Group high-order atomic allocations
[linux-2.6/mini2440.git] / include / linux / mmzone.h
bloba8140a9a65e8231df40bb8707ee73b972981921b
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <linux/pageblock-flags.h>
17 #include <asm/atomic.h>
18 #include <asm/page.h>
20 /* Free memory management - zoned buddy allocator. */
21 #ifndef CONFIG_FORCE_MAX_ZONEORDER
22 #define MAX_ORDER 11
23 #else
24 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25 #endif
26 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
30 * costly to service. That is between allocation orders which should
31 * coelesce naturally under reasonable reclaim pressure and those which
32 * will not.
34 #define PAGE_ALLOC_COSTLY_ORDER 3
36 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
37 #define MIGRATE_UNMOVABLE 0
38 #define MIGRATE_RECLAIMABLE 1
39 #define MIGRATE_MOVABLE 2
40 #define MIGRATE_HIGHATOMIC 3
41 #define MIGRATE_TYPES 4
42 #else
43 #define MIGRATE_UNMOVABLE 0
44 #define MIGRATE_UNRECLAIMABLE 0
45 #define MIGRATE_MOVABLE 0
46 #define MIGRATE_HIGHATOMIC 0
47 #define MIGRATE_TYPES 1
48 #endif
50 #define for_each_migratetype_order(order, type) \
51 for (order = 0; order < MAX_ORDER; order++) \
52 for (type = 0; type < MIGRATE_TYPES; type++)
54 struct free_area {
55 struct list_head free_list[MIGRATE_TYPES];
56 unsigned long nr_free;
59 struct pglist_data;
62 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
63 * So add a wild amount of padding here to ensure that they fall into separate
64 * cachelines. There are very few zone structures in the machine, so space
65 * consumption is not a concern here.
67 #if defined(CONFIG_SMP)
68 struct zone_padding {
69 char x[0];
70 } ____cacheline_internodealigned_in_smp;
71 #define ZONE_PADDING(name) struct zone_padding name;
72 #else
73 #define ZONE_PADDING(name)
74 #endif
76 enum zone_stat_item {
77 /* First 128 byte cacheline (assuming 64 bit words) */
78 NR_FREE_PAGES,
79 NR_INACTIVE,
80 NR_ACTIVE,
81 NR_ANON_PAGES, /* Mapped anonymous pages */
82 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
83 only modified from process context */
84 NR_FILE_PAGES,
85 NR_FILE_DIRTY,
86 NR_WRITEBACK,
87 /* Second 128 byte cacheline */
88 NR_SLAB_RECLAIMABLE,
89 NR_SLAB_UNRECLAIMABLE,
90 NR_PAGETABLE, /* used for pagetables */
91 NR_UNSTABLE_NFS, /* NFS unstable pages */
92 NR_BOUNCE,
93 NR_VMSCAN_WRITE,
94 #ifdef CONFIG_NUMA
95 NUMA_HIT, /* allocated in intended node */
96 NUMA_MISS, /* allocated in non intended node */
97 NUMA_FOREIGN, /* was intended here, hit elsewhere */
98 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
99 NUMA_LOCAL, /* allocation from local node */
100 NUMA_OTHER, /* allocation from other node */
101 #endif
102 NR_VM_ZONE_STAT_ITEMS };
104 struct per_cpu_pages {
105 int count; /* number of pages in the list */
106 int high; /* high watermark, emptying needed */
107 int batch; /* chunk size for buddy add/remove */
108 struct list_head list; /* the list of pages */
111 struct per_cpu_pageset {
112 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
113 #ifdef CONFIG_NUMA
114 s8 expire;
115 #endif
116 #ifdef CONFIG_SMP
117 s8 stat_threshold;
118 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
119 #endif
120 } ____cacheline_aligned_in_smp;
122 #ifdef CONFIG_NUMA
123 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
124 #else
125 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
126 #endif
128 enum zone_type {
129 #ifdef CONFIG_ZONE_DMA
131 * ZONE_DMA is used when there are devices that are not able
132 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
133 * carve out the portion of memory that is needed for these devices.
134 * The range is arch specific.
136 * Some examples
138 * Architecture Limit
139 * ---------------------------
140 * parisc, ia64, sparc <4G
141 * s390 <2G
142 * arm Various
143 * alpha Unlimited or 0-16MB.
