x86, pat/mtrr: Rendezvous all the cpus for MTRR/PAT init
[linux-2.6/mini2440.git] / arch / x86 / kernel / cpu / mtrr / main.c
blob7339be0aa58003543c515809c80d138343a612c7
1 /* Generic MTRR (Memory Type Range Register) driver.
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
26 section 11.11.7
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29 on 6-7 March 2002.
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
34 #define DEBUG
36 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
38 #include <linux/kvm_para.h>
39 #include <linux/uaccess.h>
40 #include <linux/module.h>
41 #include <linux/mutex.h>
42 #include <linux/init.h>
43 #include <linux/sort.h>
44 #include <linux/cpu.h>
45 #include <linux/pci.h>
46 #include <linux/smp.h>
48 #include <asm/processor.h>
49 #include <asm/e820.h>
50 #include <asm/mtrr.h>
51 #include <asm/msr.h>
53 #include "mtrr.h"
55 u32 num_var_ranges;
57 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
58 static DEFINE_MUTEX(mtrr_mutex);
60 u64 size_or_mask, size_and_mask;
61 u32 mtrr_aps_delayed_init;
63 static struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM];
65 struct mtrr_ops *mtrr_if;
67 static void set_mtrr(unsigned int reg, unsigned long base,
68 unsigned long size, mtrr_type type);
70 void set_mtrr_ops(struct mtrr_ops *ops)
72 if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
73 mtrr_ops[ops->vendor] = ops;
76 /* Returns non-zero if we have the write-combining memory type */
77 static int have_wrcomb(void)
79 struct pci_dev *dev;
80 u8 rev;
82 dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
83 if (dev != NULL) {
85 * ServerWorks LE chipsets < rev 6 have problems with
86 * write-combining. Don't allow it and leave room for other
87 * chipsets to be tagged
89 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
90 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
91 pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
92 if (rev <= 5) {
93 pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
94 pci_dev_put(dev);
95 return 0;
99 * Intel 450NX errata # 23. Non ascending cacheline evictions to
100 * write combining memory may resulting in data corruption
102 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
103 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
104 pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
105 pci_dev_put(dev);
106 return 0;
108 pci_dev_put(dev);
110 return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
113 /* This function returns the number of variable MTRRs */
114 static void __init set_num_var_ranges(void)
116 unsigned long config = 0, dummy;
118 if (use_intel())
119 rdmsr(MSR_MTRRcap, config, dummy);
120 else if (is_cpu(AMD))
121 config = 2;
122 else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
123 config = 8;
125 num_var_ranges = config & 0xff;
128 static void __init init_table(void)
130 int i, max;
132 max = num_var_ranges;
133 for (i = 0; i < max; i++)
134 mtrr_usage_table[i] = 1;
137 struct set_mtrr_data {
138 atomic_t count;
139 atomic_t gate;
140 unsigned long smp_base;
141 unsigned long smp_size;
142 unsigned int smp_reg;
143 mtrr_type smp_type;
147 * ipi_handler - Synchronisation handler. Executed by "other" CPUs.
149 * Returns nothing.
151 static void ipi_handler(void *info)
153 #ifdef CONFIG_SMP
154 struct set_mtrr_data *data = info;
155 unsigned long flags;
157 local_irq_save(flags);
159 atomic_dec(&data->count);
160 while (!atomic_read(&data->gate))
161 cpu_relax();
163 /* The master has cleared me to execute */
164 if (data->smp_reg != ~0U) {
165 mtrr_if->set(data->smp_reg, data->smp_base,
166 data->smp_size, data->smp_type);
167 } else if (mtrr_aps_delayed_init) {
169 * Initialize the MTRRs inaddition to the synchronisation.
