USB: option: add support for a new CMOTECH device to usb/serial/option
[linux-2.6/mini2440.git] / mm / slab.c
blob5d1a782289f2af6532b7baf58ea3c7198a27830c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
119 #include <asm/cacheflush.h>
120 #include <asm/tlbflush.h>
121 #include <asm/page.h>
124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125 * 0 for faster, smaller code (especially in the critical paths).
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
133 #ifdef CONFIG_DEBUG_SLAB
134 #define DEBUG 1
135 #define STATS 1
136 #define FORCED_DEBUG 1
137 #else
138 #define DEBUG 0
139 #define STATS 0
140 #define FORCED_DEBUG 0
141 #endif
143 /* Shouldn't this be in a header file somewhere? */
144 #define BYTES_PER_WORD sizeof(void *)
145 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
147 #ifndef ARCH_KMALLOC_MINALIGN
149 * Enforce a minimum alignment for the kmalloc caches.
150 * Usually, the kmalloc caches are cache_line_size() aligned, except when
151 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
152 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
153 * alignment larger than the alignment of a 64-bit integer.
154 * ARCH_KMALLOC_MINALIGN allows that.
155 * Note that increasing this value may disable some debug features.
157 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158 #endif
160 #ifndef ARCH_SLAB_MINALIGN
162 * Enforce a minimum alignment for all caches.
163 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
164 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
165 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
166 * some debug features.
168 #define ARCH_SLAB_MINALIGN 0
169 #endif
171 #ifndef ARCH_KMALLOC_FLAGS
172 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173 #endif
175 /* Legal flag mask for kmem_cache_create(). */
176 #if DEBUG
177 # define CREATE_MASK (SLAB_RED_ZONE | \
178 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179 SLAB_CACHE_DMA | \
180 SLAB_STORE_USER | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
183 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
184 #else
185 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
186 SLAB_CACHE_DMA | \
187 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
188 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
189 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
190 #endif
193 * kmem_bufctl_t:
195 * Bufctl's are used for linking objs within a slab
196 * linked offsets.
198 * This implementation relies on "struct page" for locating the cache &
199 * slab an object belongs to.
200 * This allows the bufctl structure to be small (one int), but limits
201 * the number of objects a slab (not a cache) can contain when off-slab
202 * bufctls are used. The limit is the size of the largest general cache
203 * that does not use off-slab slabs.
204 * For 32bit archs with 4 kB pages, is this 56.
205 * This is not serious, as it is only for large objects, when it is unwise
206 * to have too many per slab.
207 * Note: This limit can be raised by introducing a general cache whose size
208 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
211 typedef unsigned int kmem_bufctl_t;
212 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
213 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
214 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
215 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
218 * struct slab
220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
221 * for a slab, or allocated from an general cache.
222 * Slabs are chained into three list: fully used, partial, fully free slabs.
224 struct slab {
225 struct list_head list;
226 unsigned long colouroff;
227 void *s_mem; /* including colour offset */
228 unsigned int inuse; /* num of objs active in slab */
229 kmem_bufctl_t free;
230 unsigned short nodeid;
234 * struct slab_rcu
236 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
237 * arrange for kmem_freepages to be called via RCU. This is useful if
238 * we need to approach a kernel structure obliquely, from its address
239 * obtained without the usual locking. We can lock the structure to
240 * stabilize it and check it's still at the given address, only if we
241 * can be sure that the memory has not been meanwhile reused for some
242 * other kind of object (which our subsystem's lock might corrupt).
244 * rcu_read_lock before reading the address, then rcu_read_unlock after
245 * taking the spinlock within the structure expected at that address.
247 * We assume struct slab_rcu can overlay struct slab when destroying.
249 struct slab_rcu {
250 struct rcu_head head;
251 struct kmem_cache *cachep;
252 void *addr;
256 * struct array_cache
258 * Purpose:
259 * - LIFO ordering, to hand out cache-warm objects from _alloc
260 * - reduce the number of linked list operations
261 * - reduce spinlock operations
263 * The limit is stored in the per-cpu structure to reduce the data cache
264 * footprint.
267 struct array_cache {
268 unsigned int avail;
269 unsigned int limit;
270 unsigned int batchcount;
271 unsigned int touched;
272 spinlock_t lock;
273 void *entry[]; /*
274 * Must have this definition in here for the proper
275 * alignment of array_cache. Also simplifies accessing
276 * the entries.
281 * bootstrap: The caches do not work without cpuarrays anymore, but the
282 * cpuarrays are allocated from the generic caches...
284 #define BOOT_CPUCACHE_ENTRIES 1
285 struct arraycache_init {
286 struct array_cache cache;
287 void *entries[BOOT_CPUCACHE_ENTRIES];
291 * The slab lists for all objects.
293 struct kmem_list3 {
294 struct list_head slabs_partial; /* partial list first, better asm code */
295 struct list_head slabs_full;
296 struct list_head slabs_free;
297 unsigned long free_objects;
298 unsigned int free_limit;
299 unsigned int colour_next; /* Per-node cache coloring */
300 spinlock_t list_lock;
301 struct array_cache *shared; /* shared per node */
302 struct array_cache **alien; /* on other nodes */
303 unsigned long next_reap; /* updated without locking */
304 int free_touched; /* updated without locking */
308 * Need this for bootstrapping a per node allocator.
310 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
311 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
312 #define CACHE_CACHE 0
313 #define SIZE_AC MAX_NUMNODES
314 #define SIZE_L3 (2 * MAX_NUMNODES)
316 static int drain_freelist(struct kmem_cache *cache,
317 struct kmem_list3 *l3, int tofree);
318 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
319 int node);
320 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
321 static void cache_reap(struct work_struct *unused);
324 * This function must be completely optimized away if a constant is passed to
325 * it. Mostly the same as what is in linux/slab.h except it returns an index.
327 static __always_inline int index_of(const size_t size)
329 extern void __bad_size(void);
331 if (__builtin_constant_p(size)) {
332 int i = 0;
334 #define CACHE(x) \
335 if (size <=x) \
336 return i; \
337 else \
338 i++;
339 #include <linux/kmalloc_sizes.h>
340 #undef CACHE
341 __bad_size();
342 } else
343 __bad_size();
344 return 0;
347 static int slab_early_init = 1;
349 #define INDEX_AC index_of(sizeof(struct arraycache_init))
350 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
352 static void kmem_list3_init(struct kmem_list3 *parent)
354 INIT_LIST_HEAD(&parent->slabs_full);
355 INIT_LIST_HEAD(&parent->slabs_partial);
356 INIT_LIST_HEAD(&parent->slabs_free);
357 parent->shared = NULL;
358 parent->alien = NULL;
359 parent->colour_next = 0;
360 spin_lock_init(&parent->list_lock);
361 parent->free_objects = 0;
362 parent->free_touched = 0;
365 #define MAKE_LIST(cachep, listp, slab, nodeid) \
366 do { \
367 INIT_LIST_HEAD(listp); \
368 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
369 } while (0)
371 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
372 do { \
373 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
374 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
375 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
376 } while (0)
378 #define CFLGS_OFF_SLAB (0x80000000UL)
379 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
381 #define BATCHREFILL_LIMIT 16
383 * Optimization question: fewer reaps means less probability for unnessary
384 * cpucache drain/refill cycles.
386 * OTOH the cpuarrays can contain lots of objects,
387 * which could lock up otherwise freeable slabs.
389 #define REAPTIMEOUT_CPUC (2*HZ)
390 #define REAPTIMEOUT_LIST3 (4*HZ)
392 #if STATS
393 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
394 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
395 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
396 #define STATS_INC_GROWN(x) ((x)->grown++)
397 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
398 #define STATS_SET_HIGH(x) \
399 do { \
400 if ((x)->num_active > (x)->high_mark) \
401 (x)->high_mark = (x)->num_active; \
402 } while (0)
403 #define STATS_INC_ERR(x) ((x)->errors++)
404 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
405 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
406 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
407 #define STATS_SET_FREEABLE(x, i) \
408 do { \
409 if ((x)->max_freeable < i) \
410 (x)->max_freeable = i; \
411 } while (0)
412 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
413 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
414 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
415 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
416 #else
417 #define STATS_INC_ACTIVE(x) do { } while (0)
418 #define STATS_DEC_ACTIVE(x) do { } while (0)
419 #define STATS_INC_ALLOCED(x) do { } while (0)
420 #define STATS_INC_GROWN(x) do { } while (0)
421 #define STATS_ADD_REAPED(x,y) do { } while (0)
422 #define STATS_SET_HIGH(x) do { } while (0)
423 #define STATS_INC_ERR(x) do { } while (0)
424 #define STATS_INC_NODEALLOCS(x) do { } while (0)
425 #define STATS_INC_NODEFREES(x) do { } while (0)
426 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
427 #define STATS_SET_FREEABLE(x, i) do { } while (0)
428 #define STATS_INC_ALLOCHIT(x) do { } while (0)
429 #define STATS_INC_ALLOCMISS(x) do { } while (0)
430 #define STATS_INC_FREEHIT(x) do { } while (0)
431 #define STATS_INC_FREEMISS(x) do { } while (0)
432 #endif
434 #if DEBUG
437 * memory layout of objects:
438 * 0 : objp
439 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
440 * the end of an object is aligned with the end of the real
441 * allocation. Catches writes behind the end of the allocation.
442 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
443 * redzone word.
444 * cachep->obj_offset: The real object.
