powerpc/ps3: set_dabr() takes an unsigned long
[linux-2.6/mini2440.git] / lib / idr.c
blobc11c5765cdefd2b5115e4f37e94905ab7364adad
1 /*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
9 * Modified by Nadia Derbey to make it RCU safe.
11 * Small id to pointer translation service.
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
15 * a new id quick.
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/module.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
38 static struct kmem_cache *idr_layer_cache;
40 static struct idr_layer *get_from_free_list(struct idr *idp)
42 struct idr_layer *p;
43 unsigned long flags;
45 spin_lock_irqsave(&idp->lock, flags);
46 if ((p = idp->id_free)) {
47 idp->id_free = p->ary[0];
48 idp->id_free_cnt--;
49 p->ary[0] = NULL;
51 spin_unlock_irqrestore(&idp->lock, flags);
52 return(p);
55 static void idr_layer_rcu_free(struct rcu_head *head)
57 struct idr_layer *layer;
59 layer = container_of(head, struct idr_layer, rcu_head);
60 kmem_cache_free(idr_layer_cache, layer);
63 static inline void free_layer(struct idr_layer *p)
65 call_rcu(&p->rcu_head, idr_layer_rcu_free);
68 /* only called when idp->lock is held */
69 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
71 p->ary[0] = idp->id_free;
72 idp->id_free = p;
73 idp->id_free_cnt++;
76 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
78 unsigned long flags;
81 * Depends on the return element being zeroed.
83 spin_lock_irqsave(&idp->lock, flags);
84 __move_to_free_list(idp, p);
85 spin_unlock_irqrestore(&idp->lock, flags);
88 static void idr_mark_full(struct idr_layer **pa, int id)
90 struct idr_layer *p = pa[0];
91 int l = 0;
93 __set_bit(id & IDR_MASK, &p->bitmap);
95 * If this layer is full mark the bit in the layer above to
96 * show that this part of the radix tree is full. This may
97 * complete the layer above and require walking up the radix
98 * tree.
100 while (p->bitmap == IDR_FULL) {
101 if (!(p = pa[++l]))
102 break;
103 id = id >> IDR_BITS;
104 __set_bit((id & IDR_MASK), &p->bitmap);
109 * idr_pre_get - reserver resources for idr allocation
110 * @idp: idr handle
111 * @gfp_mask: memory allocation flags
113 * This function should be called prior to locking and calling the
114 * idr_get_new* functions. It preallocates enough memory to satisfy
115 * the worst possible allocation.
117 * If the system is REALLY out of memory this function returns 0,
118 * otherwise 1.
120 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
122 while (idp->id_free_cnt < IDR_FREE_MAX) {
123 struct idr_layer *new;
124 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
125 if (new == NULL)
126 return (0);
127 move_to_free_list(idp, new);
129 return 1;
131 EXPORT_SYMBOL(idr_pre_get);
133 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
135 int n, m, sh;
136 struct idr_layer *p, *new;
137 int l, id, oid;
138 unsigned long bm;
140 id = *starting_id;
141 restart:
142 p = idp->top;
143 l = idp->layers;
144 pa[l--] = NULL;
145 while (1) {
147 * We run around this while until we reach the leaf node...
149 n = (id >> (IDR_BITS*l)) & IDR_MASK;
150 bm = ~p->bitmap;
151 m = find_next_bit(&bm, IDR_SIZE, n);
152 if (m == IDR_SIZE) {
153 /* no space available go back to previous layer. */
154 l++;
155 oid = id;
156 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
158 /* if already at the top layer, we need to grow */
159 if (!(p = pa[l])) {
160 *starting_id = id;
161 return IDR_NEED_TO_GROW;
164 /* If we need to go up one layer, continue the
165 * loop; otherwise, restart from the top.
