page-allocator: warn if __GFP_NOFAIL is used for a large allocation
[linux-2.6/mini2440.git] / mm / page_alloc.c
blob61290ea721c8b778adb89c2e1af24a1f1a7154d3
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 #include <linux/kmemleak.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 #include "internal.h"
56 * Array of node states.
58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61 #ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 #ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 #endif
66 [N_CPU] = { { [0] = 1UL } },
67 #endif /* NUMA */
69 EXPORT_SYMBOL(node_states);
71 unsigned long totalram_pages __read_mostly;
72 unsigned long totalreserve_pages __read_mostly;
73 unsigned long highest_memmap_pfn __read_mostly;
74 int percpu_pagelist_fraction;
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly;
78 #endif
80 static void __free_pages_ok(struct page *page, unsigned int order);
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94 #ifdef CONFIG_ZONE_DMA
95 256,
96 #endif
97 #ifdef CONFIG_ZONE_DMA32
98 256,
99 #endif
100 #ifdef CONFIG_HIGHMEM
102 #endif
106 EXPORT_SYMBOL(totalram_pages);
108 static char * const zone_names[MAX_NR_ZONES] = {
109 #ifdef CONFIG_ZONE_DMA
110 "DMA",
111 #endif
112 #ifdef CONFIG_ZONE_DMA32
113 "DMA32",
114 #endif
115 "Normal",
116 #ifdef CONFIG_HIGHMEM
117 "HighMem",
118 #endif
119 "Movable",
122 int min_free_kbytes = 1024;
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 int nr_online_nodes __read_mostly = 1;
165 EXPORT_SYMBOL(nr_node_ids);
166 EXPORT_SYMBOL(nr_online_nodes);
167 #endif
169 int page_group_by_mobility_disabled __read_mostly;
171 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 if (unlikely(page_group_by_mobility_disabled))
175 migratetype = MIGRATE_UNMOVABLE;
177 set_pageblock_flags_group(page, (unsigned long)migratetype,
178 PB_migrate, PB_migrate_end);
181 #ifdef CONFIG_DEBUG_VM
182 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
184 int ret = 0;
185 unsigned seq;
186 unsigned long pfn = page_to_pfn(page);
188 do {
189 seq = zone_span_seqbegin(zone);
190 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
191 ret = 1;
192 else if (pfn < zone->zone_start_pfn)
193 ret = 1;
194 } while (zone_span_seqretry(zone, seq));
196 return ret;
199 static int page_is_consistent(struct zone *zone, struct page *page)
201 if (!pfn_valid_within(page_to_pfn(page)))
202 return 0;
203 if (zone != page_zone(page))
204 return 0;
206 return 1;
209 * Temporary debugging check for pages not lying within a given zone.
211 static int bad_range(struct zone *zone, struct page *page)
213 if (page_outside_zone_boundaries(zone, page))
214 return 1;
215 if (!page_is_consistent(zone, page))
216 return 1;
218 return 0;
220 #else
221 static inline int bad_range(struct zone *zone, struct page *page)
223 return 0;
225 #endif
227 static void bad_page(struct page *page)
229 static unsigned long resume;
230 static unsigned long nr_shown;
231 static unsigned long nr_unshown;
234 * Allow a burst of 60 reports, then keep quiet for that minute;
235 * or allow a steady drip of one report per second.
237 if (nr_shown == 60) {
238 if (time_before(jiffies, resume)) {
239 nr_unshown++;
240 goto out;
242 if (nr_unshown) {
243 printk(KERN_ALERT
244 "BUG: Bad page state: %lu messages suppressed\n",
245 nr_unshown);
246 nr_unshown = 0;
248 nr_shown = 0;
250 if (nr_shown++ == 0)
251 resume = jiffies + 60 * HZ;
253 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
254 current->comm, page_to_pfn(page));
255 printk(KERN_ALERT
256 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
257 page, (void *)page->flags, page_count(page),
258 page_mapcount(page), page->mapping, page->index);
260 dump_stack();
261 out:
262 /* Leave bad fields for debug, except PageBuddy could make trouble */
263 __ClearPageBuddy(page);
264 add_taint(TAINT_BAD_PAGE);
268 * Higher-order pages are called "compound pages". They are structured thusly:
270 * The first PAGE_SIZE page is called the "head page".
272 * The remaining PAGE_SIZE pages are called "tail pages".
274 * All pages have PG_compound set. All pages have their ->private pointing at
275 * the head page (even the head page has this).
277 * The first tail page's ->lru.next holds the address of the compound page's
278 * put_page() function. Its ->lru.prev holds the order of allocation.
279 * This usage means that zero-order pages may not be compound.
282 static void free_compound_page(struct page *page)
284 __free_pages_ok(page, compound_order(page));
287 void prep_compound_page(struct page *page, unsigned long order)
289 int i;
290 int nr_pages = 1 << order;
292 set_compound_page_dtor(page, free_compound_page);
293 set_compound_order(page, order);
294 __SetPageHead(page);
295 for (i = 1; i < nr_pages; i++) {
296 struct page *p = page + i;
298 __SetPageTail(p);
299 p->first_page = page;
303 static int destroy_compound_page(struct page *page, unsigned long order)
305 int i;
306 int nr_pages = 1 << order;
307 int bad = 0;
309 if (unlikely(compound_order(page) != order) ||
310 unlikely(!PageHead(page))) {
311 bad_page(page);
312 bad++;
315 __ClearPageHead(page);
317 for (i = 1; i < nr_pages; i++) {
318 struct page *p = page + i;
320 if (unlikely(!PageTail(p) || (p->first_page != page))) {
321 bad_page(page);
322 bad++;
324 __ClearPageTail(p);
327 return bad;
330 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
332 int i;
335 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
336 * and __GFP_HIGHMEM from hard or soft interrupt context.
338 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
339 for (i = 0; i < (1 << order); i++)
340 clear_highpage(page + i);
343 static inline void set_page_order(struct page *page, int order)
345 set_page_private(page, order);
346 __SetPageBuddy(page);
349 static inline void rmv_page_order(struct page *page)
351 __ClearPageBuddy(page);
352 set_page_private(page, 0);
356 * Locate the struct page for both the matching buddy in our
357 * pair (buddy1) and the combined O(n+1) page they form (page).
359 * 1) Any buddy B1 will have an order O twin B2 which satisfies
360 * the following equation:
361 * B2 = B1 ^ (1 << O)
362 * For example, if the starting buddy (buddy2) is #8 its order
363 * 1 buddy is #10:
364 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
366 * 2) Any buddy B will have an order O+1 parent P which
367 * satisfies the following equation:
368 * P = B & ~(1 << O)
370 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
372 static inline struct page *
373 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
375 unsigned long buddy_idx = page_idx ^ (1 << order);
377 return page + (buddy_idx - page_idx);
380 static inline unsigned long
381 __find_combined_index(unsigned long page_idx, unsigned int order)
383 return (page_idx & ~(1 << order));
387 * This function checks whether a page is free && is the buddy
388 * we can do coalesce a page and its buddy if
389 * (a) the buddy is not in a hole &&
390 * (b) the buddy is in the buddy system &&
391 * (c) a page and its buddy have the same order &&
392 * (d) a page and its buddy are in the same zone.
394 * For recording whether a page is in the buddy system, we use PG_buddy.
395 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
397 * For recording page's order, we use page_private(page).
399 static inline int page_is_buddy(struct page *page, struct page *buddy,
400 int order)
402 if (!pfn_valid_within(page_to_pfn(buddy)))
403 return 0;
405 if (page_zone_id(page) != page_zone_id(buddy))
406 return 0;
408 if (PageBuddy(buddy) && page_order(buddy) == order) {
409 VM_BUG_ON(page_count(buddy) != 0);
410 return 1;
412 return 0;
416 * Freeing function for a buddy system allocator.
418 * The concept of a buddy system is to maintain direct-mapped table
419 * (containing bit values) for memory blocks of various "orders".
420 * The bottom level table contains the map for the smallest allocatable
421 * units of memory (here, pages), and each level above it describes
422 * pairs of units from the levels below, hence, "buddies".
423 * At a high level, all that happens here is marking the table entry
424 * at the bottom level available, and propagating the changes upward
425 * as necessary, plus some accounting needed to play nicely with other
426 * parts of the VM system.
427 * At each level, we keep a list of pages, which are heads of continuous
428 * free pages of length of (1 << order) and marked with PG_buddy. Page's
429 * order is recorded in page_private(page) field.
430 * So when we are allocating or freeing one, we can derive the state of the
431 * other. That is, if we allocate a small block, and both were
432 * free, the remainder of the region must be split into blocks.
433 * If a block is freed, and its buddy is also free, then this
434 * triggers coalescing into a block of larger size.
436 * -- wli
439 static inline void __free_one_page(struct page *page,
440 struct zone *zone, unsigned int order,
441 int migratetype)
443 unsigned long page_idx;
445 if (unlikely(PageCompound(page)))
446 if (unlikely(destroy_compound_page(page, order)))
447 return;
449 VM_BUG_ON(migratetype == -1);
451 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
453 VM_BUG_ON(page_idx & ((1 << order) - 1));
454 VM_BUG_ON(bad_range(zone, page));
456 while (order < MAX_ORDER-1) {
457 unsigned long combined_idx;
458 struct page *buddy;
460 buddy = __page_find_buddy(page, page_idx, order);
461 if (!page_is_buddy(page, buddy, order))
462 break;
464 /* Our buddy is free, merge with it and move up one order. */
465 list_del(&buddy->lru);
466 zone->free_area[order].nr_free--;
467 rmv_page_order(buddy);
468 combined_idx = __find_combined_index(page_idx, order);
469 page = page + (combined_idx - page_idx);
470 page_idx = combined_idx;
471 order++;
473 set_page_order(page, order);
474 list_add(&page->lru,
475 &zone->free_area[order].free_list[migratetype]);
476 zone->free_area[order].nr_free++;
479 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
481 * free_page_mlock() -- clean up attempts to free and mlocked() page.
482 * Page should not be on lru, so no need to fix that up.
483 * free_pages_check() will verify...
485 static inline void free_page_mlock(struct page *page)
487 __ClearPageMlocked(page);
488 __dec_zone_page_state(page, NR_MLOCK);
489 __count_vm_event(UNEVICTABLE_MLOCKFREED);
491 #else
492 static void free_page_mlock(struct page *page) { }
493 #endif
495 static inline int free_pages_check(struct page *page)
497 if (unlikely(page_mapcount(page) |
498 (page->mapping != NULL) |
499 (atomic_read(&page->_count) != 0) |
500 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
501 bad_page(page);
502 return 1;
504 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 return 0;
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
512 * count is the number of pages to free.
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
520 static void free_pages_bulk(struct zone *zone, int count,
521 struct list_head *list, int order)
523 spin_lock(&zone->lock);
524 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
525 zone->pages_scanned = 0;
527 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
528 while (count--) {
529 struct page *page;
531 VM_BUG_ON(list_empty(list));
532 page = list_entry(list->prev, struct page, lru);
533 /* have to delete it as __free_one_page list manipulates */
534 list_del(&page->lru);
535 __free_one_page(page, zone, order, page_private(page));
537 spin_unlock(&zone->lock);
540 static void free_one_page(struct zone *zone, struct page *page, int order,
541 int migratetype)
543 spin_lock(&zone->lock);
544 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
545 zone->pages_scanned = 0;
547 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
548 __free_one_page(page, zone, order, migratetype);
549 spin_unlock(&zone->lock);
552 static void __free_pages_ok(struct page *page, unsigned int order)
554 unsigned long flags;
555 int i;
556 int bad = 0;
557 int clearMlocked = PageMlocked(page);
559 for (i = 0 ; i < (1 << order) ; ++i)
560 bad += free_pages_check(page + i);
561 if (bad)
562 return;
564 if (!PageHighMem(page)) {
565 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
566 debug_check_no_obj_freed(page_address(page),
567 PAGE_SIZE << order);
569 arch_free_page(page, order);
570 kernel_map_pages(page, 1 << order, 0);
572 local_irq_save(flags);
573 if (unlikely(clearMlocked))
574 free_page_mlock(page);
575 __count_vm_events(PGFREE, 1 << order);
576 free_one_page(page_zone(page), page, order,
577 get_pageblock_migratetype(page));
578 local_irq_restore(flags);
582 * permit the bootmem allocator to evade page validation on high-order frees
584 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
586 if (order == 0) {
587 __ClearPageReserved(page);
588 set_page_count(page, 0);
589 set_page_refcounted(page);
590 __free_page(page);
591 } else {
592 int loop;
594 prefetchw(page);
595 for (loop = 0; loop < BITS_PER_LONG; loop++) {
596 struct page *p = &page[loop];
598 if (loop + 1 < BITS_PER_LONG)
599 prefetchw(p + 1);
600 __ClearPageReserved(p);
601 set_page_count(p, 0);
604 set_page_refcounted(page);
605 __free_pages(page, order);
611 * The order of subdivision here is critical for the IO subsystem.
612 * Please do not alter this order without good reasons and regression
613 * testing. Specifically, as large blocks of memory are subdivided,
614 * the order in which smaller blocks are delivered depends on the order
615 * they're subdivided in this function. This is the primary factor
616 * influencing the order in which pages are delivered to the IO
617 * subsystem according to empirical testing, and this is also justified
618 * by considering the behavior of a buddy system containing a single
619 * large block of memory acted on by a series of small allocations.
620 * This behavior is a critical factor in sglist merging's success.
622 * -- wli
624 static inline void expand(struct zone *zone, struct page *page,
625 int low, int high, struct free_area *area,
626 int migratetype)
628 unsigned long size = 1 << high;
630 while (high > low) {
631 area--;
632 high--;
633 size >>= 1;
634 VM_BUG_ON(bad_range(zone, &page[size]));
635 list_add(&page[size].lru, &area->free_list[migratetype]);
636 area->nr_free++;
637 set_page_order(&page[size], high);
642 * This page is about to be returned from the page allocator
644 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
646 if (unlikely(page_mapcount(page) |
647 (page->mapping != NULL) |
648 (atomic_read(&page->_count) != 0) |
649 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
650 bad_page(page);
651 return 1;
654 set_page_private(page, 0);
655 set_page_refcounted(page);
657 arch_alloc_page(page, order);
658 kernel_map_pages(page, 1 << order, 1);
660 if (gfp_flags & __GFP_ZERO)
661 prep_zero_page(page, order, gfp_flags);
663 if (order && (gfp_flags & __GFP_COMP))
664 prep_compound_page(page, order);
666 return 0;
670 * Go through the free lists for the given migratetype and remove
671 * the smallest available page from the freelists
673 static inline
674 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
675 int migratetype)
677 unsigned int current_order;
678 struct free_area * area;
679 struct page *page;
681 /* Find a page of the appropriate size in the preferred list */
682 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
683 area = &(zone->free_area[current_order]);
684 if (list_empty(&area->free_list[migratetype]))
685 continue;
687 page = list_entry(area->free_list[migratetype].next,
688 struct page, lru);
689 list_del(&page->lru);
690 rmv_page_order(page);
691 area->nr_free--;
692 expand(zone, page, order, current_order, area, migratetype);
693 return page;
696 return NULL;
701 * This array describes the order lists are fallen back to when
702 * the free lists for the desirable migrate type are depleted
704 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
705 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
706 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
707 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
708 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
712 * Move the free pages in a range to the free lists of the requested type.
713 * Note that start_page and end_pages are not aligned on a pageblock
714 * boundary. If alignment is required, use move_freepages_block()
716 static int move_freepages(struct zone *zone,
717 struct page *start_page, struct page *end_page,
718 int migratetype)
720 struct page *page;
721 unsigned long order;
722 int pages_moved = 0;
724 #ifndef CONFIG_HOLES_IN_ZONE
726 * page_zone is not safe to call in this context when
727 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
728 * anyway as we check zone boundaries in move_freepages_block().