445 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
446 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
447 * [BYTES_PER_WORD long]
449 static int obj_offset(struct kmem_cache *cachep)
451 return cachep->obj_offset;
454 static int obj_size(struct kmem_cache *cachep)
456 return cachep->obj_size;
459 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
461 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
462 return (unsigned long long*) (objp + obj_offset(cachep) -
463 sizeof(unsigned long long));
466 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
468 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
469 if (cachep->flags & SLAB_STORE_USER)
470 return (unsigned long long *)(objp + cachep->buffer_size -
471 sizeof(unsigned long long) -
472 REDZONE_ALIGN);
473 return (unsigned long long *) (objp + cachep->buffer_size -
474 sizeof(unsigned long long));
477 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
479 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
480 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
483 #else
485 #define obj_offset(x) 0
486 #define obj_size(cachep) (cachep->buffer_size)
487 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
488 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
489 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
491 #endif
493 #ifdef CONFIG_KMEMTRACE
494 size_t slab_buffer_size(struct kmem_cache *cachep)
496 return cachep->buffer_size;
498 EXPORT_SYMBOL(slab_buffer_size);
499 #endif
502 * Do not go above this order unless 0 objects fit into the slab.
504 #define BREAK_GFP_ORDER_HI 1
505 #define BREAK_GFP_ORDER_LO 0
506 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
509 * Functions for storing/retrieving the cachep and or slab from the page
510 * allocator. These are used to find the slab an obj belongs to. With kfree(),
511 * these are used to find the cache which an obj belongs to.
513 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
515 page->lru.next = (struct list_head *)cache;
518 static inline struct kmem_cache *page_get_cache(struct page *page)
520 page = compound_head(page);
521 BUG_ON(!PageSlab(page));
522 return (struct kmem_cache *)page->lru.next;
525 static inline void page_set_slab(struct page *page, struct slab *slab)
527 page->lru.prev = (struct list_head *)slab;
530 static inline struct slab *page_get_slab(struct page *page)
532 BUG_ON(!PageSlab(page));
533 return (struct slab *)page->lru.prev;
536 static inline struct kmem_cache *virt_to_cache(const void *obj)
538 struct page *page = virt_to_head_page(obj);
539 return page_get_cache(page);
542 static inline struct slab *virt_to_slab(const void *obj)
544 struct page *page = virt_to_head_page(obj);
545 return page_get_slab(page);
548 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
549 unsigned int idx)
551 return slab->s_mem + cache->buffer_size * idx;
555 * We want to avoid an expensive divide : (offset / cache->buffer_size)
556 * Using the fact that buffer_size is a constant for a particular cache,
557 * we can replace (offset / cache->buffer_size) by
558 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
560 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
561 const struct slab *slab, void *obj)
563 u32 offset = (obj - slab->s_mem);
564 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
568 * These are the default caches for kmalloc. Custom caches can have other sizes.
570 struct cache_sizes malloc_sizes[] = {
571 #define CACHE(x) { .cs_size = (x) },
572 #include <linux/kmalloc_sizes.h>
573 CACHE(ULONG_MAX)
574 #undef CACHE
576 EXPORT_SYMBOL(malloc_sizes);
578 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
579 struct cache_names {
580 char *name;
581 char *name_dma;
584 static struct cache_names __initdata cache_names[] = {
585 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
586 #include <linux/kmalloc_sizes.h>
587 {NULL,}
588 #undef CACHE
591 static struct arraycache_init initarray_cache __initdata =
592 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
593 static struct arraycache_init initarray_generic =
594 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
596 /* internal cache of cache description objs */
597 static struct kmem_cache cache_cache = {
598 .batchcount = 1,
599 .limit = BOOT_CPUCACHE_ENTRIES,
600 .shared = 1,
601 .buffer_size = sizeof(struct kmem_cache),
602 .name = "kmem_cache",
605 #define BAD_ALIEN_MAGIC 0x01020304ul
607 #ifdef CONFIG_LOCKDEP
610 * Slab sometimes uses the kmalloc slabs to store the slab headers
611 * for other slabs "off slab".
612 * The locking for this is tricky in that it nests within the locks
613 * of all other slabs in a few places; to deal with this special
614 * locking we put on-slab caches into a separate lock-class.
616 * We set lock class for alien array caches which are up during init.
617 * The lock annotation will be lost if all cpus of a node goes down and
618 * then comes back up during hotplug
620 static struct lock_class_key on_slab_l3_key;
621 static struct lock_class_key on_slab_alc_key;
623 static inline void init_lock_keys(void)
626 int q;
627 struct cache_sizes *s = malloc_sizes;
629 while (s->cs_size != ULONG_MAX) {
630 for_each_node(q) {
631 struct array_cache **alc;
632 int r;
633 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
634 if (!l3 || OFF_SLAB(s->cs_cachep))
635 continue;
636 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
637 alc = l3->alien;
639 * FIXME: This check for BAD_ALIEN_MAGIC
640 * should go away when common slab code is taught to
641 * work even without alien caches.
642 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
643 * for alloc_alien_cache,
645 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
646 continue;
647 for_each_node(r) {
648 if (alc[r])
649 lockdep_set_class(&alc[r]->lock,
650 &on_slab_alc_key);
653 s++;
656 #else
657 static inline void init_lock_keys(void)
660 #endif
663 * Guard access to the cache-chain.
665 static DEFINE_MUTEX(cache_chain_mutex);
666 static struct list_head cache_chain;
669 * chicken and egg problem: delay the per-cpu array allocation
670 * until the general caches are up.
672 static enum {
673 NONE,
674 PARTIAL_AC,
675 PARTIAL_L3,
676 EARLY,
677 FULL
678 } g_cpucache_up;
681 * used by boot code to determine if it can use slab based allocator
683 int slab_is_available(void)
685 return g_cpucache_up >= EARLY;
688 static DEFINE_PER_CPU(struct delayed_work, reap_work);
690 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
692 return cachep->array[smp_processor_id()];
695 static inline struct kmem_cache *__find_general_cachep(size_t size,
696 gfp_t gfpflags)
698 struct cache_sizes *csizep = malloc_sizes;
700 #if DEBUG
701 /* This happens if someone tries to call
702 * kmem_cache_create(), or __kmalloc(), before
703 * the generic caches are initialized.
705 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
706 #endif
707 if (!size)
708 return ZERO_SIZE_PTR;
710 while (size > csizep->cs_size)
711 csizep++;
714 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
715 * has cs_{dma,}cachep==NULL. Thus no special case
716 * for large kmalloc calls required.
718 #ifdef CONFIG_ZONE_DMA
719 if (unlikely(gfpflags & GFP_DMA))
720 return csizep->cs_dmacachep;
721 #endif
722 return csizep->cs_cachep;
725 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
727 return __find_general_cachep(size, gfpflags);
730 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
732 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
736 * Calculate the number of objects and left-over bytes for a given buffer size.
738 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
739 size_t align, int flags, size_t *left_over,
740 unsigned int *num)
742 int nr_objs;
743 size_t mgmt_size;
744 size_t slab_size = PAGE_SIZE << gfporder;
747 * The slab management structure can be either off the slab or
748 * on it. For the latter case, the memory allocated for a
749 * slab is used for:
751 * - The struct slab
752 * - One kmem_bufctl_t for each object
753 * - Padding to respect alignment of @align
754 * - @buffer_size bytes for each object
756 * If the slab management structure is off the slab, then the
757 * alignment will already be calculated into the size. Because
758 * the slabs are all pages aligned, the objects will be at the
759 * correct alignment when allocated.
761 if (flags & CFLGS_OFF_SLAB) {
762 mgmt_size = 0;
763 nr_objs = slab_size / buffer_size;
765 if (nr_objs > SLAB_LIMIT)
766 nr_objs = SLAB_LIMIT;
767 } else {
769 * Ignore padding for the initial guess. The padding
770 * is at most @align-1 bytes, and @buffer_size is at
771 * least @align. In the worst case, this result will
772 * be one greater than the number of objects that fit
773 * into the memory allocation when taking the padding
774 * into account.
776 nr_objs = (slab_size - sizeof(struct slab)) /
777 (buffer_size + sizeof(kmem_bufctl_t));
780 * This calculated number will be either the right
781 * amount, or one greater than what we want.
783 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
784 > slab_size)
785 nr_objs--;
787 if (nr_objs > SLAB_LIMIT)
788 nr_objs = SLAB_LIMIT;
790 mgmt_size = slab_mgmt_size(nr_objs, align);
792 *num = nr_objs;
793 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
796 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
798 static void __slab_error(const char *function, struct kmem_cache *cachep,
799 char *msg)
801 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
802 function, cachep->name, msg);
803 dump_stack();
807 * By default on NUMA we use alien caches to stage the freeing of
808 * objects allocated from other nodes. This causes massive memory
809 * inefficiencies when using fake NUMA setup to split memory into a
810 * large number of small nodes, so it can be disabled on the command
811 * line
814 static int use_alien_caches __read_mostly = 1;
815 static int __init noaliencache_setup(char *s)
817 use_alien_caches = 0;
818 return 1;
820 __setup("noaliencache", noaliencache_setup);
822 #ifdef CONFIG_NUMA
824 * Special reaping functions for NUMA systems called from cache_reap().
825 * These take care of doing round robin flushing of alien caches (containing
826 * objects freed on different nodes from which they were allocated) and the
827 * flushing of remote pcps by calling drain_node_pages.
