx_wake_all_queues(dev);
1480 __netdev_watchdog_up(dev);
1483 EXPORT_SYMBOL(netif_device_attach);
1485 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1487 return ((features & NETIF_F_GEN_CSUM) ||
1488 ((features & NETIF_F_IP_CSUM) &&
1489 protocol == htons(ETH_P_IP)) ||
1490 ((features & NETIF_F_IPV6_CSUM) &&
1491 protocol == htons(ETH_P_IPV6)) ||
1492 ((features & NETIF_F_FCOE_CRC) &&
1493 protocol == htons(ETH_P_FCOE)));
1496 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1498 if (can_checksum_protocol(dev->features, skb->protocol))
1499 return true;
1501 if (skb->protocol == htons(ETH_P_8021Q)) {
1502 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1503 if (can_checksum_protocol(dev->features & dev->vlan_features,
1504 veh->h_vlan_encapsulated_proto))
1505 return true;
1508 return false;
1512 * Invalidate hardware checksum when packet is to be mangled, and
1513 * complete checksum manually on outgoing path.
1515 int skb_checksum_help(struct sk_buff *skb)
1517 __wsum csum;
1518 int ret = 0, offset;
1520 if (skb->ip_summed == CHECKSUM_COMPLETE)
1521 goto out_set_summed;
1523 if (unlikely(skb_shinfo(skb)->gso_size)) {
1524 /* Let GSO fix up the checksum. */
1525 goto out_set_summed;
1528 offset = skb->csum_start - skb_headroom(skb);
1529 BUG_ON(offset >= skb_headlen(skb));
1530 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1532 offset += skb->csum_offset;
1533 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1535 if (skb_cloned(skb) &&
1536 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1537 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1538 if (ret)
1539 goto out;
1542 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1543 out_set_summed:
1544 skb->ip_summed = CHECKSUM_NONE;
1545 out:
1546 return ret;
1548 EXPORT_SYMBOL(skb_checksum_help);
1551 * skb_gso_segment - Perform segmentation on skb.
1552 * @skb: buffer to segment
1553 * @features: features for the output path (see dev->features)
1555 * This function segments the given skb and returns a list of segments.
1557 * It may return NULL if the skb requires no segmentation. This is
1558 * only possible when GSO is used for verifying header integrity.
1560 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1562 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1563 struct packet_type *ptype;
1564 __be16 type = skb->protocol;
1565 int err;
1567 skb_reset_mac_header(skb);
1568 skb->mac_len = skb->network_header - skb->mac_header;
1569 __skb_pull(skb, skb->mac_len);
1571 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1572 struct net_device *dev = skb->dev;
1573 struct ethtool_drvinfo info = {};
1575 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1576 dev->ethtool_ops->get_drvinfo(dev, &info);
1578 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1579 "ip_summed=%d",
1580 info.driver, dev ? dev->features : 0L,
1581 skb->sk ? skb->sk->sk_route_caps : 0L,
1582 skb->len, skb->data_len, skb->ip_summed);
1584 if (skb_header_cloned(skb) &&
1585 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1586 return ERR_PTR(err);
1589 rcu_read_lock();
1590 list_for_each_entry_rcu(ptype,
1591 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1592 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1593 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1594 err = ptype->gso_send_check(skb);
1595 segs = ERR_PTR(err);
1596 if (err || skb_gso_ok(skb, features))
1597 break;
1598 __skb_push(skb, (skb->data -
1599 skb_network_header(skb)));
1601 segs = ptype->gso_segment(skb, features);
1602 break;
1605 rcu_read_unlock();
1607 __skb_push(skb, skb->data - skb_mac_header(skb));
1609 return segs;
1611 EXPORT_SYMBOL(skb_gso_segment);
1613 /* Take action when hardware reception checksum errors are detected. */
1614 #ifdef CONFIG_BUG
1615 void netdev_rx_csum_fault(struct net_device *dev)
1617 if (net_ratelimit()) {
1618 printk(KERN_ERR "%s: hw csum failure.\n",
1619 dev ? dev->name : "<unknown>");
1620 dump_stack();
1623 EXPORT_SYMBOL(netdev_rx_csum_fault);
1624 #endif
1626 /* Actually, we should eliminate this check as soon as we know, that:
1627 * 1. IOMMU is present and allows to map all the memory.
1628 * 2. No high memory really exists on this machine.
1631 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1633 #ifdef CONFIG_HIGHMEM
1634 int i;
1636 if (dev->features & NETIF_F_HIGHDMA)
1637 return 0;
1639 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1640 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1641 return 1;
1643 #endif
1644 return 0;
1647 struct dev_gso_cb {
1648 void (*destructor)(struct sk_buff *skb);
1651 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1653 static void dev_gso_skb_destructor(struct sk_buff *skb)
1655 struct dev_gso_cb *cb;
1657 do {
1658 struct sk_buff *nskb = skb->next;
1660 skb->next = nskb->next;
1661 nskb->next = NULL;
1662 kfree_skb(nskb);
1663 } while (skb->next);
1665 cb = DEV_GSO_CB(skb);
1666 if (cb->destructor)
1667 cb->destructor(skb);
1671 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1672 * @skb: buffer to segment
1674 * This function segments the given skb and stores the list of segments
1675 * in skb->next.
1677 static int dev_gso_segment(struct sk_buff *skb)
1679 struct net_device *dev = skb->dev;
1680 struct sk_buff *segs;
1681 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1682 NETIF_F_SG : 0);
1684 segs = skb_gso_segment(skb, features);
1686 /* Verifying header integrity only. */
1687 if (!segs)
1688 return 0;
1690 if (IS_ERR(segs))
1691 return PTR_ERR(segs);
1693 skb->next = segs;
1694 DEV_GSO_CB(skb)->destructor = skb->destructor;
1695 skb->destructor = dev_gso_skb_destructor;
1697 return 0;
1700 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1701 struct netdev_queue *txq)
1703 const struct net_device_ops *ops = dev->netdev_ops;
1704 int rc;
1706 if (likely(!skb->next)) {
1707 if (!list_empty(&ptype_all))
1708 dev_queue_xmit_nit(skb, dev);
1710 if (netif_needs_gso(dev, skb)) {
1711 if (unlikely(dev_gso_segment(skb)))
1712 goto out_kfree_skb;
1713 if (skb->next)
1714 goto gso;
1718 * If device doesnt need skb->dst, release it right now while
1719 * its hot in this cpu cache
1721 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1722 skb_dst_drop(skb);
1724 rc = ops->ndo_start_xmit(skb, dev);
1725 if (rc == NETDEV_TX_OK)
1726 txq_trans_update(txq);
1728 * TODO: if skb_orphan() was called by
1729 * dev->hard_start_xmit() (for example, the unmodified
1730 * igb driver does that; bnx2 doesn't), then
1731 * skb_tx_software_timestamp() will be unable to send
1732 * back the time stamp.
1734 * How can this be prevented? Always create another
1735 * reference to the socket before calling
1736 * dev->hard_start_xmit()? Prevent that skb_orphan()
1737 * does anything in dev->hard_start_xmit() by clearing
1738 * the skb destructor before the call and restoring it
1739 * afterwards, then doing the skb_orphan() ourselves?
1741 return rc;
1744 gso:
1745 do {
1746 struct sk_buff *nskb = skb->next;
1748 skb->next = nskb->next;
1749 nskb->next = NULL;
1750 rc = ops->ndo_start_xmit(nskb, dev);
1751 if (unlikely(rc != NETDEV_TX_OK)) {
1752 nskb->next = skb->next;
1753 skb->next = nskb;
1754 return rc;
1756 txq_trans_update(txq);
1757 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1758 return NETDEV_TX_BUSY;
1759 } while (skb->next);
1761 skb->destructor = DEV_GSO_CB(skb)->destructor;
1763 out_kfree_skb:
1764 kfree_skb(skb);
1765 return NETDEV_TX_OK;
1768 static u32 skb_tx_hashrnd;
1770 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1772 u32 hash;
1774 if (skb_rx_queue_recorded(skb)) {
1775 hash = skb_get_rx_queue(skb);
1776 while (unlikely(hash >= dev->real_num_tx_queues))
1777 hash -= dev->real_num_tx_queues;
1778 return hash;
1781 if (skb->sk && skb->sk->sk_hash)
1782 hash = skb->sk->sk_hash;
1783 else
1784 hash = skb->protocol;
1786 hash = jhash_1word(hash, skb_tx_hashrnd);
1788 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1790 EXPORT_SYMBOL(skb_tx_hash);
1792 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1793 struct sk_buff *skb)
1795 const struct net_device_ops *ops = dev->netdev_ops;
1796 u16 queue_index = 0;
1798 if (ops->ndo_select_queue)
1799 queue_index = ops->ndo_select_queue(dev, skb);
1800 else if (dev->real_num_tx_queues > 1)
1801 queue_index = skb_tx_hash(dev, skb);
1803 skb_set_queue_mapping(skb, queue_index);
1804 return netdev_get_tx_queue(dev, queue_index);
1807 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1808 struct net_device *dev,
1809 struct netdev_queue *txq)
1811 spinlock_t *root_lock = qdisc_lock(q);
1812 int rc;
1814 spin_lock(root_lock);
1815 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1816 kfree_skb(skb);
1817 rc = NET_XMIT_DROP;
1818 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1819 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1821 * This is a work-conserving queue; there are no old skbs
1822 * waiting to be sent out; and the qdisc is not running -
1823 * xmit the skb directly.
1825 __qdisc_update_bstats(q, skb->len);
1826 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1827 __qdisc_run(q);
1828 else
1829 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1831 rc = NET_XMIT_SUCCESS;
1832 } else {
1833 rc = qdisc_enqueue_root(skb, q);
1834 qdisc_run(q);
1836 spin_unlock(root_lock);
1838 return rc;
1842 * dev_queue_xmit - transmit a buffer
1843 * @skb: buffer to transmit
1845 * Queue a buffer for transmission to a network device. The caller must
1846 * have set the device and priority and built the buffer before calling
1847 * this function. The function can be called from an interrupt.
1849 * A negative errno code is returned on a failure. A success does not
1850 * guarantee the frame will be transmitted as it may be dropped due
1851 * to congestion or traffic shaping.
1853 * -----------------------------------------------------------------------------------
1854 * I notice this method can also return errors from the queue disciplines,
1855 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1856 * be positive.
1858 * Regardless of the return value, the skb is consumed, so it is currently
1859 * difficult to retry a send to this method. (You can bump the ref count
1860 * before sending to hold a reference for retry if you are careful.)
1862 * When calling this method, interrupts MUST be enabled. This is because
1863 * the BH enable code must have IRQs enabled so that it will not deadlock.
1864 * --BLG
1866 int dev_queue_xmit(struct sk_buff *skb)
1868 struct net_device *dev = skb->dev;
1869 struct netdev_queue *txq;
1870 struct Qdisc *q;
1871 int rc = -ENOMEM;
1873 /* GSO will handle the following emulations directly. */
1874 if (netif_needs_gso(dev, skb))
1875 goto gso;
1877 if (skb_has_frags(skb) &&
1878 !(dev->features & NETIF_F_FRAGLIST) &&
1879 __skb_linearize(skb))
1880 goto out_kfree_skb;
1882 /* Fragmented skb is linearized if device does not support SG,
1883 * or if at least one of fragments is in highmem and device
1884 * does not support DMA from it.
1886 if (skb_shinfo(skb)->nr_frags &&
1887 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1888 __skb_linearize(skb))
1889 goto out_kfree_skb;
1891 /* If packet is not checksummed and device does not support
1892 * checksumming for this protocol, complete checksumming here.
1894 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1895 skb_set_transport_header(skb, skb->csum_start -
1896 skb_headroom(skb));
1897 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1898 goto out_kfree_skb;
1901 gso:
1902 /* Disable soft irqs for various locks below. Also
1903 * stops preemption for RCU.
1905 rcu_read_lock_bh();
1907 txq = dev_pick_tx(dev, skb);
1908 q = rcu_dereference(txq->qdisc);
1910 #ifdef CONFIG_NET_CLS_ACT
1911 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1912 #endif
1913 if (q->enqueue) {
1914 rc = __dev_xmit_skb(skb, q, dev, txq);
1915 goto out;
1918 /* The device has no queue. Common case for software devices:
1919 loopback, all the sorts of tunnels...
1921 Really, it is unlikely that netif_tx_lock protection is necessary
1922 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1923 counters.)
1924 However, it is possible, that they rely on protection
1925 made by us here.
1927 Check this and shot the lock. It is not prone from deadlocks.
1928 Either shot noqueue qdisc, it is even simpler 8)
1930 if (dev->flags & IFF_UP) {
1931 int cpu = smp_processor_id(); /* ok because BHs are off */
1933 if (txq->xmit_lock_owner != cpu) {
1935 HARD_TX_LOCK(dev, txq, cpu);
1937 if (!netif_tx_queue_stopped(txq)) {
1938 rc = NET_XMIT_SUCCESS;
1939 if (!dev_hard_start_xmit(skb, dev, txq)) {
1940 HARD_TX_UNLOCK(dev, txq);
1941 goto out;
1944 HARD_TX_UNLOCK(dev, txq);
1945 if (net_ratelimit())
1946 printk(KERN_CRIT "Virtual device %s asks to "
1947 "queue packet!\n", dev->name);
1948 } else {
1949 /* Recursion is detected! It is possible,
1950 * unfortunately */
1951 if (net_ratelimit())
1952 printk(KERN_CRIT "Dead loop on virtual device "
1953 "%s, fix it urgently!\n", dev->name);
1957 rc = -ENETDOWN;
1958 rcu_read_unlock_bh();
1960 out_kfree_skb:
1961 kfree_skb(skb);
1962 return rc;
1963 out:
1964 rcu_read_unlock_bh();
1965 return rc;
1967 EXPORT_SYMBOL(dev_queue_xmit);
1970 /*=======================================================================
1971 Receiver routines
1972 =======================================================================*/
1974 int netdev_max_backlog __read_mostly = 1000;
1975 int netdev_budget __read_mostly = 300;
1976 int weight_p __read_mostly = 64; /* old backlog weight */
1978 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1982 * netif_rx - post buffer to the network code
1983 * @skb: buffer to post
1985 * This function receives a packet from a device driver and queues it for
1986 * the upper (protocol) levels to process. It always succeeds. The buffer
1987 * may be dropped during processing for congestion control or by the
1988 * protocol layers.
