Drain per-cpu lists when high-order allocations fail
[linux-2.6/mini2440.git] / mm / page_alloc.c
blobaa7e5d2f28a52693d3bfa023c306e498bbdbe925
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
50 * Array of node states.
52 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
55 #ifndef CONFIG_NUMA
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
57 #ifdef CONFIG_HIGHMEM
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
59 #endif
60 [N_CPU] = { { [0] = 1UL } },
61 #endif /* NUMA */
63 EXPORT_SYMBOL(node_states);
65 unsigned long totalram_pages __read_mostly;
66 unsigned long totalreserve_pages __read_mostly;
67 long nr_swap_pages;
68 int percpu_pagelist_fraction;
70 static void __free_pages_ok(struct page *page, unsigned int order);
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
83 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
84 #ifdef CONFIG_ZONE_DMA
85 256,
86 #endif
87 #ifdef CONFIG_ZONE_DMA32
88 256,
89 #endif
90 #ifdef CONFIG_HIGHMEM
91 32,
92 #endif
93 32,
96 EXPORT_SYMBOL(totalram_pages);
98 static char * const zone_names[MAX_NR_ZONES] = {
99 #ifdef CONFIG_ZONE_DMA
100 "DMA",
101 #endif
102 #ifdef CONFIG_ZONE_DMA32
103 "DMA32",
104 #endif
105 "Normal",
106 #ifdef CONFIG_HIGHMEM
107 "HighMem",
108 #endif
109 "Movable",
112 int min_free_kbytes = 1024;
114 unsigned long __meminitdata nr_kernel_pages;
115 unsigned long __meminitdata nr_all_pages;
116 static unsigned long __meminitdata dma_reserve;
118 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
129 #else
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
133 #else
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
136 #endif
137 #endif
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
143 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
146 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
147 unsigned long __initdata required_kernelcore;
148 unsigned long __initdata required_movablecore;
149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
152 int movable_zone;
153 EXPORT_SYMBOL(movable_zone);
154 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
156 #if MAX_NUMNODES > 1
157 int nr_node_ids __read_mostly = MAX_NUMNODES;
158 EXPORT_SYMBOL(nr_node_ids);
159 #endif
161 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
162 static inline int get_pageblock_migratetype(struct page *page)
164 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
167 static void set_pageblock_migratetype(struct page *page, int migratetype)
169 set_pageblock_flags_group(page, (unsigned long)migratetype,
170 PB_migrate, PB_migrate_end);
173 static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
175 return ((gfp_flags & __GFP_MOVABLE) != 0);
178 #else
179 static inline int get_pageblock_migratetype(struct page *page)
181 return MIGRATE_UNMOVABLE;
184 static void set_pageblock_migratetype(struct page *page, int migratetype)
188 static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
190 return MIGRATE_UNMOVABLE;
192 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
194 #ifdef CONFIG_DEBUG_VM
195 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
197 int ret = 0;
198 unsigned seq;
199 unsigned long pfn = page_to_pfn(page);
201 do {
202 seq = zone_span_seqbegin(zone);
203 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
204 ret = 1;
205 else if (pfn < zone->zone_start_pfn)
206 ret = 1;
207 } while (zone_span_seqretry(zone, seq));
209 return ret;
212 static int page_is_consistent(struct zone *zone, struct page *page)
214 if (!pfn_valid_within(page_to_pfn(page)))
215 return 0;
216 if (zone != page_zone(page))
217 return 0;
219 return 1;
222 * Temporary debugging check for pages not lying within a given zone.
224 static int bad_range(struct zone *zone, struct page *page)
226 if (page_outside_zone_boundaries(zone, page))
227 return 1;
228 if (!page_is_consistent(zone, page))
229 return 1;
231 return 0;
233 #else
234 static inline int bad_range(struct zone *zone, struct page *page)
236 return 0;
238 #endif
240 static void bad_page(struct page *page)
242 printk(KERN_EMERG "Bad page state in process '%s'\n"
243 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
244 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
245 KERN_EMERG "Backtrace:\n",
246 current->comm, page, (int)(2*sizeof(unsigned long)),
247 (unsigned long)page->flags, page->mapping,
248 page_mapcount(page), page_count(page));
249 dump_stack();
250 page->flags &= ~(1 << PG_lru |
251 1 << PG_private |
252 1 << PG_locked |
253 1 << PG_active |
254 1 << PG_dirty |
255 1 << PG_reclaim |
256 1 << PG_slab |
257 1 << PG_swapcache |
258 1 << PG_writeback |
259 1 << PG_buddy );
260 set_page_count(page, 0);
261 reset_page_mapcount(page);
262 page->mapping = NULL;
263 add_taint(TAINT_BAD_PAGE);
267 * Higher-order pages are called "compound pages". They are structured thusly:
269 * The first PAGE_SIZE page is called the "head page".
271 * The remaining PAGE_SIZE pages are called "tail pages".
273 * All pages have PG_compound set. All pages have their ->private pointing at
274 * the head page (even the head page has this).
276 * The first tail page's ->lru.next holds the address of the compound page's
277 * put_page() function. Its ->lru.prev holds the order of allocation.
278 * This usage means that zero-order pages may not be compound.
281 static void free_compound_page(struct page *page)
283 __free_pages_ok(page, compound_order(page));
286 static void prep_compound_page(struct page *page, unsigned long order)
288 int i;
289 int nr_pages = 1 << order;
291 set_compound_page_dtor(page, free_compound_page);
292 set_compound_order(page, order);
293 __SetPageHead(page);
294 for (i = 1; i < nr_pages; i++) {
295 struct page *p = page + i;
297 __SetPageTail(p);
298 p->first_page = page;
302 static void destroy_compound_page(struct page *page, unsigned long order)
304 int i;
305 int nr_pages = 1 << order;
307 if (unlikely(compound_order(page) != order))
308 bad_page(page);
310 if (unlikely(!PageHead(page)))
311 bad_page(page);
312 __ClearPageHead(page);
313 for (i = 1; i < nr_pages; i++) {
314 struct page *p = page + i;
316 if (unlikely(!PageTail(p) |
317 (p->first_page != page)))
318 bad_page(page);
319 __ClearPageTail(p);
323 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
325 int i;
327 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
329 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
330 * and __GFP_HIGHMEM from hard or soft interrupt context.
332 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
333 for (i = 0; i < (1 << order); i++)
334 clear_highpage(page + i);
338 * function for dealing with page's order in buddy system.
339 * zone->lock is already acquired when we use these.
340 * So, we don't need atomic page->flags operations here.
342 static inline unsigned long page_order(struct page *page)
344 return page_private(page);
347 static inline void set_page_order(struct page *page, int order)
349 set_page_private(page, order);
350 __SetPageBuddy(page);
353 static inline void rmv_page_order(struct page *page)
355 __ClearPageBuddy(page);
356 set_page_private(page, 0);
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
376 static inline struct page *
377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
379 unsigned long buddy_idx = page_idx ^ (1 << order);
381 return page + (buddy_idx - page_idx);
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx, unsigned int order)
387 return (page_idx & ~(1 << order));
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
401 * For recording page's order, we use page_private(page).
403 static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
406 if (!pfn_valid_within(page_to_pfn(buddy)))
407 return 0;
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
413 BUG_ON(page_count(buddy) != 0);
414 return 1;
416 return 0;
420 * Freeing function for a buddy system allocator.
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
440 * -- wli
443 static inline void __free_one_page(struct page *page,
444 struct zone *zone, unsigned int order)
446 unsigned long page_idx;
447 int order_size = 1 << order;
448 int migratetype = get_pageblock_migratetype(page);
450 if (unlikely(PageCompound(page)))
451 destroy_compound_page(page, order);
453 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
455 VM_BUG_ON(page_idx & (order_size - 1));
456 VM_BUG_ON(bad_range(zone, page));
458 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
459 while (order < MAX_ORDER-1) {
460 unsigned long combined_idx;
461 struct page *buddy;
463 buddy = __page_find_buddy(page, page_idx, order);
464 if (!page_is_buddy(page, buddy, order))
465 break; /* Move the buddy up one level. */
467 list_del(&buddy->lru);
468 zone->free_area[order].nr_free--;
469 rmv_page_order(buddy);
470 combined_idx = __find_combined_index(page_idx, order);
471 page = page + (combined_idx - page_idx);
472 page_idx = combined_idx;
473 order++;
475 set_page_order(page, order);
476 list_add(&page->lru,
477 &zone->free_area[order].free_list[migratetype]);
478 zone->free_area[order].nr_free++;
481 static inline int free_pages_check(struct page *page)
483 if (unlikely(page_mapcount(page) |
484 (page->mapping != NULL) |
485 (page_count(page) != 0) |
486 (page->flags & (
487 1 << PG_lru |
488 1 << PG_private |
489 1 << PG_locked |
490 1 << PG_active |
491 1 << PG_slab |
492 1 << PG_swapcache |
493 1 << PG_writeback |
494 1 << PG_reserved |
495 1 << PG_buddy ))))
496 bad_page(page);
497 if (PageDirty(page))
498 __ClearPageDirty(page);
500 * For now, we report if PG_reserved was found set, but do not
501 * clear it, and do not free the page. But we shall soon need
502 * to do more, for when the ZERO_PAGE count wraps negative.
504 return PageReserved(page);
508 * Frees a list of pages.
509 * Assumes all pages on list are in same zone, and of same order.
510 * count is the number of pages to free.
512 * If the zone was previously in an "all pages pinned" state then look to
513 * see if this freeing clears that state.
515 * And clear the zone's pages_scanned counter, to hold off the "all pages are
516 * pinned" detection logic.
518 static void free_pages_bulk(struct zone *zone, int count,
519 struct list_head *list, int order)
521 spin_lock(&zone->lock);
522 zone->all_unreclaimable = 0;
523 zone->pages_scanned = 0;
524 while (count--) {
525 struct page *page;
527 VM_BUG_ON(list_empty(list));
528 page = list_entry(list->prev, struct page, lru);
529 /* have to delete it as __free_one_page list manipulates */
530 list_del(&page->lru);
531 __free_one_page(page, zone, order);
533 spin_unlock(&zone->lock);
536 static void free_one_page(struct zone *zone, struct page *page, int order)
538 spin_lock(&zone->lock);
539 zone->all_unreclaimable = 0;
540 zone->pages_scanned = 0;
541 __free_one_page(page, zone, order);
542 spin_unlock(&zone->lock);
545 static void __free_pages_ok(struct page *page, unsigned int order)
547 unsigned long flags;
548 int i;
549 int reserved = 0;
551 for (i = 0 ; i < (1 << order) ; ++i)
552 reserved += free_pages_check(page + i);
553 if (reserved)
554 return;
556 if (!PageHighMem(page))
557 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
558 arch_free_page(page, order);
559 kernel_map_pages(page, 1 << order, 0);
561 local_irq_save(flags);
562 __count_vm_events(PGFREE, 1 << order);
563 free_one_page(page_zone(page), page, order);
564 local_irq_restore(flags);
568 * permit the bootmem allocator to evade page validation on high-order frees
570 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
572 if (order == 0) {
573 __ClearPageReserved(page);
574 set_page_count(page, 0);
575 set_page_refcounted(page);
576 __free_page(page);
577 } else {
578 int loop;
580 prefetchw(page);
581 for (loop = 0; loop < BITS_PER_LONG; loop++) {
582 struct page *p = &page[loop];
584 if (loop + 1 < BITS_PER_LONG)
585 prefetchw(p + 1);
586 __ClearPageReserved(p);
587 set_page_count(p, 0);
590 set_page_refcounted(page);
591 __free_pages(page, order);
597 * The order of subdivision here is critical for the IO subsystem.
598 * Please do not alter this order without good reasons and regression
599 * testing. Specifically, as large blocks of memory are subdivided,
600 * the order in which smaller blocks are delivered depends on the order
601 * they're subdivided in this function. This is the primary factor
602 * influencing the order in which pages are delivered to the IO
603 * subsystem according to empirical testing, and this is also justified
604 * by considering the behavior of a buddy system containing a single
605 * large block of memory acted on by a series of small allocations.
606 * This behavior is a critical factor in sglist merging's success.
608 * -- wli
610 static inline void expand(struct zone *zone, struct page *page,
611 int low, int high, struct free_area *area,
612 int migratetype)
614 unsigned long size = 1 << high;
616 while (high > low) {
617 area--;
618 high--;
619 size >>= 1;
620 VM_BUG_ON(bad_range(zone, &page[size]));
621 list_add(&page[size].lru, &area->free_list[migratetype]);
622 area->nr_free++;
623 set_page_order(&page[size], high);
628 * This page is about to be returned from the page allocator
630 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
632 if (unlikely(page_mapcount(page) |
633 (page->mapping != NULL) |
634 (page_count(page) != 0) |
635 (page->flags & (
636 1 << PG_lru |
637 1 << PG_private |
638 1 << PG_locked |
639 1 << PG_active |
640 1 << PG_dirty |
641 1 << PG_slab |
642 1 << PG_swapcache |
643 1 << PG_writeback |
644 1 << PG_reserved |
645 1 << PG_buddy ))))
646 bad_page(page);
649 * For now, we report if PG_reserved was found set, but do not
650 * clear it, and do not allocate the page: as a safety net.