829 static DEFINE_PER_CPU(unsigned long, reap_node);
831 static void init_reap_node(int cpu)
833 int node;
835 node = next_node(cpu_to_node(cpu), node_online_map);
836 if (node == MAX_NUMNODES)
837 node = first_node(node_online_map);
839 per_cpu(reap_node, cpu) = node;
842 static void next_reap_node(void)
844 int node = __get_cpu_var(reap_node);
846 node = next_node(node, node_online_map);
847 if (unlikely(node >= MAX_NUMNODES))
848 node = first_node(node_online_map);
849 __get_cpu_var(reap_node) = node;
852 #else
853 #define init_reap_node(cpu) do { } while (0)
854 #define next_reap_node(void) do { } while (0)
855 #endif
858 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
859 * via the workqueue/eventd.
860 * Add the CPU number into the expiration time to minimize the possibility of
861 * the CPUs getting into lockstep and contending for the global cache chain
862 * lock.
864 static void __cpuinit start_cpu_timer(int cpu)
866 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
869 * When this gets called from do_initcalls via cpucache_init(),
870 * init_workqueues() has already run, so keventd will be setup
871 * at that time.
873 if (keventd_up() && reap_work->work.func == NULL) {
874 init_reap_node(cpu);
875 INIT_DELAYED_WORK(reap_work, cache_reap);
876 schedule_delayed_work_on(cpu, reap_work,
877 __round_jiffies_relative(HZ, cpu));
881 static struct array_cache *alloc_arraycache(int node, int entries,
882 int batchcount, gfp_t gfp)
884 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
885 struct array_cache *nc = NULL;
887 nc = kmalloc_node(memsize, gfp, node);
889 * The array_cache structures contain pointers to free object.
890 * However, when such objects are allocated or transfered to another
891 * cache the pointers are not cleared and they could be counted as
892 * valid references during a kmemleak scan. Therefore, kmemleak must
893 * not scan such objects.
895 kmemleak_no_scan(nc);
896 if (nc) {
897 nc->avail = 0;
898 nc->limit = entries;
899 nc->batchcount = batchcount;
900 nc->touched = 0;
901 spin_lock_init(&nc->lock);
903 return nc;
907 * Transfer objects in one arraycache to another.
908 * Locking must be handled by the caller.
910 * Return the number of entries transferred.
912 static int transfer_objects(struct array_cache *to,
913 struct array_cache *from, unsigned int max)
915 /* Figure out how many entries to transfer */
916 int nr = min(min(from->avail, max), to->limit - to->avail);
918 if (!nr)
919 return 0;
921 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
922 sizeof(void *) *nr);
924 from->avail -= nr;
925 to->avail += nr;
926 to->touched = 1;
927 return nr;
930 #ifndef CONFIG_NUMA
932 #define drain_alien_cache(cachep, alien) do { } while (0)
933 #define reap_alien(cachep, l3) do { } while (0)
935 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
937 return (struct array_cache **)BAD_ALIEN_MAGIC;
940 static inline void free_alien_cache(struct array_cache **ac_ptr)
944 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
946 return 0;
949 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
950 gfp_t flags)
952 return NULL;
955 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
956 gfp_t flags, int nodeid)
958 return NULL;
961 #else /* CONFIG_NUMA */
963 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
964 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
966 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
968 struct array_cache **ac_ptr;
969 int memsize = sizeof(void *) * nr_node_ids;
970 int i;
972 if (limit > 1)
973 limit = 12;
974 ac_ptr = kzalloc_node(memsize, gfp, node);
975 if (ac_ptr) {
976 for_each_node(i) {
977 if (i == node || !node_online(i))
978 continue;
979 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
980 if (!ac_ptr[i]) {
981 for (i--; i >= 0; i--)
982 kfree(ac_ptr[i]);
983 kfree(ac_ptr);
984 return NULL;
988 return ac_ptr;
991 static void free_alien_cache(struct array_cache **ac_ptr)
993 int i;
995 if (!ac_ptr)
996 return;
997 for_each_node(i)
998 kfree(ac_ptr[i]);
999 kfree(ac_ptr);
1002 static void __drain_alien_cache(struct kmem_cache *cachep,
1003 struct array_cache *ac, int node)
1005 struct kmem_list3 *rl3 = cachep->nodelists[node];
1007 if (ac->avail) {
1008 spin_lock(&rl3->list_lock);
1010 * Stuff objects into the remote nodes shared array first.
1011 * That way we could avoid the overhead of putting the objects
1012 * into the free lists and getting them back later.
1014 if (rl3->shared)
1015 transfer_objects(rl3->shared, ac, ac->limit);
1017 free_block(cachep, ac->entry, ac->avail, node);
1018 ac->avail = 0;
1019 spin_unlock(&rl3->list_lock);
1024 * Called from cache_reap() to regularly drain alien caches round robin.
1026 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1028 int node = __get_cpu_var(reap_node);
1030 if (l3->alien) {
1031 struct array_cache *ac = l3->alien[node];
1033 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1034 __drain_alien_cache(cachep, ac, node);
1035 spin_unlock_irq(&ac->lock);
1040 static void drain_alien_cache(struct kmem_cache *cachep,
1041 struct array_cache **alien)
1043 int i = 0;
1044 struct array_cache *ac;
1045 unsigned long flags;
1047 for_each_online_node(i) {
1048 ac = alien[i];
1049 if (ac) {
1050 spin_lock_irqsave(&ac->lock, flags);
1051 __drain_alien_cache(cachep, ac, i);
1052 spin_unlock_irqrestore(&ac->lock, flags);
1057 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1059 struct slab *slabp = virt_to_slab(objp);
1060 int nodeid = slabp->nodeid;
1061 struct kmem_list3 *l3;
1062 struct array_cache *alien = NULL;
1063 int node;
1065 node = numa_node_id();
1068 * Make sure we are not freeing a object from another node to the array
1069 * cache on this cpu.
1071 if (likely(slabp->nodeid == node))
1072 return 0;
1074 l3 = cachep->nodelists[node];
1075 STATS_INC_NODEFREES(cachep);
1076 if (l3->alien && l3->alien[nodeid]) {
1077 alien = l3->alien[nodeid];
1078 spin_lock(&alien->lock);
1079 if (unlikely(alien->avail == alien->limit)) {
1080 STATS_INC_ACOVERFLOW(cachep);
1081 __drain_alien_cache(cachep, alien, nodeid);
1083 alien->entry[alien->avail++] = objp;
1084 spin_unlock(&alien->lock);
1085 } else {
1086 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1087 free_block(cachep, &objp, 1, nodeid);
1088 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1090 return 1;
1092 #endif
1094 static void __cpuinit cpuup_canceled(long cpu)
1096 struct kmem_cache *cachep;
1097 struct kmem_list3 *l3 = NULL;
1098 int node = cpu_to_node(cpu);
1099 const struct cpumask *mask = cpumask_of_node(node);
1101 list_for_each_entry(cachep, &cache_chain, next) {
1102 struct array_cache *nc;
1103 struct array_cache *shared;
1104 struct array_cache **alien;
1106 /* cpu is dead; no one can alloc from it. */
1107 nc = cachep->array[cpu];
1108 cachep->array[cpu] = NULL;
1109 l3 = cachep->nodelists[node];
1111 if (!l3)
1112 goto free_array_cache;
1114 spin_lock_irq(&l3->list_lock);
1116 /* Free limit for this kmem_list3 */
1117 l3->free_limit -= cachep->batchcount;
1118 if (nc)
1119 free_block(cachep, nc->entry, nc->avail, node);
1121 if (!cpus_empty(*mask)) {
1122 spin_unlock_irq(&l3->list_lock);
1123 goto free_array_cache;
1126 shared = l3->shared;
1127 if (shared) {
1128 free_block(cachep, shared->entry,
1129 shared->avail, node);
1130 l3->shared = NULL;
1133 alien = l3->alien;
1134 l3->alien = NULL;
1136 spin_unlock_irq(&l3->list_lock);
1138 kfree(shared);
1139 if (alien) {
1140 drain_alien_cache(cachep, alien);
1141 free_alien_cache(alien);
1143 free_array_cache:
1144 kfree(nc);
1147 * In the previous loop, all the objects were freed to
1148 * the respective cache's slabs, now we can go ahead and
1149 * shrink each nodelist to its limit.
1151 list_for_each_entry(cachep, &cache_chain, next) {
1152 l3 = cachep->nodelists[node];
1153 if (!l3)
1154 continue;
1155 drain_freelist(cachep, l3, l3->free_objects);
1159 static int __cpuinit cpuup_prepare(long cpu)
1161 struct kmem_cache *cachep;
1162 struct kmem_list3 *l3 = NULL;
1163 int node = cpu_to_node(cpu);
1164 const int memsize = sizeof(struct kmem_list3);
1167 * We need to do this right in the beginning since
1168 * alloc_arraycache's are going to use this list.
1169 * kmalloc_node allows us to add the slab to the right
1170 * kmem_list3 and not this cpu's kmem_list3
1173 list_for_each_entry(cachep, &cache_chain, next) {
1175 * Set up the size64 kmemlist for cpu before we can
1176 * begin anything. Make sure some other cpu on this
1177 * node has not already allocated this
1179 if (!cachep->nodelists[node]) {
1180 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1181 if (!l3)
1182 goto bad;
1183 kmem_list3_init(l3);
1184 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1185 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1188 * The l3s don't come and go as CPUs come and
1189 * go. cache_chain_mutex is sufficient
1190 * protection here.