729 * Remove at a later date when no bug reports exist related to
730 * grouping pages by mobility
732 BUG_ON(page_zone(start_page) != page_zone(end_page));
733 #endif
735 for (page = start_page; page <= end_page;) {
736 /* Make sure we are not inadvertently changing nodes */
737 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
739 if (!pfn_valid_within(page_to_pfn(page))) {
740 page++;
741 continue;
744 if (!PageBuddy(page)) {
745 page++;
746 continue;
749 order = page_order(page);
750 list_del(&page->lru);
751 list_add(&page->lru,
752 &zone->free_area[order].free_list[migratetype]);
753 page += 1 << order;
754 pages_moved += 1 << order;
757 return pages_moved;
760 static int move_freepages_block(struct zone *zone, struct page *page,
761 int migratetype)
763 unsigned long start_pfn, end_pfn;
764 struct page *start_page, *end_page;
766 start_pfn = page_to_pfn(page);
767 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
768 start_page = pfn_to_page(start_pfn);
769 end_page = start_page + pageblock_nr_pages - 1;
770 end_pfn = start_pfn + pageblock_nr_pages - 1;
772 /* Do not cross zone boundaries */
773 if (start_pfn < zone->zone_start_pfn)
774 start_page = page;
775 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
776 return 0;
778 return move_freepages(zone, start_page, end_page, migratetype);
781 /* Remove an element from the buddy allocator from the fallback list */
782 static inline struct page *
783 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
785 struct free_area * area;
786 int current_order;
787 struct page *page;
788 int migratetype, i;
790 /* Find the largest possible block of pages in the other list */
791 for (current_order = MAX_ORDER-1; current_order >= order;
792 --current_order) {
793 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
794 migratetype = fallbacks[start_migratetype][i];
796 /* MIGRATE_RESERVE handled later if necessary */
797 if (migratetype == MIGRATE_RESERVE)
798 continue;
800 area = &(zone->free_area[current_order]);
801 if (list_empty(&area->free_list[migratetype]))
802 continue;
804 page = list_entry(area->free_list[migratetype].next,
805 struct page, lru);
806 area->nr_free--;
809 * If breaking a large block of pages, move all free
810 * pages to the preferred allocation list. If falling
811 * back for a reclaimable kernel allocation, be more
812 * agressive about taking ownership of free pages
814 if (unlikely(current_order >= (pageblock_order >> 1)) ||
815 start_migratetype == MIGRATE_RECLAIMABLE) {
816 unsigned long pages;
817 pages = move_freepages_block(zone, page,
818 start_migratetype);
820 /* Claim the whole block if over half of it is free */
821 if (pages >= (1 << (pageblock_order-1)))
822 set_pageblock_migratetype(page,
823 start_migratetype);
825 migratetype = start_migratetype;
828 /* Remove the page from the freelists */
829 list_del(&page->lru);
830 rmv_page_order(page);
832 if (current_order == pageblock_order)
833 set_pageblock_migratetype(page,
834 start_migratetype);
836 expand(zone, page, order, current_order, area, migratetype);
837 return page;
841 return NULL;
845 * Do the hard work of removing an element from the buddy allocator.
846 * Call me with the zone->lock already held.
848 static struct page *__rmqueue(struct zone *zone, unsigned int order,
849 int migratetype)
851 struct page *page;
853 retry_reserve:
854 page = __rmqueue_smallest(zone, order, migratetype);
856 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
857 page = __rmqueue_fallback(zone, order, migratetype);
860 * Use MIGRATE_RESERVE rather than fail an allocation. goto
861 * is used because __rmqueue_smallest is an inline function
862 * and we want just one call site
864 if (!page) {
865 migratetype = MIGRATE_RESERVE;
866 goto retry_reserve;
870 return page;
874 * Obtain a specified number of elements from the buddy allocator, all under
875 * a single hold of the lock, for efficiency. Add them to the supplied list.
876 * Returns the number of new pages which were placed at *list.
878 static int rmqueue_bulk(struct zone *zone, unsigned int order,
879 unsigned long count, struct list_head *list,
880 int migratetype)
882 int i;
884 spin_lock(&zone->lock);
885 for (i = 0; i < count; ++i) {
886 struct page *page = __rmqueue(zone, order, migratetype);
887 if (unlikely(page == NULL))
888 break;
891 * Split buddy pages returned by expand() are received here
892 * in physical page order. The page is added to the callers and
893 * list and the list head then moves forward. From the callers
894 * perspective, the linked list is ordered by page number in
895 * some conditions. This is useful for IO devices that can
896 * merge IO requests if the physical pages are ordered
897 * properly.
899 list_add(&page->lru, list);
900 set_page_private(page, migratetype);
901 list = &page->lru;
903 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
904 spin_unlock(&zone->lock);
905 return i;
908 #ifdef CONFIG_NUMA
910 * Called from the vmstat counter updater to drain pagesets of this
911 * currently executing processor on remote nodes after they have
912 * expired.
914 * Note that this function must be called with the thread pinned to
915 * a single processor.
917 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
919 unsigned long flags;
920 int to_drain;
922 local_irq_save(flags);
923 if (pcp->count >= pcp->batch)
924 to_drain = pcp->batch;
925 else
926 to_drain = pcp->count;
927 free_pages_bulk(zone, to_drain, &pcp->list, 0);
928 pcp->count -= to_drain;
929 local_irq_restore(flags);
931 #endif
934 * Drain pages of the indicated processor.
936 * The processor must either be the current processor and the
937 * thread pinned to the current processor or a processor that
938 * is not online.
940 static void drain_pages(unsigned int cpu)
942 unsigned long flags;
943 struct zone *zone;
945 for_each_populated_zone(zone) {
946 struct per_cpu_pageset *pset;
947 struct per_cpu_pages *pcp;
949 pset = zone_pcp(zone, cpu);
951 pcp = &pset->pcp;
952 local_irq_save(flags);
953 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
954 pcp->count = 0;
955 local_irq_restore(flags);
960 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
962 void drain_local_pages(void *arg)
964 drain_pages(smp_processor_id());
968 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
970 void drain_all_pages(void)
972 on_each_cpu(drain_local_pages, NULL, 1);
975 #ifdef CONFIG_HIBERNATION
977 void mark_free_pages(struct zone *zone)
979 unsigned long pfn, max_zone_pfn;
980 unsigned long flags;
981 int order, t;
982 struct list_head *curr;
984 if (!zone->spanned_pages)
985 return;
987 spin_lock_irqsave(&zone->lock, flags);
989 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
990 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
991 if (pfn_valid(pfn)) {
992 struct page *page = pfn_to_page(pfn);
994 if (!swsusp_page_is_forbidden(page))
995 swsusp_unset_page_free(page);
998 for_each_migratetype_order(order, t) {
999 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1000 unsigned long i;
1002 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1003 for (i = 0; i < (1UL << order); i++)
1004 swsusp_set_page_free(pfn_to_page(pfn + i));
1007 spin_unlock_irqrestore(&zone->lock, flags);
1009 #endif /* CONFIG_PM */
1012 * Free a 0-order page
1014 static void free_hot_cold_page(struct page *page, int cold)
1016 struct zone *zone = page_zone(page);
1017 struct per_cpu_pages *pcp;
1018 unsigned long flags;
1019 int clearMlocked = PageMlocked(page);
1021 if (PageAnon(page))
1022 page->mapping = NULL;
1023 if (free_pages_check(page))
1024 return;
1026 if (!PageHighMem(page)) {
1027 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1028 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1030 arch_free_page(page, 0);
1031 kernel_map_pages(page, 1, 0);
1033 pcp = &zone_pcp(zone, get_cpu())->pcp;
1034 set_page_private(page, get_pageblock_migratetype(page));
1035 local_irq_save(flags);
1036 if (unlikely(clearMlocked))
1037 free_page_mlock(page);
1038 __count_vm_event(PGFREE);
1040 if (cold)
1041 list_add_tail(&page->lru, &pcp->list);
1042 else
1043 list_add(&page->lru, &pcp->list);
1044 pcp->count++;
1045 if (pcp->count >= pcp->high) {
1046 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1047 pcp->count -= pcp->batch;
1049 local_irq_restore(flags);
1050 put_cpu();
1053 void free_hot_page(struct page *page)
1055 free_hot_cold_page(page, 0);
1058 void free_cold_page(struct page *page)
1060 free_hot_cold_page(page, 1);
1064 * split_page takes a non-compound higher-order page, and splits it into
1065 * n (1<<order) sub-pages: page[0..n]
1066 * Each sub-page must be freed individually.
1068 * Note: this is probably too low level an operation for use in drivers.
1069 * Please consult with lkml before using this in your driver.
1071 void split_page(struct page *page, unsigned int order)
1073 int i;
1075 VM_BUG_ON(PageCompound(page));
1076 VM_BUG_ON(!page_count(page));
1077 for (i = 1; i < (1 << order); i++)
1078 set_page_refcounted(page + i);
1082 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1083 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1084 * or two.
1086 static inline
1087 struct page *buffered_rmqueue(struct zone *preferred_zone,
1088 struct zone *zone, int order, gfp_t gfp_flags,
1089 int migratetype)
1091 unsigned long flags;
1092 struct page *page;
1093 int cold = !!(gfp_flags & __GFP_COLD);
1094 int cpu;
1096 again:
1097 cpu = get_cpu();
1098 if (likely(order == 0)) {
1099 struct per_cpu_pages *pcp;
1101 pcp = &zone_pcp(zone, cpu)->pcp;
1102 local_irq_save(flags);
1103 if (!pcp->count) {
1104 pcp->count = rmqueue_bulk(zone, 0,
1105 pcp->batch, &pcp->list, migratetype);
1106 if (unlikely(!pcp->count))
1107 goto failed;
1110 /* Find a page of the appropriate migrate type */
1111 if (cold) {
1112 list_for_each_entry_reverse(page, &pcp->list, lru)
1113 if (page_private(page) == migratetype)
1114 break;
1115 } else {
1116 list_for_each_entry(page, &pcp->list, lru)
1117 if (page_private(page) == migratetype)
1118 break;
1121 /* Allocate more to the pcp list if necessary */
1122 if (unlikely(&page->lru == &pcp->list)) {
1123 pcp->count += rmqueue_bulk(zone, 0,
1124 pcp->batch, &pcp->list, migratetype);
1125 page = list_entry(pcp->list.next, struct page, lru);
1128 list_del(&page->lru);
1129 pcp->count--;
1130 } else {
1131 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1133 * __GFP_NOFAIL is not to be used in new code.
1135 * All __GFP_NOFAIL callers should be fixed so that they
1136 * properly detect and handle allocation failures.
1138 * We most definitely don't want callers attempting to
1139 * allocate greater than single-page units with
1140 * __GFP_NOFAIL.
1142 WARN_ON_ONCE(order > 0);
1144 spin_lock_irqsave(&zone->lock, flags);
1145 page = __rmqueue(zone, order, migratetype);
1146 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1147 spin_unlock(&zone->lock);
1148 if (!page)
1149 goto failed;
1152 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1153 zone_statistics(preferred_zone, zone);
1154 local_irq_restore(flags);
1155 put_cpu();
1157 VM_BUG_ON(bad_range(zone, page));
1158 if (prep_new_page(page, order, gfp_flags))
1159 goto again;
1160 return page;
1162 failed:
1163 local_irq_restore(flags);
1164 put_cpu();
1165 return NULL;
1168 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1169 #define ALLOC_WMARK_MIN WMARK_MIN
1170 #define ALLOC_WMARK_LOW WMARK_LOW
1171 #define ALLOC_WMARK_HIGH WMARK_HIGH
1172 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1174 /* Mask to get the watermark bits */
1175 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1177 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1178 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1179 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1181 #ifdef CONFIG_FAIL_PAGE_ALLOC
1183 static struct fail_page_alloc_attr {
1184 struct fault_attr attr;
1186 u32 ignore_gfp_highmem;
1187 u32 ignore_gfp_wait;
1188 u32 min_order;
1190 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1192 struct dentry *ignore_gfp_highmem_file;
1193 struct dentry *ignore_gfp_wait_file;
1194 struct dentry *min_order_file;
1196 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1198 } fail_page_alloc = {
1199 .attr = FAULT_ATTR_INITIALIZER,
1200 .ignore_gfp_wait = 1,
1201 .ignore_gfp_highmem = 1,
1202 .min_order = 1,
1205 static int __init setup_fail_page_alloc(char *str)
1207 return setup_fault_attr(&fail_page_alloc.attr, str);
1209 __setup("fail_page_alloc=", setup_fail_page_alloc);
1211 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1213 if (order < fail_page_alloc.min_order)
1214 return 0;
1215 if (gfp_mask & __GFP_NOFAIL)
1216 return 0;
1217 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1218 return 0;
1219 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1220 return 0;
1222 return should_fail(&fail_page_alloc.attr, 1 << order);
1225 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1227 static int __init fail_page_alloc_debugfs(void)
1229 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1230 struct dentry *dir;
1231 int err;
1233 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1234 "fail_page_alloc");
1235 if (err)
1236 return err;
1237 dir = fail_page_alloc.attr.dentries.dir;
1239 fail_page_alloc.ignore_gfp_wait_file =
1240 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1241 &fail_page_alloc.ignore_gfp_wait);
1243 fail_page_alloc.ignore_gfp_highmem_file =
1244 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1245 &fail_page_alloc.ignore_gfp_highmem);
1246 fail_page_alloc.min_order_file =
1247 debugfs_create_u32("min-order", mode, dir,
1248 &fail_page_alloc.min_order);
1250 if (!fail_page_alloc.ignore_gfp_wait_file ||
1251 !fail_page_alloc.ignore_gfp_highmem_file ||
1252 !fail_page_alloc.min_order_file) {
1253 err = -ENOMEM;
1254 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1255 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1256 debugfs_remove(fail_page_alloc.min_order_file);
1257 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1260 return err;
1263 late_initcall(fail_page_alloc_debugfs);
1265 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1267 #else /* CONFIG_FAIL_PAGE_ALLOC */
1269 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1271 return 0;
1274 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1277 * Return 1 if free pages are above 'mark'. This takes into account the order
1278 * of the allocation.
1280 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1281 int classzone_idx, int alloc_flags)
1283 /* free_pages my go negative - that's OK */
1284 long min = mark;
1285 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1286 int o;
1288 if (alloc_flags & ALLOC_HIGH)
1289 min -= min / 2;
1290 if (alloc_flags & ALLOC_HARDER)
1291 min -= min / 4;
1293 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1294 return 0;
1295 for (o = 0; o < order; o++) {
1296 /* At the next order, this order's pages become unavailable */
1297 free_pages -= z->free_area[o].nr_free << o;
1299 /* Require fewer higher order pages to be free */
1300 min >>= 1;
1302 if (free_pages <= min)
1303 return 0;
1305 return 1;
1308 #ifdef CONFIG_NUMA
1310 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1311 * skip over zones that are not allowed by the cpuset, or that have
1312 * been recently (in last second) found to be nearly full. See further
1313 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1314 * that have to skip over a lot of full or unallowed zones.
1316 * If the zonelist cache is present in the passed in zonelist, then
1317 * returns a pointer to the allowed node mask (either the current
1318 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1320 * If the zonelist cache is not available for this zonelist, does
1321 * nothing and returns NULL.
1323 * If the fullzones BITMAP in the zonelist cache is stale (more than
1324 * a second since last zap'd) then we zap it out (clear its bits.)
1326 * We hold off even calling zlc_setup, until after we've checked the
1327 * first zone in the zonelist, on the theory that most allocations will
1328 * be satisfied from that first zone, so best to examine that zone as
1329 * quickly as we can.
1331 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1333 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1334 nodemask_t *allowednodes; /* zonelist_cache approximation */
1336 zlc = zonelist->zlcache_ptr;
1337 if (!zlc)
1338 return NULL;
1340 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1341 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1342 zlc->last_full_zap = jiffies;
1345 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1346 &cpuset_current_mems_allowed :
1347 &node_states[N_HIGH_MEMORY];
1348 return allowednodes;
1352 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1353 * if it is worth looking at further for free memory:
1354 * 1) Check that the zone isn't thought to be full (doesn't have its
1355 * bit set in the zonelist_cache fullzones BITMAP).
1356 * 2) Check that the zones node (obtained from the zonelist_cache
1357 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1358 * Return true (non-zero) if zone is worth looking at further, or
1359 * else return false (zero) if it is not.
1361 * This check -ignores- the distinction between various watermarks,
1362 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1363 * found to be full for any variation of these watermarks, it will
1364 * be considered full for up to one second by all requests, unless
1365 * we are so low on memory on all allowed nodes that we are forced
1366 * into the second scan of the zonelist.
1368 * In the second scan we ignore this zonelist cache and exactly
1369 * apply the watermarks to all zones, even it is slower to do so.
1370 * We are low on memory in the second scan, and should leave no stone
1371 * unturned looking for a free page.