1990 * return values:
1991 * NET_RX_SUCCESS (no congestion)
1992 * NET_RX_DROP (packet was dropped)
1996 int netif_rx(struct sk_buff *skb)
1998 struct softnet_data *queue;
1999 unsigned long flags;
2001 /* if netpoll wants it, pretend we never saw it */
2002 if (netpoll_rx(skb))
2003 return NET_RX_DROP;
2005 if (!skb->tstamp.tv64)
2006 net_timestamp(skb);
2009 * The code is rearranged so that the path is the most
2010 * short when CPU is congested, but is still operating.
2012 local_irq_save(flags);
2013 queue = &__get_cpu_var(softnet_data);
2015 __get_cpu_var(netdev_rx_stat).total++;
2016 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2017 if (queue->input_pkt_queue.qlen) {
2018 enqueue:
2019 __skb_queue_tail(&queue->input_pkt_queue, skb);
2020 local_irq_restore(flags);
2021 return NET_RX_SUCCESS;
2024 napi_schedule(&queue->backlog);
2025 goto enqueue;
2028 __get_cpu_var(netdev_rx_stat).dropped++;
2029 local_irq_restore(flags);
2031 kfree_skb(skb);
2032 return NET_RX_DROP;
2034 EXPORT_SYMBOL(netif_rx);
2036 int netif_rx_ni(struct sk_buff *skb)
2038 int err;
2040 preempt_disable();
2041 err = netif_rx(skb);
2042 if (local_softirq_pending())
2043 do_softirq();
2044 preempt_enable();
2046 return err;
2048 EXPORT_SYMBOL(netif_rx_ni);
2050 static void net_tx_action(struct softirq_action *h)
2052 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2054 if (sd->completion_queue) {
2055 struct sk_buff *clist;
2057 local_irq_disable();
2058 clist = sd->completion_queue;
2059 sd->completion_queue = NULL;
2060 local_irq_enable();
2062 while (clist) {
2063 struct sk_buff *skb = clist;
2064 clist = clist->next;
2066 WARN_ON(atomic_read(&skb->users));
2067 __kfree_skb(skb);
2071 if (sd->output_queue) {
2072 struct Qdisc *head;
2074 local_irq_disable();
2075 head = sd->output_queue;
2076 sd->output_queue = NULL;
2077 local_irq_enable();
2079 while (head) {
2080 struct Qdisc *q = head;
2081 spinlock_t *root_lock;
2083 head = head->next_sched;
2085 root_lock = qdisc_lock(q);
2086 if (spin_trylock(root_lock)) {
2087 smp_mb__before_clear_bit();
2088 clear_bit(__QDISC_STATE_SCHED,
2089 &q->state);
2090 qdisc_run(q);
2091 spin_unlock(root_lock);
2092 } else {
2093 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2094 &q->state)) {
2095 __netif_reschedule(q);
2096 } else {
2097 smp_mb__before_clear_bit();
2098 clear_bit(__QDISC_STATE_SCHED,
2099 &q->state);
2106 static inline int deliver_skb(struct sk_buff *skb,
2107 struct packet_type *pt_prev,
2108 struct net_device *orig_dev)
2110 atomic_inc(&skb->users);
2111 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2114 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2116 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2117 /* This hook is defined here for ATM LANE */
2118 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2119 unsigned char *addr) __read_mostly;
2120 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2121 #endif
2124 * If bridge module is loaded call bridging hook.
2125 * returns NULL if packet was consumed.
2127 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2128 struct sk_buff *skb) __read_mostly;
2129 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2131 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2132 struct packet_type **pt_prev, int *ret,
2133 struct net_device *orig_dev)
2135 struct net_bridge_port *port;
2137 if (skb->pkt_type == PACKET_LOOPBACK ||
2138 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2139 return skb;
2141 if (*pt_prev) {
2142 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2143 *pt_prev = NULL;
2146 return br_handle_frame_hook(port, skb);
2148 #else
2149 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2150 #endif
2152 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2153 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2154 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2156 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2157 struct packet_type **pt_prev,
2158 int *ret,
2159 struct net_device *orig_dev)
2161 if (skb->dev->macvlan_port == NULL)
2162 return skb;
2164 if (*pt_prev) {
2165 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2166 *pt_prev = NULL;
2168 return macvlan_handle_frame_hook(skb);
2170 #else
2171 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2172 #endif
2174 #ifdef CONFIG_NET_CLS_ACT
2175 /* TODO: Maybe we should just force sch_ingress to be compiled in
2176 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2177 * a compare and 2 stores extra right now if we dont have it on
2178 * but have CONFIG_NET_CLS_ACT
2179 * NOTE: This doesnt stop any functionality; if you dont have
2180 * the ingress scheduler, you just cant add policies on ingress.
2183 static int ing_filter(struct sk_buff *skb)
2185 struct net_device *dev = skb->dev;
2186 u32 ttl = G_TC_RTTL(skb->tc_verd);
2187 struct netdev_queue *rxq;
2188 int result = TC_ACT_OK;
2189 struct Qdisc *q;
2191 if (MAX_RED_LOOP < ttl++) {
2192 printk(KERN_WARNING
2193 "Redir loop detected Dropping packet (%d->%d)\n",
2194 skb->iif, dev->ifindex);
2195 return TC_ACT_SHOT;
2198 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2199 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2201 rxq = &dev->rx_queue;
2203 q = rxq->qdisc;
2204 if (q != &noop_qdisc) {
2205 spin_lock(qdisc_lock(q));
2206 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2207 result = qdisc_enqueue_root(skb, q);
2208 spin_unlock(qdisc_lock(q));
2211 return result;
2214 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2215 struct packet_type **pt_prev,
2216 int *ret, struct net_device *orig_dev)
2218 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2219 goto out;
2221 if (*pt_prev) {
2222 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2223 *pt_prev = NULL;
2224 } else {
2225 /* Huh? Why does turning on AF_PACKET affect this? */
2226 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2229 switch (ing_filter(skb)) {
2230 case TC_ACT_SHOT:
2231 case TC_ACT_STOLEN:
2232 kfree_skb(skb);
2233 return NULL;
2236 out:
2237 skb->tc_verd = 0;
2238 return skb;
2240 #endif
2243 * netif_nit_deliver - deliver received packets to network taps
2244 * @skb: buffer
2246 * This function is used to deliver incoming packets to network
2247 * taps. It should be used when the normal netif_receive_skb path
2248 * is bypassed, for example because of VLAN acceleration.
2250 void netif_nit_deliver(struct sk_buff *skb)
2252 struct packet_type *ptype;
2254 if (list_empty(&ptype_all))
2255 return;
2257 skb_reset_network_header(skb);
2258 skb_reset_transport_header(skb);
2259 skb->mac_len = skb->network_header - skb->mac_header;
2261 rcu_read_lock();
2262 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2263 if (!ptype->dev || ptype->dev == skb->dev)
2264 deliver_skb(skb, ptype, skb->dev);
2266 rcu_read_unlock();
2270 * netif_receive_skb - process receive buffer from network
2271 * @skb: buffer to process
2273 * netif_receive_skb() is the main receive data processing function.
2274 * It always succeeds. The buffer may be dropped during processing
2275 * for congestion control or by the protocol layers.
2277 * This function may only be called from softirq context and interrupts
2278 * should be enabled.
2280 * Return values (usually ignored):
2281 * NET_RX_SUCCESS: no congestion
2282 * NET_RX_DROP: packet was dropped
2284 int netif_receive_skb(struct sk_buff *skb)
2286 struct packet_type *ptype, *pt_prev;
2287 struct net_device *orig_dev;
2288 struct net_device *null_or_orig;
2289 int ret = NET_RX_DROP;
2290 __be16 type;
2292 if (!skb->tstamp.tv64)
2293 net_timestamp(skb);
2295 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2296 return NET_RX_SUCCESS;
2298 /* if we've gotten here through NAPI, check netpoll */
2299 if (netpoll_receive_skb(skb))
2300 return NET_RX_DROP;
2302 if (!skb->iif)
2303 skb->iif = skb->dev->ifindex;
2305 null_or_orig = NULL;
2306 orig_dev = skb->dev;
2307 if (orig_dev->master) {
2308 if (skb_bond_should_drop(skb))
2309 null_or_orig = orig_dev; /* deliver only exact match */
2310 else
2311 skb->dev = orig_dev->master;
2314 __get_cpu_var(netdev_rx_stat).total++;
2316 skb_reset_network_header(skb);
2317 skb_reset_transport_header(skb);
2318 skb->mac_len = skb->network_header - skb->mac_header;
2320 pt_prev = NULL;
2322 rcu_read_lock();
2324 #ifdef CONFIG_NET_CLS_ACT
2325 if (skb->tc_verd & TC_NCLS) {
2326 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2327 goto ncls;
2329 #endif
2331 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2332 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2333 ptype->dev == orig_dev) {
2334 if (pt_prev)
2335 ret = deliver_skb(skb, pt_prev, orig_dev);
2336 pt_prev = ptype;
2340 #ifdef CONFIG_NET_CLS_ACT
2341 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2342 if (!skb)
2343 goto out;
2344 ncls:
2345 #endif
2347 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2348 if (!skb)
2349 goto out;
2350 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2351 if (!skb)
2352 goto out;
2354 type = skb->protocol;
2355 list_for_each_entry_rcu(ptype,
2356 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2357 if (ptype->type == type &&
2358 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2359 ptype->dev == orig_dev)) {
2360 if (pt_prev)
2361 ret = deliver_skb(skb, pt_prev, orig_dev);
2362 pt_prev = ptype;
2366 if (pt_prev) {
2367 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2368 } else {
2369 kfree_skb(skb);
2370 /* Jamal, now you will not able to escape explaining
2371 * me how you were going to use this. :-)
2373 ret = NET_RX_DROP;
2376 out:
2377 rcu_read_unlock();
2378 return ret;
2380 EXPORT_SYMBOL(netif_receive_skb);
2382 /* Network device is going away, flush any packets still pending */
2383 static void flush_backlog(void *arg)
2385 struct net_device *dev = arg;
2386 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2387 struct sk_buff *skb, *tmp;
2389 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2390 if (skb->dev == dev) {
2391 __skb_unlink(skb, &queue->input_pkt_queue);
2392 kfree_skb(skb);
2396 static int napi_gro_complete(struct sk_buff *skb)
2398 struct packet_type *ptype;
2399 __be16 type = skb->protocol;
2400 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2401 int err = -ENOENT;
2403 if (NAPI_GRO_CB(skb)->count == 1) {
2404 skb_shinfo(skb)->gso_size = 0;
2405 goto out;
2408 rcu_read_lock();
2409 list_for_each_entry_rcu(ptype, head, list) {
2410 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2411 continue;
2413 err = ptype->gro_complete(skb);
2414 break;
2416 rcu_read_unlock();
2418 if (err) {
2419 WARN_ON(&ptype->list == head);
2420 kfree_skb(skb);
2421 return NET_RX_SUCCESS;
2424 out:
2425 return netif_receive_skb(skb);
2428 void napi_gro_flush(struct napi_struct *napi)
2430 struct sk_buff *skb, *next;
2432 for (skb = napi->gro_list; skb; skb = next) {
2433 next = skb->next;
2434 skb->next = NULL;
2435 napi_gro_complete(skb);
2438 napi->gro_count = 0;
2439 napi->gro_list = NULL;
2441 EXPORT_SYMBOL(napi_gro_flush);
2443 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2445 struct sk_buff **pp = NULL;
2446 struct packet_type *ptype;
2447 __be16 type = skb->protocol;
2448 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2449 int same_flow;
2450 int mac_len;
2451 int ret;
2453 if (!(skb->dev->features & NETIF_F_GRO))
2454 goto normal;
2456 if (skb_is_gso(skb) || skb_has_frags(skb))
2457 goto normal;
2459 rcu_read_lock();
2460 list_for_each_entry_rcu(ptype, head, list) {
2461 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2462 continue;
2464 skb_set_network_header(skb, skb_gro_offset(skb));
2465 mac_len = skb->network_header - skb->mac_header;
2466 skb->mac_len = mac_len;
2467 NAPI_GRO_CB(skb)->same_flow = 0;
2468 NAPI_GRO_CB(skb)->flush = 0;
2469 NAPI_GRO_CB(skb)->free = 0;
2471 pp = ptype->gro_receive(&napi->gro_list, skb);
2472 break;
2474 rcu_read_unlock();
2476 if (&ptype->list == head)
2477 goto normal;
2479 same_flow = NAPI_GRO_CB(skb)->same_flow;
2480 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2482 if (pp) {
2483 struct sk_buff *nskb = *pp;
2485 *pp = nskb->next;
2486 nskb->next = NULL;
2487 napi_gro_complete(nskb);
2488 napi->gro_count--;
2491 if (same_flow)
2492 goto ok;
2494 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2495 goto normal;
2497 napi->gro_count++;
2498 NAPI_GRO_CB(skb)->count = 1;
2499 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2500 skb->next = napi->gro_list;
2501 napi->gro_list = skb;
2502 ret = GRO_HELD;
2504 pull:
2505 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2506 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2508 BUG_ON(skb->end - skb->tail < grow);
2510 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2512 skb->tail += grow;
2513 skb->data_len -= grow;
2515 skb_shinfo(skb)->frags[0].page_offset += grow;
2516 skb_shinfo(skb)->frags[0].size -= grow;
2518 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2519 put_page(skb_shinfo(skb)->frags[0].page);
2520 memmove(skb_shinfo(skb)->frags,
2521 skb_shinfo(skb)->frags + 1,
2522 --skb_shinfo(skb)->nr_frags);
2527 return ret;
2529 normal:
2530 ret = GRO_NORMAL;
2531 goto pull;
2533 EXPORT_SYMBOL(dev_gro_receive);
2535 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2537 struct sk_buff *p;
2539 if (netpoll_rx_on(skb))
2540 return GRO_NORMAL;
2542 for (p = napi->gro_list; p; p = p->next) {
2543 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2544 && !compare_ether_header(skb_mac_header(p),
2545 skb_gro_mac_header(skb));
2546 NAPI_GRO_CB(p)->flush = 0;
2549 return dev_gro_receive(napi, skb);
2552 int napi_skb_finish(int ret, struct sk_buff *skb)
2554 int err = NET_RX_SUCCESS;
2556 switch (ret) {
2557 case GRO_NORMAL:
2558 return netif_receive_skb(skb);
2560 case GRO_DROP:
2561 err = NET_RX_DROP;
2562 /* fall through */
2564 case GRO_MERGED_FREE:
2565 kfree_skb(skb);
2566 break;
2569 return err;
2571 EXPORT_SYMBOL(napi_skb_finish);
2573 void skb_gro_reset_offset(struct sk_buff *skb)
2575 NAPI_GRO_CB(skb)->data_offset = 0;
2576 NAPI_GRO_CB(skb)->frag0 = NULL;
2577 NAPI_GRO_CB(skb)->frag0_len = 0;
2579 if (skb->mac_header == skb->tail &&
2580 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2581 NAPI_GRO_CB(skb)->frag0 =
2582 page_address(skb_shinfo(skb)->frags[0].page) +
2583 skb_shinfo(skb)->frags[0].page_offset;
2584 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2587 EXPORT_SYMBOL(skb_gro_reset_offset);
2589 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2591 skb_gro_reset_offset(skb);
2593 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2595 EXPORT_SYMBOL(napi_gro_receive);
2597 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2599 __skb_pull(skb, skb_headlen(skb));
2600 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2602 napi->skb = skb;
2604 EXPORT_SYMBOL(napi_reuse_skb);
2606 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2608 struct net_device *dev = napi->dev;
2609 struct sk_buff *skb = napi->skb;
2611 if (!skb) {
2612 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2613 if (!skb)
2614 goto out;
2616 skb_reserve(skb, NET_IP_ALIGN);
2618 napi->skb = skb;
2621 out:
2622 return skb;
2624 EXPORT_SYMBOL(napi_get_frags);
2626 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2628 int err = NET_RX_SUCCESS;
2630 switch (ret) {
2631 case GRO_NORMAL:
2632 case GRO_HELD:
2633 skb->protocol = eth_type_trans(skb, napi->dev);
2635 if (ret == GRO_NORMAL)
2636 return netif_receive_skb(skb);
2638 skb_gro_pull(skb, -ETH_HLEN);
2639 break;
2641 case GRO_DROP:
2642 err = NET_RX_DROP;
2643 /* fall through */
2645 case GRO_MERGED_FREE:
2646 napi_reuse_skb(napi, skb);
2647 break;
2650 return err;
2652 EXPORT_SYMBOL(napi_frags_finish);
2654 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2656 struct sk_buff *skb = napi->skb;
2657 struct ethhdr *eth;
2658 unsigned int hlen;
2659 unsigned int off;
2661 napi->skb = NULL;
2663 skb_reset_mac_header(skb);
2664 skb_gro_reset_offset(skb);
2666 off = skb_gro_offset(skb);
2667 hlen = off + sizeof(*eth);
2668 eth = skb_gro_header_fast(skb, off);
2669 if (skb_gro_header_hard(skb, hlen)) {
2670 eth = skb_gro_header_slow(skb, hlen, off);
2671 if (unlikely(!eth)) {
2672 napi_reuse_skb(napi, skb);
2673 skb = NULL;
2674 goto out;
2678 skb_gro_pull(skb, sizeof(*eth));
2681 * This works because the only protocols we care about don't require
2682 * special handling. We'll fix it up properly at the end.