167 sh = IDR_BITS * (l + 1);
168 if (oid >> sh == id >> sh)
169 continue;
170 else
171 goto restart;
173 if (m != n) {
174 sh = IDR_BITS*l;
175 id = ((id >> sh) ^ n ^ m) << sh;
177 if ((id >= MAX_ID_BIT) || (id < 0))
178 return IDR_NOMORE_SPACE;
179 if (l == 0)
180 break;
182 * Create the layer below if it is missing.
184 if (!p->ary[m]) {
185 new = get_from_free_list(idp);
186 if (!new)
187 return -1;
188 new->layer = l-1;
189 rcu_assign_pointer(p->ary[m], new);
190 p->count++;
192 pa[l--] = p;
193 p = p->ary[m];
196 pa[l] = p;
197 return id;
200 static int idr_get_empty_slot(struct idr *idp, int starting_id,
201 struct idr_layer **pa)
203 struct idr_layer *p, *new;
204 int layers, v, id;
205 unsigned long flags;
207 id = starting_id;
208 build_up:
209 p = idp->top;
210 layers = idp->layers;
211 if (unlikely(!p)) {
212 if (!(p = get_from_free_list(idp)))
213 return -1;
214 p->layer = 0;
215 layers = 1;
218 * Add a new layer to the top of the tree if the requested
219 * id is larger than the currently allocated space.
221 while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
222 layers++;
223 if (!p->count) {
224 /* special case: if the tree is currently empty,
225 * then we grow the tree by moving the top node
226 * upwards.
228 p->layer++;
229 continue;
231 if (!(new = get_from_free_list(idp))) {
233 * The allocation failed. If we built part of
234 * the structure tear it down.
236 spin_lock_irqsave(&idp->lock, flags);
237 for (new = p; p && p != idp->top; new = p) {
238 p = p->ary[0];
239 new->ary[0] = NULL;
240 new->bitmap = new->count = 0;
241 __move_to_free_list(idp, new);
243 spin_unlock_irqrestore(&idp->lock, flags);
244 return -1;
246 new->ary[0] = p;
247 new->count = 1;
248 new->layer = layers-1;
249 if (p->bitmap == IDR_FULL)
250 __set_bit(0, &new->bitmap);
251 p = new;
253 rcu_assign_pointer(idp->top, p);
254 idp->layers = layers;
255 v = sub_alloc(idp, &id, pa);
256 if (v == IDR_NEED_TO_GROW)
257 goto build_up;
258 return(v);
261 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
263 struct idr_layer *pa[MAX_LEVEL];
264 int id;
266 id = idr_get_empty_slot(idp, starting_id, pa);
267 if (id >= 0) {
269 * Successfully found an empty slot. Install the user
270 * pointer and mark the slot full.
272 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
273 (struct idr_layer *)ptr);
274 pa[0]->count++;
275 idr_mark_full(pa, id);
278 return id;
282 * idr_get_new_above - allocate new idr entry above or equal to a start id
283 * @idp: idr handle
284 * @ptr: pointer you want associated with the ide
285 * @start_id: id to start search at
286 * @id: pointer to the allocated handle
288 * This is the allocate id function. It should be called with any
289 * required locks.
291 * If memory is required, it will return -EAGAIN, you should unlock
292 * and go back to the idr_pre_get() call. If the idr is full, it will
293 * return -ENOSPC.
295 * @id returns a value in the range @starting_id ... 0x7fffffff
297 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
299 int rv;
301 rv = idr_get_new_above_int(idp, ptr, starting_id);
303 * This is a cheap hack until the IDR code can be fixed to
304 * return proper error values.
306 if (rv < 0)
307 return _idr_rc_to_errno(rv);
308 *id = rv;
309 return 0;
311 EXPORT_SYMBOL(idr_get_new_above);
314 * idr_get_new - allocate new idr entry
315 * @idp: idr handle
316 * @ptr: pointer you want associated with the ide
317 * @id: pointer to the allocated handle
319 * This is the allocate id function. It should be called with any
320 * required locks.