652 if (PageReserved(page))
653 return 1;
655 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
656 1 << PG_referenced | 1 << PG_arch_1 |
657 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
658 set_page_private(page, 0);
659 set_page_refcounted(page);
661 arch_alloc_page(page, order);
662 kernel_map_pages(page, 1 << order, 1);
664 if (gfp_flags & __GFP_ZERO)
665 prep_zero_page(page, order, gfp_flags);
667 if (order && (gfp_flags & __GFP_COMP))
668 prep_compound_page(page, order);
670 return 0;
673 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
675 * This array describes the order lists are fallen back to when
676 * the free lists for the desirable migrate type are depleted
678 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
679 [MIGRATE_UNMOVABLE] = { MIGRATE_MOVABLE },
680 [MIGRATE_MOVABLE] = { MIGRATE_UNMOVABLE },
683 /* Remove an element from the buddy allocator from the fallback list */
684 static struct page *__rmqueue_fallback(struct zone *zone, int order,
685 int start_migratetype)
687 struct free_area * area;
688 int current_order;
689 struct page *page;
690 int migratetype, i;
692 /* Find the largest possible block of pages in the other list */
693 for (current_order = MAX_ORDER-1; current_order >= order;
694 --current_order) {
695 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
696 migratetype = fallbacks[start_migratetype][i];
698 area = &(zone->free_area[current_order]);
699 if (list_empty(&area->free_list[migratetype]))
700 continue;
702 page = list_entry(area->free_list[migratetype].next,
703 struct page, lru);
704 area->nr_free--;
707 * If breaking a large block of pages, place the buddies
708 * on the preferred allocation list
710 if (unlikely(current_order >= MAX_ORDER / 2))
711 migratetype = start_migratetype;
713 /* Remove the page from the freelists */
714 list_del(&page->lru);
715 rmv_page_order(page);
716 __mod_zone_page_state(zone, NR_FREE_PAGES,
717 -(1UL << order));
719 if (current_order == MAX_ORDER - 1)
720 set_pageblock_migratetype(page,
721 start_migratetype);
723 expand(zone, page, order, current_order, area, migratetype);
724 return page;
728 return NULL;
730 #else
731 static struct page *__rmqueue_fallback(struct zone *zone, int order,
732 int start_migratetype)
734 return NULL;
736 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
739 * Do the hard work of removing an element from the buddy allocator.
740 * Call me with the zone->lock already held.
742 static struct page *__rmqueue(struct zone *zone, unsigned int order,
743 int migratetype)
745 struct free_area * area;
746 unsigned int current_order;
747 struct page *page;
749 /* Find a page of the appropriate size in the preferred list */
750 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
751 area = &(zone->free_area[current_order]);
752 if (list_empty(&area->free_list[migratetype]))
753 continue;
755 page = list_entry(area->free_list[migratetype].next,
756 struct page, lru);
757 list_del(&page->lru);
758 rmv_page_order(page);
759 area->nr_free--;
760 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
761 expand(zone, page, order, current_order, area, migratetype);
762 goto got_page;
765 page = __rmqueue_fallback(zone, order, migratetype);
767 got_page:
769 return page;
773 * Obtain a specified number of elements from the buddy allocator, all under
774 * a single hold of the lock, for efficiency. Add them to the supplied list.
775 * Returns the number of new pages which were placed at *list.
777 static int rmqueue_bulk(struct zone *zone, unsigned int order,
778 unsigned long count, struct list_head *list,
779 int migratetype)
781 int i;
783 spin_lock(&zone->lock);
784 for (i = 0; i < count; ++i) {
785 struct page *page = __rmqueue(zone, order, migratetype);
786 if (unlikely(page == NULL))
787 break;
788 list_add(&page->lru, list);
789 set_page_private(page, migratetype);
791 spin_unlock(&zone->lock);
792 return i;
795 #ifdef CONFIG_NUMA
797 * Called from the vmstat counter updater to drain pagesets of this
798 * currently executing processor on remote nodes after they have
799 * expired.
801 * Note that this function must be called with the thread pinned to
802 * a single processor.
804 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
806 unsigned long flags;
807 int to_drain;
809 local_irq_save(flags);
810 if (pcp->count >= pcp->batch)
811 to_drain = pcp->batch;
812 else
813 to_drain = pcp->count;
814 free_pages_bulk(zone, to_drain, &pcp->list, 0);
815 pcp->count -= to_drain;
816 local_irq_restore(flags);
818 #endif
820 static void __drain_pages(unsigned int cpu)
822 unsigned long flags;
823 struct zone *zone;
824 int i;
826 for_each_zone(zone) {
827 struct per_cpu_pageset *pset;
829 if (!populated_zone(zone))
830 continue;
832 pset = zone_pcp(zone, cpu);
833 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
834 struct per_cpu_pages *pcp;
836 pcp = &pset->pcp[i];
837 local_irq_save(flags);
838 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
839 pcp->count = 0;
840 local_irq_restore(flags);
845 #ifdef CONFIG_HIBERNATION
847 void mark_free_pages(struct zone *zone)
849 unsigned long pfn, max_zone_pfn;
850 unsigned long flags;
851 int order, t;
852 struct list_head *curr;
854 if (!zone->spanned_pages)
855 return;
857 spin_lock_irqsave(&zone->lock, flags);
859 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
860 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
861 if (pfn_valid(pfn)) {
862 struct page *page = pfn_to_page(pfn);
864 if (!swsusp_page_is_forbidden(page))
865 swsusp_unset_page_free(page);
868 for_each_migratetype_order(order, t) {
869 list_for_each(curr, &zone->free_area[order].free_list[t]) {
870 unsigned long i;
872 pfn = page_to_pfn(list_entry(curr, struct page, lru));
873 for (i = 0; i < (1UL << order); i++)
874 swsusp_set_page_free(pfn_to_page(pfn + i));
877 spin_unlock_irqrestore(&zone->lock, flags);
879 #endif /* CONFIG_PM */
881 #if defined(CONFIG_HIBERNATION) || defined(CONFIG_PAGE_GROUP_BY_MOBILITY)
883 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
885 void drain_local_pages(void)
887 unsigned long flags;
889 local_irq_save(flags);
890 __drain_pages(smp_processor_id());
891 local_irq_restore(flags);
894 void smp_drain_local_pages(void *arg)
896 drain_local_pages();
900 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
902 void drain_all_local_pages(void)
904 unsigned long flags;
906 local_irq_save(flags);
907 __drain_pages(smp_processor_id());
908 local_irq_restore(flags);
910 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
912 #else
913 void drain_all_local_pages(void) {}
914 #endif /* CONFIG_HIBERNATION || CONFIG_PAGE_GROUP_BY_MOBILITY */
917 * Free a 0-order page
919 static void fastcall free_hot_cold_page(struct page *page, int cold)
921 struct zone *zone = page_zone(page);
922 struct per_cpu_pages *pcp;
923 unsigned long flags;
925 if (PageAnon(page))
926 page->mapping = NULL;
927 if (free_pages_check(page))
928 return;
930 if (!PageHighMem(page))
931 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
932 arch_free_page(page, 0);
933 kernel_map_pages(page, 1, 0);
935 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
936 local_irq_save(flags);
937 __count_vm_event(PGFREE);
938 list_add(&page->lru, &pcp->list);
939 set_page_private(page, get_pageblock_migratetype(page));
940 pcp->count++;
941 if (pcp->count >= pcp->high) {
942 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
943 pcp->count -= pcp->batch;
945 local_irq_restore(flags);
946 put_cpu();
949 void fastcall free_hot_page(struct page *page)
951 free_hot_cold_page(page, 0);
954 void fastcall free_cold_page(struct page *page)
956 free_hot_cold_page(page, 1);
960 * split_page takes a non-compound higher-order page, and splits it into
961 * n (1<<order) sub-pages: page[0..n]
962 * Each sub-page must be freed individually.
964 * Note: this is probably too low level an operation for use in drivers.
965 * Please consult with lkml before using this in your driver.
967 void split_page(struct page *page, unsigned int order)
969 int i;
971 VM_BUG_ON(PageCompound(page));
972 VM_BUG_ON(!page_count(page));
973 for (i = 1; i < (1 << order); i++)
974 set_page_refcounted(page + i);
978 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
979 * we cheat by calling it from here, in the order > 0 path. Saves a branch
980 * or two.
982 static struct page *buffered_rmqueue(struct zonelist *zonelist,
983 struct zone *zone, int order, gfp_t gfp_flags)
985 unsigned long flags;
986 struct page *page;
987 int cold = !!(gfp_flags & __GFP_COLD);
988 int cpu;
989 int migratetype = gfpflags_to_migratetype(gfp_flags);
991 again:
992 cpu = get_cpu();
993 if (likely(order == 0)) {
994 struct per_cpu_pages *pcp;
996 pcp = &zone_pcp(zone, cpu)->pcp[cold];
997 local_irq_save(flags);
998 if (!pcp->count) {
999 pcp->count = rmqueue_bulk(zone, 0,
1000 pcp->batch, &pcp->list, migratetype);
1001 if (unlikely(!pcp->count))
1002 goto failed;
1005 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
1006 /* Find a page of the appropriate migrate type */
1007 list_for_each_entry(page, &pcp->list, lru)
1008 if (page_private(page) == migratetype)
1009 break;
1011 /* Allocate more to the pcp list if necessary */
1012 if (unlikely(&page->lru == &pcp->list)) {
1013 pcp->count += rmqueue_bulk(zone, 0,
1014 pcp->batch, &pcp->list, migratetype);
1015 page = list_entry(pcp->list.next, struct page, lru);
1017 #else
1018 page = list_entry(pcp->list.next, struct page, lru);
1019 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
1021 list_del(&page->lru);
1022 pcp->count--;
1023 } else {
1024 spin_lock_irqsave(&zone->lock, flags);
1025 page = __rmqueue(zone, order, migratetype);
1026 spin_unlock(&zone->lock);
1027 if (!page)
1028 goto failed;
1031 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1032 zone_statistics(zonelist, zone);
1033 local_irq_restore(flags);
1034 put_cpu();
1036 VM_BUG_ON(bad_range(zone, page));
1037 if (prep_new_page(page, order, gfp_flags))
1038 goto again;
1039 return page;
1041 failed:
1042 local_irq_restore(flags);
1043 put_cpu();
1044 return NULL;
1047 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1048 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1049 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1050 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1051 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1052 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1053 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1055 #ifdef CONFIG_FAIL_PAGE_ALLOC
1057 static struct fail_page_alloc_attr {
1058 struct fault_attr attr;
1060 u32 ignore_gfp_highmem;
1061 u32 ignore_gfp_wait;
1062 u32 min_order;
1064 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1066 struct dentry *ignore_gfp_highmem_file;
1067 struct dentry *ignore_gfp_wait_file;
1068 struct dentry *min_order_file;
1070 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1072 } fail_page_alloc = {
1073 .attr = FAULT_ATTR_INITIALIZER,
1074 .ignore_gfp_wait = 1,
1075 .ignore_gfp_highmem = 1,
1076 .min_order = 1,
1079 static int __init setup_fail_page_alloc(char *str)
1081 return setup_fault_attr(&fail_page_alloc.attr, str);
1083 __setup("fail_page_alloc=", setup_fail_page_alloc);
1085 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1087 if (order < fail_page_alloc.min_order)
1088 return 0;
1089 if (gfp_mask & __GFP_NOFAIL)
1090 return 0;
1091 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1092 return 0;
1093 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1094 return 0;
1096 return should_fail(&fail_page_alloc.attr, 1 << order);
1099 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1101 static int __init fail_page_alloc_debugfs(void)
1103 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1104 struct dentry *dir;
1105 int err;
1107 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1108 "fail_page_alloc");
1109 if (err)
1110 return err;
1111 dir = fail_page_alloc.attr.dentries.dir;
1113 fail_page_alloc.ignore_gfp_wait_file =
1114 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1115 &fail_page_alloc.ignore_gfp_wait);
1117 fail_page_alloc.ignore_gfp_highmem_file =
1118 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1119 &fail_page_alloc.ignore_gfp_highmem);
1120 fail_page_alloc.min_order_file =
1121 debugfs_create_u32("min-order", mode, dir,
1122 &fail_page_alloc.min_order);
1124 if (!fail_page_alloc.ignore_gfp_wait_file ||
1125 !fail_page_alloc.ignore_gfp_highmem_file ||
1126 !fail_page_alloc.min_order_file) {
1127 err = -ENOMEM;
1128 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1129 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1130 debugfs_remove(fail_page_alloc.min_order_file);
1131 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1134 return err;
1137 late_initcall(fail_page_alloc_debugfs);
1139 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1141 #else /* CONFIG_FAIL_PAGE_ALLOC */
1143 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1145 return 0;
1148 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1151 * Return 1 if free pages are above 'mark'. This takes into account the order
1152 * of the allocation.
1154 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1155 int classzone_idx, int alloc_flags)
1157 /* free_pages my go negative - that's OK */
1158 long min = mark;
1159 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1160 int o;
1162 if (alloc_flags & ALLOC_HIGH)
1163 min -= min / 2;
1164 if (alloc_flags & ALLOC_HARDER)
1165 min -= min / 4;
1167 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1168 return 0;
1169 for (o = 0; o < order; o++) {
1170 /* At the next order, this order's pages become unavailable */
1171 free_pages -= z->free_area[o].nr_free << o;
1173 /* Require fewer higher order pages to be free */
1174 min >>= 1;
1176 if (free_pages <= min)
1177 return 0;
1179 return 1;
1182 #ifdef CONFIG_NUMA
1184 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1185 * skip over zones that are not allowed by the cpuset, or that have
1186 * been recently (in last second) found to be nearly full. See further
1187 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1188 * that have to skip over alot of full or unallowed zones.
1190 * If the zonelist cache is present in the passed in zonelist, then
1191 * returns a pointer to the allowed node mask (either the current
1192 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1194 * If the zonelist cache is not available for this zonelist, does
1195 * nothing and returns NULL.
1197 * If the fullzones BITMAP in the zonelist cache is stale (more than
1198 * a second since last zap'd) then we zap it out (clear its bits.)
1200 * We hold off even calling zlc_setup, until after we've checked the
1201 * first zone in the zonelist, on the theory that most allocations will
1202 * be satisfied from that first zone, so best to examine that zone as
1203 * quickly as we can.
1205 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1207 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1208 nodemask_t *allowednodes; /* zonelist_cache approximation */
1210 zlc = zonelist->zlcache_ptr;
1211 if (!zlc)
1212 return NULL;
1214 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1215 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1216 zlc->last_full_zap = jiffies;
1219 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1220 &cpuset_current_mems_allowed :
1221 &node_states[N_HIGH_MEMORY];
1222 return allowednodes;
1226 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1227 * if it is worth looking at further for free memory:
1228 * 1) Check that the zone isn't thought to be full (doesn't have its
1229 * bit set in the zonelist_cache fullzones BITMAP).