2684 skb->protocol = eth->h_proto;
2686 out:
2687 return skb;
2689 EXPORT_SYMBOL(napi_frags_skb);
2691 int napi_gro_frags(struct napi_struct *napi)
2693 struct sk_buff *skb = napi_frags_skb(napi);
2695 if (!skb)
2696 return NET_RX_DROP;
2698 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2700 EXPORT_SYMBOL(napi_gro_frags);
2702 static int process_backlog(struct napi_struct *napi, int quota)
2704 int work = 0;
2705 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2706 unsigned long start_time = jiffies;
2708 napi->weight = weight_p;
2709 do {
2710 struct sk_buff *skb;
2712 local_irq_disable();
2713 skb = __skb_dequeue(&queue->input_pkt_queue);
2714 if (!skb) {
2715 __napi_complete(napi);
2716 local_irq_enable();
2717 break;
2719 local_irq_enable();
2721 netif_receive_skb(skb);
2722 } while (++work < quota && jiffies == start_time);
2724 return work;
2728 * __napi_schedule - schedule for receive
2729 * @n: entry to schedule
2731 * The entry's receive function will be scheduled to run
2733 void __napi_schedule(struct napi_struct *n)
2735 unsigned long flags;
2737 local_irq_save(flags);
2738 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2739 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2740 local_irq_restore(flags);
2742 EXPORT_SYMBOL(__napi_schedule);
2744 void __napi_complete(struct napi_struct *n)
2746 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2747 BUG_ON(n->gro_list);
2749 list_del(&n->poll_list);
2750 smp_mb__before_clear_bit();
2751 clear_bit(NAPI_STATE_SCHED, &n->state);
2753 EXPORT_SYMBOL(__napi_complete);
2755 void napi_complete(struct napi_struct *n)
2757 unsigned long flags;
2760 * don't let napi dequeue from the cpu poll list
2761 * just in case its running on a different cpu
2763 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2764 return;
2766 napi_gro_flush(n);
2767 local_irq_save(flags);
2768 __napi_complete(n);
2769 local_irq_restore(flags);
2771 EXPORT_SYMBOL(napi_complete);
2773 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2774 int (*poll)(struct napi_struct *, int), int weight)
2776 INIT_LIST_HEAD(&napi->poll_list);
2777 napi->gro_count = 0;
2778 napi->gro_list = NULL;
2779 napi->skb = NULL;
2780 napi->poll = poll;
2781 napi->weight = weight;
2782 list_add(&napi->dev_list, &dev->napi_list);
2783 napi->dev = dev;
2784 #ifdef CONFIG_NETPOLL
2785 spin_lock_init(&napi->poll_lock);
2786 napi->poll_owner = -1;
2787 #endif
2788 set_bit(NAPI_STATE_SCHED, &napi->state);
2790 EXPORT_SYMBOL(netif_napi_add);
2792 void netif_napi_del(struct napi_struct *napi)
2794 struct sk_buff *skb, *next;
2796 list_del_init(&napi->dev_list);
2797 napi_free_frags(napi);
2799 for (skb = napi->gro_list; skb; skb = next) {
2800 next = skb->next;
2801 skb->next = NULL;
2802 kfree_skb(skb);
2805 napi->gro_list = NULL;
2806 napi->gro_count = 0;
2808 EXPORT_SYMBOL(netif_napi_del);
2811 static void net_rx_action(struct softirq_action *h)
2813 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2814 unsigned long time_limit = jiffies + 2;
2815 int budget = netdev_budget;
2816 void *have;
2818 local_irq_disable();
2820 while (!list_empty(list)) {
2821 struct napi_struct *n;
2822 int work, weight;
2824 /* If softirq window is exhuasted then punt.
2825 * Allow this to run for 2 jiffies since which will allow
2826 * an average latency of 1.5/HZ.
2828 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2829 goto softnet_break;
2831 local_irq_enable();
2833 /* Even though interrupts have been re-enabled, this
2834 * access is safe because interrupts can only add new
2835 * entries to the tail of this list, and only ->poll()
2836 * calls can remove this head entry from the list.
2838 n = list_entry(list->next, struct napi_struct, poll_list);
2840 have = netpoll_poll_lock(n);
2842 weight = n->weight;
2844 /* This NAPI_STATE_SCHED test is for avoiding a race
2845 * with netpoll's poll_napi(). Only the entity which
2846 * obtains the lock and sees NAPI_STATE_SCHED set will
2847 * actually make the ->poll() call. Therefore we avoid
2848 * accidently calling ->poll() when NAPI is not scheduled.
2850 work = 0;
2851 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2852 work = n->poll(n, weight);
2853 trace_napi_poll(n);
2856 WARN_ON_ONCE(work > weight);
2858 budget -= work;
2860 local_irq_disable();
2862 /* Drivers must not modify the NAPI state if they
2863 * consume the entire weight. In such cases this code
2864 * still "owns" the NAPI instance and therefore can
2865 * move the instance around on the list at-will.
2867 if (unlikely(work == weight)) {
2868 if (unlikely(napi_disable_pending(n))) {
2869 local_irq_enable();
2870 napi_complete(n);
2871 local_irq_disable();
2872 } else
2873 list_move_tail(&n->poll_list, list);
2876 netpoll_poll_unlock(have);
2878 out:
2879 local_irq_enable();
2881 #ifdef CONFIG_NET_DMA
2883 * There may not be any more sk_buffs coming right now, so push
2884 * any pending DMA copies to hardware
2886 dma_issue_pending_all();
2887 #endif
2889 return;
2891 softnet_break:
2892 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2893 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2894 goto out;
2897 static gifconf_func_t *gifconf_list[NPROTO];
2900 * register_gifconf - register a SIOCGIF handler
2901 * @family: Address family
2902 * @gifconf: Function handler
2904 * Register protocol dependent address dumping routines. The handler
2905 * that is passed must not be freed or reused until it has been replaced
2906 * by another handler.
2908 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
2910 if (family >= NPROTO)
2911 return -EINVAL;
2912 gifconf_list[family] = gifconf;
2913 return 0;
2915 EXPORT_SYMBOL(register_gifconf);
2919 * Map an interface index to its name (SIOCGIFNAME)
2923 * We need this ioctl for efficient implementation of the
2924 * if_indextoname() function required by the IPv6 API. Without
2925 * it, we would have to search all the interfaces to find a
2926 * match. --pb
2929 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2931 struct net_device *dev;
2932 struct ifreq ifr;
2935 * Fetch the caller's info block.
2938 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2939 return -EFAULT;
2941 read_lock(&dev_base_lock);
2942 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2943 if (!dev) {
2944 read_unlock(&dev_base_lock);
2945 return -ENODEV;
2948 strcpy(ifr.ifr_name, dev->name);
2949 read_unlock(&dev_base_lock);
2951 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2952 return -EFAULT;
2953 return 0;
2957 * Perform a SIOCGIFCONF call. This structure will change
2958 * size eventually, and there is nothing I can do about it.
2959 * Thus we will need a 'compatibility mode'.
2962 static int dev_ifconf(struct net *net, char __user *arg)
2964 struct ifconf ifc;
2965 struct net_device *dev;
2966 char __user *pos;
2967 int len;
2968 int total;
2969 int i;
2972 * Fetch the caller's info block.
2975 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2976 return -EFAULT;
2978 pos = ifc.ifc_buf;
2979 len = ifc.ifc_len;
2982 * Loop over the interfaces, and write an info block for each.
2985 total = 0;
2986 for_each_netdev(net, dev) {
2987 for (i = 0; i < NPROTO; i++) {
2988 if (gifconf_list[i]) {
2989 int done;
2990 if (!pos)
2991 done = gifconf_list[i](dev, NULL, 0);
2992 else
2993 done = gifconf_list[i](dev, pos + total,
2994 len - total);
2995 if (done < 0)
2996 return -EFAULT;
2997 total += done;
3003 * All done. Write the updated control block back to the caller.
3005 ifc.ifc_len = total;
3008 * Both BSD and Solaris return 0 here, so we do too.
3010 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3013 #ifdef CONFIG_PROC_FS
3015 * This is invoked by the /proc filesystem handler to display a device
3016 * in detail.
3018 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3019 __acquires(dev_base_lock)
3021 struct net *net = seq_file_net(seq);
3022 loff_t off;
3023 struct net_device *dev;
3025 read_lock(&dev_base_lock);
3026 if (!*pos)
3027 return SEQ_START_TOKEN;
3029 off = 1;
3030 for_each_netdev(net, dev)
3031 if (off++ == *pos)
3032 return dev;
3034 return NULL;
3037 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3039 struct net *net = seq_file_net(seq);
3040 ++*pos;
3041 return v == SEQ_START_TOKEN ?