171 mtrr_if->set_all();
174 atomic_dec(&data->count);
175 while (atomic_read(&data->gate))
176 cpu_relax();
178 atomic_dec(&data->count);
179 local_irq_restore(flags);
180 #endif
183 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
185 return type1 == MTRR_TYPE_UNCACHABLE ||
186 type2 == MTRR_TYPE_UNCACHABLE ||
187 (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
188 (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
192 * set_mtrr - update mtrrs on all processors
193 * @reg: mtrr in question
194 * @base: mtrr base
195 * @size: mtrr size
196 * @type: mtrr type
198 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
200 * 1. Send IPI to do the following:
201 * 2. Disable Interrupts
202 * 3. Wait for all procs to do so
203 * 4. Enter no-fill cache mode
204 * 5. Flush caches
205 * 6. Clear PGE bit
206 * 7. Flush all TLBs
207 * 8. Disable all range registers
208 * 9. Update the MTRRs
209 * 10. Enable all range registers
210 * 11. Flush all TLBs and caches again
211 * 12. Enter normal cache mode and reenable caching
212 * 13. Set PGE
213 * 14. Wait for buddies to catch up
214 * 15. Enable interrupts.
216 * What does that mean for us? Well, first we set data.count to the number
217 * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
218 * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
219 * Meanwhile, they are waiting for that flag to be set. Once it's set, each
220 * CPU goes through the transition of updating MTRRs.
221 * The CPU vendors may each do it differently,
222 * so we call mtrr_if->set() callback and let them take care of it.
223 * When they're done, they again decrement data->count and wait for data.gate
224 * to be reset.
225 * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag
226 * Everyone then enables interrupts and we all continue on.
228 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
229 * becomes nops.
231 static void
232 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
234 struct set_mtrr_data data;
235 unsigned long flags;
237 data.smp_reg = reg;
238 data.smp_base = base;
239 data.smp_size = size;
240 data.smp_type = type;
241 atomic_set(&data.count, num_booting_cpus() - 1);
243 /* Make sure data.count is visible before unleashing other CPUs */
244 smp_wmb();
245 atomic_set(&data.gate, 0);
247 /* Start the ball rolling on other CPUs */
248 if (smp_call_function(ipi_handler, &data, 0) != 0)
249 panic("mtrr: timed out waiting for other CPUs\n");
251 local_irq_save(flags);
253 while (atomic_read(&data.count))
254 cpu_relax();
256 /* Ok, reset count and toggle gate */
257 atomic_set(&data.count, num_booting_cpus() - 1);
258 smp_wmb();
259 atomic_set(&data.gate, 1);
261 /* Do our MTRR business */
264 * HACK!
265 * We use this same function to initialize the mtrrs on boot.
266 * The state of the boot cpu's mtrrs has been saved, and we want
267 * to replicate across all the APs.
268 * If we're doing that @reg is set to something special...
270 if (reg != ~0U)
271 mtrr_if->set(reg, base, size, type);
272 else if (!mtrr_aps_delayed_init)
273 mtrr_if->set_all();
275 /* Wait for the others */
276 while (atomic_read(&data.count))
277 cpu_relax();
279 atomic_set(&data.count, num_booting_cpus() - 1);
280 smp_wmb();
281 atomic_set(&data.gate, 0);
284 * Wait here for everyone to have seen the gate change
285 * So we're the last ones to touch 'data'
287 while (atomic_read(&data.count))
288 cpu_relax();
290 local_irq_restore(flags);
294 * mtrr_add_page - Add a memory type region
295 * @base: Physical base address of region in pages (in units of 4 kB!)
296 * @size: Physical size of region in pages (4 kB)
297 * @type: Type of MTRR desired
298 * @increment: If this is true do usage counting on the region
300 * Memory type region registers control the caching on newer Intel and
301 * non Intel processors. This function allows drivers to request an
302 * MTRR is added. The details and hardware specifics of each processor's
303 * implementation are hidden from the caller, but nevertheless the
304 * caller should expect to need to provide a power of two size on an
305 * equivalent power of two boundary.
307 * If the region cannot be added either because all regions are in use
308 * or the CPU cannot support it a negative value is returned. On success
309 * the register number for this entry is returned, but should be treated
310 * as a cookie only.
312 * On a multiprocessor machine the changes are made to all processors.
313 * This is required on x86 by the Intel processors.
315 * The available types are
317 * %MTRR_TYPE_UNCACHABLE - No caching
319 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
321 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
323 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
325 * BUGS: Needs a quiet flag for the cases where drivers do not mind
326 * failures and do not wish system log messages to be sent.