322 * If memory is required, it will return -EAGAIN, you should unlock
323 * and go back to the idr_pre_get() call. If the idr is full, it will
324 * return -ENOSPC.
326 * @id returns a value in the range 0 ... 0x7fffffff
328 int idr_get_new(struct idr *idp, void *ptr, int *id)
330 int rv;
332 rv = idr_get_new_above_int(idp, ptr, 0);
334 * This is a cheap hack until the IDR code can be fixed to
335 * return proper error values.
337 if (rv < 0)
338 return _idr_rc_to_errno(rv);
339 *id = rv;
340 return 0;
342 EXPORT_SYMBOL(idr_get_new);
344 static void idr_remove_warning(int id)
346 printk(KERN_WARNING
347 "idr_remove called for id=%d which is not allocated.\n", id);
348 dump_stack();
351 static void sub_remove(struct idr *idp, int shift, int id)
353 struct idr_layer *p = idp->top;
354 struct idr_layer **pa[MAX_LEVEL];
355 struct idr_layer ***paa = &pa[0];
356 struct idr_layer *to_free;
357 int n;
359 *paa = NULL;
360 *++paa = &idp->top;
362 while ((shift > 0) && p) {
363 n = (id >> shift) & IDR_MASK;
364 __clear_bit(n, &p->bitmap);
365 *++paa = &p->ary[n];
366 p = p->ary[n];
367 shift -= IDR_BITS;
369 n = id & IDR_MASK;
370 if (likely(p != NULL && test_bit(n, &p->bitmap))){
371 __clear_bit(n, &p->bitmap);
372 rcu_assign_pointer(p->ary[n], NULL);
373 to_free = NULL;
374 while(*paa && ! --((**paa)->count)){
375 if (to_free)
376 free_layer(to_free);
377 to_free = **paa;
378 **paa-- = NULL;
380 if (!*paa)
381 idp->layers = 0;
382 if (to_free)
383 free_layer(to_free);
384 } else
385 idr_remove_warning(id);
389 * idr_remove - remove the given id and free it's slot
390 * @idp: idr handle
391 * @id: unique key
393 void idr_remove(struct idr *idp, int id)
395 struct idr_layer *p;
396 struct idr_layer *to_free;
398 /* Mask off upper bits we don't use for the search. */
399 id &= MAX_ID_MASK;
401 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
402 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
403 idp->top->ary[0]) {
405 * Single child at leftmost slot: we can shrink the tree.
406 * This level is not needed anymore since when layers are
407 * inserted, they are inserted at the top of the existing
408 * tree.
410 to_free = idp->top;
411 p = idp->top->ary[0];
412 rcu_assign_pointer(idp->top, p);
413 --idp->layers;
414 to_free->bitmap = to_free->count = 0;
415 free_layer(to_free);
417 while (idp->id_free_cnt >= IDR_FREE_MAX) {
418 p = get_from_free_list(idp);
420 * Note: we don't call the rcu callback here, since the only
421 * layers that fall into the freelist are those that have been
422 * preallocated.
424 kmem_cache_free(idr_layer_cache, p);
426 return;
428 EXPORT_SYMBOL(idr_remove);
431 * idr_remove_all - remove all ids from the given idr tree
432 * @idp: idr handle
434 * idr_destroy() only frees up unused, cached idp_layers, but this
435 * function will remove all id mappings and leave all idp_layers
436 * unused.
438 * A typical clean-up sequence for objects stored in an idr tree, will
439 * use idr_for_each() to free all objects, if necessay, then
440 * idr_remove_all() to remove all ids, and idr_destroy() to free
441 * up the cached idr_layers.