1230 * 2) Check that the zones node (obtained from the zonelist_cache
1231 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1232 * Return true (non-zero) if zone is worth looking at further, or
1233 * else return false (zero) if it is not.
1235 * This check -ignores- the distinction between various watermarks,
1236 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1237 * found to be full for any variation of these watermarks, it will
1238 * be considered full for up to one second by all requests, unless
1239 * we are so low on memory on all allowed nodes that we are forced
1240 * into the second scan of the zonelist.
1242 * In the second scan we ignore this zonelist cache and exactly
1243 * apply the watermarks to all zones, even it is slower to do so.
1244 * We are low on memory in the second scan, and should leave no stone
1245 * unturned looking for a free page.
1247 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1248 nodemask_t *allowednodes)
1250 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1251 int i; /* index of *z in zonelist zones */
1252 int n; /* node that zone *z is on */
1254 zlc = zonelist->zlcache_ptr;
1255 if (!zlc)
1256 return 1;
1258 i = z - zonelist->zones;
1259 n = zlc->z_to_n[i];
1261 /* This zone is worth trying if it is allowed but not full */
1262 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1266 * Given 'z' scanning a zonelist, set the corresponding bit in
1267 * zlc->fullzones, so that subsequent attempts to allocate a page
1268 * from that zone don't waste time re-examining it.
1270 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1272 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1273 int i; /* index of *z in zonelist zones */
1275 zlc = zonelist->zlcache_ptr;
1276 if (!zlc)
1277 return;
1279 i = z - zonelist->zones;
1281 set_bit(i, zlc->fullzones);
1284 #else /* CONFIG_NUMA */
1286 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1288 return NULL;
1291 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1292 nodemask_t *allowednodes)
1294 return 1;
1297 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1300 #endif /* CONFIG_NUMA */
1303 * get_page_from_freelist goes through the zonelist trying to allocate
1304 * a page.
1306 static struct page *
1307 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1308 struct zonelist *zonelist, int alloc_flags)
1310 struct zone **z;
1311 struct page *page = NULL;
1312 int classzone_idx = zone_idx(zonelist->zones[0]);
1313 struct zone *zone;
1314 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1315 int zlc_active = 0; /* set if using zonelist_cache */
1316 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1317 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1319 zonelist_scan:
1321 * Scan zonelist, looking for a zone with enough free.
1322 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1324 z = zonelist->zones;
1326 do {
1328 * In NUMA, this could be a policy zonelist which contains
1329 * zones that may not be allowed by the current gfp_mask.
1330 * Check the zone is allowed by the current flags
1332 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1333 if (highest_zoneidx == -1)
1334 highest_zoneidx = gfp_zone(gfp_mask);
1335 if (zone_idx(*z) > highest_zoneidx)
1336 continue;
1339 if (NUMA_BUILD && zlc_active &&
1340 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1341 continue;
1342 zone = *z;
1343 if ((alloc_flags & ALLOC_CPUSET) &&
1344 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1345 goto try_next_zone;
1347 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1348 unsigned long mark;
1349 if (alloc_flags & ALLOC_WMARK_MIN)
1350 mark = zone->pages_min;
1351 else if (alloc_flags & ALLOC_WMARK_LOW)
1352 mark = zone->pages_low;
1353 else
1354 mark = zone->pages_high;
1355 if (!zone_watermark_ok(zone, order, mark,
1356 classzone_idx, alloc_flags)) {
1357 if (!zone_reclaim_mode ||
1358 !zone_reclaim(zone, gfp_mask, order))
1359 goto this_zone_full;
1363 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1364 if (page)
1365 break;
1366 this_zone_full:
1367 if (NUMA_BUILD)
1368 zlc_mark_zone_full(zonelist, z);
1369 try_next_zone:
1370 if (NUMA_BUILD && !did_zlc_setup) {
1371 /* we do zlc_setup after the first zone is tried */
1372 allowednodes = zlc_setup(zonelist, alloc_flags);
1373 zlc_active = 1;
1374 did_zlc_setup = 1;
1376 } while (*(++z) != NULL);
1378 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1379 /* Disable zlc cache for second zonelist scan */
1380 zlc_active = 0;
1381 goto zonelist_scan;
1383 return page;
1387 * This is the 'heart' of the zoned buddy allocator.
1389 struct page * fastcall
1390 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1391 struct zonelist *zonelist)
1393 const gfp_t wait = gfp_mask & __GFP_WAIT;
1394 struct zone **z;
1395 struct page *page;
1396 struct reclaim_state reclaim_state;
1397 struct task_struct *p = current;
1398 int do_retry;
1399 int alloc_flags;
1400 int did_some_progress;
1402 might_sleep_if(wait);
1404 if (should_fail_alloc_page(gfp_mask, order))
1405 return NULL;
1407 restart:
1408 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1410 if (unlikely(*z == NULL)) {
1412 * Happens if we have an empty zonelist as a result of
1413 * GFP_THISNODE being used on a memoryless node
1415 return NULL;
1418 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1419 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1420 if (page)
1421 goto got_pg;
1424 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1425 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1426 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1427 * using a larger set of nodes after it has established that the
1428 * allowed per node queues are empty and that nodes are
1429 * over allocated.
1431 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1432 goto nopage;
1434 for (z = zonelist->zones; *z; z++)
1435 wakeup_kswapd(*z, order);
1438 * OK, we're below the kswapd watermark and have kicked background
1439 * reclaim. Now things get more complex, so set up alloc_flags according
1440 * to how we want to proceed.
1442 * The caller may dip into page reserves a bit more if the caller
1443 * cannot run direct reclaim, or if the caller has realtime scheduling
1444 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1445 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1447 alloc_flags = ALLOC_WMARK_MIN;
1448 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1449 alloc_flags |= ALLOC_HARDER;
1450 if (gfp_mask & __GFP_HIGH)
1451 alloc_flags |= ALLOC_HIGH;
1452 if (wait)
1453 alloc_flags |= ALLOC_CPUSET;
1456 * Go through the zonelist again. Let __GFP_HIGH and allocations
1457 * coming from realtime tasks go deeper into reserves.
1459 * This is the last chance, in general, before the goto nopage.
1460 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1461 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1463 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1464 if (page)
1465 goto got_pg;
1467 /* This allocation should allow future memory freeing. */
1469 rebalance:
1470 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1471 && !in_interrupt()) {
1472 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1473 nofail_alloc:
1474 /* go through the zonelist yet again, ignoring mins */
1475 page = get_page_from_freelist(gfp_mask, order,
1476 zonelist, ALLOC_NO_WATERMARKS);
1477 if (page)
1478 goto got_pg;
1479 if (gfp_mask & __GFP_NOFAIL) {
1480 congestion_wait(WRITE, HZ/50);
1481 goto nofail_alloc;
1484 goto nopage;
1487 /* Atomic allocations - we can't balance anything */
1488 if (!wait)
1489 goto nopage;
1491 cond_resched();
1493 /* We now go into synchronous reclaim */
1494 cpuset_memory_pressure_bump();
1495 p->flags |= PF_MEMALLOC;
1496 reclaim_state.reclaimed_slab = 0;
1497 p->reclaim_state = &reclaim_state;
1499 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1501 p->reclaim_state = NULL;
1502 p->flags &= ~PF_MEMALLOC;
1504 cond_resched();
1506 if (order != 0)
1507 drain_all_local_pages();
1509 if (likely(did_some_progress)) {
1510 page = get_page_from_freelist(gfp_mask, order,
1511 zonelist, alloc_flags);
1512 if (page)
1513 goto got_pg;
1514 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1516 * Go through the zonelist yet one more time, keep
1517 * very high watermark here, this is only to catch
1518 * a parallel oom killing, we must fail if we're still
1519 * under heavy pressure.
1521 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1522 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1523 if (page)
1524 goto got_pg;
1526 /* The OOM killer will not help higher order allocs so fail */
1527 if (order > PAGE_ALLOC_COSTLY_ORDER)
1528 goto nopage;
1530 out_of_memory(zonelist, gfp_mask, order);
1531 goto restart;
1535 * Don't let big-order allocations loop unless the caller explicitly
1536 * requests that. Wait for some write requests to complete then retry.
1538 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1539 * <= 3, but that may not be true in other implementations.
1541 do_retry = 0;
1542 if (!(gfp_mask & __GFP_NORETRY)) {
1543 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1544 (gfp_mask & __GFP_REPEAT))
1545 do_retry = 1;
1546 if (gfp_mask & __GFP_NOFAIL)
1547 do_retry = 1;
1549 if (do_retry) {
1550 congestion_wait(WRITE, HZ/50);
1551 goto rebalance;
1554 nopage:
1555 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1556 printk(KERN_WARNING "%s: page allocation failure."
1557 " order:%d, mode:0x%x\n",
1558 p->comm, order, gfp_mask);
1559 dump_stack();
1560 show_mem();
1562 got_pg:
1563 return page;
1566 EXPORT_SYMBOL(__alloc_pages);
1569 * Common helper functions.
1571 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1573 struct page * page;
1574 page = alloc_pages(gfp_mask, order);
1575 if (!page)
1576 return 0;
1577 return (unsigned long) page_address(page);
1580 EXPORT_SYMBOL(__get_free_pages);
1582 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1584 struct page * page;
1587 * get_zeroed_page() returns a 32-bit address, which cannot represent
1588 * a highmem page
1590 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1592 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1593 if (page)
1594 return (unsigned long) page_address(page);
1595 return 0;
1598 EXPORT_SYMBOL(get_zeroed_page);
1600 void __pagevec_free(struct pagevec *pvec)
1602 int i = pagevec_count(pvec);
1604 while (--i >= 0)
1605 free_hot_cold_page(pvec->pages[i], pvec->cold);
1608 fastcall void __free_pages(struct page *page, unsigned int order)
1610 if (put_page_testzero(page)) {
1611 if (order == 0)
1612 free_hot_page(page);
1613 else
1614 __free_pages_ok(page, order);
1618 EXPORT_SYMBOL(__free_pages);
1620 fastcall void free_pages(unsigned long addr, unsigned int order)
1622 if (addr != 0) {
1623 VM_BUG_ON(!virt_addr_valid((void *)addr));
1624 __free_pages(virt_to_page((void *)addr), order);
1628 EXPORT_SYMBOL(free_pages);
1630 static unsigned int nr_free_zone_pages(int offset)
1632 /* Just pick one node, since fallback list is circular */
1633 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1634 unsigned int sum = 0;
1636 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1637 struct zone **zonep = zonelist->zones;
1638 struct zone *zone;
1640 for (zone = *zonep++; zone; zone = *zonep++) {
1641 unsigned long size = zone->present_pages;
1642 unsigned long high = zone->pages_high;
1643 if (size > high)
1644 sum += size - high;
1647 return sum;
1651 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1653 unsigned int nr_free_buffer_pages(void)
1655 return nr_free_zone_pages(gfp_zone(GFP_USER));
1657 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1660 * Amount of free RAM allocatable within all zones
1662 unsigned int nr_free_pagecache_pages(void)
1664 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1667 static inline void show_node(struct zone *zone)
1669 if (NUMA_BUILD)
1670 printk("Node %d ", zone_to_nid(zone));
1673 void si_meminfo(struct sysinfo *val)
1675 val->totalram = totalram_pages;
1676 val->sharedram = 0;
1677 val->freeram = global_page_state(NR_FREE_PAGES);
1678 val->bufferram = nr_blockdev_pages();
1679 val->totalhigh = totalhigh_pages;
1680 val->freehigh = nr_free_highpages();
1681 val->mem_unit = PAGE_SIZE;
1684 EXPORT_SYMBOL(si_meminfo);
1686 #ifdef CONFIG_NUMA
1687 void si_meminfo_node(struct sysinfo *val, int nid)
1689 pg_data_t *pgdat = NODE_DATA(nid);
1691 val->totalram = pgdat->node_present_pages;
1692 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1693 #ifdef CONFIG_HIGHMEM
1694 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1695 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1696 NR_FREE_PAGES);
1697 #else
1698 val->totalhigh = 0;
1699 val->freehigh = 0;
1700 #endif
1701 val->mem_unit = PAGE_SIZE;
1703 #endif
1705 #define K(x) ((x) << (PAGE_SHIFT-10))
1708 * Show free area list (used inside shift_scroll-lock stuff)
1709 * We also calculate the percentage fragmentation. We do this by counting the
1710 * memory on each free list with the exception of the first item on the list.
1712 void show_free_areas(void)
1714 int cpu;
1715 struct zone *zone;
1717 for_each_zone(zone) {
1718 if (!populated_zone(zone))
1719 continue;
1721 show_node(zone);
1722 printk("%s per-cpu:\n", zone->name);
1724 for_each_online_cpu(cpu) {
1725 struct per_cpu_pageset *pageset;
1727 pageset = zone_pcp(zone, cpu);
1729 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1730 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1731 cpu, pageset->pcp[0].high,
1732 pageset->pcp[0].batch, pageset->pcp[0].count,
1733 pageset->pcp[1].high, pageset->pcp[1].batch,
1734 pageset->pcp[1].count);
1738 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1739 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1740 global_page_state(NR_ACTIVE),
1741 global_page_state(NR_INACTIVE),
1742 global_page_state(NR_FILE_DIRTY),
1743 global_page_state(NR_WRITEBACK),
1744 global_page_state(NR_UNSTABLE_NFS),
1745 global_page_state(NR_FREE_PAGES),
1746 global_page_state(NR_SLAB_RECLAIMABLE) +
1747 global_page_state(NR_SLAB_UNRECLAIMABLE),
1748 global_page_state(NR_FILE_MAPPED),
1749 global_page_state(NR_PAGETABLE),
1750 global_page_state(NR_BOUNCE));
1752 for_each_zone(zone) {
1753 int i;
1755 if (!populated_zone(zone))
1756 continue;
1758 show_node(zone);
1759 printk("%s"
1760 " free:%lukB"
1761 " min:%lukB"
1762 " low:%lukB"
1763 " high:%lukB"
1764 " active:%lukB"
1765 " inactive:%lukB"
1766 " present:%lukB"
1767 " pages_scanned:%lu"
1768 " all_unreclaimable? %s"
1769 "\n",
1770 zone->name,
1771 K(zone_page_state(zone, NR_FREE_PAGES)),
1772 K(zone->pages_min),
1773 K(zone->pages_low),
1774 K(zone->pages_high),
1775 K(zone_page_state(zone, NR_ACTIVE)),
1776 K(zone_page_state(zone, NR_INACTIVE)),
1777 K(zone->present_pages),
1778 zone->pages_scanned,
1779 (zone->all_unreclaimable ? "yes" : "no")
1781 printk("lowmem_reserve[]:");
1782 for (i = 0; i < MAX_NR_ZONES; i++)
1783 printk(" %lu", zone->lowmem_reserve[i]);
1784 printk("\n");
1787 for_each_zone(zone) {
1788 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1790 if (!populated_zone(zone))
1791 continue;
1793 show_node(zone);
1794 printk("%s: ", zone->name);
1796 spin_lock_irqsave(&zone->lock, flags);
1797 for (order = 0; order < MAX_ORDER; order++) {
1798 nr[order] = zone->free_area[order].nr_free;
1799 total += nr[order] << order;
1801 spin_unlock_irqrestore(&zone->lock, flags);
1802 for (order = 0; order < MAX_ORDER; order++)
1803 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1804 printk("= %lukB\n", K(total));
1807 show_swap_cache_info();
1811 * Builds allocation fallback zone lists.