3042 first_net_device(net) : next_net_device((struct net_device *)v);
3045 void dev_seq_stop(struct seq_file *seq, void *v)
3046 __releases(dev_base_lock)
3048 read_unlock(&dev_base_lock);
3051 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3053 const struct net_device_stats *stats = dev_get_stats(dev);
3055 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3056 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3057 dev->name, stats->rx_bytes, stats->rx_packets,
3058 stats->rx_errors,
3059 stats->rx_dropped + stats->rx_missed_errors,
3060 stats->rx_fifo_errors,
3061 stats->rx_length_errors + stats->rx_over_errors +
3062 stats->rx_crc_errors + stats->rx_frame_errors,
3063 stats->rx_compressed, stats->multicast,
3064 stats->tx_bytes, stats->tx_packets,
3065 stats->tx_errors, stats->tx_dropped,
3066 stats->tx_fifo_errors, stats->collisions,
3067 stats->tx_carrier_errors +
3068 stats->tx_aborted_errors +
3069 stats->tx_window_errors +
3070 stats->tx_heartbeat_errors,
3071 stats->tx_compressed);
3075 * Called from the PROCfs module. This now uses the new arbitrary sized
3076 * /proc/net interface to create /proc/net/dev
3078 static int dev_seq_show(struct seq_file *seq, void *v)
3080 if (v == SEQ_START_TOKEN)
3081 seq_puts(seq, "Inter-| Receive "
3082 " | Transmit\n"
3083 " face |bytes packets errs drop fifo frame "
3084 "compressed multicast|bytes packets errs "
3085 "drop fifo colls carrier compressed\n");
3086 else
3087 dev_seq_printf_stats(seq, v);
3088 return 0;
3091 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3093 struct netif_rx_stats *rc = NULL;
3095 while (*pos < nr_cpu_ids)
3096 if (cpu_online(*pos)) {
3097 rc = &per_cpu(netdev_rx_stat, *pos);
3098 break;
3099 } else
3100 ++*pos;
3101 return rc;
3104 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3106 return softnet_get_online(pos);
3109 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3111 ++*pos;
3112 return softnet_get_online(pos);
3115 static void softnet_seq_stop(struct seq_file *seq, void *v)
3119 static int softnet_seq_show(struct seq_file *seq, void *v)
3121 struct netif_rx_stats *s = v;
3123 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3124 s->total, s->dropped, s->time_squeeze, 0,
3125 0, 0, 0, 0, /* was fastroute */
3126 s->cpu_collision);
3127 return 0;
3130 static const struct seq_operations dev_seq_ops = {
3131 .start = dev_seq_start,
3132 .next = dev_seq_next,
3133 .stop = dev_seq_stop,
3134 .show = dev_seq_show,
3137 static int dev_seq_open(struct inode *inode, struct file *file)
3139 return seq_open_net(inode, file, &dev_seq_ops,
3140 sizeof(struct seq_net_private));
3143 static const struct file_operations dev_seq_fops = {
3144 .owner = THIS_MODULE,
3145 .open = dev_seq_open,
3146 .read = seq_read,
3147 .llseek = seq_lseek,
3148 .release = seq_release_net,
3151 static const struct seq_operations softnet_seq_ops = {
3152 .start = softnet_seq_start,
3153 .next = softnet_seq_next,
3154 .stop = softnet_seq_stop,
3155 .show = softnet_seq_show,
3158 static int softnet_seq_open(struct inode *inode, struct file *file)
3160 return seq_open(file, &softnet_seq_ops);
3163 static const struct file_operations softnet_seq_fops = {
3164 .owner = THIS_MODULE,
3165 .open = softnet_seq_open,
3166 .read = seq_read,
3167 .llseek = seq_lseek,
3168 .release = seq_release,
3171 static void *ptype_get_idx(loff_t pos)
3173 struct packet_type *pt = NULL;
3174 loff_t i = 0;
3175 int t;
3177 list_for_each_entry_rcu(pt, &ptype_all, list) {
3178 if (i == pos)
3179 return pt;
3180 ++i;
3183 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3184 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3185 if (i == pos)
3186 return pt;
3187 ++i;
3190 return NULL;
3193 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3194 __acquires(RCU)
3196 rcu_read_lock();
3197 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3200 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3202 struct packet_type *pt;
3203 struct list_head *nxt;
3204 int hash;
3206 ++*pos;
3207 if (v == SEQ_START_TOKEN)
3208 return ptype_get_idx(0);
3210 pt = v;
3211 nxt = pt->list.next;
3212 if (pt->type == htons(ETH_P_ALL)) {
3213 if (nxt != &ptype_all)
3214 goto found;
3215 hash = 0;
3216 nxt = ptype_base[0].next;
3217 } else
3218 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3220 while (nxt == &ptype_base[hash]) {
3221 if (++hash >= PTYPE_HASH_SIZE)
3222 return NULL;
3223 nxt = ptype_base[hash].next;
3225 found:
3226 return list_entry(nxt, struct packet_type, list);
3229 static void ptype_seq_stop(struct seq_file *seq, void *v)
3230 __releases(RCU)
3232 rcu_read_unlock();
3235 static int ptype_seq_show(struct seq_file *seq, void *v)
3237 struct packet_type *pt = v;
3239 if (v == SEQ_START_TOKEN)
3240 seq_puts(seq, "Type Device Function\n");
3241 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3242 if (pt->type == htons(ETH_P_ALL))
3243 seq_puts(seq, "ALL ");
3244 else
3245 seq_printf(seq, "%04x", ntohs(pt->type));
3247 seq_printf(seq, " %-8s %pF\n",
3248 pt->dev ? pt->dev->name : "", pt->func);
3251 return 0;
3254 static const struct seq_operations ptype_seq_ops = {
3255 .start = ptype_seq_start,
3256 .next = ptype_seq_next,
3257 .stop = ptype_seq_stop,
3258 .show = ptype_seq_show,
3261 static int ptype_seq_open(struct inode *inode, struct file *file)
3263 return seq_open_net(inode, file, &ptype_seq_ops,
3264 sizeof(struct seq_net_private));
3267 static const struct file_operations ptype_seq_fops = {
3268 .owner = THIS_MODULE,
3269 .open = ptype_seq_open,
3270 .read = seq_read,
3271 .llseek = seq_lseek,
3272 .release = seq_release_net,
3276 static int __net_init dev_proc_net_init(struct net *net)
3278 int rc = -ENOMEM;
3280 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3281 goto out;
3282 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3283 goto out_dev;
3284 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3285 goto out_softnet;
3287 if (wext_proc_init(net))
3288 goto out_ptype;
3289 rc = 0;
3290 out:
3291 return rc;
3292 out_ptype:
3293 proc_net_remove(net, "ptype");
3294 out_softnet:
3295 proc_net_remove(net, "softnet_stat");
3296 out_dev:
3297 proc_net_remove(net, "dev");
3298 goto out;
3301 static void __net_exit dev_proc_net_exit(struct net *net)
3303 wext_proc_exit(net);
3305 proc_net_remove(net, "ptype");
3306 proc_net_remove(net, "softnet_stat");
3307 proc_net_remove(net, "dev");
3310 static struct pernet_operations __net_initdata dev_proc_ops = {
3311 .init = dev_proc_net_init,
3312 .exit = dev_proc_net_exit,
3315 static int __init dev_proc_init(void)
3317 return register_pernet_subsys(&dev_proc_ops);
3319 #else
3320 #define dev_proc_init() 0
3321 #endif /* CONFIG_PROC_FS */
3325 * netdev_set_master - set up master/slave pair
3326 * @slave: slave device
3327 * @master: new master device
3329 * Changes the master device of the slave. Pass %NULL to break the
3330 * bonding. The caller must hold the RTNL semaphore. On a failure
3331 * a negative errno code is returned. On success the reference counts
3332 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3333 * function returns zero.
3335 int netdev_set_master(struct net_device *slave, struct net_device *master)
3337 struct net_device *old = slave->master;
3339 ASSERT_RTNL();
3341 if (master) {
3342 if (old)
3343 return -EBUSY;
3344 dev_hold(master);
3347 slave->master = master;
3349 synchronize_net();
3351 if (old)
3352 dev_put(old);
3354 if (master)
3355 slave->flags |= IFF_SLAVE;
3356 else
3357 slave->flags &= ~IFF_SLAVE;
3359 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3360 return 0;
3362 EXPORT_SYMBOL(netdev_set_master);
3364 static void dev_change_rx_flags(struct net_device *dev, int flags)
3366 const struct net_device_ops *ops = dev->netdev_ops;
3368 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3369 ops->ndo_change_rx_flags(dev, flags);
3372 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3374 unsigned short old_flags = dev->flags;
3375 uid_t uid;
3376 gid_t gid;
3378 ASSERT_RTNL();
3380 dev->flags |= IFF_PROMISC;
3381 dev->promiscuity += inc;
3382 if (dev->promiscuity == 0) {
3384 * Avoid overflow.
3385 * If inc causes overflow, untouch promisc and return error.
3387 if (inc < 0)
3388 dev->flags &= ~IFF_PROMISC;
3389 else {
3390 dev->promiscuity -= inc;
3391 printk(KERN_WARNING "%s: promiscuity touches roof, "
3392 "set promiscuity failed, promiscuity feature "
3393 "of device might be broken.\n", dev->name);
3394 return -EOVERFLOW;
3397 if (dev->flags != old_flags) {
3398 printk(KERN_INFO "device %s %s promiscuous mode\n",
3399 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3400 "left");
3401 if (audit_enabled) {
3402 current_uid_gid(&uid, &gid);
3403 audit_log(current->audit_context, GFP_ATOMIC,
3404 AUDIT_ANOM_PROMISCUOUS,
3405 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3406 dev->name, (dev->flags & IFF_PROMISC),
3407 (old_flags & IFF_PROMISC),
3408 audit_get_loginuid(current),
3409 uid, gid,
3410 audit_get_sessionid(current));
3413 dev_change_rx_flags(dev, IFF_PROMISC);
3415 return 0;
3419 * dev_set_promiscuity - update promiscuity count on a device
3420 * @dev: device
3421 * @inc: modifier
3423 * Add or remove promiscuity from a device. While the count in the device
3424 * remains above zero the interface remains promiscuous. Once it hits zero
3425 * the device reverts back to normal filtering operation. A negative inc
3426 * value is used to drop promiscuity on the device.
3427 * Return 0 if successful or a negative errno code on error.
3429 int dev_set_promiscuity(struct net_device *dev, int inc)
3431 unsigned short old_flags = dev->flags;
3432 int err;
3434 err = __dev_set_promiscuity(dev, inc);
3435 if (err < 0)
3436 return err;
3437 if (dev->flags != old_flags)
3438 dev_set_rx_mode(dev);
3439 return err;
3441 EXPORT_SYMBOL(dev_set_promiscuity);
3444 * dev_set_allmulti - update allmulti count on a device
3445 * @dev: device
3446 * @inc: modifier
3448 * Add or remove reception of all multicast frames to a device. While the
3449 * count in the device remains above zero the interface remains listening
3450 * to all interfaces. Once it hits zero the device reverts back to normal
3451 * filtering operation. A negative @inc value is used to drop the counter
3452 * when releasing a resource needing all multicasts.
3453 * Return 0 if successful or a negative errno code on error.
3456 int dev_set_allmulti(struct net_device *dev, int inc)
3458 unsigned short old_flags = dev->flags;
3460 ASSERT_RTNL();
3462 dev->flags |= IFF_ALLMULTI;
3463 dev->allmulti += inc;
3464 if (dev->allmulti == 0) {
3466 * Avoid overflow.
3467 * If inc causes overflow, untouch allmulti and return error.
3469 if (inc < 0)
3470 dev->flags &= ~IFF_ALLMULTI;
3471 else {
3472 dev->allmulti -= inc;
3473 printk(KERN_WARNING "%s: allmulti touches roof, "
3474 "set allmulti failed, allmulti feature of "
3475 "device might be broken.\n", dev->name);
3476 return -EOVERFLOW;
3479 if (dev->flags ^ old_flags) {
3480 dev_change_rx_flags(dev, IFF_ALLMULTI);
3481 dev_set_rx_mode(dev);
3483 return 0;
3485 EXPORT_SYMBOL(dev_set_allmulti);
3488 * Upload unicast and multicast address lists to device and
3489 * configure RX filtering. When the device doesn't support unicast
3490 * filtering it is put in promiscuous mode while unicast addresses
3491 * are present.
3493 void __dev_set_rx_mode(struct net_device *dev)
3495 const struct net_device_ops *ops = dev->netdev_ops;
3497 /* dev_open will call this function so the list will stay sane. */
3498 if (!(dev->flags&IFF_UP))
3499 return;
3501 if (!netif_device_present(dev))
3502 return;
3504 if (ops->ndo_set_rx_mode)
3505 ops->ndo_set_rx_mode(dev);
3506 else {
3507 /* Unicast addresses changes may only happen under the rtnl,
3508 * therefore calling __dev_set_promiscuity here is safe.