1192 cachep->nodelists[node] = l3;
1195 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1196 cachep->nodelists[node]->free_limit =
1197 (1 + nr_cpus_node(node)) *
1198 cachep->batchcount + cachep->num;
1199 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1203 * Now we can go ahead with allocating the shared arrays and
1204 * array caches
1206 list_for_each_entry(cachep, &cache_chain, next) {
1207 struct array_cache *nc;
1208 struct array_cache *shared = NULL;
1209 struct array_cache **alien = NULL;
1211 nc = alloc_arraycache(node, cachep->limit,
1212 cachep->batchcount, GFP_KERNEL);
1213 if (!nc)
1214 goto bad;
1215 if (cachep->shared) {
1216 shared = alloc_arraycache(node,
1217 cachep->shared * cachep->batchcount,
1218 0xbaadf00d, GFP_KERNEL);
1219 if (!shared) {
1220 kfree(nc);
1221 goto bad;
1224 if (use_alien_caches) {
1225 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1226 if (!alien) {
1227 kfree(shared);
1228 kfree(nc);
1229 goto bad;
1232 cachep->array[cpu] = nc;
1233 l3 = cachep->nodelists[node];
1234 BUG_ON(!l3);
1236 spin_lock_irq(&l3->list_lock);
1237 if (!l3->shared) {
1239 * We are serialised from CPU_DEAD or
1240 * CPU_UP_CANCELLED by the cpucontrol lock
1242 l3->shared = shared;
1243 shared = NULL;
1245 #ifdef CONFIG_NUMA
1246 if (!l3->alien) {
1247 l3->alien = alien;
1248 alien = NULL;
1250 #endif
1251 spin_unlock_irq(&l3->list_lock);
1252 kfree(shared);
1253 free_alien_cache(alien);
1255 return 0;
1256 bad:
1257 cpuup_canceled(cpu);
1258 return -ENOMEM;
1261 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1262 unsigned long action, void *hcpu)
1264 long cpu = (long)hcpu;
1265 int err = 0;
1267 switch (action) {
1268 case CPU_UP_PREPARE:
1269 case CPU_UP_PREPARE_FROZEN:
1270 mutex_lock(&cache_chain_mutex);
1271 err = cpuup_prepare(cpu);
1272 mutex_unlock(&cache_chain_mutex);
1273 break;
1274 case CPU_ONLINE:
1275 case CPU_ONLINE_FROZEN:
1276 start_cpu_timer(cpu);
1277 break;
1278 #ifdef CONFIG_HOTPLUG_CPU
1279 case CPU_DOWN_PREPARE:
1280 case CPU_DOWN_PREPARE_FROZEN:
1282 * Shutdown cache reaper. Note that the cache_chain_mutex is
1283 * held so that if cache_reap() is invoked it cannot do
1284 * anything expensive but will only modify reap_work
1285 * and reschedule the timer.
1287 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1288 /* Now the cache_reaper is guaranteed to be not running. */
1289 per_cpu(reap_work, cpu).work.func = NULL;
1290 break;
1291 case CPU_DOWN_FAILED:
1292 case CPU_DOWN_FAILED_FROZEN:
1293 start_cpu_timer(cpu);
1294 break;
1295 case CPU_DEAD:
1296 case CPU_DEAD_FROZEN:
1298 * Even if all the cpus of a node are down, we don't free the
1299 * kmem_list3 of any cache. This to avoid a race between
1300 * cpu_down, and a kmalloc allocation from another cpu for
1301 * memory from the node of the cpu going down. The list3
1302 * structure is usually allocated from kmem_cache_create() and
1303 * gets destroyed at kmem_cache_destroy().
1305 /* fall through */
1306 #endif
1307 case CPU_UP_CANCELED:
1308 case CPU_UP_CANCELED_FROZEN:
1309 mutex_lock(&cache_chain_mutex);
1310 cpuup_canceled(cpu);
1311 mutex_unlock(&cache_chain_mutex);
1312 break;
1314 return err ? NOTIFY_BAD : NOTIFY_OK;
1317 static struct notifier_block __cpuinitdata cpucache_notifier = {
1318 &cpuup_callback, NULL, 0
1322 * swap the static kmem_list3 with kmalloced memory
1324 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1325 int nodeid)
1327 struct kmem_list3 *ptr;
1329 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1330 BUG_ON(!ptr);
1332 memcpy(ptr, list, sizeof(struct kmem_list3));
1334 * Do not assume that spinlocks can be initialized via memcpy:
1336 spin_lock_init(&ptr->list_lock);
1338 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1339 cachep->nodelists[nodeid] = ptr;
1343 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1344 * size of kmem_list3.
1346 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1348 int node;
1350 for_each_online_node(node) {
1351 cachep->nodelists[node] = &initkmem_list3[index + node];
1352 cachep->nodelists[node]->next_reap = jiffies +
1353 REAPTIMEOUT_LIST3 +
1354 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1359 * Initialisation. Called after the page allocator have been initialised and
1360 * before smp_init().
1362 void __init kmem_cache_init(void)
1364 size_t left_over;
1365 struct cache_sizes *sizes;
1366 struct cache_names *names;
1367 int i;
1368 int order;
1369 int node;
1371 if (num_possible_nodes() == 1)
1372 use_alien_caches = 0;
1374 for (i = 0; i < NUM_INIT_LISTS; i++) {
1375 kmem_list3_init(&initkmem_list3[i]);
1376 if (i < MAX_NUMNODES)
1377 cache_cache.nodelists[i] = NULL;
1379 set_up_list3s(&cache_cache, CACHE_CACHE);
1382 * Fragmentation resistance on low memory - only use bigger
1383 * page orders on machines with more than 32MB of memory.
1385 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1386 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1388 /* Bootstrap is tricky, because several objects are allocated
1389 * from caches that do not exist yet:
1390 * 1) initialize the cache_cache cache: it contains the struct
1391 * kmem_cache structures of all caches, except cache_cache itself:
1392 * cache_cache is statically allocated.
1393 * Initially an __init data area is used for the head array and the
1394 * kmem_list3 structures, it's replaced with a kmalloc allocated
1395 * array at the end of the bootstrap.
1396 * 2) Create the first kmalloc cache.
1397 * The struct kmem_cache for the new cache is allocated normally.
1398 * An __init data area is used for the head array.
1399 * 3) Create the remaining kmalloc caches, with minimally sized
1400 * head arrays.
1401 * 4) Replace the __init data head arrays for cache_cache and the first
1402 * kmalloc cache with kmalloc allocated arrays.
1403 * 5) Replace the __init data for kmem_list3 for cache_cache and
1404 * the other cache's with kmalloc allocated memory.
1405 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1408 node = numa_node_id();
1410 /* 1) create the cache_cache */
1411 INIT_LIST_HEAD(&cache_chain);
1412 list_add(&cache_cache.next, &cache_chain);
1413 cache_cache.colour_off = cache_line_size();
1414 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1415 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1418 * struct kmem_cache size depends on nr_node_ids, which
1419 * can be less than MAX_NUMNODES.
1421 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1422 nr_node_ids * sizeof(struct kmem_list3 *);
1423 #if DEBUG
1424 cache_cache.obj_size = cache_cache.buffer_size;
1425 #endif
1426 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1427 cache_line_size());
1428 cache_cache.reciprocal_buffer_size =
1429 reciprocal_value(cache_cache.buffer_size);
1431 for (order = 0; order < MAX_ORDER; order++) {
1432 cache_estimate(order, cache_cache.buffer_size,
1433 cache_line_size(), 0, &left_over, &cache_cache.num);
1434 if (cache_cache.num)
1435 break;
1437 BUG_ON(!cache_cache.num);
1438 cache_cache.gfporder = order;
1439 cache_cache.colour = left_over / cache_cache.colour_off;
1440 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1441 sizeof(struct slab), cache_line_size());
1443 /* 2+3) create the kmalloc caches */
1444 sizes = malloc_sizes;
1445 names = cache_names;
1448 * Initialize the caches that provide memory for the array cache and the
1449 * kmem_list3 structures first. Without this, further allocations will
1450 * bug.
1453 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1454 sizes[INDEX_AC].cs_size,
1455 ARCH_KMALLOC_MINALIGN,
1456 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1457 NULL);
1459 if (INDEX_AC != INDEX_L3) {
1460 sizes[INDEX_L3].cs_cachep =
1461 kmem_cache_create(names[INDEX_L3].name,
1462 sizes[INDEX_L3].cs_size,
1463 ARCH_KMALLOC_MINALIGN,
1464 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1465 NULL);
1468 slab_early_init = 0;
1470 while (sizes->cs_size != ULONG_MAX) {
1472 * For performance, all the general caches are L1 aligned.
1473 * This should be particularly beneficial on SMP boxes, as it
1474 * eliminates "false sharing".
1475 * Note for systems short on memory removing the alignment will
1476 * allow tighter packing of the smaller caches.