328 int mtrr_add_page(unsigned long base, unsigned long size,
329 unsigned int type, bool increment)
331 unsigned long lbase, lsize;
332 int i, replace, error;
333 mtrr_type ltype;
335 if (!mtrr_if)
336 return -ENXIO;
338 error = mtrr_if->validate_add_page(base, size, type);
339 if (error)
340 return error;
342 if (type >= MTRR_NUM_TYPES) {
343 pr_warning("mtrr: type: %u invalid\n", type);
344 return -EINVAL;
347 /* If the type is WC, check that this processor supports it */
348 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
349 pr_warning("mtrr: your processor doesn't support write-combining\n");
350 return -ENOSYS;
353 if (!size) {
354 pr_warning("mtrr: zero sized request\n");
355 return -EINVAL;
358 if (base & size_or_mask || size & size_or_mask) {
359 pr_warning("mtrr: base or size exceeds the MTRR width\n");
360 return -EINVAL;
363 error = -EINVAL;
364 replace = -1;
366 /* No CPU hotplug when we change MTRR entries */
367 get_online_cpus();
369 /* Search for existing MTRR */
370 mutex_lock(&mtrr_mutex);
371 for (i = 0; i < num_var_ranges; ++i) {
372 mtrr_if->get(i, &lbase, &lsize, &ltype);
373 if (!lsize || base > lbase + lsize - 1 ||
374 base + size - 1 < lbase)
375 continue;
377 * At this point we know there is some kind of
378 * overlap/enclosure
380 if (base < lbase || base + size - 1 > lbase + lsize - 1) {
381 if (base <= lbase &&
382 base + size - 1 >= lbase + lsize - 1) {
383 /* New region encloses an existing region */
384 if (type == ltype) {
385 replace = replace == -1 ? i : -2;
386 continue;
387 } else if (types_compatible(type, ltype))
388 continue;
390 pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
391 " 0x%lx000,0x%lx000\n", base, size, lbase,
392 lsize);
393 goto out;
395 /* New region is enclosed by an existing region */
396 if (ltype != type) {
397 if (types_compatible(type, ltype))
398 continue;
399 pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
400 base, size, mtrr_attrib_to_str(ltype),
401 mtrr_attrib_to_str(type));
402 goto out;
404 if (increment)
405 ++mtrr_usage_table[i];
406 error = i;
407 goto out;
409 /* Search for an empty MTRR */
410 i = mtrr_if->get_free_region(base, size, replace);
411 if (i >= 0) {
412 set_mtrr(i, base, size, type);
413 if (likely(replace < 0)) {
414 mtrr_usage_table[i] = 1;
415 } else {
416 mtrr_usage_table[i] = mtrr_usage_table[replace];
417 if (increment)
418 mtrr_usage_table[i]++;
419 if (unlikely(replace != i)) {
420 set_mtrr(replace, 0, 0, 0);
421 mtrr_usage_table[replace] = 0;
424 } else {
425 pr_info("mtrr: no more MTRRs available\n");
427 error = i;
428 out:
429 mutex_unlock(&mtrr_mutex);
430 put_online_cpus();
431 return error;
434 static int mtrr_check(unsigned long base, unsigned long size)
436 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
437 pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
438 pr_debug("mtrr: size: 0x%lx base: 0x%lx\n", size, base);
439 dump_stack();
440 return -1;
442 return 0;
446 * mtrr_add - Add a memory type region
447 * @base: Physical base address of region
448 * @size: Physical size of region
449 * @type: Type of MTRR desired
450 * @increment: If this is true do usage counting on the region
452 * Memory type region registers control the caching on newer Intel and
453 * non Intel processors. This function allows drivers to request an
454 * MTRR is added. The details and hardware specifics of each processor's
455 * implementation are hidden from the caller, but nevertheless the
456 * caller should expect to need to provide a power of two size on an
457 * equivalent power of two boundary.
459 * If the region cannot be added either because all regions are in use
460 * or the CPU cannot support it a negative value is returned. On success
461 * the register number for this entry is returned, but should be treated
462 * as a cookie only.
464 * On a multiprocessor machine the changes are made to all processors.
465 * This is required on x86 by the Intel processors.
467 * The available types are
469 * %MTRR_TYPE_UNCACHABLE - No caching
471 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
473 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
475 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
477 * BUGS: Needs a quiet flag for the cases where drivers do not mind
478 * failures and do not wish system log messages to be sent.