3510 if (dev->uc.count > 0 && !dev->uc_promisc) {
3511 __dev_set_promiscuity(dev, 1);
3512 dev->uc_promisc = 1;
3513 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3514 __dev_set_promiscuity(dev, -1);
3515 dev->uc_promisc = 0;
3518 if (ops->ndo_set_multicast_list)
3519 ops->ndo_set_multicast_list(dev);
3523 void dev_set_rx_mode(struct net_device *dev)
3525 netif_addr_lock_bh(dev);
3526 __dev_set_rx_mode(dev);
3527 netif_addr_unlock_bh(dev);
3530 /* hw addresses list handling functions */
3532 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3533 int addr_len, unsigned char addr_type)
3535 struct netdev_hw_addr *ha;
3536 int alloc_size;
3538 if (addr_len > MAX_ADDR_LEN)
3539 return -EINVAL;
3541 list_for_each_entry(ha, &list->list, list) {
3542 if (!memcmp(ha->addr, addr, addr_len) &&
3543 ha->type == addr_type) {
3544 ha->refcount++;
3545 return 0;
3550 alloc_size = sizeof(*ha);
3551 if (alloc_size < L1_CACHE_BYTES)
3552 alloc_size = L1_CACHE_BYTES;
3553 ha = kmalloc(alloc_size, GFP_ATOMIC);
3554 if (!ha)
3555 return -ENOMEM;
3556 memcpy(ha->addr, addr, addr_len);
3557 ha->type = addr_type;
3558 ha->refcount = 1;
3559 ha->synced = false;
3560 list_add_tail_rcu(&ha->list, &list->list);
3561 list->count++;
3562 return 0;
3565 static void ha_rcu_free(struct rcu_head *head)
3567 struct netdev_hw_addr *ha;
3569 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3570 kfree(ha);
3573 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3574 int addr_len, unsigned char addr_type)
3576 struct netdev_hw_addr *ha;
3578 list_for_each_entry(ha, &list->list, list) {
3579 if (!memcmp(ha->addr, addr, addr_len) &&
3580 (ha->type == addr_type || !addr_type)) {
3581 if (--ha->refcount)
3582 return 0;
3583 list_del_rcu(&ha->list);
3584 call_rcu(&ha->rcu_head, ha_rcu_free);
3585 list->count--;
3586 return 0;
3589 return -ENOENT;
3592 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3593 struct netdev_hw_addr_list *from_list,
3594 int addr_len,
3595 unsigned char addr_type)
3597 int err;
3598 struct netdev_hw_addr *ha, *ha2;
3599 unsigned char type;
3601 list_for_each_entry(ha, &from_list->list, list) {
3602 type = addr_type ? addr_type : ha->type;
3603 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3604 if (err)
3605 goto unroll;
3607 return 0;
3609 unroll:
3610 list_for_each_entry(ha2, &from_list->list, list) {
3611 if (ha2 == ha)
3612 break;
3613 type = addr_type ? addr_type : ha2->type;
3614 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3616 return err;
3619 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3620 struct netdev_hw_addr_list *from_list,
3621 int addr_len,
3622 unsigned char addr_type)
3624 struct netdev_hw_addr *ha;
3625 unsigned char type;
3627 list_for_each_entry(ha, &from_list->list, list) {
3628 type = addr_type ? addr_type : ha->type;
3629 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3633 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3634 struct netdev_hw_addr_list *from_list,
3635 int addr_len)
3637 int err = 0;
3638 struct netdev_hw_addr *ha, *tmp;
3640 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3641 if (!ha->synced) {
3642 err = __hw_addr_add(to_list, ha->addr,
3643 addr_len, ha->type);
3644 if (err)
3645 break;
3646 ha->synced = true;
3647 ha->refcount++;
3648 } else if (ha->refcount == 1) {
3649 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3650 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3653 return err;
3656 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3657 struct netdev_hw_addr_list *from_list,
3658 int addr_len)
3660 struct netdev_hw_addr *ha, *tmp;
3662 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3663 if (ha->synced) {
3664 __hw_addr_del(to_list, ha->addr,
3665 addr_len, ha->type);
3666 ha->synced = false;
3667 __hw_addr_del(from_list, ha->addr,
3668 addr_len, ha->type);
3673 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3675 struct netdev_hw_addr *ha, *tmp;
3677 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3678 list_del_rcu(&ha->list);
3679 call_rcu(&ha->rcu_head, ha_rcu_free);
3681 list->count = 0;
3684 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3686 INIT_LIST_HEAD(&list->list);
3687 list->count = 0;
3690 /* Device addresses handling functions */
3692 static void dev_addr_flush(struct net_device *dev)
3694 /* rtnl_mutex must be held here */
3696 __hw_addr_flush(&dev->dev_addrs);
3697 dev->dev_addr = NULL;
3700 static int dev_addr_init(struct net_device *dev)
3702 unsigned char addr[MAX_ADDR_LEN];
3703 struct netdev_hw_addr *ha;
3704 int err;
3706 /* rtnl_mutex must be held here */
3708 __hw_addr_init(&dev->dev_addrs);
3709 memset(addr, 0, sizeof(addr));
3710 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3711 NETDEV_HW_ADDR_T_LAN);
3712 if (!err) {
3714 * Get the first (previously created) address from the list
3715 * and set dev_addr pointer to this location.
3717 ha = list_first_entry(&dev->dev_addrs.list,
3718 struct netdev_hw_addr, list);
3719 dev->dev_addr = ha->addr;
3721 return err;
3725 * dev_addr_add - Add a device address
3726 * @dev: device
3727 * @addr: address to add
3728 * @addr_type: address type
3730 * Add a device address to the device or increase the reference count if
3731 * it already exists.
3733 * The caller must hold the rtnl_mutex.
3735 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3736 unsigned char addr_type)
3738 int err;
3740 ASSERT_RTNL();
3742 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3743 if (!err)
3744 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3745 return err;
3747 EXPORT_SYMBOL(dev_addr_add);
3750 * dev_addr_del - Release a device address.
3751 * @dev: device
3752 * @addr: address to delete
3753 * @addr_type: address type
3755 * Release reference to a device address and remove it from the device
3756 * if the reference count drops to zero.
3758 * The caller must hold the rtnl_mutex.
3760 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3761 unsigned char addr_type)
3763 int err;
3764 struct netdev_hw_addr *ha;
3766 ASSERT_RTNL();
3769 * We can not remove the first address from the list because
3770 * dev->dev_addr points to that.
3772 ha = list_first_entry(&dev->dev_addrs.list,
3773 struct netdev_hw_addr, list);
3774 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3775 return -ENOENT;
3777 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3778 addr_type);
3779 if (!err)
3780 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3781 return err;
3783 EXPORT_SYMBOL(dev_addr_del);
3786 * dev_addr_add_multiple - Add device addresses from another device
3787 * @to_dev: device to which addresses will be added
3788 * @from_dev: device from which addresses will be added
3789 * @addr_type: address type - 0 means type will be used from from_dev
3791 * Add device addresses of the one device to another.
3793 * The caller must hold the rtnl_mutex.
3795 int dev_addr_add_multiple(struct net_device *to_dev,
3796 struct net_device *from_dev,
3797 unsigned char addr_type)
3799 int err;
3801 ASSERT_RTNL();
3803 if (from_dev->addr_len != to_dev->addr_len)
3804 return -EINVAL;
3805 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3806 to_dev->addr_len, addr_type);
3807 if (!err)
3808 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3809 return err;
3811 EXPORT_SYMBOL(dev_addr_add_multiple);
3814 * dev_addr_del_multiple - Delete device addresses by another device
3815 * @to_dev: device where the addresses will be deleted
3816 * @from_dev: device by which addresses the addresses will be deleted
3817 * @addr_type: address type - 0 means type will used from from_dev
3819 * Deletes addresses in to device by the list of addresses in from device.
3821 * The caller must hold the rtnl_mutex.
3823 int dev_addr_del_multiple(struct net_device *to_dev,
3824 struct net_device *from_dev,
3825 unsigned char addr_type)
3827 ASSERT_RTNL();
3829 if (from_dev->addr_len != to_dev->addr_len)
3830 return -EINVAL;
3831 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3832 to_dev->addr_len, addr_type);
3833 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3834 return 0;
3836 EXPORT_SYMBOL(dev_addr_del_multiple);
3838 /* multicast addresses handling functions */
3840 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3841 void *addr, int alen, int glbl)
3843 struct dev_addr_list *da;
3845 for (; (da = *list) != NULL; list = &da->next) {
3846 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3847 alen == da->da_addrlen) {
3848 if (glbl) {
3849 int old_glbl = da->da_gusers;
3850 da->da_gusers = 0;
3851 if (old_glbl == 0)
3852 break;
3854 if (--da->da_users)
3855 return 0;
3857 *list = da->next;
3858 kfree(da);
3859 (*count)--;
3860 return 0;
3863 return -ENOENT;
3866 int __dev_addr_add(struct dev_addr_list **list, int *count,
3867 void *addr, int alen, int glbl)
3869 struct dev_addr_list *da;
3871 for (da = *list; da != NULL; da = da->next) {
3872 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3873 da->da_addrlen == alen) {
3874 if (glbl) {
3875 int old_glbl = da->da_gusers;
3876 da->da_gusers = 1;
3877 if (old_glbl)
3878 return 0;
3880 da->da_users++;
3881 return 0;
3885 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3886 if (da == NULL)
3887 return -ENOMEM;
3888 memcpy(da->da_addr, addr, alen);
3889 da->da_addrlen = alen;
3890 da->da_users = 1;
3891 da->da_gusers = glbl ? 1 : 0;
3892 da->next = *list;
3893 *list = da;
3894 (*count)++;
3895 return 0;
3899 * dev_unicast_delete - Release secondary unicast address.
3900 * @dev: device
3901 * @addr: address to delete
3903 * Release reference to a secondary unicast address and remove it
3904 * from the device if the reference count drops to zero.
3906 * The caller must hold the rtnl_mutex.
3908 int dev_unicast_delete(struct net_device *dev, void *addr)
3910 int err;
3912 ASSERT_RTNL();
3914 netif_addr_lock_bh(dev);
3915 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
3916 NETDEV_HW_ADDR_T_UNICAST);
3917 if (!err)
3918 __dev_set_rx_mode(dev);
3919 netif_addr_unlock_bh(dev);
3920 return err;
3922 EXPORT_SYMBOL(dev_unicast_delete);
3925 * dev_unicast_add - add a secondary unicast address
3926 * @dev: device
3927 * @addr: address to add
3929 * Add a secondary unicast address to the device or increase
3930 * the reference count if it already exists.
3932 * The caller must hold the rtnl_mutex.
3934 int dev_unicast_add(struct net_device *dev, void *addr)
3936 int err;
3938 ASSERT_RTNL();
3940 netif_addr_lock_bh(dev);
3941 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
3942 NETDEV_HW_ADDR_T_UNICAST);
3943 if (!err)
3944 __dev_set_rx_mode(dev);
3945 netif_addr_unlock_bh(dev);
3946 return err;
3948 EXPORT_SYMBOL(dev_unicast_add);
3950 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3951 struct dev_addr_list **from, int *from_count)
3953 struct dev_addr_list *da, *next;
3954 int err = 0;
3956 da = *from;
3957 while (da != NULL) {
3958 next = da->next;
3959 if (!da->da_synced) {
3960 err = __dev_addr_add(to, to_count,
3961 da->da_addr, da->da_addrlen, 0);
3962 if (err < 0)
3963 break;
3964 da->da_synced = 1;
3965 da->da_users++;
3966 } else if (da->da_users == 1) {
3967 __dev_addr_delete(to, to_count,
3968 da->da_addr, da->da_addrlen, 0);
3969 __dev_addr_delete(from, from_count,
3970 da->da_addr, da->da_addrlen, 0);
3972 da = next;
3974 return err;
3976 EXPORT_SYMBOL_GPL(__dev_addr_sync);
3978 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3979 struct dev_addr_list **from, int *from_count)
3981 struct dev_addr_list *da, *next;
3983 da = *from;
3984 while (da != NULL) {
3985 next = da->next;
3986 if (da->da_synced) {
3987 __dev_addr_delete(to, to_count,
3988 da->da_addr, da->da_addrlen, 0);
3989 da->da_synced = 0;
3990 __dev_addr_delete(from, from_count,
3991 da->da_addr, da->da_addrlen, 0);
3993 da = next;
3996 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
3999 * dev_unicast_sync - Synchronize device's unicast list to another device
4000 * @to: destination device
4001 * @from: source device
4003 * Add newly added addresses to the destination device and release
4004 * addresses that have no users left. The source device must be
4005 * locked by netif_tx_lock_bh.
4007 * This function is intended to be called from the dev->set_rx_mode
4008 * function of layered software devices.
4010 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4012 int err = 0;
4014 if (to->addr_len != from->addr_len)
4015 return -EINVAL;
4017 netif_addr_lock_bh(to);
4018 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4019 if (!err)
4020 __dev_set_rx_mode(to);
4021 netif_addr_unlock_bh(to);
4022 return err;
4024 EXPORT_SYMBOL(dev_unicast_sync);
4027 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4028 * @to: destination device
4029 * @from: source device
4031 * Remove all addresses that were added to the destination device by
4032 * dev_unicast_sync(). This function is intended to be called from the
4033 * dev->stop function of layered software devices.
4035 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4037 if (to->addr_len != from->addr_len)
4038 return;
4040 netif_addr_lock_bh(from);
4041 netif_addr_lock(to);
4042 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4043 __dev_set_rx_mode(to);
4044 netif_addr_unlock(to);
4045 netif_addr_unlock_bh(from);
4047 EXPORT_SYMBOL(dev_unicast_unsync);
4049 static void dev_unicast_flush(struct net_device *dev)
4051 netif_addr_lock_bh(dev);
4052 __hw_addr_flush(&dev->uc);
4053 netif_addr_unlock_bh(dev);
4056 static void dev_unicast_init(struct net_device *dev)
4058 __hw_addr_init(&dev->uc);
4062 static void __dev_addr_discard(struct dev_addr_list **list)
4064 struct dev_addr_list *tmp;
4066 while (*list != NULL) {
4067 tmp = *list;
4068 *list = tmp->next;
4069 if (tmp->da_users > tmp->da_gusers)
4070 printk("__dev_addr_discard: address leakage! "
4071 "da_users=%d\n", tmp->da_users);
4072 kfree(tmp);
4076 static void dev_addr_discard(struct net_device *dev)
4078 netif_addr_lock_bh(dev);
4080 __dev_addr_discard(&dev->mc_list);
4081 dev->mc_count = 0;
4083 netif_addr_unlock_bh(dev);
4087 * dev_get_flags - get flags reported to userspace
4088 * @dev: device
4090 * Get the combination of flag bits exported through APIs to userspace.
4092 unsigned dev_get_flags(const struct net_device *dev)
4094 unsigned flags;
4096 flags = (dev->flags & ~(IFF_PROMISC |
4097 IFF_ALLMULTI |
4098 IFF_RUNNING |
4099 IFF_LOWER_UP |
4100 IFF_DORMANT)) |
4101 (dev->gflags & (IFF_PROMISC |
4102 IFF_ALLMULTI));
4104 if (netif_running(dev)) {
4105 if (netif_oper_up(dev))
4106 flags |= IFF_RUNNING;
4107 if (netif_carrier_ok(dev))
4108 flags |= IFF_LOWER_UP;
4109 if (netif_dormant(dev))
4110 flags |= IFF_DORMANT;
4113 return flags;
4115 EXPORT_SYMBOL(dev_get_flags);
4118 * dev_change_flags - change device settings
4119 * @dev: device
4120 * @flags: device state flags
4122 * Change settings on device based state flags. The flags are
4123 * in the userspace exported format.
4125 int dev_change_flags(struct net_device *dev, unsigned flags)
4127 int ret, changes;
4128 int old_flags = dev->flags;
4130 ASSERT_RTNL();
4133 * Set the flags on our device.
4136 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4137 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4138 IFF_AUTOMEDIA)) |
4139 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4140 IFF_ALLMULTI));
4143 * Load in the correct multicast list now the flags have changed.