1478 if (!sizes->cs_cachep) {
1479 sizes->cs_cachep = kmem_cache_create(names->name,
1480 sizes->cs_size,
1481 ARCH_KMALLOC_MINALIGN,
1482 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1483 NULL);
1485 #ifdef CONFIG_ZONE_DMA
1486 sizes->cs_dmacachep = kmem_cache_create(
1487 names->name_dma,
1488 sizes->cs_size,
1489 ARCH_KMALLOC_MINALIGN,
1490 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1491 SLAB_PANIC,
1492 NULL);
1493 #endif
1494 sizes++;
1495 names++;
1497 /* 4) Replace the bootstrap head arrays */
1499 struct array_cache *ptr;
1501 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1503 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1504 memcpy(ptr, cpu_cache_get(&cache_cache),
1505 sizeof(struct arraycache_init));
1507 * Do not assume that spinlocks can be initialized via memcpy:
1509 spin_lock_init(&ptr->lock);
1511 cache_cache.array[smp_processor_id()] = ptr;
1513 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1515 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1516 != &initarray_generic.cache);
1517 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1518 sizeof(struct arraycache_init));
1520 * Do not assume that spinlocks can be initialized via memcpy:
1522 spin_lock_init(&ptr->lock);
1524 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1525 ptr;
1527 /* 5) Replace the bootstrap kmem_list3's */
1529 int nid;
1531 for_each_online_node(nid) {
1532 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1534 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1535 &initkmem_list3[SIZE_AC + nid], nid);
1537 if (INDEX_AC != INDEX_L3) {
1538 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1539 &initkmem_list3[SIZE_L3 + nid], nid);
1544 g_cpucache_up = EARLY;
1547 void __init kmem_cache_init_late(void)
1549 struct kmem_cache *cachep;
1551 /* 6) resize the head arrays to their final sizes */
1552 mutex_lock(&cache_chain_mutex);
1553 list_for_each_entry(cachep, &cache_chain, next)
1554 if (enable_cpucache(cachep, GFP_NOWAIT))
1555 BUG();
1556 mutex_unlock(&cache_chain_mutex);
1558 /* Done! */
1559 g_cpucache_up = FULL;
1561 /* Annotate slab for lockdep -- annotate the malloc caches */
1562 init_lock_keys();
1565 * Register a cpu startup notifier callback that initializes
1566 * cpu_cache_get for all new cpus
1568 register_cpu_notifier(&cpucache_notifier);
1571 * The reap timers are started later, with a module init call: That part
1572 * of the kernel is not yet operational.
1576 static int __init cpucache_init(void)
1578 int cpu;
1581 * Register the timers that return unneeded pages to the page allocator
1583 for_each_online_cpu(cpu)
1584 start_cpu_timer(cpu);
1585 return 0;
1587 __initcall(cpucache_init);
1590 * Interface to system's page allocator. No need to hold the cache-lock.
1592 * If we requested dmaable memory, we will get it. Even if we
1593 * did not request dmaable memory, we might get it, but that
1594 * would be relatively rare and ignorable.
1596 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1598 struct page *page;
1599 int nr_pages;
1600 int i;
1602 #ifndef CONFIG_MMU
1604 * Nommu uses slab's for process anonymous memory allocations, and thus
1605 * requires __GFP_COMP to properly refcount higher order allocations
1607 flags |= __GFP_COMP;
1608 #endif
1610 flags |= cachep->gfpflags;
1611 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1612 flags |= __GFP_RECLAIMABLE;
1614 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1615 if (!page)
1616 return NULL;
1618 nr_pages = (1 << cachep->gfporder);
1619 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1620 add_zone_page_state(page_zone(page),
1621 NR_SLAB_RECLAIMABLE, nr_pages);
1622 else
1623 add_zone_page_state(page_zone(page),
1624 NR_SLAB_UNRECLAIMABLE, nr_pages);
1625 for (i = 0; i < nr_pages; i++)
1626 __SetPageSlab(page + i);
1628 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1629 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1631 if (cachep->ctor)
1632 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1633 else
1634 kmemcheck_mark_unallocated_pages(page, nr_pages);
1637 return page_address(page);
1641 * Interface to system's page release.
1643 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1645 unsigned long i = (1 << cachep->gfporder);
1646 struct page *page = virt_to_page(addr);
1647 const unsigned long nr_freed = i;
1649 kmemcheck_free_shadow(page, cachep->gfporder);
1651 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1652 sub_zone_page_state(page_zone(page),
1653 NR_SLAB_RECLAIMABLE, nr_freed);
1654 else
1655 sub_zone_page_state(page_zone(page),
1656 NR_SLAB_UNRECLAIMABLE, nr_freed);
1657 while (i--) {
1658 BUG_ON(!PageSlab(page));
1659 __ClearPageSlab(page);
1660 page++;
1662 if (current->reclaim_state)
1663 current->reclaim_state->reclaimed_slab += nr_freed;
1664 free_pages((unsigned long)addr, cachep->gfporder);
1667 static void kmem_rcu_free(struct rcu_head *head)
1669 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1670 struct kmem_cache *cachep = slab_rcu->cachep;
1672 kmem_freepages(cachep, slab_rcu->addr);
1673 if (OFF_SLAB(cachep))
1674 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1677 #if DEBUG
1679 #ifdef CONFIG_DEBUG_PAGEALLOC
1680 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1681 unsigned long caller)
1683 int size = obj_size(cachep);
1685 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1687 if (size < 5 * sizeof(unsigned long))
1688 return;
1690 *addr++ = 0x12345678;
1691 *addr++ = caller;
1692 *addr++ = smp_processor_id();
1693 size -= 3 * sizeof(unsigned long);
1695 unsigned long *sptr = &caller;
1696 unsigned long svalue;
1698 while (!kstack_end(sptr)) {
1699 svalue = *sptr++;
1700 if (kernel_text_address(svalue)) {
1701 *addr++ = svalue;
1702 size -= sizeof(unsigned long);
1703 if (size <= sizeof(unsigned long))
1704 break;
1709 *addr++ = 0x87654321;
1711 #endif
1713 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1715 int size = obj_size(cachep);
1716 addr = &((char *)addr)[obj_offset(cachep)];
1718 memset(addr, val, size);
1719 *(unsigned char *)(addr + size - 1) = POISON_END;
1722 static void dump_line(char *data, int offset, int limit)
1724 int i;
1725 unsigned char error = 0;
1726 int bad_count = 0;
1728 printk(KERN_ERR "%03x:", offset);
1729 for (i = 0; i < limit; i++) {
1730 if (data[offset + i] != POISON_FREE) {
1731 error = data[offset + i];
1732 bad_count++;
1734 printk(" %02x", (unsigned char)data[offset + i]);
1736 printk("\n");
1738 if (bad_count == 1) {
1739 error ^= POISON_FREE;
1740 if (!(error & (error - 1))) {
1741 printk(KERN_ERR "Single bit error detected. Probably "
1742 "bad RAM.\n");
1743 #ifdef CONFIG_X86
1744 printk(KERN_ERR "Run memtest86+ or a similar memory "
1745 "test tool.\n");
1746 #else
1747 printk(KERN_ERR "Run a memory test tool.\n");
1748 #endif
1752 #endif
1754 #if DEBUG
1756 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1758 int i, size;
1759 char *realobj;
1761 if (cachep->flags & SLAB_RED_ZONE) {
1762 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1763 *dbg_redzone1(cachep, objp),
1764 *dbg_redzone2(cachep, objp));
1767 if (cachep->flags & SLAB_STORE_USER) {
1768 printk(KERN_ERR "Last user: [<%p>]",
1769 *dbg_userword(cachep, objp));
1770 print_symbol("(%s)",
1771 (unsigned long)*dbg_userword(cachep, objp));
1772 printk("\n");
1774 realobj = (char *)objp + obj_offset(cachep);
1775 size = obj_size(cachep);
1776 for (i = 0; i < size && lines; i += 16, lines--) {
1777 int limit;
1778 limit = 16;
1779 if (i + limit > size)
1780 limit = size - i;
1781 dump_line(realobj, i, limit);
1785 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1787 char *realobj;
1788 int size, i;
1789 int lines = 0;
1791 realobj = (char *)objp + obj_offset(cachep);
1792 size = obj_size(cachep);
1794 for (i = 0; i < size; i++) {
1795 char exp = POISON_FREE;
1796 if (i == size - 1)
1797 exp = POISON_END;
1798 if (realobj[i] != exp) {
1799 int limit;
1800 /* Mismatch ! */
1801 /* Print header */
1802 if (lines == 0) {
1803 printk(KERN_ERR
1804 "Slab corruption: %s start=%p, len=%d\n",
1805 cachep->name, realobj, size);
1806 print_objinfo(cachep, objp, 0);
1808 /* Hexdump the affected line */
1809 i = (i / 16) * 16;
1810 limit = 16;
1811 if (i + limit > size)
1812 limit = size - i;
1813 dump_line(realobj, i, limit);
1814 i += 16;
1815 lines++;
1816 /* Limit to 5 lines */
1817 if (lines > 5)
1818 break;
1821 if (lines != 0) {
1822 /* Print some data about the neighboring objects, if they
1823 * exist:
1825 struct slab *slabp = virt_to_slab(objp);
1826 unsigned int objnr;
1828 objnr = obj_to_index(cachep, slabp, objp);
1829 if (objnr) {
1830 objp = index_to_obj(cachep, slabp, objnr - 1);
1831 realobj = (char *)objp + obj_offset(cachep);
1832 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1833 realobj, size);
1834 print_objinfo(cachep, objp, 2);
1836 if (objnr + 1 < cachep->num) {
1837 objp = index_to_obj(cachep, slabp, objnr + 1);
1838 realobj = (char *)objp + obj_offset(cachep);
1839 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1840 realobj, size);
1841 print_objinfo(cachep, objp, 2);
1845 #endif
1847 #if DEBUG
1848 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1850 int i;
1851 for (i = 0; i < cachep->num; i++) {
1852 void *objp = index_to_obj(cachep, slabp, i);
1854 if (cachep->flags & SLAB_POISON) {
1855 #ifdef CONFIG_DEBUG_PAGEALLOC
1856 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1857 OFF_SLAB(cachep))
1858 kernel_map_pages(virt_to_page(objp),
1859 cachep->buffer_size / PAGE_SIZE, 1);
1860 else
1861 check_poison_obj(cachep, objp);
1862 #else
1863 check_poison_obj(cachep, objp);
1864 #endif
1866 if (cachep->flags & SLAB_RED_ZONE) {
1867 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1868 slab_error(cachep, "start of a freed object "
1869 "was overwritten");
1870 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1871 slab_error(cachep, "end of a freed object "
1872 "was overwritten");
1876 #else
1877 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1880 #endif
1883 * slab_destroy - destroy and release all objects in a slab
1884 * @cachep: cache pointer being destroyed
1885 * @slabp: slab pointer being destroyed
1887 * Destroy all the objs in a slab, and release the mem back to the system.