1373 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1374 nodemask_t *allowednodes)
1376 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1377 int i; /* index of *z in zonelist zones */
1378 int n; /* node that zone *z is on */
1380 zlc = zonelist->zlcache_ptr;
1381 if (!zlc)
1382 return 1;
1384 i = z - zonelist->_zonerefs;
1385 n = zlc->z_to_n[i];
1387 /* This zone is worth trying if it is allowed but not full */
1388 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1392 * Given 'z' scanning a zonelist, set the corresponding bit in
1393 * zlc->fullzones, so that subsequent attempts to allocate a page
1394 * from that zone don't waste time re-examining it.
1396 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1398 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1399 int i; /* index of *z in zonelist zones */
1401 zlc = zonelist->zlcache_ptr;
1402 if (!zlc)
1403 return;
1405 i = z - zonelist->_zonerefs;
1407 set_bit(i, zlc->fullzones);
1410 #else /* CONFIG_NUMA */
1412 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1414 return NULL;
1417 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1418 nodemask_t *allowednodes)
1420 return 1;
1423 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1426 #endif /* CONFIG_NUMA */
1429 * get_page_from_freelist goes through the zonelist trying to allocate
1430 * a page.
1432 static struct page *
1433 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1434 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1435 struct zone *preferred_zone, int migratetype)
1437 struct zoneref *z;
1438 struct page *page = NULL;
1439 int classzone_idx;
1440 struct zone *zone;
1441 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1442 int zlc_active = 0; /* set if using zonelist_cache */
1443 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1445 classzone_idx = zone_idx(preferred_zone);
1446 zonelist_scan:
1448 * Scan zonelist, looking for a zone with enough free.
1449 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1451 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1452 high_zoneidx, nodemask) {
1453 if (NUMA_BUILD && zlc_active &&
1454 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1455 continue;
1456 if ((alloc_flags & ALLOC_CPUSET) &&
1457 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1458 goto try_next_zone;
1460 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1461 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1462 unsigned long mark;
1463 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1464 if (!zone_watermark_ok(zone, order, mark,
1465 classzone_idx, alloc_flags)) {
1466 if (!zone_reclaim_mode ||
1467 !zone_reclaim(zone, gfp_mask, order))
1468 goto this_zone_full;
1472 page = buffered_rmqueue(preferred_zone, zone, order,
1473 gfp_mask, migratetype);
1474 if (page)
1475 break;
1476 this_zone_full:
1477 if (NUMA_BUILD)
1478 zlc_mark_zone_full(zonelist, z);
1479 try_next_zone:
1480 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1482 * we do zlc_setup after the first zone is tried but only
1483 * if there are multiple nodes make it worthwhile
1485 allowednodes = zlc_setup(zonelist, alloc_flags);
1486 zlc_active = 1;
1487 did_zlc_setup = 1;
1491 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1492 /* Disable zlc cache for second zonelist scan */
1493 zlc_active = 0;
1494 goto zonelist_scan;
1496 return page;
1499 static inline int
1500 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1501 unsigned long pages_reclaimed)
1503 /* Do not loop if specifically requested */
1504 if (gfp_mask & __GFP_NORETRY)
1505 return 0;
1508 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1509 * means __GFP_NOFAIL, but that may not be true in other
1510 * implementations.
1512 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1513 return 1;
1516 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1517 * specified, then we retry until we no longer reclaim any pages
1518 * (above), or we've reclaimed an order of pages at least as
1519 * large as the allocation's order. In both cases, if the
1520 * allocation still fails, we stop retrying.
1522 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1523 return 1;
1526 * Don't let big-order allocations loop unless the caller
1527 * explicitly requests that.
1529 if (gfp_mask & __GFP_NOFAIL)
1530 return 1;
1532 return 0;
1535 static inline struct page *
1536 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1537 struct zonelist *zonelist, enum zone_type high_zoneidx,
1538 nodemask_t *nodemask, struct zone *preferred_zone,
1539 int migratetype)
1541 struct page *page;
1543 /* Acquire the OOM killer lock for the zones in zonelist */
1544 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1545 schedule_timeout_uninterruptible(1);
1546 return NULL;
1550 * Go through the zonelist yet one more time, keep very high watermark
1551 * here, this is only to catch a parallel oom killing, we must fail if
1552 * we're still under heavy pressure.
1554 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1555 order, zonelist, high_zoneidx,
1556 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1557 preferred_zone, migratetype);
1558 if (page)
1559 goto out;
1561 /* The OOM killer will not help higher order allocs */
1562 if (order > PAGE_ALLOC_COSTLY_ORDER)
1563 goto out;
1565 /* Exhausted what can be done so it's blamo time */
1566 out_of_memory(zonelist, gfp_mask, order);
1568 out:
1569 clear_zonelist_oom(zonelist, gfp_mask);
1570 return page;
1573 /* The really slow allocator path where we enter direct reclaim */
1574 static inline struct page *
1575 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1576 struct zonelist *zonelist, enum zone_type high_zoneidx,
1577 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1578 int migratetype, unsigned long *did_some_progress)
1580 struct page *page = NULL;
1581 struct reclaim_state reclaim_state;
1582 struct task_struct *p = current;
1584 cond_resched();
1586 /* We now go into synchronous reclaim */
1587 cpuset_memory_pressure_bump();
1590 * The task's cpuset might have expanded its set of allowable nodes
1592 p->flags |= PF_MEMALLOC;
1593 lockdep_set_current_reclaim_state(gfp_mask);
1594 reclaim_state.reclaimed_slab = 0;
1595 p->reclaim_state = &reclaim_state;
1597 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1599 p->reclaim_state = NULL;
1600 lockdep_clear_current_reclaim_state();
1601 p->flags &= ~PF_MEMALLOC;
1603 cond_resched();
1605 if (order != 0)
1606 drain_all_pages();
1608 if (likely(*did_some_progress))
1609 page = get_page_from_freelist(gfp_mask, nodemask, order,
1610 zonelist, high_zoneidx,
1611 alloc_flags, preferred_zone,
1612 migratetype);
1613 return page;
1617 * This is called in the allocator slow-path if the allocation request is of
1618 * sufficient urgency to ignore watermarks and take other desperate measures
1620 static inline struct page *
1621 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1622 struct zonelist *zonelist, enum zone_type high_zoneidx,
1623 nodemask_t *nodemask, struct zone *preferred_zone,
1624 int migratetype)
1626 struct page *page;
1628 do {
1629 page = get_page_from_freelist(gfp_mask, nodemask, order,
1630 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1631 preferred_zone, migratetype);
1633 if (!page && gfp_mask & __GFP_NOFAIL)
1634 congestion_wait(WRITE, HZ/50);
1635 } while (!page && (gfp_mask & __GFP_NOFAIL));
1637 return page;
1640 static inline
1641 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1642 enum zone_type high_zoneidx)
1644 struct zoneref *z;
1645 struct zone *zone;
1647 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1648 wakeup_kswapd(zone, order);
1651 static inline int
1652 gfp_to_alloc_flags(gfp_t gfp_mask)
1654 struct task_struct *p = current;
1655 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1656 const gfp_t wait = gfp_mask & __GFP_WAIT;
1658 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1659 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1662 * The caller may dip into page reserves a bit more if the caller
1663 * cannot run direct reclaim, or if the caller has realtime scheduling
1664 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1665 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1667 alloc_flags |= (gfp_mask & __GFP_HIGH);
1669 if (!wait) {
1670 alloc_flags |= ALLOC_HARDER;
1672 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1673 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1675 alloc_flags &= ~ALLOC_CPUSET;
1676 } else if (unlikely(rt_task(p)))
1677 alloc_flags |= ALLOC_HARDER;
1679 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1680 if (!in_interrupt() &&
1681 ((p->flags & PF_MEMALLOC) ||
1682 unlikely(test_thread_flag(TIF_MEMDIE))))
1683 alloc_flags |= ALLOC_NO_WATERMARKS;
1686 return alloc_flags;
1689 static inline struct page *
1690 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1691 struct zonelist *zonelist, enum zone_type high_zoneidx,
1692 nodemask_t *nodemask, struct zone *preferred_zone,
1693 int migratetype)
1695 const gfp_t wait = gfp_mask & __GFP_WAIT;
1696 struct page *page = NULL;
1697 int alloc_flags;
1698 unsigned long pages_reclaimed = 0;
1699 unsigned long did_some_progress;
1700 struct task_struct *p = current;
1703 * In the slowpath, we sanity check order to avoid ever trying to
1704 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1705 * be using allocators in order of preference for an area that is
1706 * too large.
1708 if (WARN_ON_ONCE(order >= MAX_ORDER))
1709 return NULL;
1712 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1713 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1714 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1715 * using a larger set of nodes after it has established that the
1716 * allowed per node queues are empty and that nodes are
1717 * over allocated.
1719 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1720 goto nopage;
1722 wake_all_kswapd(order, zonelist, high_zoneidx);
1725 * OK, we're below the kswapd watermark and have kicked background
1726 * reclaim. Now things get more complex, so set up alloc_flags according
1727 * to how we want to proceed.
1729 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1731 restart:
1732 /* This is the last chance, in general, before the goto nopage. */
1733 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1734 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1735 preferred_zone, migratetype);
1736 if (page)
1737 goto got_pg;
1739 rebalance:
1740 /* Allocate without watermarks if the context allows */
1741 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1742 page = __alloc_pages_high_priority(gfp_mask, order,
1743 zonelist, high_zoneidx, nodemask,
1744 preferred_zone, migratetype);
1745 if (page)
1746 goto got_pg;
1749 /* Atomic allocations - we can't balance anything */
1750 if (!wait)
1751 goto nopage;
1753 /* Avoid recursion of direct reclaim */
1754 if (p->flags & PF_MEMALLOC)
1755 goto nopage;
1757 /* Try direct reclaim and then allocating */
1758 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1759 zonelist, high_zoneidx,
1760 nodemask,
1761 alloc_flags, preferred_zone,
1762 migratetype, &did_some_progress);
1763 if (page)
1764 goto got_pg;
1767 * If we failed to make any progress reclaiming, then we are
1768 * running out of options and have to consider going OOM
1770 if (!did_some_progress) {
1771 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1772 page = __alloc_pages_may_oom(gfp_mask, order,
1773 zonelist, high_zoneidx,
1774 nodemask, preferred_zone,
1775 migratetype);
1776 if (page)
1777 goto got_pg;
1780 * The OOM killer does not trigger for high-order allocations
1781 * but if no progress is being made, there are no other
1782 * options and retrying is unlikely to help
1784 if (order > PAGE_ALLOC_COSTLY_ORDER)
1785 goto nopage;
1787 goto restart;
1791 /* Check if we should retry the allocation */
1792 pages_reclaimed += did_some_progress;
1793 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1794 /* Wait for some write requests to complete then retry */
1795 congestion_wait(WRITE, HZ/50);
1796 goto rebalance;
1799 nopage:
1800 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1801 printk(KERN_WARNING "%s: page allocation failure."
1802 " order:%d, mode:0x%x\n",
1803 p->comm, order, gfp_mask);
1804 dump_stack();
1805 show_mem();
1807 got_pg:
1808 return page;
1813 * This is the 'heart' of the zoned buddy allocator.
1815 struct page *
1816 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1817 struct zonelist *zonelist, nodemask_t *nodemask)
1819 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1820 struct zone *preferred_zone;
1821 struct page *page;
1822 int migratetype = allocflags_to_migratetype(gfp_mask);
1824 lockdep_trace_alloc(gfp_mask);
1826 might_sleep_if(gfp_mask & __GFP_WAIT);
1828 if (should_fail_alloc_page(gfp_mask, order))
1829 return NULL;
1832 * Check the zones suitable for the gfp_mask contain at least one
1833 * valid zone. It's possible to have an empty zonelist as a result
1834 * of GFP_THISNODE and a memoryless node
1836 if (unlikely(!zonelist->_zonerefs->zone))
1837 return NULL;
1839 /* The preferred zone is used for statistics later */
1840 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1841 if (!preferred_zone)
1842 return NULL;
1844 /* First allocation attempt */
1845 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1846 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1847 preferred_zone, migratetype);
1848 if (unlikely(!page))
1849 page = __alloc_pages_slowpath(gfp_mask, order,
1850 zonelist, high_zoneidx, nodemask,
1851 preferred_zone, migratetype);
1853 return page;
1855 EXPORT_SYMBOL(__alloc_pages_nodemask);
1858 * Common helper functions.
1860 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1862 struct page * page;
1863 page = alloc_pages(gfp_mask, order);
1864 if (!page)
1865 return 0;
1866 return (unsigned long) page_address(page);
1869 EXPORT_SYMBOL(__get_free_pages);
1871 unsigned long get_zeroed_page(gfp_t gfp_mask)
1873 struct page * page;
1876 * get_zeroed_page() returns a 32-bit address, which cannot represent
1877 * a highmem page
1879 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1881 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1882 if (page)
1883 return (unsigned long) page_address(page);
1884 return 0;
1887 EXPORT_SYMBOL(get_zeroed_page);
1889 void __pagevec_free(struct pagevec *pvec)
1891 int i = pagevec_count(pvec);
1893 while (--i >= 0)
1894 free_hot_cold_page(pvec->pages[i], pvec->cold);
1897 void __free_pages(struct page *page, unsigned int order)
1899 if (put_page_testzero(page)) {
1900 if (order == 0)
1901 free_hot_page(page);
1902 else
1903 __free_pages_ok(page, order);
1907 EXPORT_SYMBOL(__free_pages);
1909 void free_pages(unsigned long addr, unsigned int order)
1911 if (addr != 0) {
1912 VM_BUG_ON(!virt_addr_valid((void *)addr));
1913 __free_pages(virt_to_page((void *)addr), order);
1917 EXPORT_SYMBOL(free_pages);
1920 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1921 * @size: the number of bytes to allocate
1922 * @gfp_mask: GFP flags for the allocation
1924 * This function is similar to alloc_pages(), except that it allocates the
1925 * minimum number of pages to satisfy the request. alloc_pages() can only
1926 * allocate memory in power-of-two pages.
1928 * This function is also limited by MAX_ORDER.
1930 * Memory allocated by this function must be released by free_pages_exact().
1932 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1934 unsigned int order = get_order(size);
1935 unsigned long addr;
1937 addr = __get_free_pages(gfp_mask, order);
1938 if (addr) {
1939 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1940 unsigned long used = addr + PAGE_ALIGN(size);
1942 split_page(virt_to_page(addr), order);
1943 while (used < alloc_end) {
1944 free_page(used);
1945 used += PAGE_SIZE;
1949 return (void *)addr;
1951 EXPORT_SYMBOL(alloc_pages_exact);
1954 * free_pages_exact - release memory allocated via alloc_pages_exact()
1955 * @virt: the value returned by alloc_pages_exact.
1956 * @size: size of allocation, same value as passed to alloc_pages_exact().
1958 * Release the memory allocated by a previous call to alloc_pages_exact.
1960 void free_pages_exact(void *virt, size_t size)
1962 unsigned long addr = (unsigned long)virt;
1963 unsigned long end = addr + PAGE_ALIGN(size);
1965 while (addr < end) {
1966 free_page(addr);
1967 addr += PAGE_SIZE;
1970 EXPORT_SYMBOL(free_pages_exact);
1972 static unsigned int nr_free_zone_pages(int offset)
1974 struct zoneref *z;
1975 struct zone *zone;
1977 /* Just pick one node, since fallback list is circular */
1978 unsigned int sum = 0;
1980 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1982 for_each_zone_zonelist(zone, z, zonelist, offset) {
1983 unsigned long size = zone->present_pages;
1984 unsigned long high = high_wmark_pages(zone);
1985 if (size > high)
1986 sum += size - high;
1989 return sum;
1993 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1995 unsigned int nr_free_buffer_pages(void)
1997 return nr_free_zone_pages(gfp_zone(GFP_USER));
1999 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2002 * Amount of free RAM allocatable within all zones
2004 unsigned int nr_free_pagecache_pages(void)
2006 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2009 static inline void show_node(struct zone *zone)
2011 if (NUMA_BUILD)
2012 printk("Node %d ", zone_to_nid(zone));
2015 void si_meminfo(struct sysinfo *val)
2017 val->totalram = totalram_pages;
2018 val->sharedram = 0;
2019 val->freeram = global_page_state(NR_FREE_PAGES);
2020 val->bufferram = nr_blockdev_pages();
2021 val->totalhigh = totalhigh_pages;
2022 val->freehigh = nr_free_highpages();
2023 val->mem_unit = PAGE_SIZE;
2026 EXPORT_SYMBOL(si_meminfo);
2028 #ifdef CONFIG_NUMA
2029 void si_meminfo_node(struct sysinfo *val, int nid)
2031 pg_data_t *pgdat = NODE_DATA(nid);
2033 val->totalram = pgdat->node_present_pages;
2034 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2035 #ifdef CONFIG_HIGHMEM
2036 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2037 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2038 NR_FREE_PAGES);
2039 #else
2040 val->totalhigh = 0;
2041 val->freehigh = 0;
2042 #endif
2043 val->mem_unit = PAGE_SIZE;
2045 #endif
2047 #define K(x) ((x) << (PAGE_SHIFT-10))
2050 * Show free area list (used inside shift_scroll-lock stuff)
2051 * We also calculate the percentage fragmentation. We do this by counting the
2052 * memory on each free list with the exception of the first item on the list.