4146 if ((old_flags ^ flags) & IFF_MULTICAST)
4147 dev_change_rx_flags(dev, IFF_MULTICAST);
4149 dev_set_rx_mode(dev);
4152 * Have we downed the interface. We handle IFF_UP ourselves
4153 * according to user attempts to set it, rather than blindly
4154 * setting it.
4157 ret = 0;
4158 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4159 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4161 if (!ret)
4162 dev_set_rx_mode(dev);
4165 if (dev->flags & IFF_UP &&
4166 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4167 IFF_VOLATILE)))
4168 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4170 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4171 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4173 dev->gflags ^= IFF_PROMISC;
4174 dev_set_promiscuity(dev, inc);
4177 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4178 is important. Some (broken) drivers set IFF_PROMISC, when
4179 IFF_ALLMULTI is requested not asking us and not reporting.
4181 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4182 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4184 dev->gflags ^= IFF_ALLMULTI;
4185 dev_set_allmulti(dev, inc);
4188 /* Exclude state transition flags, already notified */
4189 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4190 if (changes)
4191 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4193 return ret;
4195 EXPORT_SYMBOL(dev_change_flags);
4198 * dev_set_mtu - Change maximum transfer unit
4199 * @dev: device
4200 * @new_mtu: new transfer unit
4202 * Change the maximum transfer size of the network device.
4204 int dev_set_mtu(struct net_device *dev, int new_mtu)
4206 const struct net_device_ops *ops = dev->netdev_ops;
4207 int err;
4209 if (new_mtu == dev->mtu)
4210 return 0;
4212 /* MTU must be positive. */
4213 if (new_mtu < 0)
4214 return -EINVAL;
4216 if (!netif_device_present(dev))
4217 return -ENODEV;
4219 err = 0;
4220 if (ops->ndo_change_mtu)
4221 err = ops->ndo_change_mtu(dev, new_mtu);
4222 else
4223 dev->mtu = new_mtu;
4225 if (!err && dev->flags & IFF_UP)
4226 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4227 return err;
4229 EXPORT_SYMBOL(dev_set_mtu);
4232 * dev_set_mac_address - Change Media Access Control Address
4233 * @dev: device
4234 * @sa: new address
4236 * Change the hardware (MAC) address of the device
4238 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4240 const struct net_device_ops *ops = dev->netdev_ops;
4241 int err;
4243 if (!ops->ndo_set_mac_address)
4244 return -EOPNOTSUPP;
4245 if (sa->sa_family != dev->type)
4246 return -EINVAL;
4247 if (!netif_device_present(dev))
4248 return -ENODEV;
4249 err = ops->ndo_set_mac_address(dev, sa);
4250 if (!err)
4251 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4252 return err;
4254 EXPORT_SYMBOL(dev_set_mac_address);
4257 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4259 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4261 int err;
4262 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4264 if (!dev)
4265 return -ENODEV;
4267 switch (cmd) {
4268 case SIOCGIFFLAGS: /* Get interface flags */
4269 ifr->ifr_flags = (short) dev_get_flags(dev);
4270 return 0;
4272 case SIOCGIFMETRIC: /* Get the metric on the interface
4273 (currently unused) */
4274 ifr->ifr_metric = 0;
4275 return 0;
4277 case SIOCGIFMTU: /* Get the MTU of a device */
4278 ifr->ifr_mtu = dev->mtu;
4279 return 0;
4281 case SIOCGIFHWADDR:
4282 if (!dev->addr_len)
4283 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4284 else
4285 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4286 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4287 ifr->ifr_hwaddr.sa_family = dev->type;
4288 return 0;
4290 case SIOCGIFSLAVE:
4291 err = -EINVAL;
4292 break;
4294 case SIOCGIFMAP:
4295 ifr->ifr_map.mem_start = dev->mem_start;
4296 ifr->ifr_map.mem_end = dev->mem_end;
4297 ifr->ifr_map.base_addr = dev->base_addr;
4298 ifr->ifr_map.irq = dev->irq;
4299 ifr->ifr_map.dma = dev->dma;
4300 ifr->ifr_map.port = dev->if_port;
4301 return 0;
4303 case SIOCGIFINDEX:
4304 ifr->ifr_ifindex = dev->ifindex;
4305 return 0;
4307 case SIOCGIFTXQLEN:
4308 ifr->ifr_qlen = dev->tx_queue_len;
4309 return 0;
4311 default:
4312 /* dev_ioctl() should ensure this case
4313 * is never reached
4315 WARN_ON(1);
4316 err = -EINVAL;
4317 break;
4320 return err;
4324 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4326 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4328 int err;
4329 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4330 const struct net_device_ops *ops;
4332 if (!dev)
4333 return -ENODEV;
4335 ops = dev->netdev_ops;
4337 switch (cmd) {
4338 case SIOCSIFFLAGS: /* Set interface flags */
4339 return dev_change_flags(dev, ifr->ifr_flags);
4341 case SIOCSIFMETRIC: /* Set the metric on the interface
4342 (currently unused) */
4343 return -EOPNOTSUPP;
4345 case SIOCSIFMTU: /* Set the MTU of a device */
4346 return dev_set_mtu(dev, ifr->ifr_mtu);
4348 case SIOCSIFHWADDR:
4349 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4351 case SIOCSIFHWBROADCAST:
4352 if (ifr->ifr_hwaddr.sa_family != dev->type)
4353 return -EINVAL;
4354 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4355 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4356 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4357 return 0;
4359 case SIOCSIFMAP:
4360 if (ops->ndo_set_config) {
4361 if (!netif_device_present(dev))
4362 return -ENODEV;
4363 return ops->ndo_set_config(dev, &ifr->ifr_map);
4365 return -EOPNOTSUPP;
4367 case SIOCADDMULTI:
4368 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4369 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4370 return -EINVAL;
4371 if (!netif_device_present(dev))
4372 return -ENODEV;
4373 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4374 dev->addr_len, 1);
4376 case SIOCDELMULTI:
4377 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4378 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4379 return -EINVAL;
4380 if (!netif_device_present(dev))
4381 return -ENODEV;
4382 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4383 dev->addr_len, 1);
4385 case SIOCSIFTXQLEN:
4386 if (ifr->ifr_qlen < 0)
4387 return -EINVAL;
4388 dev->tx_queue_len = ifr->ifr_qlen;
4389 return 0;
4391 case SIOCSIFNAME:
4392 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4393 return dev_change_name(dev, ifr->ifr_newname);
4396 * Unknown or private ioctl
4398 default:
4399 if ((cmd >= SIOCDEVPRIVATE &&
4400 cmd <= SIOCDEVPRIVATE + 15) ||
4401 cmd == SIOCBONDENSLAVE ||
4402 cmd == SIOCBONDRELEASE ||
4403 cmd == SIOCBONDSETHWADDR ||
4404 cmd == SIOCBONDSLAVEINFOQUERY ||
4405 cmd == SIOCBONDINFOQUERY ||
4406 cmd == SIOCBONDCHANGEACTIVE ||
4407 cmd == SIOCGMIIPHY ||
4408 cmd == SIOCGMIIREG ||
4409 cmd == SIOCSMIIREG ||
4410 cmd == SIOCBRADDIF ||
4411 cmd == SIOCBRDELIF ||
4412 cmd == SIOCSHWTSTAMP ||
4413 cmd == SIOCWANDEV) {
4414 err = -EOPNOTSUPP;
4415 if (ops->ndo_do_ioctl) {
4416 if (netif_device_present(dev))
4417 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4418 else
4419 err = -ENODEV;
4421 } else
4422 err = -EINVAL;
4425 return err;
4429 * This function handles all "interface"-type I/O control requests. The actual
4430 * 'doing' part of this is dev_ifsioc above.
4434 * dev_ioctl - network device ioctl
4435 * @net: the applicable net namespace
4436 * @cmd: command to issue
4437 * @arg: pointer to a struct ifreq in user space
4439 * Issue ioctl functions to devices. This is normally called by the
4440 * user space syscall interfaces but can sometimes be useful for
4441 * other purposes. The return value is the return from the syscall if
4442 * positive or a negative errno code on error.
4445 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4447 struct ifreq ifr;
4448 int ret;
4449 char *colon;
4451 /* One special case: SIOCGIFCONF takes ifconf argument
4452 and requires shared lock, because it sleeps writing
4453 to user space.
4456 if (cmd == SIOCGIFCONF) {
4457 rtnl_lock();
4458 ret = dev_ifconf(net, (char __user *) arg);
4459 rtnl_unlock();
4460 return ret;
4462 if (cmd == SIOCGIFNAME)
4463 return dev_ifname(net, (struct ifreq __user *)arg);
4465 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4466 return -EFAULT;
4468 ifr.ifr_name[IFNAMSIZ-1] = 0;
4470 colon = strchr(ifr.ifr_name, ':');
4471 if (colon)
4472 *colon = 0;
4475 * See which interface the caller is talking about.
4478 switch (cmd) {
4480 * These ioctl calls:
4481 * - can be done by all.
4482 * - atomic and do not require locking.
4483 * - return a value
4485 case SIOCGIFFLAGS:
4486 case SIOCGIFMETRIC:
4487 case SIOCGIFMTU:
4488 case SIOCGIFHWADDR:
4489 case SIOCGIFSLAVE:
4490 case SIOCGIFMAP:
4491 case SIOCGIFINDEX:
4492 case SIOCGIFTXQLEN:
4493 dev_load(net, ifr.ifr_name);
4494 read_lock(&dev_base_lock);
4495 ret = dev_ifsioc_locked(net, &ifr, cmd);
4496 read_unlock(&dev_base_lock);
4497 if (!ret) {
4498 if (colon)
4499 *colon = ':';
4500 if (copy_to_user(arg, &ifr,
4501 sizeof(struct ifreq)))
4502 ret = -EFAULT;
4504 return ret;
4506 case SIOCETHTOOL:
4507 dev_load(net, ifr.ifr_name);
4508 rtnl_lock();
4509 ret = dev_ethtool(net, &ifr);
4510 rtnl_unlock();
4511 if (!ret) {
4512 if (colon)
4513 *colon = ':';
4514 if (copy_to_user(arg, &ifr,
4515 sizeof(struct ifreq)))
4516 ret = -EFAULT;
4518 return ret;
4521 * These ioctl calls:
4522 * - require superuser power.
4523 * - require strict serialization.
4524 * - return a value
4526 case SIOCGMIIPHY:
4527 case SIOCGMIIREG:
4528 case SIOCSIFNAME:
4529 if (!capable(CAP_NET_ADMIN))
4530 return -EPERM;
4531 dev_load(net, ifr.ifr_name);
4532 rtnl_lock();
4533 ret = dev_ifsioc(net, &ifr, cmd);
4534 rtnl_unlock();
4535 if (!ret) {
4536 if (colon)
4537 *colon = ':';
4538 if (copy_to_user(arg, &ifr,
4539 sizeof(struct ifreq)))
4540 ret = -EFAULT;
4542 return ret;
4545 * These ioctl calls:
4546 * - require superuser power.
4547 * - require strict serialization.
4548 * - do not return a value
4550 case SIOCSIFFLAGS:
4551 case SIOCSIFMETRIC:
4552 case SIOCSIFMTU:
4553 case SIOCSIFMAP:
4554 case SIOCSIFHWADDR:
4555 case SIOCSIFSLAVE:
4556 case SIOCADDMULTI:
4557 case SIOCDELMULTI:
4558 case SIOCSIFHWBROADCAST:
4559 case SIOCSIFTXQLEN:
4560 case SIOCSMIIREG:
4561 case SIOCBONDENSLAVE:
4562 case SIOCBONDRELEASE:
4563 case SIOCBONDSETHWADDR:
4564 case SIOCBONDCHANGEACTIVE:
4565 case SIOCBRADDIF:
4566 case SIOCBRDELIF:
4567 case SIOCSHWTSTAMP:
4568 if (!capable(CAP_NET_ADMIN))
4569 return -EPERM;
4570 /* fall through */
4571 case SIOCBONDSLAVEINFOQUERY:
4572 case SIOCBONDINFOQUERY:
4573 dev_load(net, ifr.ifr_name);
4574 rtnl_lock();
4575 ret = dev_ifsioc(net, &ifr, cmd);
4576 rtnl_unlock();
4577 return ret;
4579 case SIOCGIFMEM:
4580 /* Get the per device memory space. We can add this but
4581 * currently do not support it */
4582 case SIOCSIFMEM:
4583 /* Set the per device memory buffer space.
4584 * Not applicable in our case */
4585 case SIOCSIFLINK:
4586 return -EINVAL;
4589 * Unknown or private ioctl.
4591 default:
4592 if (cmd == SIOCWANDEV ||
4593 (cmd >= SIOCDEVPRIVATE &&
4594 cmd <= SIOCDEVPRIVATE + 15)) {
4595 dev_load(net, ifr.ifr_name);
4596 rtnl_lock();
4597 ret = dev_ifsioc(net, &ifr, cmd);
4598 rtnl_unlock();
4599 if (!ret && copy_to_user(arg, &ifr,
4600 sizeof(struct ifreq)))
4601 ret = -EFAULT;
4602 return ret;
4604 /* Take care of Wireless Extensions */
4605 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4606 return wext_handle_ioctl(net, &ifr, cmd, arg);
4607 return -EINVAL;
4613 * dev_new_index - allocate an ifindex
4614 * @net: the applicable net namespace
4616 * Returns a suitable unique value for a new device interface
4617 * number. The caller must hold the rtnl semaphore or the
4618 * dev_base_lock to be sure it remains unique.