145 * i386, x86_64 and multiple other arches
146 * <16M.
148 ZONE_DMA,
149 #endif
150 #ifdef CONFIG_ZONE_DMA32
152 * x86_64 needs two ZONE_DMAs because it supports devices that are
153 * only able to do DMA to the lower 16M but also 32 bit devices that
154 * can only do DMA areas below 4G.
156 ZONE_DMA32,
157 #endif
159 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
160 * performed on pages in ZONE_NORMAL if the DMA devices support
161 * transfers to all addressable memory.
163 ZONE_NORMAL,
164 #ifdef CONFIG_HIGHMEM
166 * A memory area that is only addressable by the kernel through
167 * mapping portions into its own address space. This is for example
168 * used by i386 to allow the kernel to address the memory beyond
169 * 900MB. The kernel will set up special mappings (page
170 * table entries on i386) for each page that the kernel needs to
171 * access.
173 ZONE_HIGHMEM,
174 #endif
175 ZONE_MOVABLE,
176 MAX_NR_ZONES
180 * When a memory allocation must conform to specific limitations (such
181 * as being suitable for DMA) the caller will pass in hints to the
182 * allocator in the gfp_mask, in the zone modifier bits. These bits
183 * are used to select a priority ordered list of memory zones which
184 * match the requested limits. See gfp_zone() in include/linux/gfp.h
188 * Count the active zones. Note that the use of defined(X) outside
189 * #if and family is not necessarily defined so ensure we cannot use
190 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
192 #define __ZONE_COUNT ( \
193 defined(CONFIG_ZONE_DMA) \
194 + defined(CONFIG_ZONE_DMA32) \
195 + 1 \
196 + defined(CONFIG_HIGHMEM) \
197 + 1 \
199 #if __ZONE_COUNT < 2
200 #define ZONES_SHIFT 0
201 #elif __ZONE_COUNT <= 2
202 #define ZONES_SHIFT 1
203 #elif __ZONE_COUNT <= 4
204 #define ZONES_SHIFT 2
205 #else
206 #error ZONES_SHIFT -- too many zones configured adjust calculation
207 #endif
208 #undef __ZONE_COUNT
210 struct zone {
211 /* Fields commonly accessed by the page allocator */
212 unsigned long pages_min, pages_low, pages_high;
214 * We don't know if the memory that we're going to allocate will be freeable
215 * or/and it will be released eventually, so to avoid totally wasting several
216 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
217 * to run OOM on the lower zones despite there's tons of freeable ram
218 * on the higher zones). This array is recalculated at runtime if the
219 * sysctl_lowmem_reserve_ratio sysctl changes.
221 unsigned long lowmem_reserve[MAX_NR_ZONES];
223 #ifdef CONFIG_NUMA
224 int node;
226 * zone reclaim becomes active if more unmapped pages exist.
228 unsigned long min_unmapped_pages;
229 unsigned long min_slab_pages;
230 struct per_cpu_pageset *pageset[NR_CPUS];
231 #else
232 struct per_cpu_pageset pageset[NR_CPUS];
233 #endif
235 * free areas of different sizes
237 spinlock_t lock;
238 #ifdef CONFIG_MEMORY_HOTPLUG
239 /* see spanned/present_pages for more description */
240 seqlock_t span_seqlock;
241 #endif
242 struct free_area free_area[MAX_ORDER];
244 #ifndef CONFIG_SPARSEMEM
246 * Flags for a MAX_ORDER_NR_PAGES block. See pageblock-flags.h.
247 * In SPARSEMEM, this map is stored in struct mem_section
249 unsigned long *pageblock_flags;
250 #endif /* CONFIG_SPARSEMEM */
253 ZONE_PADDING(_pad1_)
255 /* Fields commonly accessed by the page reclaim scanner */
256 spinlock_t lru_lock;
257 struct list_head active_list;
258 struct list_head inactive_list;
259 unsigned long nr_scan_active;
260 unsigned long nr_scan_inactive;
261 unsigned long pages_scanned; /* since last reclaim */
262 int all_unreclaimable; /* All pages pinned */
264 /* A count of how many reclaimers are scanning this zone */
265 atomic_t reclaim_in_progress;
267 /* Zone statistics */
268 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
271 * prev_priority holds the scanning priority for this zone. It is
272 * defined as the scanning priority at which we achieved our reclaim
273 * target at the previous try_to_free_pages() or balance_pgdat()
274 * invokation.