480 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
481 bool increment)
483 if (mtrr_check(base, size))
484 return -EINVAL;
485 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
486 increment);
488 EXPORT_SYMBOL(mtrr_add);
491 * mtrr_del_page - delete a memory type region
492 * @reg: Register returned by mtrr_add
493 * @base: Physical base address
494 * @size: Size of region
496 * If register is supplied then base and size are ignored. This is
497 * how drivers should call it.
499 * Releases an MTRR region. If the usage count drops to zero the
500 * register is freed and the region returns to default state.
501 * On success the register is returned, on failure a negative error
502 * code.
504 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
506 int i, max;
507 mtrr_type ltype;
508 unsigned long lbase, lsize;
509 int error = -EINVAL;
511 if (!mtrr_if)
512 return -ENXIO;
514 max = num_var_ranges;
515 /* No CPU hotplug when we change MTRR entries */
516 get_online_cpus();
517 mutex_lock(&mtrr_mutex);
518 if (reg < 0) {
519 /* Search for existing MTRR */
520 for (i = 0; i < max; ++i) {
521 mtrr_if->get(i, &lbase, &lsize, &ltype);
522 if (lbase == base && lsize == size) {
523 reg = i;
524 break;
527 if (reg < 0) {
528 pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
529 base, size);
530 goto out;
533 if (reg >= max) {
534 pr_warning("mtrr: register: %d too big\n", reg);
535 goto out;
537 mtrr_if->get(reg, &lbase, &lsize, &ltype);
538 if (lsize < 1) {
539 pr_warning("mtrr: MTRR %d not used\n", reg);
540 goto out;
542 if (mtrr_usage_table[reg] < 1) {
543 pr_warning("mtrr: reg: %d has count=0\n", reg);
544 goto out;
546 if (--mtrr_usage_table[reg] < 1)
547 set_mtrr(reg, 0, 0, 0);
548 error = reg;
549 out:
550 mutex_unlock(&mtrr_mutex);
551 put_online_cpus();
552 return error;
556 * mtrr_del - delete a memory type region
557 * @reg: Register returned by mtrr_add
558 * @base: Physical base address
559 * @size: Size of region
561 * If register is supplied then base and size are ignored. This is
562 * how drivers should call it.
564 * Releases an MTRR region. If the usage count drops to zero the
565 * register is freed and the region returns to default state.
566 * On success the register is returned, on failure a negative error
567 * code.
569 int mtrr_del(int reg, unsigned long base, unsigned long size)
571 if (mtrr_check(base, size))
572 return -EINVAL;
573 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
575 EXPORT_SYMBOL(mtrr_del);
578 * HACK ALERT!
579 * These should be called implicitly, but we can't yet until all the initcall
580 * stuff is done...
582 static void __init init_ifs(void)
584 #ifndef CONFIG_X86_64
585 amd_init_mtrr();
586 cyrix_init_mtrr();
587 centaur_init_mtrr();
588 #endif
591 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
592 * MTRR driver doesn't require this
594 struct mtrr_value {
595 mtrr_type ltype;
596 unsigned long lbase;
597 unsigned long lsize;
600 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
602 static int mtrr_save(struct sys_device *sysdev, pm_message_t state)
604 int i;
606 for (i = 0; i < num_var_ranges; i++) {
607 mtrr_if->get(i, &mtrr_value[i].lbase,
608 &mtrr_value[i].lsize,
609 &mtrr_value[i].ltype);
611 return 0;
614 static int mtrr_restore(struct sys_device *sysdev)
616 int i;
618 for (i = 0; i < num_var_ranges; i++) {
619 if (mtrr_value[i].lsize) {
620 set_mtrr(i, mtrr_value[i].lbase,
621 mtrr_value[i].lsize,
622 mtrr_value[i].ltype);
625 return 0;
630 static struct sysdev_driver mtrr_sysdev_driver = {
631 .suspend = mtrr_save,
632 .resume = mtrr_restore,
635 int __initdata changed_by_mtrr_cleanup;
638 * mtrr_bp_init - initialize mtrrs on the boot CPU
640 * This needs to be called early; before any of the other CPUs are
641 * initialized (i.e. before smp_init()).