1813 * Add all populated zones of a node to the zonelist.
1815 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1816 int nr_zones, enum zone_type zone_type)
1818 struct zone *zone;
1820 BUG_ON(zone_type >= MAX_NR_ZONES);
1821 zone_type++;
1823 do {
1824 zone_type--;
1825 zone = pgdat->node_zones + zone_type;
1826 if (populated_zone(zone)) {
1827 zonelist->zones[nr_zones++] = zone;
1828 check_highest_zone(zone_type);
1831 } while (zone_type);
1832 return nr_zones;
1837 * zonelist_order:
1838 * 0 = automatic detection of better ordering.
1839 * 1 = order by ([node] distance, -zonetype)
1840 * 2 = order by (-zonetype, [node] distance)
1842 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1843 * the same zonelist. So only NUMA can configure this param.
1845 #define ZONELIST_ORDER_DEFAULT 0
1846 #define ZONELIST_ORDER_NODE 1
1847 #define ZONELIST_ORDER_ZONE 2
1849 /* zonelist order in the kernel.
1850 * set_zonelist_order() will set this to NODE or ZONE.
1852 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1853 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1856 #ifdef CONFIG_NUMA
1857 /* The value user specified ....changed by config */
1858 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1859 /* string for sysctl */
1860 #define NUMA_ZONELIST_ORDER_LEN 16
1861 char numa_zonelist_order[16] = "default";
1864 * interface for configure zonelist ordering.
1865 * command line option "numa_zonelist_order"
1866 * = "[dD]efault - default, automatic configuration.
1867 * = "[nN]ode - order by node locality, then by zone within node
1868 * = "[zZ]one - order by zone, then by locality within zone
1871 static int __parse_numa_zonelist_order(char *s)
1873 if (*s == 'd' || *s == 'D') {
1874 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1875 } else if (*s == 'n' || *s == 'N') {
1876 user_zonelist_order = ZONELIST_ORDER_NODE;
1877 } else if (*s == 'z' || *s == 'Z') {
1878 user_zonelist_order = ZONELIST_ORDER_ZONE;
1879 } else {
1880 printk(KERN_WARNING
1881 "Ignoring invalid numa_zonelist_order value: "
1882 "%s\n", s);
1883 return -EINVAL;
1885 return 0;
1888 static __init int setup_numa_zonelist_order(char *s)
1890 if (s)
1891 return __parse_numa_zonelist_order(s);
1892 return 0;
1894 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1897 * sysctl handler for numa_zonelist_order
1899 int numa_zonelist_order_handler(ctl_table *table, int write,
1900 struct file *file, void __user *buffer, size_t *length,
1901 loff_t *ppos)
1903 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1904 int ret;
1906 if (write)
1907 strncpy(saved_string, (char*)table->data,
1908 NUMA_ZONELIST_ORDER_LEN);
1909 ret = proc_dostring(table, write, file, buffer, length, ppos);
1910 if (ret)
1911 return ret;
1912 if (write) {
1913 int oldval = user_zonelist_order;
1914 if (__parse_numa_zonelist_order((char*)table->data)) {
1916 * bogus value. restore saved string
1918 strncpy((char*)table->data, saved_string,
1919 NUMA_ZONELIST_ORDER_LEN);
1920 user_zonelist_order = oldval;
1921 } else if (oldval != user_zonelist_order)
1922 build_all_zonelists();
1924 return 0;
1928 #define MAX_NODE_LOAD (num_online_nodes())
1929 static int node_load[MAX_NUMNODES];
1932 * find_next_best_node - find the next node that should appear in a given node's fallback list
1933 * @node: node whose fallback list we're appending
1934 * @used_node_mask: nodemask_t of already used nodes
1936 * We use a number of factors to determine which is the next node that should
1937 * appear on a given node's fallback list. The node should not have appeared
1938 * already in @node's fallback list, and it should be the next closest node
1939 * according to the distance array (which contains arbitrary distance values
1940 * from each node to each node in the system), and should also prefer nodes
1941 * with no CPUs, since presumably they'll have very little allocation pressure
1942 * on them otherwise.
1943 * It returns -1 if no node is found.
1945 static int find_next_best_node(int node, nodemask_t *used_node_mask)
1947 int n, val;
1948 int min_val = INT_MAX;
1949 int best_node = -1;
1951 /* Use the local node if we haven't already */
1952 if (!node_isset(node, *used_node_mask)) {
1953 node_set(node, *used_node_mask);
1954 return node;
1957 for_each_node_state(n, N_HIGH_MEMORY) {
1958 cpumask_t tmp;
1960 /* Don't want a node to appear more than once */
1961 if (node_isset(n, *used_node_mask))
1962 continue;
1964 /* Use the distance array to find the distance */
1965 val = node_distance(node, n);
1967 /* Penalize nodes under us ("prefer the next node") */
1968 val += (n < node);
1970 /* Give preference to headless and unused nodes */
1971 tmp = node_to_cpumask(n);
1972 if (!cpus_empty(tmp))
1973 val += PENALTY_FOR_NODE_WITH_CPUS;
1975 /* Slight preference for less loaded node */
1976 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1977 val += node_load[n];
1979 if (val < min_val) {
1980 min_val = val;
1981 best_node = n;
1985 if (best_node >= 0)
1986 node_set(best_node, *used_node_mask);
1988 return best_node;
1993 * Build zonelists ordered by node and zones within node.
1994 * This results in maximum locality--normal zone overflows into local
1995 * DMA zone, if any--but risks exhausting DMA zone.
1997 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1999 enum zone_type i;
2000 int j;
2001 struct zonelist *zonelist;
2003 for (i = 0; i < MAX_NR_ZONES; i++) {
2004 zonelist = pgdat->node_zonelists + i;
2005 for (j = 0; zonelist->zones[j] != NULL; j++)
2007 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2008 zonelist->zones[j] = NULL;
2013 * Build gfp_thisnode zonelists
2015 static void build_thisnode_zonelists(pg_data_t *pgdat)
2017 enum zone_type i;
2018 int j;
2019 struct zonelist *zonelist;
2021 for (i = 0; i < MAX_NR_ZONES; i++) {
2022 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2023 j = build_zonelists_node(pgdat, zonelist, 0, i);
2024 zonelist->zones[j] = NULL;
2029 * Build zonelists ordered by zone and nodes within zones.
2030 * This results in conserving DMA zone[s] until all Normal memory is
2031 * exhausted, but results in overflowing to remote node while memory
2032 * may still exist in local DMA zone.
2034 static int node_order[MAX_NUMNODES];
2036 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2038 enum zone_type i;
2039 int pos, j, node;
2040 int zone_type; /* needs to be signed */
2041 struct zone *z;
2042 struct zonelist *zonelist;
2044 for (i = 0; i < MAX_NR_ZONES; i++) {
2045 zonelist = pgdat->node_zonelists + i;
2046 pos = 0;
2047 for (zone_type = i; zone_type >= 0; zone_type--) {
2048 for (j = 0; j < nr_nodes; j++) {
2049 node = node_order[j];
2050 z = &NODE_DATA(node)->node_zones[zone_type];
2051 if (populated_zone(z)) {
2052 zonelist->zones[pos++] = z;
2053 check_highest_zone(zone_type);
2057 zonelist->zones[pos] = NULL;
2061 static int default_zonelist_order(void)
2063 int nid, zone_type;
2064 unsigned long low_kmem_size,total_size;
2065 struct zone *z;
2066 int average_size;
2068 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2069 * If they are really small and used heavily, the system can fall
2070 * into OOM very easily.
2071 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2073 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2074 low_kmem_size = 0;
2075 total_size = 0;
2076 for_each_online_node(nid) {
2077 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2078 z = &NODE_DATA(nid)->node_zones[zone_type];
2079 if (populated_zone(z)) {
2080 if (zone_type < ZONE_NORMAL)
2081 low_kmem_size += z->present_pages;
2082 total_size += z->present_pages;
2086 if (!low_kmem_size || /* there are no DMA area. */
2087 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2088 return ZONELIST_ORDER_NODE;
2090 * look into each node's config.
2091 * If there is a node whose DMA/DMA32 memory is very big area on
2092 * local memory, NODE_ORDER may be suitable.
2094 average_size = total_size /
2095 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2096 for_each_online_node(nid) {
2097 low_kmem_size = 0;
2098 total_size = 0;
2099 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2100 z = &NODE_DATA(nid)->node_zones[zone_type];
2101 if (populated_zone(z)) {
2102 if (zone_type < ZONE_NORMAL)
2103 low_kmem_size += z->present_pages;
2104 total_size += z->present_pages;
2107 if (low_kmem_size &&
2108 total_size > average_size && /* ignore small node */
2109 low_kmem_size > total_size * 70/100)
2110 return ZONELIST_ORDER_NODE;
2112 return ZONELIST_ORDER_ZONE;
2115 static void set_zonelist_order(void)
2117 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2118 current_zonelist_order = default_zonelist_order();
2119 else
2120 current_zonelist_order = user_zonelist_order;
2123 static void build_zonelists(pg_data_t *pgdat)
2125 int j, node, load;
2126 enum zone_type i;
2127 nodemask_t used_mask;
2128 int local_node, prev_node;
2129 struct zonelist *zonelist;
2130 int order = current_zonelist_order;
2132 /* initialize zonelists */
2133 for (i = 0; i < MAX_ZONELISTS; i++) {
2134 zonelist = pgdat->node_zonelists + i;
2135 zonelist->zones[0] = NULL;
2138 /* NUMA-aware ordering of nodes */
2139 local_node = pgdat->node_id;
2140 load = num_online_nodes();
2141 prev_node = local_node;
2142 nodes_clear(used_mask);
2144 memset(node_load, 0, sizeof(node_load));
2145 memset(node_order, 0, sizeof(node_order));
2146 j = 0;
2148 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2149 int distance = node_distance(local_node, node);
2152 * If another node is sufficiently far away then it is better
2153 * to reclaim pages in a zone before going off node.
2155 if (distance > RECLAIM_DISTANCE)
2156 zone_reclaim_mode = 1;
2159 * We don't want to pressure a particular node.
2160 * So adding penalty to the first node in same
2161 * distance group to make it round-robin.
2163 if (distance != node_distance(local_node, prev_node))
2164 node_load[node] = load;
2166 prev_node = node;
2167 load--;
2168 if (order == ZONELIST_ORDER_NODE)
2169 build_zonelists_in_node_order(pgdat, node);
2170 else
2171 node_order[j++] = node; /* remember order */
2174 if (order == ZONELIST_ORDER_ZONE) {
2175 /* calculate node order -- i.e., DMA last! */
2176 build_zonelists_in_zone_order(pgdat, j);
2179 build_thisnode_zonelists(pgdat);
2182 /* Construct the zonelist performance cache - see further mmzone.h */
2183 static void build_zonelist_cache(pg_data_t *pgdat)
2185 int i;
2187 for (i = 0; i < MAX_NR_ZONES; i++) {
2188 struct zonelist *zonelist;
2189 struct zonelist_cache *zlc;
2190 struct zone **z;
2192 zonelist = pgdat->node_zonelists + i;
2193 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2194 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2195 for (z = zonelist->zones; *z; z++)
2196 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2201 #else /* CONFIG_NUMA */
2203 static void set_zonelist_order(void)
2205 current_zonelist_order = ZONELIST_ORDER_ZONE;
2208 static void build_zonelists(pg_data_t *pgdat)
2210 int node, local_node;
2211 enum zone_type i,j;
2213 local_node = pgdat->node_id;
2214 for (i = 0; i < MAX_NR_ZONES; i++) {
2215 struct zonelist *zonelist;
2217 zonelist = pgdat->node_zonelists + i;
2219 j = build_zonelists_node(pgdat, zonelist, 0, i);
2221 * Now we build the zonelist so that it contains the zones
2222 * of all the other nodes.
2223 * We don't want to pressure a particular node, so when
2224 * building the zones for node N, we make sure that the
2225 * zones coming right after the local ones are those from
2226 * node N+1 (modulo N)
2228 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2229 if (!node_online(node))
2230 continue;
2231 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2233 for (node = 0; node < local_node; node++) {
2234 if (!node_online(node))
2235 continue;
2236 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2239 zonelist->zones[j] = NULL;
2243 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2244 static void build_zonelist_cache(pg_data_t *pgdat)
2246 int i;
2248 for (i = 0; i < MAX_NR_ZONES; i++)
2249 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2252 #endif /* CONFIG_NUMA */
2254 /* return values int ....just for stop_machine_run() */
2255 static int __build_all_zonelists(void *dummy)
2257 int nid;
2259 for_each_online_node(nid) {
2260 pg_data_t *pgdat = NODE_DATA(nid);
2262 build_zonelists(pgdat);
2263 build_zonelist_cache(pgdat);
2265 return 0;
2268 void build_all_zonelists(void)
2270 set_zonelist_order();
2272 if (system_state == SYSTEM_BOOTING) {
2273 __build_all_zonelists(NULL);
2274 cpuset_init_current_mems_allowed();
2275 } else {
2276 /* we have to stop all cpus to guaranntee there is no user
2277 of zonelist */
2278 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2279 /* cpuset refresh routine should be here */
2281 vm_total_pages = nr_free_pagecache_pages();
2282 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2283 num_online_nodes(),
2284 zonelist_order_name[current_zonelist_order],
2285 vm_total_pages);
2286 #ifdef CONFIG_NUMA
2287 printk("Policy zone: %s\n", zone_names[policy_zone]);
2288 #endif
2292 * Helper functions to size the waitqueue hash table.