1888 * Before calling the slab must have been unlinked from the cache. The
1889 * cache-lock is not held/needed.
1891 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1893 void *addr = slabp->s_mem - slabp->colouroff;
1895 slab_destroy_debugcheck(cachep, slabp);
1896 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1897 struct slab_rcu *slab_rcu;
1899 slab_rcu = (struct slab_rcu *)slabp;
1900 slab_rcu->cachep = cachep;
1901 slab_rcu->addr = addr;
1902 call_rcu(&slab_rcu->head, kmem_rcu_free);
1903 } else {
1904 kmem_freepages(cachep, addr);
1905 if (OFF_SLAB(cachep))
1906 kmem_cache_free(cachep->slabp_cache, slabp);
1910 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1912 int i;
1913 struct kmem_list3 *l3;
1915 for_each_online_cpu(i)
1916 kfree(cachep->array[i]);
1918 /* NUMA: free the list3 structures */
1919 for_each_online_node(i) {
1920 l3 = cachep->nodelists[i];
1921 if (l3) {
1922 kfree(l3->shared);
1923 free_alien_cache(l3->alien);
1924 kfree(l3);
1927 kmem_cache_free(&cache_cache, cachep);
1932 * calculate_slab_order - calculate size (page order) of slabs
1933 * @cachep: pointer to the cache that is being created
1934 * @size: size of objects to be created in this cache.
1935 * @align: required alignment for the objects.
1936 * @flags: slab allocation flags
1938 * Also calculates the number of objects per slab.
1940 * This could be made much more intelligent. For now, try to avoid using
1941 * high order pages for slabs. When the gfp() functions are more friendly
1942 * towards high-order requests, this should be changed.
1944 static size_t calculate_slab_order(struct kmem_cache *cachep,
1945 size_t size, size_t align, unsigned long flags)
1947 unsigned long offslab_limit;
1948 size_t left_over = 0;
1949 int gfporder;
1951 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1952 unsigned int num;
1953 size_t remainder;
1955 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1956 if (!num)
1957 continue;
1959 if (flags & CFLGS_OFF_SLAB) {
1961 * Max number of objs-per-slab for caches which
1962 * use off-slab slabs. Needed to avoid a possible
1963 * looping condition in cache_grow().
1965 offslab_limit = size - sizeof(struct slab);
1966 offslab_limit /= sizeof(kmem_bufctl_t);
1968 if (num > offslab_limit)
1969 break;
1972 /* Found something acceptable - save it away */
1973 cachep->num = num;
1974 cachep->gfporder = gfporder;
1975 left_over = remainder;
1978 * A VFS-reclaimable slab tends to have most allocations
1979 * as GFP_NOFS and we really don't want to have to be allocating
1980 * higher-order pages when we are unable to shrink dcache.
1982 if (flags & SLAB_RECLAIM_ACCOUNT)
1983 break;
1986 * Large number of objects is good, but very large slabs are
1987 * currently bad for the gfp()s.
1989 if (gfporder >= slab_break_gfp_order)
1990 break;
1993 * Acceptable internal fragmentation?
1995 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1996 break;
1998 return left_over;
2001 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2003 if (g_cpucache_up == FULL)
2004 return enable_cpucache(cachep, gfp);
2006 if (g_cpucache_up == NONE) {
2008 * Note: the first kmem_cache_create must create the cache
2009 * that's used by kmalloc(24), otherwise the creation of
2010 * further caches will BUG().
2012 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2015 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2016 * the first cache, then we need to set up all its list3s,
2017 * otherwise the creation of further caches will BUG().
2019 set_up_list3s(cachep, SIZE_AC);
2020 if (INDEX_AC == INDEX_L3)
2021 g_cpucache_up = PARTIAL_L3;
2022 else
2023 g_cpucache_up = PARTIAL_AC;
2024 } else {
2025 cachep->array[smp_processor_id()] =
2026 kmalloc(sizeof(struct arraycache_init), gfp);
2028 if (g_cpucache_up == PARTIAL_AC) {
2029 set_up_list3s(cachep, SIZE_L3);
2030 g_cpucache_up = PARTIAL_L3;
2031 } else {
2032 int node;
2033 for_each_online_node(node) {
2034 cachep->nodelists[node] =
2035 kmalloc_node(sizeof(struct kmem_list3),
2036 gfp, node);
2037 BUG_ON(!cachep->nodelists[node]);
2038 kmem_list3_init(cachep->nodelists[node]);
2042 cachep->nodelists[numa_node_id()]->next_reap =
2043 jiffies + REAPTIMEOUT_LIST3 +
2044 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2046 cpu_cache_get(cachep)->avail = 0;
2047 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2048 cpu_cache_get(cachep)->batchcount = 1;
2049 cpu_cache_get(cachep)->touched = 0;
2050 cachep->batchcount = 1;
2051 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2052 return 0;
2056 * kmem_cache_create - Create a cache.
2057 * @name: A string which is used in /proc/slabinfo to identify this cache.
2058 * @size: The size of objects to be created in this cache.
2059 * @align: The required alignment for the objects.
2060 * @flags: SLAB flags
2061 * @ctor: A constructor for the objects.
2063 * Returns a ptr to the cache on success, NULL on failure.
2064 * Cannot be called within a int, but can be interrupted.
2065 * The @ctor is run when new pages are allocated by the cache.
2067 * @name must be valid until the cache is destroyed. This implies that
2068 * the module calling this has to destroy the cache before getting unloaded.
2069 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2070 * therefore applications must manage it themselves.
2072 * The flags are
2074 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2075 * to catch references to uninitialised memory.
2077 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2078 * for buffer overruns.
2080 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2081 * cacheline. This can be beneficial if you're counting cycles as closely
2082 * as davem.
2084 struct kmem_cache *
2085 kmem_cache_create (const char *name, size_t size, size_t align,
2086 unsigned long flags, void (*ctor)(void *))
2088 size_t left_over, slab_size, ralign;
2089 struct kmem_cache *cachep = NULL, *pc;
2090 gfp_t gfp;
2093 * Sanity checks... these are all serious usage bugs.
2095 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2096 size > KMALLOC_MAX_SIZE) {
2097 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2098 name);
2099 BUG();
2103 * We use cache_chain_mutex to ensure a consistent view of
2104 * cpu_online_mask as well. Please see cpuup_callback
2106 if (slab_is_available()) {
2107 get_online_cpus();
2108 mutex_lock(&cache_chain_mutex);
2111 list_for_each_entry(pc, &cache_chain, next) {
2112 char tmp;
2113 int res;
2116 * This happens when the module gets unloaded and doesn't
2117 * destroy its slab cache and no-one else reuses the vmalloc
2118 * area of the module. Print a warning.
2120 res = probe_kernel_address(pc->name, tmp);
2121 if (res) {
2122 printk(KERN_ERR
2123 "SLAB: cache with size %d has lost its name\n",
2124 pc->buffer_size);
2125 continue;
2128 if (!strcmp(pc->name, name)) {
2129 printk(KERN_ERR
2130 "kmem_cache_create: duplicate cache %s\n", name);
2131 dump_stack();
2132 goto oops;
2136 #if DEBUG
2137 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2138 #if FORCED_DEBUG
2140 * Enable redzoning and last user accounting, except for caches with
2141 * large objects, if the increased size would increase the object size
2142 * above the next power of two: caches with object sizes just above a
2143 * power of two have a significant amount of internal fragmentation.
2145 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2146 2 * sizeof(unsigned long long)))
2147 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2148 if (!(flags & SLAB_DESTROY_BY_RCU))
2149 flags |= SLAB_POISON;
2150 #endif
2151 if (flags & SLAB_DESTROY_BY_RCU)
2152 BUG_ON(flags & SLAB_POISON);
2153 #endif
2155 * Always checks flags, a caller might be expecting debug support which
2156 * isn't available.
2158 BUG_ON(flags & ~CREATE_MASK);
2161 * Check that size is in terms of words. This is needed to avoid
2162 * unaligned accesses for some archs when redzoning is used, and makes
2163 * sure any on-slab bufctl's are also correctly aligned.
2165 if (size & (BYTES_PER_WORD - 1)) {
2166 size += (BYTES_PER_WORD - 1);
2167 size &= ~(BYTES_PER_WORD - 1);
2170 /* calculate the final buffer alignment: */
2172 /* 1) arch recommendation: can be overridden for debug */
2173 if (flags & SLAB_HWCACHE_ALIGN) {
2175 * Default alignment: as specified by the arch code. Except if
2176 * an object is really small, then squeeze multiple objects into
2177 * one cacheline.