2054 void show_free_areas(void)
2056 int cpu;
2057 struct zone *zone;
2059 for_each_populated_zone(zone) {
2060 show_node(zone);
2061 printk("%s per-cpu:\n", zone->name);
2063 for_each_online_cpu(cpu) {
2064 struct per_cpu_pageset *pageset;
2066 pageset = zone_pcp(zone, cpu);
2068 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2069 cpu, pageset->pcp.high,
2070 pageset->pcp.batch, pageset->pcp.count);
2074 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2075 " inactive_file:%lu"
2076 //TODO: check/adjust line lengths
2077 #ifdef CONFIG_UNEVICTABLE_LRU
2078 " unevictable:%lu"
2079 #endif
2080 " dirty:%lu writeback:%lu unstable:%lu\n"
2081 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2082 global_page_state(NR_ACTIVE_ANON),
2083 global_page_state(NR_ACTIVE_FILE),
2084 global_page_state(NR_INACTIVE_ANON),
2085 global_page_state(NR_INACTIVE_FILE),
2086 #ifdef CONFIG_UNEVICTABLE_LRU
2087 global_page_state(NR_UNEVICTABLE),
2088 #endif
2089 global_page_state(NR_FILE_DIRTY),
2090 global_page_state(NR_WRITEBACK),
2091 global_page_state(NR_UNSTABLE_NFS),
2092 global_page_state(NR_FREE_PAGES),
2093 global_page_state(NR_SLAB_RECLAIMABLE) +
2094 global_page_state(NR_SLAB_UNRECLAIMABLE),
2095 global_page_state(NR_FILE_MAPPED),
2096 global_page_state(NR_PAGETABLE),
2097 global_page_state(NR_BOUNCE));
2099 for_each_populated_zone(zone) {
2100 int i;
2102 show_node(zone);
2103 printk("%s"
2104 " free:%lukB"
2105 " min:%lukB"
2106 " low:%lukB"
2107 " high:%lukB"
2108 " active_anon:%lukB"
2109 " inactive_anon:%lukB"
2110 " active_file:%lukB"
2111 " inactive_file:%lukB"
2112 #ifdef CONFIG_UNEVICTABLE_LRU
2113 " unevictable:%lukB"
2114 #endif
2115 " present:%lukB"
2116 " pages_scanned:%lu"
2117 " all_unreclaimable? %s"
2118 "\n",
2119 zone->name,
2120 K(zone_page_state(zone, NR_FREE_PAGES)),
2121 K(min_wmark_pages(zone)),
2122 K(low_wmark_pages(zone)),
2123 K(high_wmark_pages(zone)),
2124 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2125 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2126 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2127 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2128 #ifdef CONFIG_UNEVICTABLE_LRU
2129 K(zone_page_state(zone, NR_UNEVICTABLE)),
2130 #endif
2131 K(zone->present_pages),
2132 zone->pages_scanned,
2133 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2135 printk("lowmem_reserve[]:");
2136 for (i = 0; i < MAX_NR_ZONES; i++)
2137 printk(" %lu", zone->lowmem_reserve[i]);
2138 printk("\n");
2141 for_each_populated_zone(zone) {
2142 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2144 show_node(zone);
2145 printk("%s: ", zone->name);
2147 spin_lock_irqsave(&zone->lock, flags);
2148 for (order = 0; order < MAX_ORDER; order++) {
2149 nr[order] = zone->free_area[order].nr_free;
2150 total += nr[order] << order;
2152 spin_unlock_irqrestore(&zone->lock, flags);
2153 for (order = 0; order < MAX_ORDER; order++)
2154 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2155 printk("= %lukB\n", K(total));
2158 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2160 show_swap_cache_info();
2163 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2165 zoneref->zone = zone;
2166 zoneref->zone_idx = zone_idx(zone);
2170 * Builds allocation fallback zone lists.
2172 * Add all populated zones of a node to the zonelist.
2174 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2175 int nr_zones, enum zone_type zone_type)
2177 struct zone *zone;
2179 BUG_ON(zone_type >= MAX_NR_ZONES);
2180 zone_type++;
2182 do {
2183 zone_type--;
2184 zone = pgdat->node_zones + zone_type;
2185 if (populated_zone(zone)) {
2186 zoneref_set_zone(zone,
2187 &zonelist->_zonerefs[nr_zones++]);
2188 check_highest_zone(zone_type);
2191 } while (zone_type);
2192 return nr_zones;
2197 * zonelist_order:
2198 * 0 = automatic detection of better ordering.
2199 * 1 = order by ([node] distance, -zonetype)
2200 * 2 = order by (-zonetype, [node] distance)
2202 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2203 * the same zonelist. So only NUMA can configure this param.
2205 #define ZONELIST_ORDER_DEFAULT 0
2206 #define ZONELIST_ORDER_NODE 1
2207 #define ZONELIST_ORDER_ZONE 2
2209 /* zonelist order in the kernel.
2210 * set_zonelist_order() will set this to NODE or ZONE.
2212 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2213 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2216 #ifdef CONFIG_NUMA
2217 /* The value user specified ....changed by config */
2218 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2219 /* string for sysctl */
2220 #define NUMA_ZONELIST_ORDER_LEN 16
2221 char numa_zonelist_order[16] = "default";
2224 * interface for configure zonelist ordering.
2225 * command line option "numa_zonelist_order"
2226 * = "[dD]efault - default, automatic configuration.
2227 * = "[nN]ode - order by node locality, then by zone within node
2228 * = "[zZ]one - order by zone, then by locality within zone
2231 static int __parse_numa_zonelist_order(char *s)
2233 if (*s == 'd' || *s == 'D') {
2234 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2235 } else if (*s == 'n' || *s == 'N') {
2236 user_zonelist_order = ZONELIST_ORDER_NODE;
2237 } else if (*s == 'z' || *s == 'Z') {
2238 user_zonelist_order = ZONELIST_ORDER_ZONE;
2239 } else {
2240 printk(KERN_WARNING
2241 "Ignoring invalid numa_zonelist_order value: "
2242 "%s\n", s);
2243 return -EINVAL;
2245 return 0;
2248 static __init int setup_numa_zonelist_order(char *s)
2250 if (s)
2251 return __parse_numa_zonelist_order(s);
2252 return 0;
2254 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2257 * sysctl handler for numa_zonelist_order
2259 int numa_zonelist_order_handler(ctl_table *table, int write,
2260 struct file *file, void __user *buffer, size_t *length,
2261 loff_t *ppos)
2263 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2264 int ret;
2266 if (write)
2267 strncpy(saved_string, (char*)table->data,
2268 NUMA_ZONELIST_ORDER_LEN);
2269 ret = proc_dostring(table, write, file, buffer, length, ppos);
2270 if (ret)
2271 return ret;
2272 if (write) {
2273 int oldval = user_zonelist_order;
2274 if (__parse_numa_zonelist_order((char*)table->data)) {
2276 * bogus value. restore saved string
2278 strncpy((char*)table->data, saved_string,
2279 NUMA_ZONELIST_ORDER_LEN);
2280 user_zonelist_order = oldval;
2281 } else if (oldval != user_zonelist_order)
2282 build_all_zonelists();
2284 return 0;
2288 #define MAX_NODE_LOAD (nr_online_nodes)
2289 static int node_load[MAX_NUMNODES];
2292 * find_next_best_node - find the next node that should appear in a given node's fallback list
2293 * @node: node whose fallback list we're appending
2294 * @used_node_mask: nodemask_t of already used nodes
2296 * We use a number of factors to determine which is the next node that should
2297 * appear on a given node's fallback list. The node should not have appeared
2298 * already in @node's fallback list, and it should be the next closest node
2299 * according to the distance array (which contains arbitrary distance values
2300 * from each node to each node in the system), and should also prefer nodes
2301 * with no CPUs, since presumably they'll have very little allocation pressure
2302 * on them otherwise.
2303 * It returns -1 if no node is found.
2305 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2307 int n, val;
2308 int min_val = INT_MAX;
2309 int best_node = -1;
2310 const struct cpumask *tmp = cpumask_of_node(0);
2312 /* Use the local node if we haven't already */
2313 if (!node_isset(node, *used_node_mask)) {
2314 node_set(node, *used_node_mask);
2315 return node;
2318 for_each_node_state(n, N_HIGH_MEMORY) {
2320 /* Don't want a node to appear more than once */
2321 if (node_isset(n, *used_node_mask))
2322 continue;
2324 /* Use the distance array to find the distance */
2325 val = node_distance(node, n);
2327 /* Penalize nodes under us ("prefer the next node") */
2328 val += (n < node);
2330 /* Give preference to headless and unused nodes */
2331 tmp = cpumask_of_node(n);
2332 if (!cpumask_empty(tmp))
2333 val += PENALTY_FOR_NODE_WITH_CPUS;
2335 /* Slight preference for less loaded node */
2336 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2337 val += node_load[n];
2339 if (val < min_val) {
2340 min_val = val;
2341 best_node = n;
2345 if (best_node >= 0)
2346 node_set(best_node, *used_node_mask);
2348 return best_node;
2353 * Build zonelists ordered by node and zones within node.
2354 * This results in maximum locality--normal zone overflows into local
2355 * DMA zone, if any--but risks exhausting DMA zone.
2357 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2359 int j;
2360 struct zonelist *zonelist;
2362 zonelist = &pgdat->node_zonelists[0];
2363 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2365 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2366 MAX_NR_ZONES - 1);
2367 zonelist->_zonerefs[j].zone = NULL;
2368 zonelist->_zonerefs[j].zone_idx = 0;
2372 * Build gfp_thisnode zonelists
2374 static void build_thisnode_zonelists(pg_data_t *pgdat)
2376 int j;
2377 struct zonelist *zonelist;
2379 zonelist = &pgdat->node_zonelists[1];
2380 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2381 zonelist->_zonerefs[j].zone = NULL;
2382 zonelist->_zonerefs[j].zone_idx = 0;
2386 * Build zonelists ordered by zone and nodes within zones.
2387 * This results in conserving DMA zone[s] until all Normal memory is
2388 * exhausted, but results in overflowing to remote node while memory
2389 * may still exist in local DMA zone.
2391 static int node_order[MAX_NUMNODES];
2393 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2395 int pos, j, node;
2396 int zone_type; /* needs to be signed */
2397 struct zone *z;
2398 struct zonelist *zonelist;
2400 zonelist = &pgdat->node_zonelists[0];
2401 pos = 0;
2402 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2403 for (j = 0; j < nr_nodes; j++) {
2404 node = node_order[j];
2405 z = &NODE_DATA(node)->node_zones[zone_type];
2406 if (populated_zone(z)) {
2407 zoneref_set_zone(z,
2408 &zonelist->_zonerefs[pos++]);
2409 check_highest_zone(zone_type);
2413 zonelist->_zonerefs[pos].zone = NULL;
2414 zonelist->_zonerefs[pos].zone_idx = 0;
2417 static int default_zonelist_order(void)
2419 int nid, zone_type;
2420 unsigned long low_kmem_size,total_size;
2421 struct zone *z;
2422 int average_size;
2424 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2425 * If they are really small and used heavily, the system can fall
2426 * into OOM very easily.
2427 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2429 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2430 low_kmem_size = 0;
2431 total_size = 0;
2432 for_each_online_node(nid) {
2433 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2434 z = &NODE_DATA(nid)->node_zones[zone_type];
2435 if (populated_zone(z)) {
2436 if (zone_type < ZONE_NORMAL)
2437 low_kmem_size += z->present_pages;
2438 total_size += z->present_pages;
2442 if (!low_kmem_size || /* there are no DMA area. */
2443 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2444 return ZONELIST_ORDER_NODE;
2446 * look into each node's config.
2447 * If there is a node whose DMA/DMA32 memory is very big area on
2448 * local memory, NODE_ORDER may be suitable.
2450 average_size = total_size /
2451 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2452 for_each_online_node(nid) {
2453 low_kmem_size = 0;
2454 total_size = 0;
2455 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2456 z = &NODE_DATA(nid)->node_zones[zone_type];
2457 if (populated_zone(z)) {
2458 if (zone_type < ZONE_NORMAL)
2459 low_kmem_size += z->present_pages;
2460 total_size += z->present_pages;
2463 if (low_kmem_size &&
2464 total_size > average_size && /* ignore small node */
2465 low_kmem_size > total_size * 70/100)
2466 return ZONELIST_ORDER_NODE;
2468 return ZONELIST_ORDER_ZONE;
2471 static void set_zonelist_order(void)
2473 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2474 current_zonelist_order = default_zonelist_order();
2475 else
2476 current_zonelist_order = user_zonelist_order;
2479 static void build_zonelists(pg_data_t *pgdat)
2481 int j, node, load;
2482 enum zone_type i;
2483 nodemask_t used_mask;
2484 int local_node, prev_node;
2485 struct zonelist *zonelist;
2486 int order = current_zonelist_order;
2488 /* initialize zonelists */
2489 for (i = 0; i < MAX_ZONELISTS; i++) {
2490 zonelist = pgdat->node_zonelists + i;
2491 zonelist->_zonerefs[0].zone = NULL;
2492 zonelist->_zonerefs[0].zone_idx = 0;
2495 /* NUMA-aware ordering of nodes */
2496 local_node = pgdat->node_id;
2497 load = nr_online_nodes;
2498 prev_node = local_node;
2499 nodes_clear(used_mask);
2501 memset(node_load, 0, sizeof(node_load));
2502 memset(node_order, 0, sizeof(node_order));
2503 j = 0;
2505 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2506 int distance = node_distance(local_node, node);
2509 * If another node is sufficiently far away then it is better
2510 * to reclaim pages in a zone before going off node.
2512 if (distance > RECLAIM_DISTANCE)
2513 zone_reclaim_mode = 1;
2516 * We don't want to pressure a particular node.
2517 * So adding penalty to the first node in same
2518 * distance group to make it round-robin.
2520 if (distance != node_distance(local_node, prev_node))
2521 node_load[node] = load;
2523 prev_node = node;
2524 load--;
2525 if (order == ZONELIST_ORDER_NODE)
2526 build_zonelists_in_node_order(pgdat, node);
2527 else
2528 node_order[j++] = node; /* remember order */
2531 if (order == ZONELIST_ORDER_ZONE) {
2532 /* calculate node order -- i.e., DMA last! */
2533 build_zonelists_in_zone_order(pgdat, j);
2536 build_thisnode_zonelists(pgdat);
2539 /* Construct the zonelist performance cache - see further mmzone.h */
2540 static void build_zonelist_cache(pg_data_t *pgdat)
2542 struct zonelist *zonelist;
2543 struct zonelist_cache *zlc;
2544 struct zoneref *z;
2546 zonelist = &pgdat->node_zonelists[0];
2547 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2548 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2549 for (z = zonelist->_zonerefs; z->zone; z++)
2550 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2554 #else /* CONFIG_NUMA */
2556 static void set_zonelist_order(void)
2558 current_zonelist_order = ZONELIST_ORDER_ZONE;
2561 static void build_zonelists(pg_data_t *pgdat)
2563 int node, local_node;
2564 enum zone_type j;
2565 struct zonelist *zonelist;
2567 local_node = pgdat->node_id;
2569 zonelist = &pgdat->node_zonelists[0];
2570 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2573 * Now we build the zonelist so that it contains the zones
2574 * of all the other nodes.