276 * We use prev_priority as a measure of how much stress page reclaim is
277 * under - it drives the swappiness decision: whether to unmap mapped
278 * pages.
280 * Access to both this field is quite racy even on uniprocessor. But
281 * it is expected to average out OK.
283 int prev_priority;
286 ZONE_PADDING(_pad2_)
287 /* Rarely used or read-mostly fields */
290 * wait_table -- the array holding the hash table
291 * wait_table_hash_nr_entries -- the size of the hash table array
292 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
294 * The purpose of all these is to keep track of the people
295 * waiting for a page to become available and make them
296 * runnable again when possible. The trouble is that this
297 * consumes a lot of space, especially when so few things
298 * wait on pages at a given time. So instead of using
299 * per-page waitqueues, we use a waitqueue hash table.
301 * The bucket discipline is to sleep on the same queue when
302 * colliding and wake all in that wait queue when removing.
303 * When something wakes, it must check to be sure its page is
304 * truly available, a la thundering herd. The cost of a
305 * collision is great, but given the expected load of the
306 * table, they should be so rare as to be outweighed by the
307 * benefits from the saved space.
309 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
310 * primary users of these fields, and in mm/page_alloc.c
311 * free_area_init_core() performs the initialization of them.
313 wait_queue_head_t * wait_table;
314 unsigned long wait_table_hash_nr_entries;
315 unsigned long wait_table_bits;
318 * Discontig memory support fields.
320 struct pglist_data *zone_pgdat;
321 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
322 unsigned long zone_start_pfn;
325 * zone_start_pfn, spanned_pages and present_pages are all
326 * protected by span_seqlock. It is a seqlock because it has
327 * to be read outside of zone->lock, and it is done in the main
328 * allocator path. But, it is written quite infrequently.
330 * The lock is declared along with zone->lock because it is
331 * frequently read in proximity to zone->lock. It's good to
332 * give them a chance of being in the same cacheline.
334 unsigned long spanned_pages; /* total size, including holes */
335 unsigned long present_pages; /* amount of memory (excluding holes) */
338 * rarely used fields:
340 const char *name;
341 } ____cacheline_internodealigned_in_smp;
344 * The "priority" of VM scanning is how much of the queues we will scan in one
345 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
346 * queues ("queue_length >> 12") during an aging round.
348 #define DEF_PRIORITY 12
350 /* Maximum number of zones on a zonelist */
351 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
353 #ifdef CONFIG_NUMA
356 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
357 * allocations to a single node for GFP_THISNODE.
359 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
360 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
362 #define MAX_ZONELISTS (2 * MAX_NR_ZONES)
366 * We cache key information from each zonelist for smaller cache
367 * footprint when scanning for free pages in get_page_from_freelist().
369 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
370 * up short of free memory since the last time (last_fullzone_zap)
371 * we zero'd fullzones.
372 * 2) The array z_to_n[] maps each zone in the zonelist to its node
373 * id, so that we can efficiently evaluate whether that node is
374 * set in the current tasks mems_allowed.
376 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
377 * indexed by a zones offset in the zonelist zones[] array.
379 * The get_page_from_freelist() routine does two scans. During the
380 * first scan, we skip zones whose corresponding bit in 'fullzones'
381 * is set or whose corresponding node in current->mems_allowed (which
382 * comes from cpusets) is not set. During the second scan, we bypass
383 * this zonelist_cache, to ensure we look methodically at each zone.
385 * Once per second, we zero out (zap) fullzones, forcing us to
386 * reconsider nodes that might have regained more free memory.
387 * The field last_full_zap is the time we last zapped fullzones.
389 * This mechanism reduces the amount of time we waste repeatedly
390 * reexaming zones for free memory when they just came up low on
391 * memory momentarilly ago.
393 * The zonelist_cache struct members logically belong in struct
394 * zonelist. However, the mempolicy zonelists constructed for
395 * MPOL_BIND are intentionally variable length (and usually much
396 * shorter). A general purpose mechanism for handling structs with
397 * multiple variable length members is more mechanism than we want
398 * here. We resort to some special case hackery instead.