443 void idr_remove_all(struct idr *idp)
445 int n, id, max;
446 struct idr_layer *p;
447 struct idr_layer *pa[MAX_LEVEL];
448 struct idr_layer **paa = &pa[0];
450 n = idp->layers * IDR_BITS;
451 p = idp->top;
452 max = 1 << n;
454 id = 0;
455 while (id < max) {
456 while (n > IDR_BITS && p) {
457 n -= IDR_BITS;
458 *paa++ = p;
459 p = p->ary[(id >> n) & IDR_MASK];
462 id += 1 << n;
463 while (n < fls(id)) {
464 if (p)
465 free_layer(p);
466 n += IDR_BITS;
467 p = *--paa;
470 rcu_assign_pointer(idp->top, NULL);
471 idp->layers = 0;
473 EXPORT_SYMBOL(idr_remove_all);
476 * idr_destroy - release all cached layers within an idr tree
477 * idp: idr handle
479 void idr_destroy(struct idr *idp)
481 while (idp->id_free_cnt) {
482 struct idr_layer *p = get_from_free_list(idp);
483 kmem_cache_free(idr_layer_cache, p);
486 EXPORT_SYMBOL(idr_destroy);
489 * idr_find - return pointer for given id
490 * @idp: idr handle
491 * @id: lookup key
493 * Return the pointer given the id it has been registered with. A %NULL
494 * return indicates that @id is not valid or you passed %NULL in
495 * idr_get_new().
497 * This function can be called under rcu_read_lock(), given that the leaf
498 * pointers lifetimes are correctly managed.
500 void *idr_find(struct idr *idp, int id)
502 int n;
503 struct idr_layer *p;
505 p = rcu_dereference(idp->top);
506 if (!p)
507 return NULL;
508 n = (p->layer+1) * IDR_BITS;
510 /* Mask off upper bits we don't use for the search. */
511 id &= MAX_ID_MASK;
513 if (id >= (1 << n))
514 return NULL;
515 BUG_ON(n == 0);
517 while (n > 0 && p) {
518 n -= IDR_BITS;
519 BUG_ON(n != p->layer*IDR_BITS);
520 p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
522 return((void *)p);
524 EXPORT_SYMBOL(idr_find);
527 * idr_for_each - iterate through all stored pointers
528 * @idp: idr handle
529 * @fn: function to be called for each pointer
530 * @data: data passed back to callback function
532 * Iterate over the pointers registered with the given idr. The
533 * callback function will be called for each pointer currently
534 * registered, passing the id, the pointer and the data pointer passed
535 * to this function. It is not safe to modify the idr tree while in
536 * the callback, so functions such as idr_get_new and idr_remove are
537 * not allowed.
539 * We check the return of @fn each time. If it returns anything other
540 * than 0, we break out and return that value.
542 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
544 int idr_for_each(struct idr *idp,
545 int (*fn)(int id, void *p, void *data), void *data)
547 int n, id, max, error = 0;
548 struct idr_layer *p;
549 struct idr_layer *pa[MAX_LEVEL];
550 struct idr_layer **paa = &pa[0];
552 n = idp->layers * IDR_BITS;
553 p = rcu_dereference(idp->top);
554 max = 1 << n;
556 id = 0;
557 while (id < max) {
558 while (n > 0 && p) {
559 n -= IDR_BITS;
560 *paa++ = p;
561 p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
564 if (p) {
565 error = fn(id, (void *)p, data);
566 if (error)
567 break;
570 id += 1 << n;
571 while (n < fls(id)) {
572 n += IDR_BITS;
573 p = *--paa;
577 return error;
579 EXPORT_SYMBOL(idr_for_each);
582 * idr_replace - replace pointer for given id
583 * @idp: idr handle
584 * @ptr: pointer you want associated with the id
585 * @id: lookup key
587 * Replace the pointer registered with an id and return the old value.
588 * A -ENOENT return indicates that @id was not found.
589 * A -EINVAL return indicates that @id was not within valid constraints.
591 * The caller must serialize with writers.