2575 * We don't want to pressure a particular node, so when
2576 * building the zones for node N, we make sure that the
2577 * zones coming right after the local ones are those from
2578 * node N+1 (modulo N)
2580 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2581 if (!node_online(node))
2582 continue;
2583 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2584 MAX_NR_ZONES - 1);
2586 for (node = 0; node < local_node; node++) {
2587 if (!node_online(node))
2588 continue;
2589 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2590 MAX_NR_ZONES - 1);
2593 zonelist->_zonerefs[j].zone = NULL;
2594 zonelist->_zonerefs[j].zone_idx = 0;
2597 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2598 static void build_zonelist_cache(pg_data_t *pgdat)
2600 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2603 #endif /* CONFIG_NUMA */
2605 /* return values int ....just for stop_machine() */
2606 static int __build_all_zonelists(void *dummy)
2608 int nid;
2610 for_each_online_node(nid) {
2611 pg_data_t *pgdat = NODE_DATA(nid);
2613 build_zonelists(pgdat);
2614 build_zonelist_cache(pgdat);
2616 return 0;
2619 void build_all_zonelists(void)
2621 set_zonelist_order();
2623 if (system_state == SYSTEM_BOOTING) {
2624 __build_all_zonelists(NULL);
2625 mminit_verify_zonelist();
2626 cpuset_init_current_mems_allowed();
2627 } else {
2628 /* we have to stop all cpus to guarantee there is no user
2629 of zonelist */
2630 stop_machine(__build_all_zonelists, NULL, NULL);
2631 /* cpuset refresh routine should be here */
2633 vm_total_pages = nr_free_pagecache_pages();
2635 * Disable grouping by mobility if the number of pages in the
2636 * system is too low to allow the mechanism to work. It would be
2637 * more accurate, but expensive to check per-zone. This check is
2638 * made on memory-hotadd so a system can start with mobility
2639 * disabled and enable it later
2641 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2642 page_group_by_mobility_disabled = 1;
2643 else
2644 page_group_by_mobility_disabled = 0;
2646 printk("Built %i zonelists in %s order, mobility grouping %s. "
2647 "Total pages: %ld\n",
2648 nr_online_nodes,
2649 zonelist_order_name[current_zonelist_order],
2650 page_group_by_mobility_disabled ? "off" : "on",
2651 vm_total_pages);
2652 #ifdef CONFIG_NUMA
2653 printk("Policy zone: %s\n", zone_names[policy_zone]);
2654 #endif
2658 * Helper functions to size the waitqueue hash table.
2659 * Essentially these want to choose hash table sizes sufficiently
2660 * large so that collisions trying to wait on pages are rare.
2661 * But in fact, the number of active page waitqueues on typical
2662 * systems is ridiculously low, less than 200. So this is even
2663 * conservative, even though it seems large.
2665 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2666 * waitqueues, i.e. the size of the waitq table given the number of pages.
2668 #define PAGES_PER_WAITQUEUE 256
2670 #ifndef CONFIG_MEMORY_HOTPLUG
2671 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2673 unsigned long size = 1;
2675 pages /= PAGES_PER_WAITQUEUE;
2677 while (size < pages)
2678 size <<= 1;
2681 * Once we have dozens or even hundreds of threads sleeping
2682 * on IO we've got bigger problems than wait queue collision.
2683 * Limit the size of the wait table to a reasonable size.
2685 size = min(size, 4096UL);
2687 return max(size, 4UL);
2689 #else
2691 * A zone's size might be changed by hot-add, so it is not possible to determine
2692 * a suitable size for its wait_table. So we use the maximum size now.
2694 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2696 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2697 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2698 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2700 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2701 * or more by the traditional way. (See above). It equals:
2703 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2704 * ia64(16K page size) : = ( 8G + 4M)byte.
2705 * powerpc (64K page size) : = (32G +16M)byte.
2707 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2709 return 4096UL;
2711 #endif
2714 * This is an integer logarithm so that shifts can be used later
2715 * to extract the more random high bits from the multiplicative
2716 * hash function before the remainder is taken.
2718 static inline unsigned long wait_table_bits(unsigned long size)
2720 return ffz(~size);
2723 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2726 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2727 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2728 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2729 * higher will lead to a bigger reserve which will get freed as contiguous
2730 * blocks as reclaim kicks in
2732 static void setup_zone_migrate_reserve(struct zone *zone)
2734 unsigned long start_pfn, pfn, end_pfn;
2735 struct page *page;
2736 unsigned long reserve, block_migratetype;
2738 /* Get the start pfn, end pfn and the number of blocks to reserve */
2739 start_pfn = zone->zone_start_pfn;
2740 end_pfn = start_pfn + zone->spanned_pages;
2741 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2742 pageblock_order;
2744 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2745 if (!pfn_valid(pfn))
2746 continue;
2747 page = pfn_to_page(pfn);
2749 /* Watch out for overlapping nodes */
2750 if (page_to_nid(page) != zone_to_nid(zone))
2751 continue;
2753 /* Blocks with reserved pages will never free, skip them. */
2754 if (PageReserved(page))
2755 continue;
2757 block_migratetype = get_pageblock_migratetype(page);
2759 /* If this block is reserved, account for it */
2760 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2761 reserve--;
2762 continue;
2765 /* Suitable for reserving if this block is movable */
2766 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2767 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2768 move_freepages_block(zone, page, MIGRATE_RESERVE);
2769 reserve--;
2770 continue;
2774 * If the reserve is met and this is a previous reserved block,
2775 * take it back
2777 if (block_migratetype == MIGRATE_RESERVE) {
2778 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2779 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2785 * Initially all pages are reserved - free ones are freed
2786 * up by free_all_bootmem() once the early boot process is
2787 * done. Non-atomic initialization, single-pass.
2789 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2790 unsigned long start_pfn, enum memmap_context context)
2792 struct page *page;
2793 unsigned long end_pfn = start_pfn + size;
2794 unsigned long pfn;
2795 struct zone *z;
2797 if (highest_memmap_pfn < end_pfn - 1)
2798 highest_memmap_pfn = end_pfn - 1;
2800 z = &NODE_DATA(nid)->node_zones[zone];
2801 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2803 * There can be holes in boot-time mem_map[]s
2804 * handed to this function. They do not
2805 * exist on hotplugged memory.
2807 if (context == MEMMAP_EARLY) {
2808 if (!early_pfn_valid(pfn))
2809 continue;
2810 if (!early_pfn_in_nid(pfn, nid))
2811 continue;
2813 page = pfn_to_page(pfn);
2814 set_page_links(page, zone, nid, pfn);
2815 mminit_verify_page_links(page, zone, nid, pfn);
2816 init_page_count(page);
2817 reset_page_mapcount(page);
2818 SetPageReserved(page);
2820 * Mark the block movable so that blocks are reserved for
2821 * movable at startup. This will force kernel allocations
2822 * to reserve their blocks rather than leaking throughout
2823 * the address space during boot when many long-lived
2824 * kernel allocations are made. Later some blocks near
2825 * the start are marked MIGRATE_RESERVE by
2826 * setup_zone_migrate_reserve()
2828 * bitmap is created for zone's valid pfn range. but memmap
2829 * can be created for invalid pages (for alignment)
2830 * check here not to call set_pageblock_migratetype() against
2831 * pfn out of zone.
2833 if ((z->zone_start_pfn <= pfn)
2834 && (pfn < z->zone_start_pfn + z->spanned_pages)
2835 && !(pfn & (pageblock_nr_pages - 1)))
2836 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2838 INIT_LIST_HEAD(&page->lru);
2839 #ifdef WANT_PAGE_VIRTUAL
2840 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2841 if (!is_highmem_idx(zone))
2842 set_page_address(page, __va(pfn << PAGE_SHIFT));
2843 #endif
2847 static void __meminit zone_init_free_lists(struct zone *zone)
2849 int order, t;
2850 for_each_migratetype_order(order, t) {
2851 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2852 zone->free_area[order].nr_free = 0;
2856 #ifndef __HAVE_ARCH_MEMMAP_INIT
2857 #define memmap_init(size, nid, zone, start_pfn) \
2858 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2859 #endif
2861 static int zone_batchsize(struct zone *zone)
2863 #ifdef CONFIG_MMU
2864 int batch;
2867 * The per-cpu-pages pools are set to around 1000th of the
2868 * size of the zone. But no more than 1/2 of a meg.
2870 * OK, so we don't know how big the cache is. So guess.
2872 batch = zone->present_pages / 1024;
2873 if (batch * PAGE_SIZE > 512 * 1024)
2874 batch = (512 * 1024) / PAGE_SIZE;
2875 batch /= 4; /* We effectively *= 4 below */
2876 if (batch < 1)
2877 batch = 1;
2880 * Clamp the batch to a 2^n - 1 value. Having a power
2881 * of 2 value was found to be more likely to have
2882 * suboptimal cache aliasing properties in some cases.
2884 * For example if 2 tasks are alternately allocating
2885 * batches of pages, one task can end up with a lot
2886 * of pages of one half of the possible page colors
2887 * and the other with pages of the other colors.
2889 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2891 return batch;
2893 #else
2894 /* The deferral and batching of frees should be suppressed under NOMMU
2895 * conditions.
2897 * The problem is that NOMMU needs to be able to allocate large chunks
2898 * of contiguous memory as there's no hardware page translation to
2899 * assemble apparent contiguous memory from discontiguous pages.
2901 * Queueing large contiguous runs of pages for batching, however,
2902 * causes the pages to actually be freed in smaller chunks. As there
2903 * can be a significant delay between the individual batches being
2904 * recycled, this leads to the once large chunks of space being
2905 * fragmented and becoming unavailable for high-order allocations.
2907 return 0;
2908 #endif
2911 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2913 struct per_cpu_pages *pcp;
2915 memset(p, 0, sizeof(*p));
2917 pcp = &p->pcp;
2918 pcp->count = 0;
2919 pcp->high = 6 * batch;
2920 pcp->batch = max(1UL, 1 * batch);
2921 INIT_LIST_HEAD(&pcp->list);
2925 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2926 * to the value high for the pageset p.
2929 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2930 unsigned long high)
2932 struct per_cpu_pages *pcp;
2934 pcp = &p->pcp;
2935 pcp->high = high;
2936 pcp->batch = max(1UL, high/4);
2937 if ((high/4) > (PAGE_SHIFT * 8))
2938 pcp->batch = PAGE_SHIFT * 8;
2942 #ifdef CONFIG_NUMA
2944 * Boot pageset table. One per cpu which is going to be used for all
2945 * zones and all nodes. The parameters will be set in such a way
2946 * that an item put on a list will immediately be handed over to
2947 * the buddy list. This is safe since pageset manipulation is done
2948 * with interrupts disabled.
2950 * Some NUMA counter updates may also be caught by the boot pagesets.
2952 * The boot_pagesets must be kept even after bootup is complete for
2953 * unused processors and/or zones. They do play a role for bootstrapping
2954 * hotplugged processors.
2956 * zoneinfo_show() and maybe other functions do
2957 * not check if the processor is online before following the pageset pointer.
2958 * Other parts of the kernel may not check if the zone is available.
2960 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2963 * Dynamically allocate memory for the
2964 * per cpu pageset array in struct zone.
2966 static int __cpuinit process_zones(int cpu)
2968 struct zone *zone, *dzone;
2969 int node = cpu_to_node(cpu);
2971 node_set_state(node, N_CPU); /* this node has a cpu */
2973 for_each_populated_zone(zone) {
2974 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2975 GFP_KERNEL, node);
2976 if (!zone_pcp(zone, cpu))
2977 goto bad;
2979 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2981 if (percpu_pagelist_fraction)
2982 setup_pagelist_highmark(zone_pcp(zone, cpu),
2983 (zone->present_pages / percpu_pagelist_fraction));
2986 return 0;
2987 bad:
2988 for_each_zone(dzone) {
2989 if (!populated_zone(dzone))
2990 continue;
2991 if (dzone == zone)
2992 break;
2993 kfree(zone_pcp(dzone, cpu));
2994 zone_pcp(dzone, cpu) = NULL;
2996 return -ENOMEM;
2999 static inline void free_zone_pagesets(int cpu)
3001 struct zone *zone;
3003 for_each_zone(zone) {
3004 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3006 /* Free per_cpu_pageset if it is slab allocated */
3007 if (pset != &boot_pageset[cpu])
3008 kfree(pset);
3009 zone_pcp(zone, cpu) = NULL;
3013 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3014 unsigned long action,
3015 void *hcpu)
3017 int cpu = (long)hcpu;
3018 int ret = NOTIFY_OK;
3020 switch (action) {
3021 case CPU_UP_PREPARE:
3022 case CPU_UP_PREPARE_FROZEN:
3023 if (process_zones(cpu))
3024 ret = NOTIFY_BAD;
3025 break;
3026 case CPU_UP_CANCELED:
3027 case CPU_UP_CANCELED_FROZEN:
3028 case CPU_DEAD:
3029 case CPU_DEAD_FROZEN:
3030 free_zone_pagesets(cpu);
3031 break;
3032 default:
3033 break;
3035 return ret;
3038 static struct notifier_block __cpuinitdata pageset_notifier =
3039 { &pageset_cpuup_callback, NULL, 0 };
3041 void __init setup_per_cpu_pageset(void)
3043 int err;
3045 /* Initialize per_cpu_pageset for cpu 0.
3046 * A cpuup callback will do this for every cpu
3047 * as it comes online
3049 err = process_zones(smp_processor_id());
3050 BUG_ON(err);
3051 register_cpu_notifier(&pageset_notifier);
3054 #endif
3056 static noinline __init_refok
3057 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3059 int i;
3060 struct pglist_data *pgdat = zone->zone_pgdat;
3061 size_t alloc_size;
3064 * The per-page waitqueue mechanism uses hashed waitqueues
3065 * per zone.
3067 zone->wait_table_hash_nr_entries =
3068 wait_table_hash_nr_entries(zone_size_pages);
3069 zone->wait_table_bits =
3070 wait_table_bits(zone->wait_table_hash_nr_entries);
3071 alloc_size = zone->wait_table_hash_nr_entries
3072 * sizeof(wait_queue_head_t);
3074 if (!slab_is_available()) {
3075 zone->wait_table = (wait_queue_head_t *)
3076 alloc_bootmem_node(pgdat, alloc_size);
3077 } else {
3079 * This case means that a zone whose size was 0 gets new memory
3080 * via memory hot-add.
3081 * But it may be the case that a new node was hot-added. In
3082 * this case vmalloc() will not be able to use this new node's
3083 * memory - this wait_table must be initialized to use this new
3084 * node itself as well.
3085 * To use this new node's memory, further consideration will be
3086 * necessary.