4620 static int dev_new_index(struct net *net)
4622 static int ifindex;
4623 for (;;) {
4624 if (++ifindex <= 0)
4625 ifindex = 1;
4626 if (!__dev_get_by_index(net, ifindex))
4627 return ifindex;
4631 /* Delayed registration/unregisteration */
4632 static LIST_HEAD(net_todo_list);
4634 static void net_set_todo(struct net_device *dev)
4636 list_add_tail(&dev->todo_list, &net_todo_list);
4639 static void rollback_registered(struct net_device *dev)
4641 BUG_ON(dev_boot_phase);
4642 ASSERT_RTNL();
4644 /* Some devices call without registering for initialization unwind. */
4645 if (dev->reg_state == NETREG_UNINITIALIZED) {
4646 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4647 "was registered\n", dev->name, dev);
4649 WARN_ON(1);
4650 return;
4653 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4655 /* If device is running, close it first. */
4656 dev_close(dev);
4658 /* And unlink it from device chain. */
4659 unlist_netdevice(dev);
4661 dev->reg_state = NETREG_UNREGISTERING;
4663 synchronize_net();
4665 /* Shutdown queueing discipline. */
4666 dev_shutdown(dev);
4669 /* Notify protocols, that we are about to destroy
4670 this device. They should clean all the things.
4672 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4675 * Flush the unicast and multicast chains
4677 dev_unicast_flush(dev);
4678 dev_addr_discard(dev);
4680 if (dev->netdev_ops->ndo_uninit)
4681 dev->netdev_ops->ndo_uninit(dev);
4683 /* Notifier chain MUST detach us from master device. */
4684 WARN_ON(dev->master);
4686 /* Remove entries from kobject tree */
4687 netdev_unregister_kobject(dev);
4689 synchronize_net();
4691 dev_put(dev);
4694 static void __netdev_init_queue_locks_one(struct net_device *dev,
4695 struct netdev_queue *dev_queue,
4696 void *_unused)
4698 spin_lock_init(&dev_queue->_xmit_lock);
4699 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4700 dev_queue->xmit_lock_owner = -1;
4703 static void netdev_init_queue_locks(struct net_device *dev)
4705 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4706 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4709 unsigned long netdev_fix_features(unsigned long features, const char *name)
4711 /* Fix illegal SG+CSUM combinations. */
4712 if ((features & NETIF_F_SG) &&
4713 !(features & NETIF_F_ALL_CSUM)) {
4714 if (name)
4715 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4716 "checksum feature.\n", name);
4717 features &= ~NETIF_F_SG;
4720 /* TSO requires that SG is present as well. */
4721 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4722 if (name)
4723 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4724 "SG feature.\n", name);
4725 features &= ~NETIF_F_TSO;
4728 if (features & NETIF_F_UFO) {
4729 if (!(features & NETIF_F_GEN_CSUM)) {
4730 if (name)
4731 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4732 "since no NETIF_F_HW_CSUM feature.\n",
4733 name);
4734 features &= ~NETIF_F_UFO;
4737 if (!(features & NETIF_F_SG)) {
4738 if (name)
4739 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4740 "since no NETIF_F_SG feature.\n", name);
4741 features &= ~NETIF_F_UFO;
4745 return features;
4747 EXPORT_SYMBOL(netdev_fix_features);
4750 * register_netdevice - register a network device
4751 * @dev: device to register
4753 * Take a completed network device structure and add it to the kernel
4754 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4755 * chain. 0 is returned on success. A negative errno code is returned
4756 * on a failure to set up the device, or if the name is a duplicate.
4758 * Callers must hold the rtnl semaphore. You may want
4759 * register_netdev() instead of this.
4761 * BUGS:
4762 * The locking appears insufficient to guarantee two parallel registers
4763 * will not get the same name.
4766 int register_netdevice(struct net_device *dev)
4768 struct hlist_head *head;
4769 struct hlist_node *p;
4770 int ret;
4771 struct net *net = dev_net(dev);
4773 BUG_ON(dev_boot_phase);
4774 ASSERT_RTNL();
4776 might_sleep();
4778 /* When net_device's are persistent, this will be fatal. */
4779 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4780 BUG_ON(!net);
4782 spin_lock_init(&dev->addr_list_lock);
4783 netdev_set_addr_lockdep_class(dev);
4784 netdev_init_queue_locks(dev);
4786 dev->iflink = -1;
4788 /* Init, if this function is available */
4789 if (dev->netdev_ops->ndo_init) {
4790 ret = dev->netdev_ops->ndo_init(dev);
4791 if (ret) {
4792 if (ret > 0)
4793 ret = -EIO;
4794 goto out;
4798 if (!dev_valid_name(dev->name)) {
4799 ret = -EINVAL;
4800 goto err_uninit;
4803 dev->ifindex = dev_new_index(net);
4804 if (dev->iflink == -1)
4805 dev->iflink = dev->ifindex;
4807 /* Check for existence of name */
4808 head = dev_name_hash(net, dev->name);
4809 hlist_for_each(p, head) {
4810 struct net_device *d
4811 = hlist_entry(p, struct net_device, name_hlist);
4812 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4813 ret = -EEXIST;
4814 goto err_uninit;
4818 /* Fix illegal checksum combinations */
4819 if ((dev->features & NETIF_F_HW_CSUM) &&
4820 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4821 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4822 dev->name);
4823 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4826 if ((dev->features & NETIF_F_NO_CSUM) &&
4827 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4828 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4829 dev->name);
4830 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4833 dev->features = netdev_fix_features(dev->features, dev->name);
4835 /* Enable software GSO if SG is supported. */
4836 if (dev->features & NETIF_F_SG)
4837 dev->features |= NETIF_F_GSO;
4839 netdev_initialize_kobject(dev);
4840 ret = netdev_register_kobject(dev);
4841 if (ret)
4842 goto err_uninit;
4843 dev->reg_state = NETREG_REGISTERED;
4846 * Default initial state at registry is that the
4847 * device is present.
4850 set_bit(__LINK_STATE_PRESENT, &dev->state);
4852 dev_init_scheduler(dev);
4853 dev_hold(dev);
4854 list_netdevice(dev);
4856 /* Notify protocols, that a new device appeared. */
4857 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4858 ret = notifier_to_errno(ret);
4859 if (ret) {
4860 rollback_registered(dev);
4861 dev->reg_state = NETREG_UNREGISTERED;
4864 out:
4865 return ret;
4867 err_uninit:
4868 if (dev->netdev_ops->ndo_uninit)
4869 dev->netdev_ops->ndo_uninit(dev);
4870 goto out;
4872 EXPORT_SYMBOL(register_netdevice);
4875 * init_dummy_netdev - init a dummy network device for NAPI
4876 * @dev: device to init
4878 * This takes a network device structure and initialize the minimum
4879 * amount of fields so it can be used to schedule NAPI polls without
4880 * registering a full blown interface. This is to be used by drivers
4881 * that need to tie several hardware interfaces to a single NAPI
4882 * poll scheduler due to HW limitations.
4884 int init_dummy_netdev(struct net_device *dev)
4886 /* Clear everything. Note we don't initialize spinlocks
4887 * are they aren't supposed to be taken by any of the
4888 * NAPI code and this dummy netdev is supposed to be
4889 * only ever used for NAPI polls
4891 memset(dev, 0, sizeof(struct net_device));
4893 /* make sure we BUG if trying to hit standard
4894 * register/unregister code path
4896 dev->reg_state = NETREG_DUMMY;
4898 /* initialize the ref count */
4899 atomic_set(&dev->refcnt, 1);
4901 /* NAPI wants this */
4902 INIT_LIST_HEAD(&dev->napi_list);
4904 /* a dummy interface is started by default */
4905 set_bit(__LINK_STATE_PRESENT, &dev->state);
4906 set_bit(__LINK_STATE_START, &dev->state);
4908 return 0;
4910 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4914 * register_netdev - register a network device
4915 * @dev: device to register
4917 * Take a completed network device structure and add it to the kernel
4918 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4919 * chain. 0 is returned on success. A negative errno code is returned
4920 * on a failure to set up the device, or if the name is a duplicate.
4922 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4923 * and expands the device name if you passed a format string to
4924 * alloc_netdev.
4926 int register_netdev(struct net_device *dev)
4928 int err;
4930 rtnl_lock();
4933 * If the name is a format string the caller wants us to do a
4934 * name allocation.
4936 if (strchr(dev->name, '%')) {
4937 err = dev_alloc_name(dev, dev->name);
4938 if (err < 0)
4939 goto out;
4942 err = register_netdevice(dev);
4943 out:
4944 rtnl_unlock();
4945 return err;
4947 EXPORT_SYMBOL(register_netdev);
4950 * netdev_wait_allrefs - wait until all references are gone.
4952 * This is called when unregistering network devices.
4954 * Any protocol or device that holds a reference should register
4955 * for netdevice notification, and cleanup and put back the
4956 * reference if they receive an UNREGISTER event.
4957 * We can get stuck here if buggy protocols don't correctly
4958 * call dev_put.
4960 static void netdev_wait_allrefs(struct net_device *dev)
4962 unsigned long rebroadcast_time, warning_time;
4964 rebroadcast_time = warning_time = jiffies;
4965 while (atomic_read(&dev->refcnt) != 0) {
4966 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4967 rtnl_lock();
4969 /* Rebroadcast unregister notification */
4970 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4972 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4973 &dev->state)) {
4974 /* We must not have linkwatch events
4975 * pending on unregister. If this
4976 * happens, we simply run the queue
4977 * unscheduled, resulting in a noop
4978 * for this device.
4980 linkwatch_run_queue();
4983 __rtnl_unlock();
4985 rebroadcast_time = jiffies;
4988 msleep(250);
4990 if (time_after(jiffies, warning_time + 10 * HZ)) {
4991 printk(KERN_EMERG "unregister_netdevice: "
4992 "waiting for %s to become free. Usage "
4993 "count = %d\n",
4994 dev->name, atomic_read(&dev->refcnt));
4995 warning_time = jiffies;
5000 /* The sequence is:
5002 * rtnl_lock();
5003 * ...
5004 * register_netdevice(x1);
5005 * register_netdevice(x2);
5006 * ...
5007 * unregister_netdevice(y1);
5008 * unregister_netdevice(y2);
5009 * ...
5010 * rtnl_unlock();
5011 * free_netdev(y1);
5012 * free_netdev(y2);
5014 * We are invoked by rtnl_unlock().
5015 * This allows us to deal with problems:
5016 * 1) We can delete sysfs objects which invoke hotplug
5017 * without deadlocking with linkwatch via keventd.
5018 * 2) Since we run with the RTNL semaphore not held, we can sleep
5019 * safely in order to wait for the netdev refcnt to drop to zero.
5021 * We must not return until all unregister events added during
5022 * the interval the lock was held have been completed.
5024 void netdev_run_todo(void)
5026 struct list_head list;
5028 /* Snapshot list, allow later requests */
5029 list_replace_init(&net_todo_list, &list);
5031 __rtnl_unlock();
5033 while (!list_empty(&list)) {
5034 struct net_device *dev
5035 = list_entry(list.next, struct net_device, todo_list);
5036 list_del(&dev->todo_list);
5038 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5039 printk(KERN_ERR "network todo '%s' but state %d\n",
5040 dev->name, dev->reg_state);
5041 dump_stack();
5042 continue;
5045 dev->reg_state = NETREG_UNREGISTERED;
5047 on_each_cpu(flush_backlog, dev, 1);
5049 netdev_wait_allrefs(dev);
5051 /* paranoia */
5052 BUG_ON(atomic_read(&dev->refcnt));
5053 WARN_ON(dev->ip_ptr);
5054 WARN_ON(dev->ip6_ptr);
5055 WARN_ON(dev->dn_ptr);
5057 if (dev->destructor)
5058 dev->destructor(dev);
5060 /* Free network device */
5061 kobject_put(&dev->dev.kobj);
5066 * dev_get_stats - get network device statistics
5067 * @dev: device to get statistics from
5069 * Get network statistics from device. The device driver may provide
5070 * its own method by setting dev->netdev_ops->get_stats; otherwise
5071 * the internal statistics structure is used.
5073 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5075 const struct net_device_ops *ops = dev->netdev_ops;
5077 if (ops->ndo_get_stats)
5078 return ops->ndo_get_stats(dev);
5079 else {
5080 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5081 struct net_device_stats *stats = &dev->stats;
5082 unsigned int i;
5083 struct netdev_queue *txq;
5085 for (i = 0; i < dev->num_tx_queues; i++) {
5086 txq = netdev_get_tx_queue(dev, i);
5087 tx_bytes += txq->tx_bytes;
5088 tx_packets += txq->tx_packets;
5089 tx_dropped += txq->tx_dropped;
5091 if (tx_bytes || tx_packets || tx_dropped) {
5092 stats->tx_bytes = tx_bytes;
5093 stats->tx_packets = tx_packets;
5094 stats->tx_dropped = tx_dropped;
5096 return stats;
5099 EXPORT_SYMBOL(dev_get_stats);
5101 static void netdev_init_one_queue(struct net_device *dev,
5102 struct netdev_queue *queue,
5103 void *_unused)
5105 queue->dev = dev;
5108 static void netdev_init_queues(struct net_device *dev)
5110 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5111 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5112 spin_lock_init(&dev->tx_global_lock);
5116 * alloc_netdev_mq - allocate network device
5117 * @sizeof_priv: size of private data to allocate space for
5118 * @name: device name format string
5119 * @setup: callback to initialize device
5120 * @queue_count: the number of subqueues to allocate
5122 * Allocates a struct net_device with private data area for driver use
5123 * and performs basic initialization. Also allocates subquue structs
5124 * for each queue on the device at the end of the netdevice.