2293 * Essentially these want to choose hash table sizes sufficiently
2294 * large so that collisions trying to wait on pages are rare.
2295 * But in fact, the number of active page waitqueues on typical
2296 * systems is ridiculously low, less than 200. So this is even
2297 * conservative, even though it seems large.
2299 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2300 * waitqueues, i.e. the size of the waitq table given the number of pages.
2302 #define PAGES_PER_WAITQUEUE 256
2304 #ifndef CONFIG_MEMORY_HOTPLUG
2305 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2307 unsigned long size = 1;
2309 pages /= PAGES_PER_WAITQUEUE;
2311 while (size < pages)
2312 size <<= 1;
2315 * Once we have dozens or even hundreds of threads sleeping
2316 * on IO we've got bigger problems than wait queue collision.
2317 * Limit the size of the wait table to a reasonable size.
2319 size = min(size, 4096UL);
2321 return max(size, 4UL);
2323 #else
2325 * A zone's size might be changed by hot-add, so it is not possible to determine
2326 * a suitable size for its wait_table. So we use the maximum size now.
2328 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2330 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2331 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2332 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2334 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2335 * or more by the traditional way. (See above). It equals:
2337 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2338 * ia64(16K page size) : = ( 8G + 4M)byte.
2339 * powerpc (64K page size) : = (32G +16M)byte.
2341 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2343 return 4096UL;
2345 #endif
2348 * This is an integer logarithm so that shifts can be used later
2349 * to extract the more random high bits from the multiplicative
2350 * hash function before the remainder is taken.
2352 static inline unsigned long wait_table_bits(unsigned long size)
2354 return ffz(~size);
2357 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2360 * Initially all pages are reserved - free ones are freed
2361 * up by free_all_bootmem() once the early boot process is
2362 * done. Non-atomic initialization, single-pass.
2364 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2365 unsigned long start_pfn, enum memmap_context context)
2367 struct page *page;
2368 unsigned long end_pfn = start_pfn + size;
2369 unsigned long pfn;
2371 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2373 * There can be holes in boot-time mem_map[]s
2374 * handed to this function. They do not
2375 * exist on hotplugged memory.
2377 if (context == MEMMAP_EARLY) {
2378 if (!early_pfn_valid(pfn))
2379 continue;
2380 if (!early_pfn_in_nid(pfn, nid))
2381 continue;
2383 page = pfn_to_page(pfn);
2384 set_page_links(page, zone, nid, pfn);
2385 init_page_count(page);
2386 reset_page_mapcount(page);
2387 SetPageReserved(page);
2390 * Mark the block movable so that blocks are reserved for
2391 * movable at startup. This will force kernel allocations
2392 * to reserve their blocks rather than leaking throughout
2393 * the address space during boot when many long-lived
2394 * kernel allocations are made
2396 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2398 INIT_LIST_HEAD(&page->lru);
2399 #ifdef WANT_PAGE_VIRTUAL
2400 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2401 if (!is_highmem_idx(zone))
2402 set_page_address(page, __va(pfn << PAGE_SHIFT));
2403 #endif
2407 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2408 struct zone *zone, unsigned long size)
2410 int order, t;
2411 for_each_migratetype_order(order, t) {
2412 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2413 zone->free_area[order].nr_free = 0;
2417 #ifndef __HAVE_ARCH_MEMMAP_INIT
2418 #define memmap_init(size, nid, zone, start_pfn) \
2419 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2420 #endif
2422 static int __devinit zone_batchsize(struct zone *zone)
2424 int batch;
2427 * The per-cpu-pages pools are set to around 1000th of the
2428 * size of the zone. But no more than 1/2 of a meg.
2430 * OK, so we don't know how big the cache is. So guess.
2432 batch = zone->present_pages / 1024;
2433 if (batch * PAGE_SIZE > 512 * 1024)
2434 batch = (512 * 1024) / PAGE_SIZE;
2435 batch /= 4; /* We effectively *= 4 below */
2436 if (batch < 1)
2437 batch = 1;
2440 * Clamp the batch to a 2^n - 1 value. Having a power
2441 * of 2 value was found to be more likely to have
2442 * suboptimal cache aliasing properties in some cases.
2444 * For example if 2 tasks are alternately allocating
2445 * batches of pages, one task can end up with a lot
2446 * of pages of one half of the possible page colors
2447 * and the other with pages of the other colors.
2449 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2451 return batch;
2454 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2456 struct per_cpu_pages *pcp;
2458 memset(p, 0, sizeof(*p));
2460 pcp = &p->pcp[0]; /* hot */
2461 pcp->count = 0;
2462 pcp->high = 6 * batch;
2463 pcp->batch = max(1UL, 1 * batch);
2464 INIT_LIST_HEAD(&pcp->list);
2466 pcp = &p->pcp[1]; /* cold*/
2467 pcp->count = 0;
2468 pcp->high = 2 * batch;
2469 pcp->batch = max(1UL, batch/2);
2470 INIT_LIST_HEAD(&pcp->list);
2474 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2475 * to the value high for the pageset p.
2478 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2479 unsigned long high)
2481 struct per_cpu_pages *pcp;
2483 pcp = &p->pcp[0]; /* hot list */
2484 pcp->high = high;
2485 pcp->batch = max(1UL, high/4);
2486 if ((high/4) > (PAGE_SHIFT * 8))
2487 pcp->batch = PAGE_SHIFT * 8;
2491 #ifdef CONFIG_NUMA
2493 * Boot pageset table. One per cpu which is going to be used for all
2494 * zones and all nodes. The parameters will be set in such a way
2495 * that an item put on a list will immediately be handed over to
2496 * the buddy list. This is safe since pageset manipulation is done
2497 * with interrupts disabled.
2499 * Some NUMA counter updates may also be caught by the boot pagesets.
2501 * The boot_pagesets must be kept even after bootup is complete for
2502 * unused processors and/or zones. They do play a role for bootstrapping
2503 * hotplugged processors.
2505 * zoneinfo_show() and maybe other functions do
2506 * not check if the processor is online before following the pageset pointer.
2507 * Other parts of the kernel may not check if the zone is available.
2509 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2512 * Dynamically allocate memory for the
2513 * per cpu pageset array in struct zone.
2515 static int __cpuinit process_zones(int cpu)
2517 struct zone *zone, *dzone;
2518 int node = cpu_to_node(cpu);
2520 node_set_state(node, N_CPU); /* this node has a cpu */
2522 for_each_zone(zone) {
2524 if (!populated_zone(zone))
2525 continue;
2527 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2528 GFP_KERNEL, node);
2529 if (!zone_pcp(zone, cpu))
2530 goto bad;
2532 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2534 if (percpu_pagelist_fraction)
2535 setup_pagelist_highmark(zone_pcp(zone, cpu),
2536 (zone->present_pages / percpu_pagelist_fraction));
2539 return 0;
2540 bad:
2541 for_each_zone(dzone) {
2542 if (!populated_zone(dzone))
2543 continue;
2544 if (dzone == zone)
2545 break;
2546 kfree(zone_pcp(dzone, cpu));
2547 zone_pcp(dzone, cpu) = NULL;
2549 return -ENOMEM;
2552 static inline void free_zone_pagesets(int cpu)
2554 struct zone *zone;
2556 for_each_zone(zone) {
2557 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2559 /* Free per_cpu_pageset if it is slab allocated */
2560 if (pset != &boot_pageset[cpu])
2561 kfree(pset);
2562 zone_pcp(zone, cpu) = NULL;
2566 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2567 unsigned long action,
2568 void *hcpu)
2570 int cpu = (long)hcpu;
2571 int ret = NOTIFY_OK;
2573 switch (action) {
2574 case CPU_UP_PREPARE:
2575 case CPU_UP_PREPARE_FROZEN:
2576 if (process_zones(cpu))
2577 ret = NOTIFY_BAD;
2578 break;
2579 case CPU_UP_CANCELED:
2580 case CPU_UP_CANCELED_FROZEN:
2581 case CPU_DEAD:
2582 case CPU_DEAD_FROZEN:
2583 free_zone_pagesets(cpu);
2584 break;
2585 default:
2586 break;
2588 return ret;
2591 static struct notifier_block __cpuinitdata pageset_notifier =
2592 { &pageset_cpuup_callback, NULL, 0 };
2594 void __init setup_per_cpu_pageset(void)
2596 int err;
2598 /* Initialize per_cpu_pageset for cpu 0.
2599 * A cpuup callback will do this for every cpu
2600 * as it comes online
2602 err = process_zones(smp_processor_id());
2603 BUG_ON(err);
2604 register_cpu_notifier(&pageset_notifier);
2607 #endif
2609 static noinline __init_refok
2610 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2612 int i;
2613 struct pglist_data *pgdat = zone->zone_pgdat;
2614 size_t alloc_size;
2617 * The per-page waitqueue mechanism uses hashed waitqueues
2618 * per zone.
2620 zone->wait_table_hash_nr_entries =
2621 wait_table_hash_nr_entries(zone_size_pages);
2622 zone->wait_table_bits =
2623 wait_table_bits(zone->wait_table_hash_nr_entries);
2624 alloc_size = zone->wait_table_hash_nr_entries
2625 * sizeof(wait_queue_head_t);
2627 if (system_state == SYSTEM_BOOTING) {
2628 zone->wait_table = (wait_queue_head_t *)
2629 alloc_bootmem_node(pgdat, alloc_size);
2630 } else {
2632 * This case means that a zone whose size was 0 gets new memory
2633 * via memory hot-add.
2634 * But it may be the case that a new node was hot-added. In
2635 * this case vmalloc() will not be able to use this new node's
2636 * memory - this wait_table must be initialized to use this new
2637 * node itself as well.
2638 * To use this new node's memory, further consideration will be
2639 * necessary.
2641 zone->wait_table = vmalloc(alloc_size);
2643 if (!zone->wait_table)
2644 return -ENOMEM;
2646 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2647 init_waitqueue_head(zone->wait_table + i);
2649 return 0;
2652 static __meminit void zone_pcp_init(struct zone *zone)
2654 int cpu;
2655 unsigned long batch = zone_batchsize(zone);
2657 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2658 #ifdef CONFIG_NUMA
2659 /* Early boot. Slab allocator not functional yet */
2660 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2661 setup_pageset(&boot_pageset[cpu],0);
2662 #else
2663 setup_pageset(zone_pcp(zone,cpu), batch);
2664 #endif
2666 if (zone->present_pages)
2667 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2668 zone->name, zone->present_pages, batch);
2671 __meminit int init_currently_empty_zone(struct zone *zone,
2672 unsigned long zone_start_pfn,
2673 unsigned long size,
2674 enum memmap_context context)
2676 struct pglist_data *pgdat = zone->zone_pgdat;
2677 int ret;
2678 ret = zone_wait_table_init(zone, size);
2679 if (ret)
2680 return ret;
2681 pgdat->nr_zones = zone_idx(zone) + 1;
2683 zone->zone_start_pfn = zone_start_pfn;
2685 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2687 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2689 return 0;
2692 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2694 * Basic iterator support. Return the first range of PFNs for a node
2695 * Note: nid == MAX_NUMNODES returns first region regardless of node
2697 static int __meminit first_active_region_index_in_nid(int nid)
2699 int i;
2701 for (i = 0; i < nr_nodemap_entries; i++)
2702 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2703 return i;
2705 return -1;
2709 * Basic iterator support. Return the next active range of PFNs for a node
2710 * Note: nid == MAX_NUMNODES returns next region regardles of node
2712 static int __meminit next_active_region_index_in_nid(int index, int nid)
2714 for (index = index + 1; index < nr_nodemap_entries; index++)
2715 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2716 return index;
2718 return -1;
2721 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2723 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2724 * Architectures may implement their own version but if add_active_range()
2725 * was used and there are no special requirements, this is a convenient
2726 * alternative
2728 int __meminit early_pfn_to_nid(unsigned long pfn)
2730 int i;
2732 for (i = 0; i < nr_nodemap_entries; i++) {
2733 unsigned long start_pfn = early_node_map[i].start_pfn;
2734 unsigned long end_pfn = early_node_map[i].end_pfn;
2736 if (start_pfn <= pfn && pfn < end_pfn)
2737 return early_node_map[i].nid;
2740 return 0;
2742 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2744 /* Basic iterator support to walk early_node_map[] */
2745 #define for_each_active_range_index_in_nid(i, nid) \
2746 for (i = first_active_region_index_in_nid(nid); i != -1; \
2747 i = next_active_region_index_in_nid(i, nid))
2750 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2751 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2752 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2754 * If an architecture guarantees that all ranges registered with
2755 * add_active_ranges() contain no holes and may be freed, this
2756 * this function may be used instead of calling free_bootmem() manually.
2758 void __init free_bootmem_with_active_regions(int nid,
2759 unsigned long max_low_pfn)
2761 int i;
2763 for_each_active_range_index_in_nid(i, nid) {
2764 unsigned long size_pages = 0;
2765 unsigned long end_pfn = early_node_map[i].end_pfn;
2767 if (early_node_map[i].start_pfn >= max_low_pfn)
2768 continue;
2770 if (end_pfn > max_low_pfn)
2771 end_pfn = max_low_pfn;
2773 size_pages = end_pfn - early_node_map[i].start_pfn;
2774 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2775 PFN_PHYS(early_node_map[i].start_pfn),
2776 size_pages << PAGE_SHIFT);
2781 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2782 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2784 * If an architecture guarantees that all ranges registered with
2785 * add_active_ranges() contain no holes and may be freed, this
2786 * function may be used instead of calling memory_present() manually.