3088 zone->wait_table = vmalloc(alloc_size);
3090 if (!zone->wait_table)
3091 return -ENOMEM;
3093 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3094 init_waitqueue_head(zone->wait_table + i);
3096 return 0;
3099 static __meminit void zone_pcp_init(struct zone *zone)
3101 int cpu;
3102 unsigned long batch = zone_batchsize(zone);
3104 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3105 #ifdef CONFIG_NUMA
3106 /* Early boot. Slab allocator not functional yet */
3107 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3108 setup_pageset(&boot_pageset[cpu],0);
3109 #else
3110 setup_pageset(zone_pcp(zone,cpu), batch);
3111 #endif
3113 if (zone->present_pages)
3114 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3115 zone->name, zone->present_pages, batch);
3118 __meminit int init_currently_empty_zone(struct zone *zone,
3119 unsigned long zone_start_pfn,
3120 unsigned long size,
3121 enum memmap_context context)
3123 struct pglist_data *pgdat = zone->zone_pgdat;
3124 int ret;
3125 ret = zone_wait_table_init(zone, size);
3126 if (ret)
3127 return ret;
3128 pgdat->nr_zones = zone_idx(zone) + 1;
3130 zone->zone_start_pfn = zone_start_pfn;
3132 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3133 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3134 pgdat->node_id,
3135 (unsigned long)zone_idx(zone),
3136 zone_start_pfn, (zone_start_pfn + size));
3138 zone_init_free_lists(zone);
3140 return 0;
3143 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3145 * Basic iterator support. Return the first range of PFNs for a node
3146 * Note: nid == MAX_NUMNODES returns first region regardless of node
3148 static int __meminit first_active_region_index_in_nid(int nid)
3150 int i;
3152 for (i = 0; i < nr_nodemap_entries; i++)
3153 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3154 return i;
3156 return -1;
3160 * Basic iterator support. Return the next active range of PFNs for a node
3161 * Note: nid == MAX_NUMNODES returns next region regardless of node
3163 static int __meminit next_active_region_index_in_nid(int index, int nid)
3165 for (index = index + 1; index < nr_nodemap_entries; index++)
3166 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3167 return index;
3169 return -1;
3172 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3174 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3175 * Architectures may implement their own version but if add_active_range()
3176 * was used and there are no special requirements, this is a convenient
3177 * alternative
3179 int __meminit __early_pfn_to_nid(unsigned long pfn)
3181 int i;
3183 for (i = 0; i < nr_nodemap_entries; i++) {
3184 unsigned long start_pfn = early_node_map[i].start_pfn;
3185 unsigned long end_pfn = early_node_map[i].end_pfn;
3187 if (start_pfn <= pfn && pfn < end_pfn)
3188 return early_node_map[i].nid;
3190 /* This is a memory hole */
3191 return -1;
3193 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3195 int __meminit early_pfn_to_nid(unsigned long pfn)
3197 int nid;
3199 nid = __early_pfn_to_nid(pfn);
3200 if (nid >= 0)
3201 return nid;
3202 /* just returns 0 */
3203 return 0;
3206 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3207 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3209 int nid;
3211 nid = __early_pfn_to_nid(pfn);
3212 if (nid >= 0 && nid != node)
3213 return false;
3214 return true;
3216 #endif
3218 /* Basic iterator support to walk early_node_map[] */
3219 #define for_each_active_range_index_in_nid(i, nid) \
3220 for (i = first_active_region_index_in_nid(nid); i != -1; \
3221 i = next_active_region_index_in_nid(i, nid))
3224 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3225 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3226 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3228 * If an architecture guarantees that all ranges registered with
3229 * add_active_ranges() contain no holes and may be freed, this
3230 * this function may be used instead of calling free_bootmem() manually.
3232 void __init free_bootmem_with_active_regions(int nid,
3233 unsigned long max_low_pfn)
3235 int i;
3237 for_each_active_range_index_in_nid(i, nid) {
3238 unsigned long size_pages = 0;
3239 unsigned long end_pfn = early_node_map[i].end_pfn;
3241 if (early_node_map[i].start_pfn >= max_low_pfn)
3242 continue;
3244 if (end_pfn > max_low_pfn)
3245 end_pfn = max_low_pfn;
3247 size_pages = end_pfn - early_node_map[i].start_pfn;
3248 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3249 PFN_PHYS(early_node_map[i].start_pfn),
3250 size_pages << PAGE_SHIFT);
3254 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3256 int i;
3257 int ret;
3259 for_each_active_range_index_in_nid(i, nid) {
3260 ret = work_fn(early_node_map[i].start_pfn,
3261 early_node_map[i].end_pfn, data);
3262 if (ret)
3263 break;
3267 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3268 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3270 * If an architecture guarantees that all ranges registered with
3271 * add_active_ranges() contain no holes and may be freed, this
3272 * function may be used instead of calling memory_present() manually.
3274 void __init sparse_memory_present_with_active_regions(int nid)
3276 int i;
3278 for_each_active_range_index_in_nid(i, nid)
3279 memory_present(early_node_map[i].nid,
3280 early_node_map[i].start_pfn,
3281 early_node_map[i].end_pfn);
3285 * get_pfn_range_for_nid - Return the start and end page frames for a node
3286 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3287 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3288 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3290 * It returns the start and end page frame of a node based on information
3291 * provided by an arch calling add_active_range(). If called for a node
3292 * with no available memory, a warning is printed and the start and end
3293 * PFNs will be 0.
3295 void __meminit get_pfn_range_for_nid(unsigned int nid,
3296 unsigned long *start_pfn, unsigned long *end_pfn)
3298 int i;
3299 *start_pfn = -1UL;
3300 *end_pfn = 0;
3302 for_each_active_range_index_in_nid(i, nid) {
3303 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3304 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3307 if (*start_pfn == -1UL)
3308 *start_pfn = 0;
3312 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3313 * assumption is made that zones within a node are ordered in monotonic
3314 * increasing memory addresses so that the "highest" populated zone is used
3316 static void __init find_usable_zone_for_movable(void)
3318 int zone_index;
3319 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3320 if (zone_index == ZONE_MOVABLE)
3321 continue;
3323 if (arch_zone_highest_possible_pfn[zone_index] >
3324 arch_zone_lowest_possible_pfn[zone_index])
3325 break;
3328 VM_BUG_ON(zone_index == -1);
3329 movable_zone = zone_index;
3333 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3334 * because it is sized independant of architecture. Unlike the other zones,
3335 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3336 * in each node depending on the size of each node and how evenly kernelcore
3337 * is distributed. This helper function adjusts the zone ranges
3338 * provided by the architecture for a given node by using the end of the
3339 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3340 * zones within a node are in order of monotonic increases memory addresses
3342 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3343 unsigned long zone_type,
3344 unsigned long node_start_pfn,
3345 unsigned long node_end_pfn,
3346 unsigned long *zone_start_pfn,
3347 unsigned long *zone_end_pfn)
3349 /* Only adjust if ZONE_MOVABLE is on this node */
3350 if (zone_movable_pfn[nid]) {
3351 /* Size ZONE_MOVABLE */
3352 if (zone_type == ZONE_MOVABLE) {
3353 *zone_start_pfn = zone_movable_pfn[nid];
3354 *zone_end_pfn = min(node_end_pfn,
3355 arch_zone_highest_possible_pfn[movable_zone]);
3357 /* Adjust for ZONE_MOVABLE starting within this range */
3358 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3359 *zone_end_pfn > zone_movable_pfn[nid]) {
3360 *zone_end_pfn = zone_movable_pfn[nid];
3362 /* Check if this whole range is within ZONE_MOVABLE */
3363 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3364 *zone_start_pfn = *zone_end_pfn;
3369 * Return the number of pages a zone spans in a node, including holes
3370 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3372 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3373 unsigned long zone_type,
3374 unsigned long *ignored)
3376 unsigned long node_start_pfn, node_end_pfn;
3377 unsigned long zone_start_pfn, zone_end_pfn;
3379 /* Get the start and end of the node and zone */
3380 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3381 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3382 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3383 adjust_zone_range_for_zone_movable(nid, zone_type,
3384 node_start_pfn, node_end_pfn,
3385 &zone_start_pfn, &zone_end_pfn);
3387 /* Check that this node has pages within the zone's required range */
3388 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3389 return 0;
3391 /* Move the zone boundaries inside the node if necessary */
3392 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3393 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3395 /* Return the spanned pages */
3396 return zone_end_pfn - zone_start_pfn;
3400 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3401 * then all holes in the requested range will be accounted for.
3403 static unsigned long __meminit __absent_pages_in_range(int nid,
3404 unsigned long range_start_pfn,
3405 unsigned long range_end_pfn)
3407 int i = 0;
3408 unsigned long prev_end_pfn = 0, hole_pages = 0;
3409 unsigned long start_pfn;
3411 /* Find the end_pfn of the first active range of pfns in the node */
3412 i = first_active_region_index_in_nid(nid);
3413 if (i == -1)
3414 return 0;
3416 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3418 /* Account for ranges before physical memory on this node */
3419 if (early_node_map[i].start_pfn > range_start_pfn)
3420 hole_pages = prev_end_pfn - range_start_pfn;
3422 /* Find all holes for the zone within the node */
3423 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3425 /* No need to continue if prev_end_pfn is outside the zone */
3426 if (prev_end_pfn >= range_end_pfn)
3427 break;
3429 /* Make sure the end of the zone is not within the hole */
3430 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3431 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3433 /* Update the hole size cound and move on */
3434 if (start_pfn > range_start_pfn) {
3435 BUG_ON(prev_end_pfn > start_pfn);
3436 hole_pages += start_pfn - prev_end_pfn;
3438 prev_end_pfn = early_node_map[i].end_pfn;
3441 /* Account for ranges past physical memory on this node */
3442 if (range_end_pfn > prev_end_pfn)
3443 hole_pages += range_end_pfn -
3444 max(range_start_pfn, prev_end_pfn);
3446 return hole_pages;
3450 * absent_pages_in_range - Return number of page frames in holes within a range
3451 * @start_pfn: The start PFN to start searching for holes
3452 * @end_pfn: The end PFN to stop searching for holes
3454 * It returns the number of pages frames in memory holes within a range.
3456 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3457 unsigned long end_pfn)
3459 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3462 /* Return the number of page frames in holes in a zone on a node */
3463 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3464 unsigned long zone_type,
3465 unsigned long *ignored)
3467 unsigned long node_start_pfn, node_end_pfn;
3468 unsigned long zone_start_pfn, zone_end_pfn;
3470 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3471 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3472 node_start_pfn);
3473 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3474 node_end_pfn);
3476 adjust_zone_range_for_zone_movable(nid, zone_type,
3477 node_start_pfn, node_end_pfn,
3478 &zone_start_pfn, &zone_end_pfn);
3479 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3482 #else
3483 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3484 unsigned long zone_type,
3485 unsigned long *zones_size)
3487 return zones_size[zone_type];
3490 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3491 unsigned long zone_type,
3492 unsigned long *zholes_size)
3494 if (!zholes_size)
3495 return 0;
3497 return zholes_size[zone_type];
3500 #endif
3502 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3503 unsigned long *zones_size, unsigned long *zholes_size)
3505 unsigned long realtotalpages, totalpages = 0;
3506 enum zone_type i;
3508 for (i = 0; i < MAX_NR_ZONES; i++)
3509 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3510 zones_size);
3511 pgdat->node_spanned_pages = totalpages;
3513 realtotalpages = totalpages;
3514 for (i = 0; i < MAX_NR_ZONES; i++)
3515 realtotalpages -=
3516 zone_absent_pages_in_node(pgdat->node_id, i,
3517 zholes_size);
3518 pgdat->node_present_pages = realtotalpages;
3519 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3520 realtotalpages);
3523 #ifndef CONFIG_SPARSEMEM
3525 * Calculate the size of the zone->blockflags rounded to an unsigned long
3526 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3527 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3528 * round what is now in bits to nearest long in bits, then return it in
3529 * bytes.
3531 static unsigned long __init usemap_size(unsigned long zonesize)
3533 unsigned long usemapsize;
3535 usemapsize = roundup(zonesize, pageblock_nr_pages);
3536 usemapsize = usemapsize >> pageblock_order;
3537 usemapsize *= NR_PAGEBLOCK_BITS;
3538 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3540 return usemapsize / 8;
3543 static void __init setup_usemap(struct pglist_data *pgdat,
3544 struct zone *zone, unsigned long zonesize)
3546 unsigned long usemapsize = usemap_size(zonesize);
3547 zone->pageblock_flags = NULL;
3548 if (usemapsize)
3549 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3551 #else
3552 static void inline setup_usemap(struct pglist_data *pgdat,
3553 struct zone *zone, unsigned long zonesize) {}
3554 #endif /* CONFIG_SPARSEMEM */
3556 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3558 /* Return a sensible default order for the pageblock size. */
3559 static inline int pageblock_default_order(void)
3561 if (HPAGE_SHIFT > PAGE_SHIFT)
3562 return HUGETLB_PAGE_ORDER;
3564 return MAX_ORDER-1;
3567 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3568 static inline void __init set_pageblock_order(unsigned int order)
3570 /* Check that pageblock_nr_pages has not already been setup */
3571 if (pageblock_order)
3572 return;
3575 * Assume the largest contiguous order of interest is a huge page.
3576 * This value may be variable depending on boot parameters on IA64
3578 pageblock_order = order;
3580 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3583 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3584 * and pageblock_default_order() are unused as pageblock_order is set
3585 * at compile-time. See include/linux/pageblock-flags.h for the values of
3586 * pageblock_order based on the kernel config
3588 static inline int pageblock_default_order(unsigned int order)
3590 return MAX_ORDER-1;
3592 #define set_pageblock_order(x) do {} while (0)
3594 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3597 * Set up the zone data structures:
3598 * - mark all pages reserved
3599 * - mark all memory queues empty
3600 * - clear the memory bitmaps
3602 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3603 unsigned long *zones_size, unsigned long *zholes_size)
3605 enum zone_type j;
3606 int nid = pgdat->node_id;
3607 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3608 int ret;
3610 pgdat_resize_init(pgdat);
3611 pgdat->nr_zones = 0;
3612 init_waitqueue_head(&pgdat->kswapd_wait);
3613 pgdat->kswapd_max_order = 0;
3614 pgdat_page_cgroup_init(pgdat);
3616 for (j = 0; j < MAX_NR_ZONES; j++) {
3617 struct zone *zone = pgdat->node_zones + j;
3618 unsigned long size, realsize, memmap_pages;
3619 enum lru_list l;
3621 size = zone_spanned_pages_in_node(nid, j, zones_size);
3622 realsize = size - zone_absent_pages_in_node(nid, j,
3623 zholes_size);
3626 * Adjust realsize so that it accounts for how much memory
3627 * is used by this zone for memmap. This affects the watermark
3628 * and per-cpu initialisations
3630 memmap_pages =
3631 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3632 if (realsize >= memmap_pages) {
3633 realsize -= memmap_pages;
3634 if (memmap_pages)
3635 printk(KERN_DEBUG
3636 " %s zone: %lu pages used for memmap\n",
3637 zone_names[j], memmap_pages);
3638 } else
3639 printk(KERN_WARNING
3640 " %s zone: %lu pages exceeds realsize %lu\n",
3641 zone_names[j], memmap_pages, realsize);
3643 /* Account for reserved pages */
3644 if (j == 0 && realsize > dma_reserve) {
3645 realsize -= dma_reserve;
3646 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3647 zone_names[0], dma_reserve);
3650 if (!is_highmem_idx(j))
3651 nr_kernel_pages += realsize;
3652 nr_all_pages += realsize;
3654 zone->spanned_pages = size;
3655 zone->present_pages = realsize;
3656 #ifdef CONFIG_NUMA
3657 zone->node = nid;
3658 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3659 / 100;
3660 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3661 #endif
3662 zone->name = zone_names[j];
3663 spin_lock_init(&zone->lock);
3664 spin_lock_init(&zone->lru_lock);
3665 zone_seqlock_init(zone);
3666 zone->zone_pgdat = pgdat;
3668 zone->prev_priority = DEF_PRIORITY;
3670 zone_pcp_init(zone);
3671 for_each_lru(l) {
3672 INIT_LIST_HEAD(&zone->lru[l].list);
3673 zone->lru[l].nr_saved_scan = 0;
3675 zone->reclaim_stat.recent_rotated[0] = 0;
3676 zone->reclaim_stat.recent_rotated[1] = 0;
3677 zone->reclaim_stat.recent_scanned[0] = 0;
3678 zone->reclaim_stat.recent_scanned[1] = 0;
3679 zap_zone_vm_stats(zone);
3680 zone->flags = 0;
3681 if (!size)
3682 continue;
3684 set_pageblock_order(pageblock_default_order());
3685 setup_usemap(pgdat, zone, size);
3686 ret = init_currently_empty_zone(zone, zone_start_pfn,
3687 size, MEMMAP_EARLY);
3688 BUG_ON(ret);
3689 memmap_init(size, nid, j, zone_start_pfn);
3690 zone_start_pfn += size;
3694 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3696 /* Skip empty nodes */
3697 if (!pgdat->node_spanned_pages)
3698 return;
3700 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3701 /* ia64 gets its own node_mem_map, before this, without bootmem */
3702 if (!pgdat->node_mem_map) {
3703 unsigned long size, start, end;
3704 struct page *map;
3707 * The zone's endpoints aren't required to be MAX_ORDER
3708 * aligned but the node_mem_map endpoints must be in order
3709 * for the buddy allocator to function correctly.