644 void __init mtrr_bp_init(void)
646 u32 phys_addr;
648 init_ifs();
650 phys_addr = 32;
652 if (cpu_has_mtrr) {
653 mtrr_if = &generic_mtrr_ops;
654 size_or_mask = 0xff000000; /* 36 bits */
655 size_and_mask = 0x00f00000;
656 phys_addr = 36;
659 * This is an AMD specific MSR, but we assume(hope?) that
660 * Intel will implement it to when they extend the address
661 * bus of the Xeon.
663 if (cpuid_eax(0x80000000) >= 0x80000008) {
664 phys_addr = cpuid_eax(0x80000008) & 0xff;
665 /* CPUID workaround for Intel 0F33/0F34 CPU */
666 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
667 boot_cpu_data.x86 == 0xF &&
668 boot_cpu_data.x86_model == 0x3 &&
669 (boot_cpu_data.x86_mask == 0x3 ||
670 boot_cpu_data.x86_mask == 0x4))
671 phys_addr = 36;
673 size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
674 size_and_mask = ~size_or_mask & 0xfffff00000ULL;
675 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
676 boot_cpu_data.x86 == 6) {
678 * VIA C* family have Intel style MTRRs,
679 * but don't support PAE
681 size_or_mask = 0xfff00000; /* 32 bits */
682 size_and_mask = 0;
683 phys_addr = 32;
685 } else {
686 switch (boot_cpu_data.x86_vendor) {
687 case X86_VENDOR_AMD:
688 if (cpu_has_k6_mtrr) {
689 /* Pre-Athlon (K6) AMD CPU MTRRs */
690 mtrr_if = mtrr_ops[X86_VENDOR_AMD];
691 size_or_mask = 0xfff00000; /* 32 bits */
692 size_and_mask = 0;
694 break;
695 case X86_VENDOR_CENTAUR:
696 if (cpu_has_centaur_mcr) {
697 mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
698 size_or_mask = 0xfff00000; /* 32 bits */
699 size_and_mask = 0;
701 break;
702 case X86_VENDOR_CYRIX:
703 if (cpu_has_cyrix_arr) {
704 mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
705 size_or_mask = 0xfff00000; /* 32 bits */
706 size_and_mask = 0;
708 break;
709 default:
710 break;
714 if (mtrr_if) {
715 set_num_var_ranges();
716 init_table();
717 if (use_intel()) {
718 get_mtrr_state();
720 if (mtrr_cleanup(phys_addr)) {
721 changed_by_mtrr_cleanup = 1;
722 mtrr_if->set_all();
728 void mtrr_ap_init(void)
730 if (!use_intel() || mtrr_aps_delayed_init)
731 return;
733 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
734 * changed, but this routine will be called in cpu boot time,
735 * holding the lock breaks it.
737 * This routine is called in two cases:
739 * 1. very earily time of software resume, when there absolutely
740 * isn't mtrr entry changes;
742 * 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
743 * lock to prevent mtrr entry changes
745 set_mtrr(~0U, 0, 0, 0);
749 * Save current fixed-range MTRR state of the BSP
751 void mtrr_save_state(void)
753 smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
756 void set_mtrr_aps_delayed_init(void)
758 if (!use_intel())
759 return;
761 mtrr_aps_delayed_init = 1;
765 * MTRR initialization for all AP's
767 void mtrr_aps_init(void)
769 if (!use_intel())
770 return;
772 set_mtrr(~0U, 0, 0, 0);
773 mtrr_aps_delayed_init = 0;
776 void mtrr_bp_restore(void)
778 if (!use_intel())
779 return;
781 mtrr_if->set_all();
784 static int __init mtrr_init_finialize(void)
786 if (!mtrr_if)
787 return 0;
789 if (use_intel()) {
790 if (!changed_by_mtrr_cleanup)
791 mtrr_state_warn();
792 return 0;
796 * The CPU has no MTRR and seems to not support SMP. They have
797 * specific drivers, we use a tricky method to support
798 * suspend/resume for them.
800 * TBD: is there any system with such CPU which supports
801 * suspend/resume? If no, we should remove the code.
803 sysdev_driver_register(&cpu_sysdev_class, &mtrr_sysdev_driver);
805 return 0;
807 subsys_initcall(mtrr_init_finialize);