593 void *idr_replace(struct idr *idp, void *ptr, int id)
595 int n;
596 struct idr_layer *p, *old_p;
598 p = idp->top;
599 if (!p)
600 return ERR_PTR(-EINVAL);
602 n = (p->layer+1) * IDR_BITS;
604 id &= MAX_ID_MASK;
606 if (id >= (1 << n))
607 return ERR_PTR(-EINVAL);
609 n -= IDR_BITS;
610 while ((n > 0) && p) {
611 p = p->ary[(id >> n) & IDR_MASK];
612 n -= IDR_BITS;
615 n = id & IDR_MASK;
616 if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
617 return ERR_PTR(-ENOENT);
619 old_p = p->ary[n];
620 rcu_assign_pointer(p->ary[n], ptr);
622 return old_p;
624 EXPORT_SYMBOL(idr_replace);
626 void __init idr_init_cache(void)
628 idr_layer_cache = kmem_cache_create("idr_layer_cache",
629 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
633 * idr_init - initialize idr handle
634 * @idp: idr handle
636 * This function is use to set up the handle (@idp) that you will pass
637 * to the rest of the functions.
639 void idr_init(struct idr *idp)
641 memset(idp, 0, sizeof(struct idr));
642 spin_lock_init(&idp->lock);
644 EXPORT_SYMBOL(idr_init);
648 * IDA - IDR based ID allocator
650 * this is id allocator without id -> pointer translation. Memory
651 * usage is much lower than full blown idr because each id only
652 * occupies a bit. ida uses a custom leaf node which contains
653 * IDA_BITMAP_BITS slots.
655 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
658 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
660 unsigned long flags;
662 if (!ida->free_bitmap) {
663 spin_lock_irqsave(&ida->idr.lock, flags);
664 if (!ida->free_bitmap) {
665 ida->free_bitmap = bitmap;
666 bitmap = NULL;
668 spin_unlock_irqrestore(&ida->idr.lock, flags);
671 kfree(bitmap);
675 * ida_pre_get - reserve resources for ida allocation
676 * @ida: ida handle
677 * @gfp_mask: memory allocation flag
679 * This function should be called prior to locking and calling the
680 * following function. It preallocates enough memory to satisfy the
681 * worst possible allocation.
683 * If the system is REALLY out of memory this function returns 0,
684 * otherwise 1.
686 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
688 /* allocate idr_layers */
689 if (!idr_pre_get(&ida->idr, gfp_mask))
690 return 0;
692 /* allocate free_bitmap */
693 if (!ida->free_bitmap) {
694 struct ida_bitmap *bitmap;
696 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
697 if (!bitmap)
698 return 0;
700 free_bitmap(ida, bitmap);
703 return 1;
705 EXPORT_SYMBOL(ida_pre_get);
708 * ida_get_new_above - allocate new ID above or equal to a start id
709 * @ida: ida handle
710 * @staring_id: id to start search at
711 * @p_id: pointer to the allocated handle
713 * Allocate new ID above or equal to @ida. It should be called with
714 * any required locks.
716 * If memory is required, it will return -EAGAIN, you should unlock
717 * and go back to the ida_pre_get() call. If the ida is full, it will
718 * return -ENOSPC.
720 * @p_id returns a value in the range @starting_id ... 0x7fffffff.
722 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
724 struct idr_layer *pa[MAX_LEVEL];
725 struct ida_bitmap *bitmap;
726 unsigned long flags;
727 int idr_id = starting_id / IDA_BITMAP_BITS;
728 int offset = starting_id % IDA_BITMAP_BITS;
729 int t, id;
731 restart:
732 /* get vacant slot */
733 t = idr_get_empty_slot(&ida->idr, idr_id, pa);
734 if (t < 0)
735 return _idr_rc_to_errno(t);
737 if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
738 return -ENOSPC;
740 if (t != idr_id)
741 offset = 0;
742 idr_id = t;
744 /* if bitmap isn't there, create a new one */
745 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
746 if (!bitmap) {
747 spin_lock_irqsave(&ida->idr.lock, flags);
748 bitmap = ida->free_bitmap;
749 ida->free_bitmap = NULL;
750 spin_unlock_irqrestore(&ida->idr.lock, flags);
752 if (!bitmap)
753 return -EAGAIN;
755 memset(bitmap, 0, sizeof(struct ida_bitmap));
756 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
757 (void *)bitmap);
758 pa[0]->count++;
761 /* lookup for empty slot */
762 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
763 if (t == IDA_BITMAP_BITS) {
764 /* no empty slot after offset, continue to the next chunk */
765 idr_id++;
766 offset = 0;
767 goto restart;
770 id = idr_id * IDA_BITMAP_BITS + t;
771 if (id >= MAX_ID_BIT)
772 return -ENOSPC;
774 __set_bit(t, bitmap->bitmap);
775 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
776 idr_mark_full(pa, idr_id);
778 *p_id = id;
780 /* Each leaf node can handle nearly a thousand slots and the
781 * whole idea of ida is to have small memory foot print.