3711 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3712 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3713 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3714 size = (end - start) * sizeof(struct page);
3715 map = alloc_remap(pgdat->node_id, size);
3716 if (!map)
3717 map = alloc_bootmem_node(pgdat, size);
3718 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3720 #ifndef CONFIG_NEED_MULTIPLE_NODES
3722 * With no DISCONTIG, the global mem_map is just set as node 0's
3724 if (pgdat == NODE_DATA(0)) {
3725 mem_map = NODE_DATA(0)->node_mem_map;
3726 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3727 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3728 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3729 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3731 #endif
3732 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3735 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3736 unsigned long node_start_pfn, unsigned long *zholes_size)
3738 pg_data_t *pgdat = NODE_DATA(nid);
3740 pgdat->node_id = nid;
3741 pgdat->node_start_pfn = node_start_pfn;
3742 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3744 alloc_node_mem_map(pgdat);
3745 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3746 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3747 nid, (unsigned long)pgdat,
3748 (unsigned long)pgdat->node_mem_map);
3749 #endif
3751 free_area_init_core(pgdat, zones_size, zholes_size);
3754 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3756 #if MAX_NUMNODES > 1
3758 * Figure out the number of possible node ids.
3760 static void __init setup_nr_node_ids(void)
3762 unsigned int node;
3763 unsigned int highest = 0;
3765 for_each_node_mask(node, node_possible_map)
3766 highest = node;
3767 nr_node_ids = highest + 1;
3769 #else
3770 static inline void setup_nr_node_ids(void)
3773 #endif
3776 * add_active_range - Register a range of PFNs backed by physical memory
3777 * @nid: The node ID the range resides on
3778 * @start_pfn: The start PFN of the available physical memory
3779 * @end_pfn: The end PFN of the available physical memory
3781 * These ranges are stored in an early_node_map[] and later used by
3782 * free_area_init_nodes() to calculate zone sizes and holes. If the
3783 * range spans a memory hole, it is up to the architecture to ensure
3784 * the memory is not freed by the bootmem allocator. If possible
3785 * the range being registered will be merged with existing ranges.
3787 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3788 unsigned long end_pfn)
3790 int i;
3792 mminit_dprintk(MMINIT_TRACE, "memory_register",
3793 "Entering add_active_range(%d, %#lx, %#lx) "
3794 "%d entries of %d used\n",
3795 nid, start_pfn, end_pfn,
3796 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3798 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3800 /* Merge with existing active regions if possible */
3801 for (i = 0; i < nr_nodemap_entries; i++) {
3802 if (early_node_map[i].nid != nid)
3803 continue;
3805 /* Skip if an existing region covers this new one */
3806 if (start_pfn >= early_node_map[i].start_pfn &&
3807 end_pfn <= early_node_map[i].end_pfn)
3808 return;
3810 /* Merge forward if suitable */
3811 if (start_pfn <= early_node_map[i].end_pfn &&
3812 end_pfn > early_node_map[i].end_pfn) {
3813 early_node_map[i].end_pfn = end_pfn;
3814 return;
3817 /* Merge backward if suitable */
3818 if (start_pfn < early_node_map[i].end_pfn &&
3819 end_pfn >= early_node_map[i].start_pfn) {
3820 early_node_map[i].start_pfn = start_pfn;
3821 return;
3825 /* Check that early_node_map is large enough */
3826 if (i >= MAX_ACTIVE_REGIONS) {
3827 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3828 MAX_ACTIVE_REGIONS);
3829 return;
3832 early_node_map[i].nid = nid;
3833 early_node_map[i].start_pfn = start_pfn;
3834 early_node_map[i].end_pfn = end_pfn;
3835 nr_nodemap_entries = i + 1;
3839 * remove_active_range - Shrink an existing registered range of PFNs
3840 * @nid: The node id the range is on that should be shrunk
3841 * @start_pfn: The new PFN of the range
3842 * @end_pfn: The new PFN of the range
3844 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3845 * The map is kept near the end physical page range that has already been
3846 * registered. This function allows an arch to shrink an existing registered
3847 * range.
3849 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3850 unsigned long end_pfn)
3852 int i, j;
3853 int removed = 0;
3855 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3856 nid, start_pfn, end_pfn);
3858 /* Find the old active region end and shrink */
3859 for_each_active_range_index_in_nid(i, nid) {
3860 if (early_node_map[i].start_pfn >= start_pfn &&
3861 early_node_map[i].end_pfn <= end_pfn) {
3862 /* clear it */
3863 early_node_map[i].start_pfn = 0;
3864 early_node_map[i].end_pfn = 0;
3865 removed = 1;
3866 continue;
3868 if (early_node_map[i].start_pfn < start_pfn &&
3869 early_node_map[i].end_pfn > start_pfn) {
3870 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3871 early_node_map[i].end_pfn = start_pfn;
3872 if (temp_end_pfn > end_pfn)
3873 add_active_range(nid, end_pfn, temp_end_pfn);
3874 continue;
3876 if (early_node_map[i].start_pfn >= start_pfn &&
3877 early_node_map[i].end_pfn > end_pfn &&
3878 early_node_map[i].start_pfn < end_pfn) {
3879 early_node_map[i].start_pfn = end_pfn;
3880 continue;
3884 if (!removed)
3885 return;
3887 /* remove the blank ones */
3888 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3889 if (early_node_map[i].nid != nid)
3890 continue;
3891 if (early_node_map[i].end_pfn)
3892 continue;
3893 /* we found it, get rid of it */
3894 for (j = i; j < nr_nodemap_entries - 1; j++)
3895 memcpy(&early_node_map[j], &early_node_map[j+1],
3896 sizeof(early_node_map[j]));
3897 j = nr_nodemap_entries - 1;
3898 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3899 nr_nodemap_entries--;
3904 * remove_all_active_ranges - Remove all currently registered regions
3906 * During discovery, it may be found that a table like SRAT is invalid
3907 * and an alternative discovery method must be used. This function removes
3908 * all currently registered regions.
3910 void __init remove_all_active_ranges(void)
3912 memset(early_node_map, 0, sizeof(early_node_map));
3913 nr_nodemap_entries = 0;
3916 /* Compare two active node_active_regions */
3917 static int __init cmp_node_active_region(const void *a, const void *b)
3919 struct node_active_region *arange = (struct node_active_region *)a;
3920 struct node_active_region *brange = (struct node_active_region *)b;
3922 /* Done this way to avoid overflows */
3923 if (arange->start_pfn > brange->start_pfn)
3924 return 1;
3925 if (arange->start_pfn < brange->start_pfn)
3926 return -1;
3928 return 0;
3931 /* sort the node_map by start_pfn */
3932 static void __init sort_node_map(void)
3934 sort(early_node_map, (size_t)nr_nodemap_entries,
3935 sizeof(struct node_active_region),
3936 cmp_node_active_region, NULL);
3939 /* Find the lowest pfn for a node */
3940 static unsigned long __init find_min_pfn_for_node(int nid)
3942 int i;
3943 unsigned long min_pfn = ULONG_MAX;
3945 /* Assuming a sorted map, the first range found has the starting pfn */
3946 for_each_active_range_index_in_nid(i, nid)
3947 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3949 if (min_pfn == ULONG_MAX) {
3950 printk(KERN_WARNING
3951 "Could not find start_pfn for node %d\n", nid);
3952 return 0;
3955 return min_pfn;
3959 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3961 * It returns the minimum PFN based on information provided via
3962 * add_active_range().
3964 unsigned long __init find_min_pfn_with_active_regions(void)
3966 return find_min_pfn_for_node(MAX_NUMNODES);
3970 * early_calculate_totalpages()
3971 * Sum pages in active regions for movable zone.
3972 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3974 static unsigned long __init early_calculate_totalpages(void)
3976 int i;
3977 unsigned long totalpages = 0;
3979 for (i = 0; i < nr_nodemap_entries; i++) {
3980 unsigned long pages = early_node_map[i].end_pfn -
3981 early_node_map[i].start_pfn;
3982 totalpages += pages;
3983 if (pages)
3984 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3986 return totalpages;
3990 * Find the PFN the Movable zone begins in each node. Kernel memory
3991 * is spread evenly between nodes as long as the nodes have enough
3992 * memory. When they don't, some nodes will have more kernelcore than
3993 * others
3995 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3997 int i, nid;
3998 unsigned long usable_startpfn;
3999 unsigned long kernelcore_node, kernelcore_remaining;
4000 unsigned long totalpages = early_calculate_totalpages();
4001 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4004 * If movablecore was specified, calculate what size of
4005 * kernelcore that corresponds so that memory usable for
4006 * any allocation type is evenly spread. If both kernelcore
4007 * and movablecore are specified, then the value of kernelcore
4008 * will be used for required_kernelcore if it's greater than
4009 * what movablecore would have allowed.
4011 if (required_movablecore) {
4012 unsigned long corepages;
4015 * Round-up so that ZONE_MOVABLE is at least as large as what
4016 * was requested by the user
4018 required_movablecore =
4019 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4020 corepages = totalpages - required_movablecore;
4022 required_kernelcore = max(required_kernelcore, corepages);
4025 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4026 if (!required_kernelcore)
4027 return;
4029 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4030 find_usable_zone_for_movable();
4031 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4033 restart:
4034 /* Spread kernelcore memory as evenly as possible throughout nodes */
4035 kernelcore_node = required_kernelcore / usable_nodes;
4036 for_each_node_state(nid, N_HIGH_MEMORY) {
4038 * Recalculate kernelcore_node if the division per node
4039 * now exceeds what is necessary to satisfy the requested
4040 * amount of memory for the kernel
4042 if (required_kernelcore < kernelcore_node)
4043 kernelcore_node = required_kernelcore / usable_nodes;
4046 * As the map is walked, we track how much memory is usable
4047 * by the kernel using kernelcore_remaining. When it is
4048 * 0, the rest of the node is usable by ZONE_MOVABLE
4050 kernelcore_remaining = kernelcore_node;
4052 /* Go through each range of PFNs within this node */
4053 for_each_active_range_index_in_nid(i, nid) {
4054 unsigned long start_pfn, end_pfn;
4055 unsigned long size_pages;
4057 start_pfn = max(early_node_map[i].start_pfn,
4058 zone_movable_pfn[nid]);
4059 end_pfn = early_node_map[i].end_pfn;
4060 if (start_pfn >= end_pfn)
4061 continue;
4063 /* Account for what is only usable for kernelcore */
4064 if (start_pfn < usable_startpfn) {
4065 unsigned long kernel_pages;
4066 kernel_pages = min(end_pfn, usable_startpfn)
4067 - start_pfn;
4069 kernelcore_remaining -= min(kernel_pages,
4070 kernelcore_remaining);
4071 required_kernelcore -= min(kernel_pages,
4072 required_kernelcore);
4074 /* Continue if range is now fully accounted */
4075 if (end_pfn <= usable_startpfn) {
4078 * Push zone_movable_pfn to the end so
4079 * that if we have to rebalance
4080 * kernelcore across nodes, we will
4081 * not double account here
4083 zone_movable_pfn[nid] = end_pfn;
4084 continue;
4086 start_pfn = usable_startpfn;
4090 * The usable PFN range for ZONE_MOVABLE is from
4091 * start_pfn->end_pfn. Calculate size_pages as the
4092 * number of pages used as kernelcore
4094 size_pages = end_pfn - start_pfn;
4095 if (size_pages > kernelcore_remaining)
4096 size_pages = kernelcore_remaining;
4097 zone_movable_pfn[nid] = start_pfn + size_pages;
4100 * Some kernelcore has been met, update counts and
4101 * break if the kernelcore for this node has been
4102 * satisified
4104 required_kernelcore -= min(required_kernelcore,
4105 size_pages);
4106 kernelcore_remaining -= size_pages;
4107 if (!kernelcore_remaining)
4108 break;
4113 * If there is still required_kernelcore, we do another pass with one
4114 * less node in the count. This will push zone_movable_pfn[nid] further
4115 * along on the nodes that still have memory until kernelcore is
4116 * satisified
4118 usable_nodes--;
4119 if (usable_nodes && required_kernelcore > usable_nodes)
4120 goto restart;
4122 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4123 for (nid = 0; nid < MAX_NUMNODES; nid++)
4124 zone_movable_pfn[nid] =
4125 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4128 /* Any regular memory on that node ? */
4129 static void check_for_regular_memory(pg_data_t *pgdat)
4131 #ifdef CONFIG_HIGHMEM
4132 enum zone_type zone_type;
4134 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4135 struct zone *zone = &pgdat->node_zones[zone_type];
4136 if (zone->present_pages)
4137 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4139 #endif
4143 * free_area_init_nodes - Initialise all pg_data_t and zone data
4144 * @max_zone_pfn: an array of max PFNs for each zone
4146 * This will call free_area_init_node() for each active node in the system.
4147 * Using the page ranges provided by add_active_range(), the size of each
4148 * zone in each node and their holes is calculated. If the maximum PFN
4149 * between two adjacent zones match, it is assumed that the zone is empty.
4150 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4151 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4152 * starts where the previous one ended. For example, ZONE_DMA32 starts
4153 * at arch_max_dma_pfn.
4155 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4157 unsigned long nid;
4158 int i;
4160 /* Sort early_node_map as initialisation assumes it is sorted */
4161 sort_node_map();
4163 /* Record where the zone boundaries are */
4164 memset(arch_zone_lowest_possible_pfn, 0,
4165 sizeof(arch_zone_lowest_possible_pfn));
4166 memset(arch_zone_highest_possible_pfn, 0,
4167 sizeof(arch_zone_highest_possible_pfn));
4168 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4169 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4170 for (i = 1; i < MAX_NR_ZONES; i++) {
4171 if (i == ZONE_MOVABLE)
4172 continue;
4173 arch_zone_lowest_possible_pfn[i] =
4174 arch_zone_highest_possible_pfn[i-1];
4175 arch_zone_highest_possible_pfn[i] =
4176 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4178 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4179 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4181 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4182 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4183 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4185 /* Print out the zone ranges */
4186 printk("Zone PFN ranges:\n");
4187 for (i = 0; i < MAX_NR_ZONES; i++) {
4188 if (i == ZONE_MOVABLE)
4189 continue;
4190 printk(" %-8s %0#10lx -> %0#10lx\n",
4191 zone_names[i],
4192 arch_zone_lowest_possible_pfn[i],
4193 arch_zone_highest_possible_pfn[i]);
4196 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4197 printk("Movable zone start PFN for each node\n");
4198 for (i = 0; i < MAX_NUMNODES; i++) {
4199 if (zone_movable_pfn[i])
4200 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4203 /* Print out the early_node_map[] */
4204 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4205 for (i = 0; i < nr_nodemap_entries; i++)
4206 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4207 early_node_map[i].start_pfn,
4208 early_node_map[i].end_pfn);
4210 /* Initialise every node */
4211 mminit_verify_pageflags_layout();
4212 setup_nr_node_ids();
4213 for_each_online_node(nid) {
4214 pg_data_t *pgdat = NODE_DATA(nid);
4215 free_area_init_node(nid, NULL,
4216 find_min_pfn_for_node(nid), NULL);
4218 /* Any memory on that node */
4219 if (pgdat->node_present_pages)
4220 node_set_state(nid, N_HIGH_MEMORY);
4221 check_for_regular_memory(pgdat);
4225 static int __init cmdline_parse_core(char *p, unsigned long *core)
4227 unsigned long long coremem;
4228 if (!p)
4229 return -EINVAL;
4231 coremem = memparse(p, &p);
4232 *core = coremem >> PAGE_SHIFT;
4234 /* Paranoid check that UL is enough for the coremem value */
4235 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4237 return 0;
4241 * kernelcore=size sets the amount of memory for use for allocations that
4242 * cannot be reclaimed or migrated.
4244 static int __init cmdline_parse_kernelcore(char *p)
4246 return cmdline_parse_core(p, &required_kernelcore);
4250 * movablecore=size sets the amount of memory for use for allocations that
4251 * can be reclaimed or migrated.
4253 static int __init cmdline_parse_movablecore(char *p)
4255 return cmdline_parse_core(p, &required_movablecore);
4258 early_param("kernelcore", cmdline_parse_kernelcore);
4259 early_param("movablecore", cmdline_parse_movablecore);
4261 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4264 * set_dma_reserve - set the specified number of pages reserved in the first zone
4265 * @new_dma_reserve: The number of pages to mark reserved
4267 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4268 * In the DMA zone, a significant percentage may be consumed by kernel image
4269 * and other unfreeable allocations which can skew the watermarks badly. This
4270 * function may optionally be used to account for unfreeable pages in the
4271 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4272 * smaller per-cpu batchsize.