2788 void __init sparse_memory_present_with_active_regions(int nid)
2790 int i;
2792 for_each_active_range_index_in_nid(i, nid)
2793 memory_present(early_node_map[i].nid,
2794 early_node_map[i].start_pfn,
2795 early_node_map[i].end_pfn);
2799 * push_node_boundaries - Push node boundaries to at least the requested boundary
2800 * @nid: The nid of the node to push the boundary for
2801 * @start_pfn: The start pfn of the node
2802 * @end_pfn: The end pfn of the node
2804 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2805 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2806 * be hotplugged even though no physical memory exists. This function allows
2807 * an arch to push out the node boundaries so mem_map is allocated that can
2808 * be used later.
2810 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2811 void __init push_node_boundaries(unsigned int nid,
2812 unsigned long start_pfn, unsigned long end_pfn)
2814 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2815 nid, start_pfn, end_pfn);
2817 /* Initialise the boundary for this node if necessary */
2818 if (node_boundary_end_pfn[nid] == 0)
2819 node_boundary_start_pfn[nid] = -1UL;
2821 /* Update the boundaries */
2822 if (node_boundary_start_pfn[nid] > start_pfn)
2823 node_boundary_start_pfn[nid] = start_pfn;
2824 if (node_boundary_end_pfn[nid] < end_pfn)
2825 node_boundary_end_pfn[nid] = end_pfn;
2828 /* If necessary, push the node boundary out for reserve hotadd */
2829 static void __meminit account_node_boundary(unsigned int nid,
2830 unsigned long *start_pfn, unsigned long *end_pfn)
2832 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2833 nid, *start_pfn, *end_pfn);
2835 /* Return if boundary information has not been provided */
2836 if (node_boundary_end_pfn[nid] == 0)
2837 return;
2839 /* Check the boundaries and update if necessary */
2840 if (node_boundary_start_pfn[nid] < *start_pfn)
2841 *start_pfn = node_boundary_start_pfn[nid];
2842 if (node_boundary_end_pfn[nid] > *end_pfn)
2843 *end_pfn = node_boundary_end_pfn[nid];
2845 #else
2846 void __init push_node_boundaries(unsigned int nid,
2847 unsigned long start_pfn, unsigned long end_pfn) {}
2849 static void __meminit account_node_boundary(unsigned int nid,
2850 unsigned long *start_pfn, unsigned long *end_pfn) {}
2851 #endif
2855 * get_pfn_range_for_nid - Return the start and end page frames for a node
2856 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2857 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2858 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2860 * It returns the start and end page frame of a node based on information
2861 * provided by an arch calling add_active_range(). If called for a node
2862 * with no available memory, a warning is printed and the start and end
2863 * PFNs will be 0.
2865 void __meminit get_pfn_range_for_nid(unsigned int nid,
2866 unsigned long *start_pfn, unsigned long *end_pfn)
2868 int i;
2869 *start_pfn = -1UL;
2870 *end_pfn = 0;
2872 for_each_active_range_index_in_nid(i, nid) {
2873 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2874 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2877 if (*start_pfn == -1UL)
2878 *start_pfn = 0;
2880 /* Push the node boundaries out if requested */
2881 account_node_boundary(nid, start_pfn, end_pfn);
2885 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2886 * assumption is made that zones within a node are ordered in monotonic
2887 * increasing memory addresses so that the "highest" populated zone is used
2889 void __init find_usable_zone_for_movable(void)
2891 int zone_index;
2892 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2893 if (zone_index == ZONE_MOVABLE)
2894 continue;
2896 if (arch_zone_highest_possible_pfn[zone_index] >
2897 arch_zone_lowest_possible_pfn[zone_index])
2898 break;
2901 VM_BUG_ON(zone_index == -1);
2902 movable_zone = zone_index;
2906 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2907 * because it is sized independant of architecture. Unlike the other zones,
2908 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2909 * in each node depending on the size of each node and how evenly kernelcore
2910 * is distributed. This helper function adjusts the zone ranges
2911 * provided by the architecture for a given node by using the end of the
2912 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2913 * zones within a node are in order of monotonic increases memory addresses
2915 void __meminit adjust_zone_range_for_zone_movable(int nid,
2916 unsigned long zone_type,
2917 unsigned long node_start_pfn,
2918 unsigned long node_end_pfn,
2919 unsigned long *zone_start_pfn,
2920 unsigned long *zone_end_pfn)
2922 /* Only adjust if ZONE_MOVABLE is on this node */
2923 if (zone_movable_pfn[nid]) {
2924 /* Size ZONE_MOVABLE */
2925 if (zone_type == ZONE_MOVABLE) {
2926 *zone_start_pfn = zone_movable_pfn[nid];
2927 *zone_end_pfn = min(node_end_pfn,
2928 arch_zone_highest_possible_pfn[movable_zone]);
2930 /* Adjust for ZONE_MOVABLE starting within this range */
2931 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2932 *zone_end_pfn > zone_movable_pfn[nid]) {
2933 *zone_end_pfn = zone_movable_pfn[nid];
2935 /* Check if this whole range is within ZONE_MOVABLE */
2936 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2937 *zone_start_pfn = *zone_end_pfn;
2942 * Return the number of pages a zone spans in a node, including holes
2943 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2945 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2946 unsigned long zone_type,
2947 unsigned long *ignored)
2949 unsigned long node_start_pfn, node_end_pfn;
2950 unsigned long zone_start_pfn, zone_end_pfn;
2952 /* Get the start and end of the node and zone */
2953 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2954 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2955 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2956 adjust_zone_range_for_zone_movable(nid, zone_type,
2957 node_start_pfn, node_end_pfn,
2958 &zone_start_pfn, &zone_end_pfn);
2960 /* Check that this node has pages within the zone's required range */
2961 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2962 return 0;
2964 /* Move the zone boundaries inside the node if necessary */
2965 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2966 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2968 /* Return the spanned pages */
2969 return zone_end_pfn - zone_start_pfn;
2973 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2974 * then all holes in the requested range will be accounted for.
2976 unsigned long __meminit __absent_pages_in_range(int nid,
2977 unsigned long range_start_pfn,
2978 unsigned long range_end_pfn)
2980 int i = 0;
2981 unsigned long prev_end_pfn = 0, hole_pages = 0;
2982 unsigned long start_pfn;
2984 /* Find the end_pfn of the first active range of pfns in the node */
2985 i = first_active_region_index_in_nid(nid);
2986 if (i == -1)
2987 return 0;
2989 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2991 /* Account for ranges before physical memory on this node */
2992 if (early_node_map[i].start_pfn > range_start_pfn)
2993 hole_pages = prev_end_pfn - range_start_pfn;
2995 /* Find all holes for the zone within the node */
2996 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2998 /* No need to continue if prev_end_pfn is outside the zone */
2999 if (prev_end_pfn >= range_end_pfn)
3000 break;
3002 /* Make sure the end of the zone is not within the hole */
3003 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3004 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3006 /* Update the hole size cound and move on */
3007 if (start_pfn > range_start_pfn) {
3008 BUG_ON(prev_end_pfn > start_pfn);
3009 hole_pages += start_pfn - prev_end_pfn;
3011 prev_end_pfn = early_node_map[i].end_pfn;
3014 /* Account for ranges past physical memory on this node */
3015 if (range_end_pfn > prev_end_pfn)
3016 hole_pages += range_end_pfn -
3017 max(range_start_pfn, prev_end_pfn);
3019 return hole_pages;
3023 * absent_pages_in_range - Return number of page frames in holes within a range
3024 * @start_pfn: The start PFN to start searching for holes
3025 * @end_pfn: The end PFN to stop searching for holes
3027 * It returns the number of pages frames in memory holes within a range.
3029 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3030 unsigned long end_pfn)
3032 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3035 /* Return the number of page frames in holes in a zone on a node */
3036 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3037 unsigned long zone_type,
3038 unsigned long *ignored)
3040 unsigned long node_start_pfn, node_end_pfn;
3041 unsigned long zone_start_pfn, zone_end_pfn;
3043 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3044 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3045 node_start_pfn);
3046 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3047 node_end_pfn);
3049 adjust_zone_range_for_zone_movable(nid, zone_type,
3050 node_start_pfn, node_end_pfn,
3051 &zone_start_pfn, &zone_end_pfn);
3052 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3055 #else
3056 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3057 unsigned long zone_type,
3058 unsigned long *zones_size)
3060 return zones_size[zone_type];
3063 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3064 unsigned long zone_type,
3065 unsigned long *zholes_size)
3067 if (!zholes_size)
3068 return 0;
3070 return zholes_size[zone_type];
3073 #endif
3075 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3076 unsigned long *zones_size, unsigned long *zholes_size)
3078 unsigned long realtotalpages, totalpages = 0;
3079 enum zone_type i;
3081 for (i = 0; i < MAX_NR_ZONES; i++)
3082 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3083 zones_size);
3084 pgdat->node_spanned_pages = totalpages;
3086 realtotalpages = totalpages;
3087 for (i = 0; i < MAX_NR_ZONES; i++)
3088 realtotalpages -=
3089 zone_absent_pages_in_node(pgdat->node_id, i,
3090 zholes_size);
3091 pgdat->node_present_pages = realtotalpages;
3092 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3093 realtotalpages);
3096 #ifndef CONFIG_SPARSEMEM
3098 * Calculate the size of the zone->blockflags rounded to an unsigned long
3099 * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
3100 * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
3101 * round what is now in bits to nearest long in bits, then return it in
3102 * bytes.
3104 static unsigned long __init usemap_size(unsigned long zonesize)
3106 unsigned long usemapsize;
3108 usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
3109 usemapsize = usemapsize >> (MAX_ORDER-1);
3110 usemapsize *= NR_PAGEBLOCK_BITS;
3111 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3113 return usemapsize / 8;
3116 static void __init setup_usemap(struct pglist_data *pgdat,
3117 struct zone *zone, unsigned long zonesize)
3119 unsigned long usemapsize = usemap_size(zonesize);
3120 zone->pageblock_flags = NULL;
3121 if (usemapsize) {
3122 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3123 memset(zone->pageblock_flags, 0, usemapsize);
3126 #else
3127 static void inline setup_usemap(struct pglist_data *pgdat,
3128 struct zone *zone, unsigned long zonesize) {}
3129 #endif /* CONFIG_SPARSEMEM */
3132 * Set up the zone data structures:
3133 * - mark all pages reserved
3134 * - mark all memory queues empty
3135 * - clear the memory bitmaps
3137 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3138 unsigned long *zones_size, unsigned long *zholes_size)
3140 enum zone_type j;
3141 int nid = pgdat->node_id;
3142 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3143 int ret;
3145 pgdat_resize_init(pgdat);
3146 pgdat->nr_zones = 0;
3147 init_waitqueue_head(&pgdat->kswapd_wait);
3148 pgdat->kswapd_max_order = 0;
3150 for (j = 0; j < MAX_NR_ZONES; j++) {
3151 struct zone *zone = pgdat->node_zones + j;
3152 unsigned long size, realsize, memmap_pages;
3154 size = zone_spanned_pages_in_node(nid, j, zones_size);
3155 realsize = size - zone_absent_pages_in_node(nid, j,
3156 zholes_size);
3159 * Adjust realsize so that it accounts for how much memory
3160 * is used by this zone for memmap. This affects the watermark
3161 * and per-cpu initialisations
3163 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3164 if (realsize >= memmap_pages) {
3165 realsize -= memmap_pages;
3166 printk(KERN_DEBUG
3167 " %s zone: %lu pages used for memmap\n",
3168 zone_names[j], memmap_pages);
3169 } else
3170 printk(KERN_WARNING
3171 " %s zone: %lu pages exceeds realsize %lu\n",
3172 zone_names[j], memmap_pages, realsize);
3174 /* Account for reserved pages */
3175 if (j == 0 && realsize > dma_reserve) {
3176 realsize -= dma_reserve;
3177 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3178 zone_names[0], dma_reserve);
3181 if (!is_highmem_idx(j))
3182 nr_kernel_pages += realsize;
3183 nr_all_pages += realsize;
3185 zone->spanned_pages = size;
3186 zone->present_pages = realsize;
3187 #ifdef CONFIG_NUMA
3188 zone->node = nid;
3189 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3190 / 100;
3191 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3192 #endif
3193 zone->name = zone_names[j];
3194 spin_lock_init(&zone->lock);
3195 spin_lock_init(&zone->lru_lock);
3196 zone_seqlock_init(zone);
3197 zone->zone_pgdat = pgdat;
3199 zone->prev_priority = DEF_PRIORITY;
3201 zone_pcp_init(zone);
3202 INIT_LIST_HEAD(&zone->active_list);
3203 INIT_LIST_HEAD(&zone->inactive_list);
3204 zone->nr_scan_active = 0;
3205 zone->nr_scan_inactive = 0;
3206 zap_zone_vm_stats(zone);
3207 atomic_set(&zone->reclaim_in_progress, 0);
3208 if (!size)
3209 continue;
3211 setup_usemap(pgdat, zone, size);
3212 ret = init_currently_empty_zone(zone, zone_start_pfn,
3213 size, MEMMAP_EARLY);
3214 BUG_ON(ret);
3215 zone_start_pfn += size;
3219 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3221 /* Skip empty nodes */
3222 if (!pgdat->node_spanned_pages)
3223 return;
3225 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3226 /* ia64 gets its own node_mem_map, before this, without bootmem */
3227 if (!pgdat->node_mem_map) {
3228 unsigned long size, start, end;
3229 struct page *map;
3232 * The zone's endpoints aren't required to be MAX_ORDER
3233 * aligned but the node_mem_map endpoints must be in order
3234 * for the buddy allocator to function correctly.