400 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
401 * part because they are shorter), so we put the fixed length stuff
402 * at the front of the zonelist struct, ending in a variable length
403 * zones[], as is needed by MPOL_BIND.
405 * Then we put the optional zonelist cache on the end of the zonelist
406 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
407 * the fixed length portion at the front of the struct. This pointer
408 * both enables us to find the zonelist cache, and in the case of
409 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
410 * to know that the zonelist cache is not there.
412 * The end result is that struct zonelists come in two flavors:
413 * 1) The full, fixed length version, shown below, and
414 * 2) The custom zonelists for MPOL_BIND.
415 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
417 * Even though there may be multiple CPU cores on a node modifying
418 * fullzones or last_full_zap in the same zonelist_cache at the same
419 * time, we don't lock it. This is just hint data - if it is wrong now
420 * and then, the allocator will still function, perhaps a bit slower.
424 struct zonelist_cache {
425 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
426 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
427 unsigned long last_full_zap; /* when last zap'd (jiffies) */
429 #else
430 #define MAX_ZONELISTS MAX_NR_ZONES
431 struct zonelist_cache;
432 #endif
435 * One allocation request operates on a zonelist. A zonelist
436 * is a list of zones, the first one is the 'goal' of the
437 * allocation, the other zones are fallback zones, in decreasing
438 * priority.
440 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
441 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
444 struct zonelist {
445 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
446 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
447 #ifdef CONFIG_NUMA
448 struct zonelist_cache zlcache; // optional ...
449 #endif
452 #ifdef CONFIG_NUMA
454 * Only custom zonelists like MPOL_BIND need to be filtered as part of
455 * policies. As described in the comment for struct zonelist_cache, these
456 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
457 * that to determine if the zonelists needs to be filtered or not.
459 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
461 return !zonelist->zlcache_ptr;
463 #else
464 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
466 return 0;
468 #endif /* CONFIG_NUMA */
470 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
471 struct node_active_region {
472 unsigned long start_pfn;
473 unsigned long end_pfn;
474 int nid;
476 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
478 #ifndef CONFIG_DISCONTIGMEM
479 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
480 extern struct page *mem_map;
481 #endif
484 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
485 * (mostly NUMA machines?) to denote a higher-level memory zone than the
486 * zone denotes.
488 * On NUMA machines, each NUMA node would have a pg_data_t to describe
489 * it's memory layout.
491 * Memory statistics and page replacement data structures are maintained on a
492 * per-zone basis.
494 struct bootmem_data;
495 typedef struct pglist_data {
496 struct zone node_zones[MAX_NR_ZONES];
497 struct zonelist node_zonelists[MAX_ZONELISTS];
498 int nr_zones;
499 #ifdef CONFIG_FLAT_NODE_MEM_MAP
500 struct page *node_mem_map;
501 #endif
502 struct bootmem_data *bdata;
503 #ifdef CONFIG_MEMORY_HOTPLUG
505 * Must be held any time you expect node_start_pfn, node_present_pages
506 * or node_spanned_pages stay constant. Holding this will also
507 * guarantee that any pfn_valid() stays that way.
509 * Nests above zone->lock and zone->size_seqlock.