2179 ralign = cache_line_size();
2180 while (size <= ralign / 2)
2181 ralign /= 2;
2182 } else {
2183 ralign = BYTES_PER_WORD;
2187 * Redzoning and user store require word alignment or possibly larger.
2188 * Note this will be overridden by architecture or caller mandated
2189 * alignment if either is greater than BYTES_PER_WORD.
2191 if (flags & SLAB_STORE_USER)
2192 ralign = BYTES_PER_WORD;
2194 if (flags & SLAB_RED_ZONE) {
2195 ralign = REDZONE_ALIGN;
2196 /* If redzoning, ensure that the second redzone is suitably
2197 * aligned, by adjusting the object size accordingly. */
2198 size += REDZONE_ALIGN - 1;
2199 size &= ~(REDZONE_ALIGN - 1);
2202 /* 2) arch mandated alignment */
2203 if (ralign < ARCH_SLAB_MINALIGN) {
2204 ralign = ARCH_SLAB_MINALIGN;
2206 /* 3) caller mandated alignment */
2207 if (ralign < align) {
2208 ralign = align;
2210 /* disable debug if necessary */
2211 if (ralign > __alignof__(unsigned long long))
2212 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2214 * 4) Store it.
2216 align = ralign;
2218 if (slab_is_available())
2219 gfp = GFP_KERNEL;
2220 else
2221 gfp = GFP_NOWAIT;
2223 /* Get cache's description obj. */
2224 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2225 if (!cachep)
2226 goto oops;
2228 #if DEBUG
2229 cachep->obj_size = size;
2232 * Both debugging options require word-alignment which is calculated
2233 * into align above.
2235 if (flags & SLAB_RED_ZONE) {
2236 /* add space for red zone words */
2237 cachep->obj_offset += sizeof(unsigned long long);
2238 size += 2 * sizeof(unsigned long long);
2240 if (flags & SLAB_STORE_USER) {
2241 /* user store requires one word storage behind the end of
2242 * the real object. But if the second red zone needs to be
2243 * aligned to 64 bits, we must allow that much space.
2245 if (flags & SLAB_RED_ZONE)
2246 size += REDZONE_ALIGN;
2247 else
2248 size += BYTES_PER_WORD;
2250 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2251 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2252 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2253 cachep->obj_offset += PAGE_SIZE - size;
2254 size = PAGE_SIZE;
2256 #endif
2257 #endif
2260 * Determine if the slab management is 'on' or 'off' slab.
2261 * (bootstrapping cannot cope with offslab caches so don't do
2262 * it too early on.)
2264 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2266 * Size is large, assume best to place the slab management obj
2267 * off-slab (should allow better packing of objs).
2269 flags |= CFLGS_OFF_SLAB;
2271 size = ALIGN(size, align);
2273 left_over = calculate_slab_order(cachep, size, align, flags);
2275 if (!cachep->num) {
2276 printk(KERN_ERR
2277 "kmem_cache_create: couldn't create cache %s.\n", name);
2278 kmem_cache_free(&cache_cache, cachep);
2279 cachep = NULL;
2280 goto oops;
2282 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2283 + sizeof(struct slab), align);
2286 * If the slab has been placed off-slab, and we have enough space then
2287 * move it on-slab. This is at the expense of any extra colouring.
2289 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2290 flags &= ~CFLGS_OFF_SLAB;
2291 left_over -= slab_size;
2294 if (flags & CFLGS_OFF_SLAB) {
2295 /* really off slab. No need for manual alignment */
2296 slab_size =
2297 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2299 #ifdef CONFIG_PAGE_POISONING
2300 /* If we're going to use the generic kernel_map_pages()
2301 * poisoning, then it's going to smash the contents of
2302 * the redzone and userword anyhow, so switch them off.
2304 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2305 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2306 #endif
2309 cachep->colour_off = cache_line_size();
2310 /* Offset must be a multiple of the alignment. */
2311 if (cachep->colour_off < align)
2312 cachep->colour_off = align;
2313 cachep->colour = left_over / cachep->colour_off;
2314 cachep->slab_size = slab_size;
2315 cachep->flags = flags;
2316 cachep->gfpflags = 0;
2317 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2318 cachep->gfpflags |= GFP_DMA;
2319 cachep->buffer_size = size;
2320 cachep->reciprocal_buffer_size = reciprocal_value(size);
2322 if (flags & CFLGS_OFF_SLAB) {
2323 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2325 * This is a possibility for one of the malloc_sizes caches.
2326 * But since we go off slab only for object size greater than
2327 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2328 * this should not happen at all.
2329 * But leave a BUG_ON for some lucky dude.
2331 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2333 cachep->ctor = ctor;
2334 cachep->name = name;
2336 if (setup_cpu_cache(cachep, gfp)) {
2337 __kmem_cache_destroy(cachep);
2338 cachep = NULL;
2339 goto oops;
2342 /* cache setup completed, link it into the list */
2343 list_add(&cachep->next, &cache_chain);
2344 oops:
2345 if (!cachep && (flags & SLAB_PANIC))
2346 panic("kmem_cache_create(): failed to create slab `%s'\n",
2347 name);
2348 if (slab_is_available()) {
2349 mutex_unlock(&cache_chain_mutex);
2350 put_online_cpus();
2352 return cachep;
2354 EXPORT_SYMBOL(kmem_cache_create);
2356 #if DEBUG
2357 static void check_irq_off(void)
2359 BUG_ON(!irqs_disabled());
2362 static void check_irq_on(void)
2364 BUG_ON(irqs_disabled());
2367 static void check_spinlock_acquired(struct kmem_cache *cachep)
2369 #ifdef CONFIG_SMP
2370 check_irq_off();
2371 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2372 #endif
2375 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2377 #ifdef CONFIG_SMP
2378 check_irq_off();
2379 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2380 #endif
2383 #else
2384 #define check_irq_off() do { } while(0)
2385 #define check_irq_on() do { } while(0)
2386 #define check_spinlock_acquired(x) do { } while(0)
2387 #define check_spinlock_acquired_node(x, y) do { } while(0)
2388 #endif
2390 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2391 struct array_cache *ac,
2392 int force, int node);
2394 static void do_drain(void *arg)
2396 struct kmem_cache *cachep = arg;
2397 struct array_cache *ac;
2398 int node = numa_node_id();
2400 check_irq_off();
2401 ac = cpu_cache_get(cachep);
2402 spin_lock(&cachep->nodelists[node]->list_lock);
2403 free_block(cachep, ac->entry, ac->avail, node);
2404 spin_unlock(&cachep->nodelists[node]->list_lock);
2405 ac->avail = 0;
2408 static void drain_cpu_caches(struct kmem_cache *cachep)
2410 struct kmem_list3 *l3;
2411 int node;
2413 on_each_cpu(do_drain, cachep, 1);
2414 check_irq_on();
2415 for_each_online_node(node) {
2416 l3 = cachep->nodelists[node];
2417 if (l3 && l3->alien)
2418 drain_alien_cache(cachep, l3->alien);
2421 for_each_online_node(node) {
2422 l3 = cachep->nodelists[node];
2423 if (l3)
2424 drain_array(cachep, l3, l3->shared, 1, node);
2429 * Remove slabs from the list of free slabs.
2430 * Specify the number of slabs to drain in tofree.
2432 * Returns the actual number of slabs released.
2434 static int drain_freelist(struct kmem_cache *cache,
2435 struct kmem_list3 *l3, int tofree)
2437 struct list_head *p;
2438 int nr_freed;
2439 struct slab *slabp;
2441 nr_freed = 0;
2442 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2444 spin_lock_irq(&l3->list_lock);
2445 p = l3->slabs_free.prev;
2446 if (p == &l3->slabs_free) {
2447 spin_unlock_irq(&l3->list_lock);
2448 goto out;
2451 slabp = list_entry(p, struct slab, list);
2452 #if DEBUG
2453 BUG_ON(slabp->inuse);
2454 #endif
2455 list_del(&slabp->list);
2457 * Safe to drop the lock. The slab is no longer linked
2458 * to the cache.
2460 l3->free_objects -= cache->num;
2461 spin_unlock_irq(&l3->list_lock);
2462 slab_destroy(cache, slabp);
2463 nr_freed++;
2465 out:
2466 return nr_freed;
2469 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2470 static int __cache_shrink(struct kmem_cache *cachep)
2472 int ret = 0, i = 0;
2473 struct kmem_list3 *l3;
2475 drain_cpu_caches(cachep);
2477 check_irq_on();
2478 for_each_online_node(i) {
2479 l3 = cachep->nodelists[i];
2480 if (!l3)
2481 continue;
2483 drain_freelist(cachep, l3, l3->free_objects);
2485 ret += !list_empty(&l3->slabs_full) ||
2486 !list_empty(&l3->slabs_partial);
2488 return (ret ? 1 : 0);
2492 * kmem_cache_shrink - Shrink a cache.
2493 * @cachep: The cache to shrink.
2495 * Releases as many slabs as possible for a cache.
2496 * To help debugging, a zero exit status indicates all slabs were released.
2498 int kmem_cache_shrink(struct kmem_cache *cachep)
2500 int ret;
2501 BUG_ON(!cachep || in_interrupt());
2503 get_online_cpus();
2504 mutex_lock(&cache_chain_mutex);
2505 ret = __cache_shrink(cachep);
2506 mutex_unlock(&cache_chain_mutex);
2507 put_online_cpus();
2508 return ret;
2510 EXPORT_SYMBOL(kmem_cache_shrink);
2513 * kmem_cache_destroy - delete a cache
2514 * @cachep: the cache to destroy
2516 * Remove a &struct kmem_cache object from the slab cache.