3236 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3237 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3238 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3239 size = (end - start) * sizeof(struct page);
3240 map = alloc_remap(pgdat->node_id, size);
3241 if (!map)
3242 map = alloc_bootmem_node(pgdat, size);
3243 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3245 #ifndef CONFIG_NEED_MULTIPLE_NODES
3247 * With no DISCONTIG, the global mem_map is just set as node 0's
3249 if (pgdat == NODE_DATA(0)) {
3250 mem_map = NODE_DATA(0)->node_mem_map;
3251 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3252 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3253 mem_map -= pgdat->node_start_pfn;
3254 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3256 #endif
3257 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3260 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3261 unsigned long *zones_size, unsigned long node_start_pfn,
3262 unsigned long *zholes_size)
3264 pgdat->node_id = nid;
3265 pgdat->node_start_pfn = node_start_pfn;
3266 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3268 alloc_node_mem_map(pgdat);
3270 free_area_init_core(pgdat, zones_size, zholes_size);
3273 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3275 #if MAX_NUMNODES > 1
3277 * Figure out the number of possible node ids.
3279 static void __init setup_nr_node_ids(void)
3281 unsigned int node;
3282 unsigned int highest = 0;
3284 for_each_node_mask(node, node_possible_map)
3285 highest = node;
3286 nr_node_ids = highest + 1;
3288 #else
3289 static inline void setup_nr_node_ids(void)
3292 #endif
3295 * add_active_range - Register a range of PFNs backed by physical memory
3296 * @nid: The node ID the range resides on
3297 * @start_pfn: The start PFN of the available physical memory
3298 * @end_pfn: The end PFN of the available physical memory
3300 * These ranges are stored in an early_node_map[] and later used by
3301 * free_area_init_nodes() to calculate zone sizes and holes. If the
3302 * range spans a memory hole, it is up to the architecture to ensure
3303 * the memory is not freed by the bootmem allocator. If possible
3304 * the range being registered will be merged with existing ranges.
3306 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3307 unsigned long end_pfn)
3309 int i;
3311 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3312 "%d entries of %d used\n",
3313 nid, start_pfn, end_pfn,
3314 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3316 /* Merge with existing active regions if possible */
3317 for (i = 0; i < nr_nodemap_entries; i++) {
3318 if (early_node_map[i].nid != nid)
3319 continue;
3321 /* Skip if an existing region covers this new one */
3322 if (start_pfn >= early_node_map[i].start_pfn &&
3323 end_pfn <= early_node_map[i].end_pfn)
3324 return;
3326 /* Merge forward if suitable */
3327 if (start_pfn <= early_node_map[i].end_pfn &&
3328 end_pfn > early_node_map[i].end_pfn) {
3329 early_node_map[i].end_pfn = end_pfn;
3330 return;
3333 /* Merge backward if suitable */
3334 if (start_pfn < early_node_map[i].end_pfn &&
3335 end_pfn >= early_node_map[i].start_pfn) {
3336 early_node_map[i].start_pfn = start_pfn;
3337 return;
3341 /* Check that early_node_map is large enough */
3342 if (i >= MAX_ACTIVE_REGIONS) {
3343 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3344 MAX_ACTIVE_REGIONS);
3345 return;
3348 early_node_map[i].nid = nid;
3349 early_node_map[i].start_pfn = start_pfn;
3350 early_node_map[i].end_pfn = end_pfn;
3351 nr_nodemap_entries = i + 1;
3355 * shrink_active_range - Shrink an existing registered range of PFNs
3356 * @nid: The node id the range is on that should be shrunk
3357 * @old_end_pfn: The old end PFN of the range
3358 * @new_end_pfn: The new PFN of the range
3360 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3361 * The map is kept at the end physical page range that has already been
3362 * registered with add_active_range(). This function allows an arch to shrink
3363 * an existing registered range.
3365 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3366 unsigned long new_end_pfn)
3368 int i;
3370 /* Find the old active region end and shrink */
3371 for_each_active_range_index_in_nid(i, nid)
3372 if (early_node_map[i].end_pfn == old_end_pfn) {
3373 early_node_map[i].end_pfn = new_end_pfn;
3374 break;
3379 * remove_all_active_ranges - Remove all currently registered regions
3381 * During discovery, it may be found that a table like SRAT is invalid
3382 * and an alternative discovery method must be used. This function removes
3383 * all currently registered regions.
3385 void __init remove_all_active_ranges(void)
3387 memset(early_node_map, 0, sizeof(early_node_map));
3388 nr_nodemap_entries = 0;
3389 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3390 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3391 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3392 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3395 /* Compare two active node_active_regions */
3396 static int __init cmp_node_active_region(const void *a, const void *b)
3398 struct node_active_region *arange = (struct node_active_region *)a;
3399 struct node_active_region *brange = (struct node_active_region *)b;
3401 /* Done this way to avoid overflows */
3402 if (arange->start_pfn > brange->start_pfn)
3403 return 1;
3404 if (arange->start_pfn < brange->start_pfn)
3405 return -1;
3407 return 0;
3410 /* sort the node_map by start_pfn */
3411 static void __init sort_node_map(void)
3413 sort(early_node_map, (size_t)nr_nodemap_entries,
3414 sizeof(struct node_active_region),
3415 cmp_node_active_region, NULL);
3418 /* Find the lowest pfn for a node */
3419 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3421 int i;
3422 unsigned long min_pfn = ULONG_MAX;
3424 /* Assuming a sorted map, the first range found has the starting pfn */
3425 for_each_active_range_index_in_nid(i, nid)
3426 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3428 if (min_pfn == ULONG_MAX) {
3429 printk(KERN_WARNING
3430 "Could not find start_pfn for node %lu\n", nid);
3431 return 0;
3434 return min_pfn;
3438 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3440 * It returns the minimum PFN based on information provided via
3441 * add_active_range().
3443 unsigned long __init find_min_pfn_with_active_regions(void)
3445 return find_min_pfn_for_node(MAX_NUMNODES);
3449 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3451 * It returns the maximum PFN based on information provided via
3452 * add_active_range().
3454 unsigned long __init find_max_pfn_with_active_regions(void)
3456 int i;
3457 unsigned long max_pfn = 0;
3459 for (i = 0; i < nr_nodemap_entries; i++)
3460 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3462 return max_pfn;
3466 * early_calculate_totalpages()
3467 * Sum pages in active regions for movable zone.
3468 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3470 unsigned long __init early_calculate_totalpages(void)
3472 int i;
3473 unsigned long totalpages = 0;
3475 for (i = 0; i < nr_nodemap_entries; i++) {
3476 unsigned long pages = early_node_map[i].end_pfn -
3477 early_node_map[i].start_pfn;
3478 totalpages += pages;
3479 if (pages)
3480 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3482 return totalpages;
3486 * Find the PFN the Movable zone begins in each node. Kernel memory
3487 * is spread evenly between nodes as long as the nodes have enough
3488 * memory. When they don't, some nodes will have more kernelcore than
3489 * others
3491 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3493 int i, nid;
3494 unsigned long usable_startpfn;
3495 unsigned long kernelcore_node, kernelcore_remaining;
3496 unsigned long totalpages = early_calculate_totalpages();
3497 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3500 * If movablecore was specified, calculate what size of
3501 * kernelcore that corresponds so that memory usable for
3502 * any allocation type is evenly spread. If both kernelcore
3503 * and movablecore are specified, then the value of kernelcore
3504 * will be used for required_kernelcore if it's greater than
3505 * what movablecore would have allowed.
3507 if (required_movablecore) {
3508 unsigned long corepages;
3511 * Round-up so that ZONE_MOVABLE is at least as large as what
3512 * was requested by the user
3514 required_movablecore =
3515 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3516 corepages = totalpages - required_movablecore;
3518 required_kernelcore = max(required_kernelcore, corepages);
3521 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3522 if (!required_kernelcore)
3523 return;
3525 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3526 find_usable_zone_for_movable();
3527 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3529 restart:
3530 /* Spread kernelcore memory as evenly as possible throughout nodes */
3531 kernelcore_node = required_kernelcore / usable_nodes;
3532 for_each_node_state(nid, N_HIGH_MEMORY) {
3534 * Recalculate kernelcore_node if the division per node
3535 * now exceeds what is necessary to satisfy the requested
3536 * amount of memory for the kernel
3538 if (required_kernelcore < kernelcore_node)
3539 kernelcore_node = required_kernelcore / usable_nodes;
3542 * As the map is walked, we track how much memory is usable
3543 * by the kernel using kernelcore_remaining. When it is
3544 * 0, the rest of the node is usable by ZONE_MOVABLE
3546 kernelcore_remaining = kernelcore_node;
3548 /* Go through each range of PFNs within this node */
3549 for_each_active_range_index_in_nid(i, nid) {
3550 unsigned long start_pfn, end_pfn;
3551 unsigned long size_pages;
3553 start_pfn = max(early_node_map[i].start_pfn,
3554 zone_movable_pfn[nid]);
3555 end_pfn = early_node_map[i].end_pfn;
3556 if (start_pfn >= end_pfn)
3557 continue;
3559 /* Account for what is only usable for kernelcore */
3560 if (start_pfn < usable_startpfn) {
3561 unsigned long kernel_pages;
3562 kernel_pages = min(end_pfn, usable_startpfn)
3563 - start_pfn;
3565 kernelcore_remaining -= min(kernel_pages,
3566 kernelcore_remaining);
3567 required_kernelcore -= min(kernel_pages,
3568 required_kernelcore);
3570 /* Continue if range is now fully accounted */
3571 if (end_pfn <= usable_startpfn) {
3574 * Push zone_movable_pfn to the end so
3575 * that if we have to rebalance
3576 * kernelcore across nodes, we will
3577 * not double account here
3579 zone_movable_pfn[nid] = end_pfn;
3580 continue;
3582 start_pfn = usable_startpfn;
3586 * The usable PFN range for ZONE_MOVABLE is from
3587 * start_pfn->end_pfn. Calculate size_pages as the
3588 * number of pages used as kernelcore
3590 size_pages = end_pfn - start_pfn;
3591 if (size_pages > kernelcore_remaining)
3592 size_pages = kernelcore_remaining;
3593 zone_movable_pfn[nid] = start_pfn + size_pages;
3596 * Some kernelcore has been met, update counts and
3597 * break if the kernelcore for this node has been
3598 * satisified
3600 required_kernelcore -= min(required_kernelcore,
3601 size_pages);
3602 kernelcore_remaining -= size_pages;
3603 if (!kernelcore_remaining)
3604 break;
3609 * If there is still required_kernelcore, we do another pass with one
3610 * less node in the count. This will push zone_movable_pfn[nid] further
3611 * along on the nodes that still have memory until kernelcore is
3612 * satisified
3614 usable_nodes--;
3615 if (usable_nodes && required_kernelcore > usable_nodes)
3616 goto restart;
3618 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3619 for (nid = 0; nid < MAX_NUMNODES; nid++)
3620 zone_movable_pfn[nid] =
3621 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3624 /* Any regular memory on that node ? */
3625 static void check_for_regular_memory(pg_data_t *pgdat)
3627 #ifdef CONFIG_HIGHMEM
3628 enum zone_type zone_type;
3630 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3631 struct zone *zone = &pgdat->node_zones[zone_type];
3632 if (zone->present_pages)
3633 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3635 #endif
3639 * free_area_init_nodes - Initialise all pg_data_t and zone data
3640 * @max_zone_pfn: an array of max PFNs for each zone
3642 * This will call free_area_init_node() for each active node in the system.
3643 * Using the page ranges provided by add_active_range(), the size of each
3644 * zone in each node and their holes is calculated. If the maximum PFN
3645 * between two adjacent zones match, it is assumed that the zone is empty.
3646 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3647 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3648 * starts where the previous one ended. For example, ZONE_DMA32 starts
3649 * at arch_max_dma_pfn.
3651 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3653 unsigned long nid;
3654 enum zone_type i;
3656 /* Sort early_node_map as initialisation assumes it is sorted */
3657 sort_node_map();
3659 /* Record where the zone boundaries are */
3660 memset(arch_zone_lowest_possible_pfn, 0,
3661 sizeof(arch_zone_lowest_possible_pfn));
3662 memset(arch_zone_highest_possible_pfn, 0,
3663 sizeof(arch_zone_highest_possible_pfn));
3664 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3665 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3666 for (i = 1; i < MAX_NR_ZONES; i++) {
3667 if (i == ZONE_MOVABLE)
3668 continue;
3669 arch_zone_lowest_possible_pfn[i] =
3670 arch_zone_highest_possible_pfn[i-1];
3671 arch_zone_highest_possible_pfn[i] =
3672 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3674 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3675 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3677 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3678 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3679 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3681 /* Print out the zone ranges */
3682 printk("Zone PFN ranges:\n");
3683 for (i = 0; i < MAX_NR_ZONES; i++) {
3684 if (i == ZONE_MOVABLE)
3685 continue;
3686 printk(" %-8s %8lu -> %8lu\n",
3687 zone_names[i],
3688 arch_zone_lowest_possible_pfn[i],
3689 arch_zone_highest_possible_pfn[i]);
3692 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3693 printk("Movable zone start PFN for each node\n");
3694 for (i = 0; i < MAX_NUMNODES; i++) {
3695 if (zone_movable_pfn[i])
3696 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3699 /* Print out the early_node_map[] */
3700 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3701 for (i = 0; i < nr_nodemap_entries; i++)
3702 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3703 early_node_map[i].start_pfn,
3704 early_node_map[i].end_pfn);
3706 /* Initialise every node */
3707 setup_nr_node_ids();
3708 for_each_online_node(nid) {
3709 pg_data_t *pgdat = NODE_DATA(nid);
3710 free_area_init_node(nid, pgdat, NULL,
3711 find_min_pfn_for_node(nid), NULL);
3713 /* Any memory on that node */
3714 if (pgdat->node_present_pages)
3715 node_set_state(nid, N_HIGH_MEMORY);
3716 check_for_regular_memory(pgdat);
3720 static int __init cmdline_parse_core(char *p, unsigned long *core)
3722 unsigned long long coremem;
3723 if (!p)
3724 return -EINVAL;
3726 coremem = memparse(p, &p);
3727 *core = coremem >> PAGE_SHIFT;
3729 /* Paranoid check that UL is enough for the coremem value */
3730 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3732 return 0;
3736 * kernelcore=size sets the amount of memory for use for allocations that
3737 * cannot be reclaimed or migrated.