511 spinlock_t node_size_lock;
512 #endif
513 unsigned long node_start_pfn;
514 unsigned long node_present_pages; /* total number of physical pages */
515 unsigned long node_spanned_pages; /* total size of physical page
516 range, including holes */
517 int node_id;
518 wait_queue_head_t kswapd_wait;
519 struct task_struct *kswapd;
520 int kswapd_max_order;
521 } pg_data_t;
523 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
524 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
525 #ifdef CONFIG_FLAT_NODE_MEM_MAP
526 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
527 #else
528 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
529 #endif
530 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
532 #include <linux/memory_hotplug.h>
534 void get_zone_counts(unsigned long *active, unsigned long *inactive,
535 unsigned long *free);
536 void build_all_zonelists(void);
537 void wakeup_kswapd(struct zone *zone, int order);
538 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
539 int classzone_idx, int alloc_flags);
540 enum memmap_context {
541 MEMMAP_EARLY,
542 MEMMAP_HOTPLUG,
544 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
545 unsigned long size,
546 enum memmap_context context);
548 #ifdef CONFIG_HAVE_MEMORY_PRESENT
549 void memory_present(int nid, unsigned long start, unsigned long end);
550 #else
551 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
552 #endif
554 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
555 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
556 #endif
559 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
561 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
563 static inline int populated_zone(struct zone *zone)
565 return (!!zone->present_pages);
568 extern int movable_zone;
570 static inline int zone_movable_is_highmem(void)
572 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
573 return movable_zone == ZONE_HIGHMEM;
574 #else
575 return 0;
576 #endif
579 static inline int is_highmem_idx(enum zone_type idx)
581 #ifdef CONFIG_HIGHMEM
582 return (idx == ZONE_HIGHMEM ||
583 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
584 #else
585 return 0;
586 #endif
589 static inline int is_normal_idx(enum zone_type idx)
591 return (idx == ZONE_NORMAL);
595 * is_highmem - helper function to quickly check if a struct zone is a
596 * highmem zone or not. This is an attempt to keep references
597 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
598 * @zone - pointer to struct zone variable
600 static inline int is_highmem(struct zone *zone)
602 #ifdef CONFIG_HIGHMEM
603 int zone_idx = zone - zone->zone_pgdat->node_zones;
604 return zone_idx == ZONE_HIGHMEM ||
605 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
606 #else
607 return 0;
608 #endif
611 static inline int is_normal(struct zone *zone)
613 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
616 static inline int is_dma32(struct zone *zone)
618 #ifdef CONFIG_ZONE_DMA32
619 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
620 #else
621 return 0;
622 #endif
625 static inline int is_dma(struct zone *zone)
627 #ifdef CONFIG_ZONE_DMA
628 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
629 #else
630 return 0;
631 #endif
634 /* These two functions are used to setup the per zone pages min values */
635 struct ctl_table;
636 struct file;
637 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
638 void __user *, size_t *, loff_t *);
639 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
640 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
641 void __user *, size_t *, loff_t *);
642 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
643 void __user *, size_t *, loff_t *);
644 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
645 struct file *, void __user *, size_t *, loff_t *);
646 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
647 struct file *, void __user *, size_t *, loff_t *);
649 extern int numa_zonelist_order_handler(struct ctl_table *, int,
650 struct file *, void __user *, size_t *, loff_t *);
651 extern char numa_zonelist_order[];
652 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
654 #include <linux/topology.h>
655 /* Returns the number of the current Node. */
656 #ifndef numa_node_id
657 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
658 #endif
660 #ifndef CONFIG_NEED_MULTIPLE_NODES
662 extern struct pglist_data contig_page_data;
663 #define NODE_DATA(nid) (&contig_page_data)
664 #define NODE_MEM_MAP(nid) mem_map
665 #define MAX_NODES_SHIFT 1
667 #else /* CONFIG_NEED_MULTIPLE_NODES */
669 #include <asm/mmzone.h>
671 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
673 extern struct pglist_data *first_online_pgdat(void);
674 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
675 extern struct zone *next_zone(struct zone *zone);
678 * for_each_pgdat - helper macro to iterate over all nodes
679 * @pgdat - pointer to a pg_data_t variable
681 #define for_each_online_pgdat(pgdat) \
682 for (pgdat = first_online_pgdat(); \
683 pgdat; \
684 pgdat = next_online_pgdat(pgdat))
686 * for_each_zone - helper macro to iterate over all memory zones
687 * @zone - pointer to struct zone variable
689 * The user only needs to declare the zone variable, for_each_zone
690 * fills it in.
692 #define for_each_zone(zone) \
693 for (zone = (first_online_pgdat())->node_zones; \
694 zone; \
695 zone = next_zone(zone))
697 #ifdef CONFIG_SPARSEMEM
698 #include <asm/sparsemem.h>
699 #endif
701 #if BITS_PER_LONG == 32
703 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
704 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
706 #define FLAGS_RESERVED 9
708 #elif BITS_PER_LONG == 64
710 * with 64 bit flags field, there's plenty of room.