4274 void __init set_dma_reserve(unsigned long new_dma_reserve)
4276 dma_reserve = new_dma_reserve;
4279 #ifndef CONFIG_NEED_MULTIPLE_NODES
4280 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4281 EXPORT_SYMBOL(contig_page_data);
4282 #endif
4284 void __init free_area_init(unsigned long *zones_size)
4286 free_area_init_node(0, zones_size,
4287 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4290 static int page_alloc_cpu_notify(struct notifier_block *self,
4291 unsigned long action, void *hcpu)
4293 int cpu = (unsigned long)hcpu;
4295 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4296 drain_pages(cpu);
4299 * Spill the event counters of the dead processor
4300 * into the current processors event counters.
4301 * This artificially elevates the count of the current
4302 * processor.
4304 vm_events_fold_cpu(cpu);
4307 * Zero the differential counters of the dead processor
4308 * so that the vm statistics are consistent.
4310 * This is only okay since the processor is dead and cannot
4311 * race with what we are doing.
4313 refresh_cpu_vm_stats(cpu);
4315 return NOTIFY_OK;
4318 void __init page_alloc_init(void)
4320 hotcpu_notifier(page_alloc_cpu_notify, 0);
4324 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4325 * or min_free_kbytes changes.
4327 static void calculate_totalreserve_pages(void)
4329 struct pglist_data *pgdat;
4330 unsigned long reserve_pages = 0;
4331 enum zone_type i, j;
4333 for_each_online_pgdat(pgdat) {
4334 for (i = 0; i < MAX_NR_ZONES; i++) {
4335 struct zone *zone = pgdat->node_zones + i;
4336 unsigned long max = 0;
4338 /* Find valid and maximum lowmem_reserve in the zone */
4339 for (j = i; j < MAX_NR_ZONES; j++) {
4340 if (zone->lowmem_reserve[j] > max)
4341 max = zone->lowmem_reserve[j];
4344 /* we treat the high watermark as reserved pages. */
4345 max += high_wmark_pages(zone);
4347 if (max > zone->present_pages)
4348 max = zone->present_pages;
4349 reserve_pages += max;
4352 totalreserve_pages = reserve_pages;
4356 * setup_per_zone_lowmem_reserve - called whenever
4357 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4358 * has a correct pages reserved value, so an adequate number of
4359 * pages are left in the zone after a successful __alloc_pages().
4361 static void setup_per_zone_lowmem_reserve(void)
4363 struct pglist_data *pgdat;
4364 enum zone_type j, idx;
4366 for_each_online_pgdat(pgdat) {
4367 for (j = 0; j < MAX_NR_ZONES; j++) {
4368 struct zone *zone = pgdat->node_zones + j;
4369 unsigned long present_pages = zone->present_pages;
4371 zone->lowmem_reserve[j] = 0;
4373 idx = j;
4374 while (idx) {
4375 struct zone *lower_zone;
4377 idx--;
4379 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4380 sysctl_lowmem_reserve_ratio[idx] = 1;
4382 lower_zone = pgdat->node_zones + idx;
4383 lower_zone->lowmem_reserve[j] = present_pages /
4384 sysctl_lowmem_reserve_ratio[idx];
4385 present_pages += lower_zone->present_pages;
4390 /* update totalreserve_pages */
4391 calculate_totalreserve_pages();
4395 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4397 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4398 * with respect to min_free_kbytes.
4400 void setup_per_zone_pages_min(void)
4402 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4403 unsigned long lowmem_pages = 0;
4404 struct zone *zone;
4405 unsigned long flags;
4407 /* Calculate total number of !ZONE_HIGHMEM pages */
4408 for_each_zone(zone) {
4409 if (!is_highmem(zone))
4410 lowmem_pages += zone->present_pages;
4413 for_each_zone(zone) {
4414 u64 tmp;
4416 spin_lock_irqsave(&zone->lock, flags);
4417 tmp = (u64)pages_min * zone->present_pages;
4418 do_div(tmp, lowmem_pages);
4419 if (is_highmem(zone)) {
4421 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4422 * need highmem pages, so cap pages_min to a small
4423 * value here.
4425 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4426 * deltas controls asynch page reclaim, and so should
4427 * not be capped for highmem.
4429 int min_pages;
4431 min_pages = zone->present_pages / 1024;
4432 if (min_pages < SWAP_CLUSTER_MAX)
4433 min_pages = SWAP_CLUSTER_MAX;
4434 if (min_pages > 128)
4435 min_pages = 128;
4436 zone->watermark[WMARK_MIN] = min_pages;
4437 } else {
4439 * If it's a lowmem zone, reserve a number of pages
4440 * proportionate to the zone's size.
4442 zone->watermark[WMARK_MIN] = tmp;
4445 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4446 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4447 setup_zone_migrate_reserve(zone);
4448 spin_unlock_irqrestore(&zone->lock, flags);
4451 /* update totalreserve_pages */
4452 calculate_totalreserve_pages();
4456 * The inactive anon list should be small enough that the VM never has to
4457 * do too much work, but large enough that each inactive page has a chance
4458 * to be referenced again before it is swapped out.
4460 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4461 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4462 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4463 * the anonymous pages are kept on the inactive list.
4465 * total target max
4466 * memory ratio inactive anon
4467 * -------------------------------------
4468 * 10MB 1 5MB
4469 * 100MB 1 50MB
4470 * 1GB 3 250MB
4471 * 10GB 10 0.9GB
4472 * 100GB 31 3GB
4473 * 1TB 101 10GB
4474 * 10TB 320 32GB
4476 static void __init setup_per_zone_inactive_ratio(void)
4478 struct zone *zone;
4480 for_each_zone(zone) {
4481 unsigned int gb, ratio;
4483 /* Zone size in gigabytes */
4484 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4485 if (gb)
4486 ratio = int_sqrt(10 * gb);
4487 else
4488 ratio = 1;
4490 zone->inactive_ratio = ratio;
4495 * Initialise min_free_kbytes.
4497 * For small machines we want it small (128k min). For large machines
4498 * we want it large (64MB max). But it is not linear, because network
4499 * bandwidth does not increase linearly with machine size. We use
4501 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4502 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4504 * which yields
4506 * 16MB: 512k
4507 * 32MB: 724k
4508 * 64MB: 1024k
4509 * 128MB: 1448k
4510 * 256MB: 2048k
4511 * 512MB: 2896k
4512 * 1024MB: 4096k
4513 * 2048MB: 5792k
4514 * 4096MB: 8192k
4515 * 8192MB: 11584k
4516 * 16384MB: 16384k
4518 static int __init init_per_zone_pages_min(void)
4520 unsigned long lowmem_kbytes;
4522 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4524 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4525 if (min_free_kbytes < 128)
4526 min_free_kbytes = 128;
4527 if (min_free_kbytes > 65536)
4528 min_free_kbytes = 65536;
4529 setup_per_zone_pages_min();
4530 setup_per_zone_lowmem_reserve();
4531 setup_per_zone_inactive_ratio();
4532 return 0;
4534 module_init(init_per_zone_pages_min)
4537 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4538 * that we can call two helper functions whenever min_free_kbytes
4539 * changes.
4541 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4542 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4544 proc_dointvec(table, write, file, buffer, length, ppos);
4545 if (write)
4546 setup_per_zone_pages_min();
4547 return 0;
4550 #ifdef CONFIG_NUMA
4551 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4552 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4554 struct zone *zone;
4555 int rc;
4557 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4558 if (rc)
4559 return rc;
4561 for_each_zone(zone)
4562 zone->min_unmapped_pages = (zone->present_pages *
4563 sysctl_min_unmapped_ratio) / 100;
4564 return 0;
4567 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4568 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4570 struct zone *zone;
4571 int rc;
4573 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4574 if (rc)
4575 return rc;
4577 for_each_zone(zone)
4578 zone->min_slab_pages = (zone->present_pages *
4579 sysctl_min_slab_ratio) / 100;
4580 return 0;
4582 #endif
4585 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4586 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4587 * whenever sysctl_lowmem_reserve_ratio changes.
4589 * The reserve ratio obviously has absolutely no relation with the
4590 * minimum watermarks. The lowmem reserve ratio can only make sense
4591 * if in function of the boot time zone sizes.
4593 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4594 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4596 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4597 setup_per_zone_lowmem_reserve();
4598 return 0;
4602 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4603 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4604 * can have before it gets flushed back to buddy allocator.
4607 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4608 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4610 struct zone *zone;
4611 unsigned int cpu;
4612 int ret;
4614 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4615 if (!write || (ret == -EINVAL))
4616 return ret;
4617 for_each_zone(zone) {
4618 for_each_online_cpu(cpu) {
4619 unsigned long high;
4620 high = zone->present_pages / percpu_pagelist_fraction;
4621 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4624 return 0;
4627 int hashdist = HASHDIST_DEFAULT;
4629 #ifdef CONFIG_NUMA
4630 static int __init set_hashdist(char *str)
4632 if (!str)
4633 return 0;
4634 hashdist = simple_strtoul(str, &str, 0);
4635 return 1;
4637 __setup("hashdist=", set_hashdist);
4638 #endif
4641 * allocate a large system hash table from bootmem
4642 * - it is assumed that the hash table must contain an exact power-of-2
4643 * quantity of entries
4644 * - limit is the number of hash buckets, not the total allocation size
4646 void *__init alloc_large_system_hash(const char *tablename,
4647 unsigned long bucketsize,
4648 unsigned long numentries,
4649 int scale,
4650 int flags,
4651 unsigned int *_hash_shift,
4652 unsigned int *_hash_mask,
4653 unsigned long limit)
4655 unsigned long long max = limit;
4656 unsigned long log2qty, size;
4657 void *table = NULL;
4659 /* allow the kernel cmdline to have a say */
4660 if (!numentries) {
4661 /* round applicable memory size up to nearest megabyte */
4662 numentries = nr_kernel_pages;
4663 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4664 numentries >>= 20 - PAGE_SHIFT;
4665 numentries <<= 20 - PAGE_SHIFT;
4667 /* limit to 1 bucket per 2^scale bytes of low memory */
4668 if (scale > PAGE_SHIFT)
4669 numentries >>= (scale - PAGE_SHIFT);
4670 else
4671 numentries <<= (PAGE_SHIFT - scale);
4673 /* Make sure we've got at least a 0-order allocation.. */
4674 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4675 numentries = PAGE_SIZE / bucketsize;
4677 numentries = roundup_pow_of_two(numentries);
4679 /* limit allocation size to 1/16 total memory by default */
4680 if (max == 0) {
4681 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4682 do_div(max, bucketsize);
4685 if (numentries > max)
4686 numentries = max;
4688 log2qty = ilog2(numentries);
4690 do {
4691 size = bucketsize << log2qty;
4692 if (flags & HASH_EARLY)
4693 table = alloc_bootmem_nopanic(size);
4694 else if (hashdist)
4695 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4696 else {
4698 * If bucketsize is not a power-of-two, we may free
4699 * some pages at the end of hash table which
4700 * alloc_pages_exact() automatically does
4702 if (get_order(size) < MAX_ORDER)
4703 table = alloc_pages_exact(size, GFP_ATOMIC);
4705 } while (!table && size > PAGE_SIZE && --log2qty);
4707 if (!table)
4708 panic("Failed to allocate %s hash table\n", tablename);
4710 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4711 tablename,
4712 (1U << log2qty),
4713 ilog2(size) - PAGE_SHIFT,
4714 size);
4716 if (_hash_shift)
4717 *_hash_shift = log2qty;
4718 if (_hash_mask)
4719 *_hash_mask = (1 << log2qty) - 1;
4722 * If hashdist is set, the table allocation is done with __vmalloc()
4723 * which invokes the kmemleak_alloc() callback. This function may also
4724 * be called before the slab and kmemleak are initialised when
4725 * kmemleak simply buffers the request to be executed later
4726 * (GFP_ATOMIC flag ignored in this case).
4728 if (!hashdist)
4729 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4731 return table;
4734 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4735 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4736 unsigned long pfn)
4738 #ifdef CONFIG_SPARSEMEM
4739 return __pfn_to_section(pfn)->pageblock_flags;
4740 #else
4741 return zone->pageblock_flags;
4742 #endif /* CONFIG_SPARSEMEM */
4745 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4747 #ifdef CONFIG_SPARSEMEM
4748 pfn &= (PAGES_PER_SECTION-1);
4749 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4750 #else
4751 pfn = pfn - zone->zone_start_pfn;
4752 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4753 #endif /* CONFIG_SPARSEMEM */
4757 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4758 * @page: The page within the block of interest
4759 * @start_bitidx: The first bit of interest to retrieve
4760 * @end_bitidx: The last bit of interest
4761 * returns pageblock_bits flags
4763 unsigned long get_pageblock_flags_group(struct page *page,
4764 int start_bitidx, int end_bitidx)
4766 struct zone *zone;
4767 unsigned long *bitmap;
4768 unsigned long pfn, bitidx;
4769 unsigned long flags = 0;
4770 unsigned long value = 1;
4772 zone = page_zone(page);
4773 pfn = page_to_pfn(page);
4774 bitmap = get_pageblock_bitmap(zone, pfn);
4775 bitidx = pfn_to_bitidx(zone, pfn);
4777 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4778 if (test_bit(bitidx + start_bitidx, bitmap))
4779 flags |= value;
4781 return flags;
4785 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4786 * @page: The page within the block of interest
4787 * @start_bitidx: The first bit of interest
4788 * @end_bitidx: The last bit of interest
4789 * @flags: The flags to set
4791 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4792 int start_bitidx, int end_bitidx)
4794 struct zone *zone;
4795 unsigned long *bitmap;
4796 unsigned long pfn, bitidx;
4797 unsigned long value = 1;
4799 zone = page_zone(page);
4800 pfn = page_to_pfn(page);
4801 bitmap = get_pageblock_bitmap(zone, pfn);
4802 bitidx = pfn_to_bitidx(zone, pfn);
4803 VM_BUG_ON(pfn < zone->zone_start_pfn);
4804 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4806 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4807 if (flags & value)
4808 __set_bit(bitidx + start_bitidx, bitmap);
4809 else
4810 __clear_bit(bitidx + start_bitidx, bitmap);
4814 * This is designed as sub function...plz see page_isolation.c also.
4815 * set/clear page block's type to be ISOLATE.
4816 * page allocater never alloc memory from ISOLATE block.
4819 int set_migratetype_isolate(struct page *page)
4821 struct zone *zone;
4822 unsigned long flags;
4823 int ret = -EBUSY;
4825 zone = page_zone(page);
4826 spin_lock_irqsave(&zone->lock, flags);
4828 * In future, more migrate types will be able to be isolation target.
4830 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4831 goto out;
4832 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4833 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4834 ret = 0;
4835 out:
4836 spin_unlock_irqrestore(&zone->lock, flags);
4837 if (!ret)
4838 drain_all_pages();
4839 return ret;
4842 void unset_migratetype_isolate(struct page *page)
4844 struct zone *zone;
4845 unsigned long flags;
4846 zone = page_zone(page);
4847 spin_lock_irqsave(&zone->lock, flags);
4848 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4849 goto out;
4850 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4851 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4852 out:
4853 spin_unlock_irqrestore(&zone->lock, flags);
4856 #ifdef CONFIG_MEMORY_HOTREMOVE
4858 * All pages in the range must be isolated before calling this.
4860 void
4861 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4863 struct page *page;
4864 struct zone *zone;
4865 int order, i;
4866 unsigned long pfn;
4867 unsigned long flags;
4868 /* find the first valid pfn */
4869 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4870 if (pfn_valid(pfn))
4871 break;
4872 if (pfn == end_pfn)
4873 return;
4874 zone = page_zone(pfn_to_page(pfn));
4875 spin_lock_irqsave(&zone->lock, flags);
4876 pfn = start_pfn;
4877 while (pfn < end_pfn) {
4878 if (!pfn_valid(pfn)) {
4879 pfn++;
4880 continue;
4882 page = pfn_to_page(pfn);
4883 BUG_ON(page_count(page));
4884 BUG_ON(!PageBuddy(page));
4885 order = page_order(page);
4886 #ifdef CONFIG_DEBUG_VM
4887 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4888 pfn, 1 << order, end_pfn);
4889 #endif
4890 list_del(&page->lru);
4891 rmv_page_order(page);
4892 zone->free_area[order].nr_free--;
4893 __mod_zone_page_state(zone, NR_FREE_PAGES,
4894 - (1UL << order));
4895 for (i = 0; i < (1 << order); i++)
4896 SetPageReserved((page+i));
4897 pfn += (1 << order);
4899 spin_unlock_irqrestore(&zone->lock, flags);
4901 #endif