782 * Throw away extra resources one by one after each successful
783 * allocation.
785 if (ida->idr.id_free_cnt || ida->free_bitmap) {
786 struct idr_layer *p = get_from_free_list(&ida->idr);
787 if (p)
788 kmem_cache_free(idr_layer_cache, p);
791 return 0;
793 EXPORT_SYMBOL(ida_get_new_above);
796 * ida_get_new - allocate new ID
797 * @ida: idr handle
798 * @p_id: pointer to the allocated handle
800 * Allocate new ID. It should be called with any required locks.
802 * If memory is required, it will return -EAGAIN, you should unlock
803 * and go back to the idr_pre_get() call. If the idr is full, it will
804 * return -ENOSPC.
806 * @id returns a value in the range 0 ... 0x7fffffff.
808 int ida_get_new(struct ida *ida, int *p_id)
810 return ida_get_new_above(ida, 0, p_id);
812 EXPORT_SYMBOL(ida_get_new);
815 * ida_remove - remove the given ID
816 * @ida: ida handle
817 * @id: ID to free
819 void ida_remove(struct ida *ida, int id)
821 struct idr_layer *p = ida->idr.top;
822 int shift = (ida->idr.layers - 1) * IDR_BITS;
823 int idr_id = id / IDA_BITMAP_BITS;
824 int offset = id % IDA_BITMAP_BITS;
825 int n;
826 struct ida_bitmap *bitmap;
828 /* clear full bits while looking up the leaf idr_layer */
829 while ((shift > 0) && p) {
830 n = (idr_id >> shift) & IDR_MASK;
831 __clear_bit(n, &p->bitmap);
832 p = p->ary[n];
833 shift -= IDR_BITS;
836 if (p == NULL)
837 goto err;
839 n = idr_id & IDR_MASK;
840 __clear_bit(n, &p->bitmap);
842 bitmap = (void *)p->ary[n];
843 if (!test_bit(offset, bitmap->bitmap))
844 goto err;
846 /* update bitmap and remove it if empty */
847 __clear_bit(offset, bitmap->bitmap);
848 if (--bitmap->nr_busy == 0) {
849 __set_bit(n, &p->bitmap); /* to please idr_remove() */
850 idr_remove(&ida->idr, idr_id);
851 free_bitmap(ida, bitmap);
854 return;
856 err:
857 printk(KERN_WARNING
858 "ida_remove called for id=%d which is not allocated.\n", id);
860 EXPORT_SYMBOL(ida_remove);
863 * ida_destroy - release all cached layers within an ida tree
864 * ida: ida handle
866 void ida_destroy(struct ida *ida)
868 idr_destroy(&ida->idr);
869 kfree(ida->free_bitmap);
871 EXPORT_SYMBOL(ida_destroy);
874 * ida_init - initialize ida handle
875 * @ida: ida handle
877 * This function is use to set up the handle (@ida) that you will pass
878 * to the rest of the functions.
880 void ida_init(struct ida *ida)
882 memset(ida, 0, sizeof(struct ida));
883 idr_init(&ida->idr);
886 EXPORT_SYMBOL(ida_init);