712 #define FLAGS_RESERVED 32
714 #else
716 #error BITS_PER_LONG not defined
718 #endif
720 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
721 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
722 #define early_pfn_to_nid(nid) (0UL)
723 #endif
725 #ifdef CONFIG_FLATMEM
726 #define pfn_to_nid(pfn) (0)
727 #endif
729 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
730 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
732 #ifdef CONFIG_SPARSEMEM
735 * SECTION_SHIFT #bits space required to store a section #
737 * PA_SECTION_SHIFT physical address to/from section number
738 * PFN_SECTION_SHIFT pfn to/from section number
740 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
742 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
743 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
745 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
747 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
748 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
750 #define SECTION_BLOCKFLAGS_BITS \
751 ((SECTION_SIZE_BITS - (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS)
753 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
754 #error Allocator MAX_ORDER exceeds SECTION_SIZE
755 #endif
757 struct page;
758 struct mem_section {
760 * This is, logically, a pointer to an array of struct
761 * pages. However, it is stored with some other magic.
762 * (see sparse.c::sparse_init_one_section())
764 * Additionally during early boot we encode node id of
765 * the location of the section here to guide allocation.
766 * (see sparse.c::memory_present())
768 * Making it a UL at least makes someone do a cast
769 * before using it wrong.
771 unsigned long section_mem_map;
772 DECLARE_BITMAP(pageblock_flags, SECTION_BLOCKFLAGS_BITS);
775 #ifdef CONFIG_SPARSEMEM_EXTREME
776 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
777 #else
778 #define SECTIONS_PER_ROOT 1
779 #endif
781 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
782 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
783 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
785 #ifdef CONFIG_SPARSEMEM_EXTREME
786 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
787 #else
788 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
789 #endif
791 static inline struct mem_section *__nr_to_section(unsigned long nr)
793 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
794 return NULL;
795 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
797 extern int __section_nr(struct mem_section* ms);
800 * We use the lower bits of the mem_map pointer to store
801 * a little bit of information. There should be at least
802 * 3 bits here due to 32-bit alignment.
804 #define SECTION_MARKED_PRESENT (1UL<<0)
805 #define SECTION_HAS_MEM_MAP (1UL<<1)
806 #define SECTION_MAP_LAST_BIT (1UL<<2)
807 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
808 #define SECTION_NID_SHIFT 2
810 static inline struct page *__section_mem_map_addr(struct mem_section *section)
812 unsigned long map = section->section_mem_map;
813 map &= SECTION_MAP_MASK;
814 return (struct page *)map;
817 static inline int present_section(struct mem_section *section)
819 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
822 static inline int present_section_nr(unsigned long nr)
824 return present_section(__nr_to_section(nr));
827 static inline int valid_section(struct mem_section *section)
829 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
832 static inline int valid_section_nr(unsigned long nr)
834 return valid_section(__nr_to_section(nr));
837 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
839 return __nr_to_section(pfn_to_section_nr(pfn));
842 static inline int pfn_valid(unsigned long pfn)
844 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
845 return 0;
846 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
849 static inline int pfn_present(unsigned long pfn)
851 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
852 return 0;
853 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
857 * These are _only_ used during initialisation, therefore they
858 * can use __initdata ... They could have names to indicate
859 * this restriction.
861 #ifdef CONFIG_NUMA
862 #define pfn_to_nid(pfn) \
863 ({ \
864 unsigned long __pfn_to_nid_pfn = (pfn); \
865 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
867 #else
868 #define pfn_to_nid(pfn) (0)
869 #endif
871 #define early_pfn_valid(pfn) pfn_valid(pfn)
872 void sparse_init(void);
873 #else
874 #define sparse_init() do {} while (0)
875 #define sparse_index_init(_sec, _nid) do {} while (0)
876 #endif /* CONFIG_SPARSEMEM */
878 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
879 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
880 #else
881 #define early_pfn_in_nid(pfn, nid) (1)
882 #endif
884 #ifndef early_pfn_valid
885 #define early_pfn_valid(pfn) (1)
886 #endif
888 void memory_present(int nid, unsigned long start, unsigned long end);
889 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
892 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
893 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
894 * pfn_valid_within() should be used in this case; we optimise this away
895 * when we have no holes within a MAX_ORDER_NR_PAGES block.
897 #ifdef CONFIG_HOLES_IN_ZONE
898 #define pfn_valid_within(pfn) pfn_valid(pfn)
899 #else
900 #define pfn_valid_within(pfn) (1)
901 #endif
903 #endif /* !__ASSEMBLY__ */
904 #endif /* __KERNEL__ */
905 #endif /* _LINUX_MMZONE_H */