5126 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5127 void (*setup)(struct net_device *), unsigned int queue_count)
5129 struct netdev_queue *tx;
5130 struct net_device *dev;
5131 size_t alloc_size;
5132 struct net_device *p;
5134 BUG_ON(strlen(name) >= sizeof(dev->name));
5136 alloc_size = sizeof(struct net_device);
5137 if (sizeof_priv) {
5138 /* ensure 32-byte alignment of private area */
5139 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5140 alloc_size += sizeof_priv;
5142 /* ensure 32-byte alignment of whole construct */
5143 alloc_size += NETDEV_ALIGN - 1;
5145 p = kzalloc(alloc_size, GFP_KERNEL);
5146 if (!p) {
5147 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5148 return NULL;
5151 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5152 if (!tx) {
5153 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5154 "tx qdiscs.\n");
5155 goto free_p;
5158 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5159 dev->padded = (char *)dev - (char *)p;
5161 if (dev_addr_init(dev))
5162 goto free_tx;
5164 dev_unicast_init(dev);
5166 dev_net_set(dev, &init_net);
5168 dev->_tx = tx;
5169 dev->num_tx_queues = queue_count;
5170 dev->real_num_tx_queues = queue_count;
5172 dev->gso_max_size = GSO_MAX_SIZE;
5174 netdev_init_queues(dev);
5176 INIT_LIST_HEAD(&dev->napi_list);
5177 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5178 setup(dev);
5179 strcpy(dev->name, name);
5180 return dev;
5182 free_tx:
5183 kfree(tx);
5185 free_p:
5186 kfree(p);
5187 return NULL;
5189 EXPORT_SYMBOL(alloc_netdev_mq);
5192 * free_netdev - free network device
5193 * @dev: device
5195 * This function does the last stage of destroying an allocated device
5196 * interface. The reference to the device object is released.
5197 * If this is the last reference then it will be freed.
5199 void free_netdev(struct net_device *dev)
5201 struct napi_struct *p, *n;
5203 release_net(dev_net(dev));
5205 kfree(dev->_tx);
5207 /* Flush device addresses */
5208 dev_addr_flush(dev);
5210 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5211 netif_napi_del(p);
5213 /* Compatibility with error handling in drivers */
5214 if (dev->reg_state == NETREG_UNINITIALIZED) {
5215 kfree((char *)dev - dev->padded);
5216 return;
5219 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5220 dev->reg_state = NETREG_RELEASED;
5222 /* will free via device release */
5223 put_device(&dev->dev);
5225 EXPORT_SYMBOL(free_netdev);
5228 * synchronize_net - Synchronize with packet receive processing
5230 * Wait for packets currently being received to be done.
5231 * Does not block later packets from starting.
5233 void synchronize_net(void)
5235 might_sleep();
5236 synchronize_rcu();
5238 EXPORT_SYMBOL(synchronize_net);
5241 * unregister_netdevice - remove device from the kernel
5242 * @dev: device
5244 * This function shuts down a device interface and removes it
5245 * from the kernel tables.
5247 * Callers must hold the rtnl semaphore. You may want
5248 * unregister_netdev() instead of this.
5251 void unregister_netdevice(struct net_device *dev)
5253 ASSERT_RTNL();
5255 rollback_registered(dev);
5256 /* Finish processing unregister after unlock */
5257 net_set_todo(dev);
5259 EXPORT_SYMBOL(unregister_netdevice);
5262 * unregister_netdev - remove device from the kernel
5263 * @dev: device
5265 * This function shuts down a device interface and removes it
5266 * from the kernel tables.
5268 * This is just a wrapper for unregister_netdevice that takes
5269 * the rtnl semaphore. In general you want to use this and not
5270 * unregister_netdevice.
5272 void unregister_netdev(struct net_device *dev)
5274 rtnl_lock();
5275 unregister_netdevice(dev);
5276 rtnl_unlock();
5278 EXPORT_SYMBOL(unregister_netdev);
5281 * dev_change_net_namespace - move device to different nethost namespace
5282 * @dev: device
5283 * @net: network namespace
5284 * @pat: If not NULL name pattern to try if the current device name
5285 * is already taken in the destination network namespace.
5287 * This function shuts down a device interface and moves it
5288 * to a new network namespace. On success 0 is returned, on
5289 * a failure a netagive errno code is returned.
5291 * Callers must hold the rtnl semaphore.
5294 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5296 char buf[IFNAMSIZ];
5297 const char *destname;
5298 int err;
5300 ASSERT_RTNL();
5302 /* Don't allow namespace local devices to be moved. */
5303 err = -EINVAL;
5304 if (dev->features & NETIF_F_NETNS_LOCAL)
5305 goto out;
5307 #ifdef CONFIG_SYSFS
5308 /* Don't allow real devices to be moved when sysfs
5309 * is enabled.
5311 err = -EINVAL;
5312 if (dev->dev.parent)
5313 goto out;
5314 #endif
5316 /* Ensure the device has been registrered */
5317 err = -EINVAL;
5318 if (dev->reg_state != NETREG_REGISTERED)
5319 goto out;
5321 /* Get out if there is nothing todo */
5322 err = 0;
5323 if (net_eq(dev_net(dev), net))
5324 goto out;
5326 /* Pick the destination device name, and ensure
5327 * we can use it in the destination network namespace.
5329 err = -EEXIST;
5330 destname = dev->name;
5331 if (__dev_get_by_name(net, destname)) {
5332 /* We get here if we can't use the current device name */
5333 if (!pat)
5334 goto out;
5335 if (!dev_valid_name(pat))
5336 goto out;
5337 if (strchr(pat, '%')) {
5338 if (__dev_alloc_name(net, pat, buf) < 0)
5339 goto out;
5340 destname = buf;
5341 } else
5342 destname = pat;
5343 if (__dev_get_by_name(net, destname))
5344 goto out;
5348 * And now a mini version of register_netdevice unregister_netdevice.
5351 /* If device is running close it first. */
5352 dev_close(dev);
5354 /* And unlink it from device chain */
5355 err = -ENODEV;
5356 unlist_netdevice(dev);
5358 synchronize_net();
5360 /* Shutdown queueing discipline. */
5361 dev_shutdown(dev);
5363 /* Notify protocols, that we are about to destroy
5364 this device. They should clean all the things.
5366 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5369 * Flush the unicast and multicast chains
5371 dev_unicast_flush(dev);
5372 dev_addr_discard(dev);
5374 netdev_unregister_kobject(dev);
5376 /* Actually switch the network namespace */
5377 dev_net_set(dev, net);
5379 /* Assign the new device name */
5380 if (destname != dev->name)
5381 strcpy(dev->name, destname);
5383 /* If there is an ifindex conflict assign a new one */
5384 if (__dev_get_by_index(net, dev->ifindex)) {
5385 int iflink = (dev->iflink == dev->ifindex);
5386 dev->ifindex = dev_new_index(net);
5387 if (iflink)
5388 dev->iflink = dev->ifindex;
5391 /* Fixup kobjects */
5392 err = netdev_register_kobject(dev);
5393 WARN_ON(err);
5395 /* Add the device back in the hashes */
5396 list_netdevice(dev);
5398 /* Notify protocols, that a new device appeared. */
5399 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5401 synchronize_net();
5402 err = 0;
5403 out:
5404 return err;
5406 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5408 static int dev_cpu_callback(struct notifier_block *nfb,
5409 unsigned long action,
5410 void *ocpu)
5412 struct sk_buff **list_skb;
5413 struct Qdisc **list_net;
5414 struct sk_buff *skb;
5415 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5416 struct softnet_data *sd, *oldsd;
5418 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5419 return NOTIFY_OK;
5421 local_irq_disable();
5422 cpu = smp_processor_id();
5423 sd = &per_cpu(softnet_data, cpu);
5424 oldsd = &per_cpu(softnet_data, oldcpu);
5426 /* Find end of our completion_queue. */
5427 list_skb = &sd->completion_queue;
5428 while (*list_skb)
5429 list_skb = &(*list_skb)->next;
5430 /* Append completion queue from offline CPU. */
5431 *list_skb = oldsd->completion_queue;
5432 oldsd->completion_queue = NULL;
5434 /* Find end of our output_queue. */
5435 list_net = &sd->output_queue;
5436 while (*list_net)
5437 list_net = &(*list_net)->next_sched;
5438 /* Append output queue from offline CPU. */
5439 *list_net = oldsd->output_queue;
5440 oldsd->output_queue = NULL;
5442 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5443 local_irq_enable();
5445 /* Process offline CPU's input_pkt_queue */
5446 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5447 netif_rx(skb);
5449 return NOTIFY_OK;
5454 * netdev_increment_features - increment feature set by one
5455 * @all: current feature set
5456 * @one: new feature set
5457 * @mask: mask feature set
5459 * Computes a new feature set after adding a device with feature set
5460 * @one to the master device with current feature set @all. Will not
5461 * enable anything that is off in @mask. Returns the new feature set.
5463 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5464 unsigned long mask)
5466 /* If device needs checksumming, downgrade to it. */
5467 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5468 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5469 else if (mask & NETIF_F_ALL_CSUM) {
5470 /* If one device supports v4/v6 checksumming, set for all. */
5471 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5472 !(all & NETIF_F_GEN_CSUM)) {
5473 all &= ~NETIF_F_ALL_CSUM;
5474 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5477 /* If one device supports hw checksumming, set for all. */
5478 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5479 all &= ~NETIF_F_ALL_CSUM;
5480 all |= NETIF_F_HW_CSUM;
5484 one |= NETIF_F_ALL_CSUM;
5486 one |= all & NETIF_F_ONE_FOR_ALL;
5487 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5488 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5490 return all;
5492 EXPORT_SYMBOL(netdev_increment_features);
5494 static struct hlist_head *netdev_create_hash(void)
5496 int i;
5497 struct hlist_head *hash;
5499 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5500 if (hash != NULL)
5501 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5502 INIT_HLIST_HEAD(&hash[i]);
5504 return hash;
5507 /* Initialize per network namespace state */
5508 static int __net_init netdev_init(struct net *net)
5510 INIT_LIST_HEAD(&net->dev_base_head);
5512 net->dev_name_head = netdev_create_hash();
5513 if (net->dev_name_head == NULL)
5514 goto err_name;
5516 net->dev_index_head = netdev_create_hash();
5517 if (net->dev_index_head == NULL)
5518 goto err_idx;
5520 return 0;
5522 err_idx:
5523 kfree(net->dev_name_head);
5524 err_name:
5525 return -ENOMEM;
5529 * netdev_drivername - network driver for the device
5530 * @dev: network device
5531 * @buffer: buffer for resulting name
5532 * @len: size of buffer
5534 * Determine network driver for device.
5536 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5538 const struct device_driver *driver;
5539 const struct device *parent;
5541 if (len <= 0 || !buffer)
5542 return buffer;
5543 buffer[0] = 0;
5545 parent = dev->dev.parent;
5547 if (!parent)
5548 return buffer;
5550 driver = parent->driver;
5551 if (driver && driver->name)
5552 strlcpy(buffer, driver->name, len);
5553 return buffer;
5556 static void __net_exit netdev_exit(struct net *net)
5558 kfree(net->dev_name_head);
5559 kfree(net->dev_index_head);
5562 static struct pernet_operations __net_initdata netdev_net_ops = {
5563 .init = netdev_init,
5564 .exit = netdev_exit,
5567 static void __net_exit default_device_exit(struct net *net)
5569 struct net_device *dev;
5571 * Push all migratable of the network devices back to the
5572 * initial network namespace
5574 rtnl_lock();
5575 restart:
5576 for_each_netdev(net, dev) {
5577 int err;
5578 char fb_name[IFNAMSIZ];
5580 /* Ignore unmoveable devices (i.e. loopback) */
5581 if (dev->features & NETIF_F_NETNS_LOCAL)
5582 continue;
5584 /* Delete virtual devices */
5585 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5586 dev->rtnl_link_ops->dellink(dev);
5587 goto restart;
5590 /* Push remaing network devices to init_net */
5591 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5592 err = dev_change_net_namespace(dev, &init_net, fb_name);
5593 if (err) {
5594 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5595 __func__, dev->name, err);
5596 BUG();
5598 goto restart;
5600 rtnl_unlock();
5603 static struct pernet_operations __net_initdata default_device_ops = {
5604 .exit = default_device_exit,
5608 * Initialize the DEV module. At boot time this walks the device list and
5609 * unhooks any devices that fail to initialise (normally hardware not
5610 * present) and leaves us with a valid list of present and active devices.
5615 * This is called single threaded during boot, so no need
5616 * to take the rtnl semaphore.
5618 static int __init net_dev_init(void)
5620 int i, rc = -ENOMEM;
5622 BUG_ON(!dev_boot_phase);
5624 if (dev_proc_init())
5625 goto out;
5627 if (netdev_kobject_init())
5628 goto out;
5630 INIT_LIST_HEAD(&ptype_all);
5631 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5632 INIT_LIST_HEAD(&ptype_base[i]);
5634 if (register_pernet_subsys(&netdev_net_ops))
5635 goto out;
5638 * Initialise the packet receive queues.
5641 for_each_possible_cpu(i) {
5642 struct softnet_data *queue;
5644 queue = &per_cpu(softnet_data, i);
5645 skb_queue_head_init(&queue->input_pkt_queue);
5646 queue->completion_queue = NULL;
5647 INIT_LIST_HEAD(&queue->poll_list);
5649 queue->backlog.poll = process_backlog;
5650 queue->backlog.weight = weight_p;
5651 queue->backlog.gro_list = NULL;
5652 queue->backlog.gro_count = 0;
5655 dev_boot_phase = 0;
5657 /* The loopback device is special if any other network devices
5658 * is present in a network namespace the loopback device must
5659 * be present. Since we now dynamically allocate and free the
5660 * loopback device ensure this invariant is maintained by
5661 * keeping the loopback device as the first device on the
5662 * list of network devices. Ensuring the loopback devices
5663 * is the first device that appears and the last network device
5664 * that disappears.
5666 if (register_pernet_device(&loopback_net_ops))
5667 goto out;
5669 if (register_pernet_device(&default_device_ops))
5670 goto out;
5672 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5673 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5675 hotcpu_notifier(dev_cpu_callback, 0);
5676 dst_init();
5677 dev_mcast_init();
5678 rc = 0;
5679 out:
5680 return rc;
5683 subsys_initcall(net_dev_init);
5685 static int __init initialize_hashrnd(void)
5687 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5688 return 0;
5691 late_initcall_sync(initialize_hashrnd);