3739 static int __init cmdline_parse_kernelcore(char *p)
3741 return cmdline_parse_core(p, &required_kernelcore);
3745 * movablecore=size sets the amount of memory for use for allocations that
3746 * can be reclaimed or migrated.
3748 static int __init cmdline_parse_movablecore(char *p)
3750 return cmdline_parse_core(p, &required_movablecore);
3753 early_param("kernelcore", cmdline_parse_kernelcore);
3754 early_param("movablecore", cmdline_parse_movablecore);
3756 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3759 * set_dma_reserve - set the specified number of pages reserved in the first zone
3760 * @new_dma_reserve: The number of pages to mark reserved
3762 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3763 * In the DMA zone, a significant percentage may be consumed by kernel image
3764 * and other unfreeable allocations which can skew the watermarks badly. This
3765 * function may optionally be used to account for unfreeable pages in the
3766 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3767 * smaller per-cpu batchsize.
3769 void __init set_dma_reserve(unsigned long new_dma_reserve)
3771 dma_reserve = new_dma_reserve;
3774 #ifndef CONFIG_NEED_MULTIPLE_NODES
3775 static bootmem_data_t contig_bootmem_data;
3776 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3778 EXPORT_SYMBOL(contig_page_data);
3779 #endif
3781 void __init free_area_init(unsigned long *zones_size)
3783 free_area_init_node(0, NODE_DATA(0), zones_size,
3784 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3787 static int page_alloc_cpu_notify(struct notifier_block *self,
3788 unsigned long action, void *hcpu)
3790 int cpu = (unsigned long)hcpu;
3792 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3793 local_irq_disable();
3794 __drain_pages(cpu);
3795 vm_events_fold_cpu(cpu);
3796 local_irq_enable();
3797 refresh_cpu_vm_stats(cpu);
3799 return NOTIFY_OK;
3802 void __init page_alloc_init(void)
3804 hotcpu_notifier(page_alloc_cpu_notify, 0);
3808 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3809 * or min_free_kbytes changes.
3811 static void calculate_totalreserve_pages(void)
3813 struct pglist_data *pgdat;
3814 unsigned long reserve_pages = 0;
3815 enum zone_type i, j;
3817 for_each_online_pgdat(pgdat) {
3818 for (i = 0; i < MAX_NR_ZONES; i++) {
3819 struct zone *zone = pgdat->node_zones + i;
3820 unsigned long max = 0;
3822 /* Find valid and maximum lowmem_reserve in the zone */
3823 for (j = i; j < MAX_NR_ZONES; j++) {
3824 if (zone->lowmem_reserve[j] > max)
3825 max = zone->lowmem_reserve[j];
3828 /* we treat pages_high as reserved pages. */
3829 max += zone->pages_high;
3831 if (max > zone->present_pages)
3832 max = zone->present_pages;
3833 reserve_pages += max;
3836 totalreserve_pages = reserve_pages;
3840 * setup_per_zone_lowmem_reserve - called whenever
3841 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3842 * has a correct pages reserved value, so an adequate number of
3843 * pages are left in the zone after a successful __alloc_pages().
3845 static void setup_per_zone_lowmem_reserve(void)
3847 struct pglist_data *pgdat;
3848 enum zone_type j, idx;
3850 for_each_online_pgdat(pgdat) {
3851 for (j = 0; j < MAX_NR_ZONES; j++) {
3852 struct zone *zone = pgdat->node_zones + j;
3853 unsigned long present_pages = zone->present_pages;
3855 zone->lowmem_reserve[j] = 0;
3857 idx = j;
3858 while (idx) {
3859 struct zone *lower_zone;
3861 idx--;
3863 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3864 sysctl_lowmem_reserve_ratio[idx] = 1;
3866 lower_zone = pgdat->node_zones + idx;
3867 lower_zone->lowmem_reserve[j] = present_pages /
3868 sysctl_lowmem_reserve_ratio[idx];
3869 present_pages += lower_zone->present_pages;
3874 /* update totalreserve_pages */
3875 calculate_totalreserve_pages();
3879 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3881 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3882 * with respect to min_free_kbytes.
3884 void setup_per_zone_pages_min(void)
3886 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3887 unsigned long lowmem_pages = 0;
3888 struct zone *zone;
3889 unsigned long flags;
3891 /* Calculate total number of !ZONE_HIGHMEM pages */
3892 for_each_zone(zone) {
3893 if (!is_highmem(zone))
3894 lowmem_pages += zone->present_pages;
3897 for_each_zone(zone) {
3898 u64 tmp;
3900 spin_lock_irqsave(&zone->lru_lock, flags);
3901 tmp = (u64)pages_min * zone->present_pages;
3902 do_div(tmp, lowmem_pages);
3903 if (is_highmem(zone)) {
3905 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3906 * need highmem pages, so cap pages_min to a small
3907 * value here.
3909 * The (pages_high-pages_low) and (pages_low-pages_min)
3910 * deltas controls asynch page reclaim, and so should
3911 * not be capped for highmem.
3913 int min_pages;
3915 min_pages = zone->present_pages / 1024;
3916 if (min_pages < SWAP_CLUSTER_MAX)
3917 min_pages = SWAP_CLUSTER_MAX;
3918 if (min_pages > 128)
3919 min_pages = 128;
3920 zone->pages_min = min_pages;
3921 } else {
3923 * If it's a lowmem zone, reserve a number of pages
3924 * proportionate to the zone's size.
3926 zone->pages_min = tmp;
3929 zone->pages_low = zone->pages_min + (tmp >> 2);
3930 zone->pages_high = zone->pages_min + (tmp >> 1);
3931 spin_unlock_irqrestore(&zone->lru_lock, flags);
3934 /* update totalreserve_pages */
3935 calculate_totalreserve_pages();
3939 * Initialise min_free_kbytes.
3941 * For small machines we want it small (128k min). For large machines
3942 * we want it large (64MB max). But it is not linear, because network
3943 * bandwidth does not increase linearly with machine size. We use
3945 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3946 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3948 * which yields
3950 * 16MB: 512k
3951 * 32MB: 724k
3952 * 64MB: 1024k
3953 * 128MB: 1448k
3954 * 256MB: 2048k
3955 * 512MB: 2896k
3956 * 1024MB: 4096k
3957 * 2048MB: 5792k
3958 * 4096MB: 8192k
3959 * 8192MB: 11584k
3960 * 16384MB: 16384k
3962 static int __init init_per_zone_pages_min(void)
3964 unsigned long lowmem_kbytes;
3966 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3968 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3969 if (min_free_kbytes < 128)
3970 min_free_kbytes = 128;
3971 if (min_free_kbytes > 65536)
3972 min_free_kbytes = 65536;
3973 setup_per_zone_pages_min();
3974 setup_per_zone_lowmem_reserve();
3975 return 0;
3977 module_init(init_per_zone_pages_min)
3980 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3981 * that we can call two helper functions whenever min_free_kbytes
3982 * changes.
3984 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3985 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3987 proc_dointvec(table, write, file, buffer, length, ppos);
3988 if (write)
3989 setup_per_zone_pages_min();
3990 return 0;
3993 #ifdef CONFIG_NUMA
3994 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3995 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3997 struct zone *zone;
3998 int rc;
4000 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4001 if (rc)
4002 return rc;
4004 for_each_zone(zone)
4005 zone->min_unmapped_pages = (zone->present_pages *
4006 sysctl_min_unmapped_ratio) / 100;
4007 return 0;
4010 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4011 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4013 struct zone *zone;
4014 int rc;
4016 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4017 if (rc)
4018 return rc;
4020 for_each_zone(zone)
4021 zone->min_slab_pages = (zone->present_pages *
4022 sysctl_min_slab_ratio) / 100;
4023 return 0;
4025 #endif
4028 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4029 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4030 * whenever sysctl_lowmem_reserve_ratio changes.
4032 * The reserve ratio obviously has absolutely no relation with the
4033 * pages_min watermarks. The lowmem reserve ratio can only make sense
4034 * if in function of the boot time zone sizes.
4036 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4037 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4039 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4040 setup_per_zone_lowmem_reserve();
4041 return 0;
4045 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4046 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4047 * can have before it gets flushed back to buddy allocator.
4050 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4051 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4053 struct zone *zone;
4054 unsigned int cpu;
4055 int ret;
4057 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4058 if (!write || (ret == -EINVAL))
4059 return ret;
4060 for_each_zone(zone) {
4061 for_each_online_cpu(cpu) {
4062 unsigned long high;
4063 high = zone->present_pages / percpu_pagelist_fraction;
4064 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4067 return 0;
4070 int hashdist = HASHDIST_DEFAULT;
4072 #ifdef CONFIG_NUMA
4073 static int __init set_hashdist(char *str)
4075 if (!str)
4076 return 0;
4077 hashdist = simple_strtoul(str, &str, 0);
4078 return 1;
4080 __setup("hashdist=", set_hashdist);
4081 #endif
4084 * allocate a large system hash table from bootmem
4085 * - it is assumed that the hash table must contain an exact power-of-2
4086 * quantity of entries
4087 * - limit is the number of hash buckets, not the total allocation size
4089 void *__init alloc_large_system_hash(const char *tablename,
4090 unsigned long bucketsize,
4091 unsigned long numentries,
4092 int scale,
4093 int flags,
4094 unsigned int *_hash_shift,
4095 unsigned int *_hash_mask,
4096 unsigned long limit)
4098 unsigned long long max = limit;
4099 unsigned long log2qty, size;
4100 void *table = NULL;
4102 /* allow the kernel cmdline to have a say */
4103 if (!numentries) {
4104 /* round applicable memory size up to nearest megabyte */
4105 numentries = nr_kernel_pages;
4106 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4107 numentries >>= 20 - PAGE_SHIFT;
4108 numentries <<= 20 - PAGE_SHIFT;
4110 /* limit to 1 bucket per 2^scale bytes of low memory */
4111 if (scale > PAGE_SHIFT)
4112 numentries >>= (scale - PAGE_SHIFT);
4113 else
4114 numentries <<= (PAGE_SHIFT - scale);
4116 /* Make sure we've got at least a 0-order allocation.. */
4117 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4118 numentries = PAGE_SIZE / bucketsize;
4120 numentries = roundup_pow_of_two(numentries);
4122 /* limit allocation size to 1/16 total memory by default */
4123 if (max == 0) {
4124 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4125 do_div(max, bucketsize);
4128 if (numentries > max)
4129 numentries = max;
4131 log2qty = ilog2(numentries);
4133 do {
4134 size = bucketsize << log2qty;
4135 if (flags & HASH_EARLY)
4136 table = alloc_bootmem(size);
4137 else if (hashdist)
4138 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4139 else {
4140 unsigned long order;
4141 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4143 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4145 * If bucketsize is not a power-of-two, we may free
4146 * some pages at the end of hash table.
4148 if (table) {
4149 unsigned long alloc_end = (unsigned long)table +
4150 (PAGE_SIZE << order);
4151 unsigned long used = (unsigned long)table +
4152 PAGE_ALIGN(size);
4153 split_page(virt_to_page(table), order);
4154 while (used < alloc_end) {
4155 free_page(used);
4156 used += PAGE_SIZE;
4160 } while (!table && size > PAGE_SIZE && --log2qty);
4162 if (!table)
4163 panic("Failed to allocate %s hash table\n", tablename);
4165 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4166 tablename,
4167 (1U << log2qty),
4168 ilog2(size) - PAGE_SHIFT,
4169 size);
4171 if (_hash_shift)
4172 *_hash_shift = log2qty;
4173 if (_hash_mask)
4174 *_hash_mask = (1 << log2qty) - 1;
4176 return table;
4179 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4180 struct page *pfn_to_page(unsigned long pfn)
4182 return __pfn_to_page(pfn);
4184 unsigned long page_to_pfn(struct page *page)
4186 return __page_to_pfn(page);
4188 EXPORT_SYMBOL(pfn_to_page);
4189 EXPORT_SYMBOL(page_to_pfn);
4190 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4192 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4193 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4194 unsigned long pfn)
4196 #ifdef CONFIG_SPARSEMEM
4197 return __pfn_to_section(pfn)->pageblock_flags;
4198 #else
4199 return zone->pageblock_flags;
4200 #endif /* CONFIG_SPARSEMEM */
4203 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4205 #ifdef CONFIG_SPARSEMEM
4206 pfn &= (PAGES_PER_SECTION-1);
4207 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4208 #else
4209 pfn = pfn - zone->zone_start_pfn;
4210 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4211 #endif /* CONFIG_SPARSEMEM */
4215 * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
4216 * @page: The page within the block of interest
4217 * @start_bitidx: The first bit of interest to retrieve
4218 * @end_bitidx: The last bit of interest
4219 * returns pageblock_bits flags
4221 unsigned long get_pageblock_flags_group(struct page *page,
4222 int start_bitidx, int end_bitidx)
4224 struct zone *zone;
4225 unsigned long *bitmap;
4226 unsigned long pfn, bitidx;
4227 unsigned long flags = 0;
4228 unsigned long value = 1;
4230 zone = page_zone(page);
4231 pfn = page_to_pfn(page);
4232 bitmap = get_pageblock_bitmap(zone, pfn);
4233 bitidx = pfn_to_bitidx(zone, pfn);
4235 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4236 if (test_bit(bitidx + start_bitidx, bitmap))
4237 flags |= value;
4239 return flags;
4243 * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
4244 * @page: The page within the block of interest
4245 * @start_bitidx: The first bit of interest
4246 * @end_bitidx: The last bit of interest
4247 * @flags: The flags to set
4249 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4250 int start_bitidx, int end_bitidx)
4252 struct zone *zone;
4253 unsigned long *bitmap;
4254 unsigned long pfn, bitidx;
4255 unsigned long value = 1;
4257 zone = page_zone(page);
4258 pfn = page_to_pfn(page);
4259 bitmap = get_pageblock_bitmap(zone, pfn);
4260 bitidx = pfn_to_bitidx(zone, pfn);
4262 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4263 if (flags & value)
4264 __set_bit(bitidx + start_bitidx, bitmap);
4265 else
4266 __clear_bit(bitidx + start_bitidx, bitmap);