2518 * It is expected this function will be called by a module when it is
2519 * unloaded. This will remove the cache completely, and avoid a duplicate
2520 * cache being allocated each time a module is loaded and unloaded, if the
2521 * module doesn't have persistent in-kernel storage across loads and unloads.
2523 * The cache must be empty before calling this function.
2525 * The caller must guarantee that noone will allocate memory from the cache
2526 * during the kmem_cache_destroy().
2528 void kmem_cache_destroy(struct kmem_cache *cachep)
2530 BUG_ON(!cachep || in_interrupt());
2532 /* Find the cache in the chain of caches. */
2533 get_online_cpus();
2534 mutex_lock(&cache_chain_mutex);
2536 * the chain is never empty, cache_cache is never destroyed
2538 list_del(&cachep->next);
2539 if (__cache_shrink(cachep)) {
2540 slab_error(cachep, "Can't free all objects");
2541 list_add(&cachep->next, &cache_chain);
2542 mutex_unlock(&cache_chain_mutex);
2543 put_online_cpus();
2544 return;
2547 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2548 rcu_barrier();
2550 __kmem_cache_destroy(cachep);
2551 mutex_unlock(&cache_chain_mutex);
2552 put_online_cpus();
2554 EXPORT_SYMBOL(kmem_cache_destroy);
2557 * Get the memory for a slab management obj.
2558 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2559 * always come from malloc_sizes caches. The slab descriptor cannot
2560 * come from the same cache which is getting created because,
2561 * when we are searching for an appropriate cache for these
2562 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2563 * If we are creating a malloc_sizes cache here it would not be visible to
2564 * kmem_find_general_cachep till the initialization is complete.
2565 * Hence we cannot have slabp_cache same as the original cache.
2567 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2568 int colour_off, gfp_t local_flags,
2569 int nodeid)
2571 struct slab *slabp;
2573 if (OFF_SLAB(cachep)) {
2574 /* Slab management obj is off-slab. */
2575 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2576 local_flags, nodeid);
2578 * If the first object in the slab is leaked (it's allocated
2579 * but no one has a reference to it), we want to make sure
2580 * kmemleak does not treat the ->s_mem pointer as a reference
2581 * to the object. Otherwise we will not report the leak.
2583 kmemleak_scan_area(slabp, offsetof(struct slab, list),
2584 sizeof(struct list_head), local_flags);
2585 if (!slabp)
2586 return NULL;
2587 } else {
2588 slabp = objp + colour_off;
2589 colour_off += cachep->slab_size;
2591 slabp->inuse = 0;
2592 slabp->colouroff = colour_off;
2593 slabp->s_mem = objp + colour_off;
2594 slabp->nodeid = nodeid;
2595 slabp->free = 0;
2596 return slabp;
2599 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2601 return (kmem_bufctl_t *) (slabp + 1);
2604 static void cache_init_objs(struct kmem_cache *cachep,
2605 struct slab *slabp)
2607 int i;
2609 for (i = 0; i < cachep->num; i++) {
2610 void *objp = index_to_obj(cachep, slabp, i);
2611 #if DEBUG
2612 /* need to poison the objs? */
2613 if (cachep->flags & SLAB_POISON)
2614 poison_obj(cachep, objp, POISON_FREE);
2615 if (cachep->flags & SLAB_STORE_USER)
2616 *dbg_userword(cachep, objp) = NULL;
2618 if (cachep->flags & SLAB_RED_ZONE) {
2619 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2620 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2623 * Constructors are not allowed to allocate memory from the same
2624 * cache which they are a constructor for. Otherwise, deadlock.
2625 * They must also be threaded.
2627 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2628 cachep->ctor(objp + obj_offset(cachep));
2630 if (cachep->flags & SLAB_RED_ZONE) {
2631 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2632 slab_error(cachep, "constructor overwrote the"
2633 " end of an object");
2634 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2635 slab_error(cachep, "constructor overwrote the"
2636 " start of an object");
2638 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2639 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2640 kernel_map_pages(virt_to_page(objp),
2641 cachep->buffer_size / PAGE_SIZE, 0);
2642 #else
2643 if (cachep->ctor)
2644 cachep->ctor(objp);
2645 #endif
2646 slab_bufctl(slabp)[i] = i + 1;
2648 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2651 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2653 if (CONFIG_ZONE_DMA_FLAG) {
2654 if (flags & GFP_DMA)
2655 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2656 else
2657 BUG_ON(cachep->gfpflags & GFP_DMA);
2661 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2662 int nodeid)
2664 void *objp = index_to_obj(cachep, slabp, slabp->free);
2665 kmem_bufctl_t next;
2667 slabp->inuse++;
2668 next = slab_bufctl(slabp)[slabp->free];
2669 #if DEBUG
2670 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2671 WARN_ON(slabp->nodeid != nodeid);
2672 #endif
2673 slabp->free = next;
2675 return objp;
2678 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2679 void *objp, int nodeid)
2681 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2683 #if DEBUG
2684 /* Verify that the slab belongs to the intended node */
2685 WARN_ON(slabp->nodeid != nodeid);
2687 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2688 printk(KERN_ERR "slab: double free detected in cache "
2689 "'%s', objp %p\n", cachep->name, objp);
2690 BUG();
2692 #endif
2693 slab_bufctl(slabp)[objnr] = slabp->free;
2694 slabp->free = objnr;
2695 slabp->inuse--;
2699 * Map pages beginning at addr to the given cache and slab. This is required
2700 * for the slab allocator to be able to lookup the cache and slab of a
2701 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2703 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2704 void *addr)
2706 int nr_pages;
2707 struct page *page;
2709 page = virt_to_page(addr);
2711 nr_pages = 1;
2712 if (likely(!PageCompound(page)))
2713 nr_pages <<= cache->gfporder;
2715 do {
2716 page_set_cache(page, cache);
2717 page_set_slab(page, slab);
2718 page++;
2719 } while (--nr_pages);
2723 * Grow (by 1) the number of slabs within a cache. This is called by
2724 * kmem_cache_alloc() when there are no active objs left in a cache.
2726 static int cache_grow(struct kmem_cache *cachep,
2727 gfp_t flags, int nodeid, void *objp)
2729 struct slab *slabp;
2730 size_t offset;
2731 gfp_t local_flags;
2732 struct kmem_list3 *l3;
2735 * Be lazy and only check for valid flags here, keeping it out of the
2736 * critical path in kmem_cache_alloc().
2738 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2739 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2741 /* Take the l3 list lock to change the colour_next on this node */
2742 check_irq_off();
2743 l3 = cachep->nodelists[nodeid];
2744 spin_lock(&l3->list_lock);
2746 /* Get colour for the slab, and cal the next value. */
2747 offset = l3->colour_next;
2748 l3->colour_next++;
2749 if (l3->colour_next >= cachep->colour)
2750 l3->colour_next = 0;
2751 spin_unlock(&l3->list_lock);
2753 offset *= cachep->colour_off;
2755 if (local_flags & __GFP_WAIT)
2756 local_irq_enable();
2759 * The test for missing atomic flag is performed here, rather than
2760 * the more obvious place, simply to reduce the critical path length
2761 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2762 * will eventually be caught here (where it matters).
2764 kmem_flagcheck(cachep, flags);
2767 * Get mem for the objs. Attempt to allocate a physical page from
2768 * 'nodeid'.
2770 if (!objp)
2771 objp = kmem_getpages(cachep, local_flags, nodeid);
2772 if (!objp)
2773 goto failed;
2775 /* Get slab management. */
2776 slabp = alloc_slabmgmt(cachep, objp, offset,
2777 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2778 if (!slabp)
2779 goto opps1;
2781 slab_map_pages(cachep, slabp, objp);
2783 cache_init_objs(cachep, slabp);
2785 if (local_flags & __GFP_WAIT)
2786 local_irq_disable();
2787 check_irq_off();
2788 spin_lock(&l3->list_lock);
2790 /* Make slab active. */
2791 list_add_tail(&slabp->list, &(l3->slabs_free));
2792 STATS_INC_GROWN(cachep);
2793 l3->free_objects += cachep->num;
2794 spin_unlock(&l3->list_lock);
2795 return 1;
2796 opps1:
2797 kmem_freepages(cachep, objp);
2798 failed:
2799 if (local_flags & __GFP_WAIT)
2800 local_irq_disable();
2801 return 0;
2804 #if DEBUG
2807 * Perform extra freeing checks:
2808 * - detect bad pointers.
2809 * - POISON/RED_ZONE checking
2811 static void kfree_debugcheck(const void *objp)
2813 if (!virt_addr_valid(objp)) {
2814 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2815 (unsigned long)objp);
2816 BUG();
2820 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2822 unsigned long long redzone1, redzone2;
2824 redzone1 = *dbg_redzone1(cache, obj);
2825 redzone2 = *dbg_redzone2(cache, obj);
2828 * Redzone is ok.
2830 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2831 return;
2833 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2834 slab_error(cache, "double free detected");
2835 else
2836 slab_error(cache, "memory outside object was overwritten");
2838 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2839 obj, redzone1, redzone2);
2842 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2843 void *caller)
2845 struct page *page;
2846 unsigned int objnr;
2847 struct slab *slabp;
2849 BUG_ON(virt_to_cache(objp) != cachep);
2851 objp -= obj_offset(cachep);
2852 kfree_debugcheck(objp);
2853 page = virt_to_head_page(objp);
2855 slabp = page_get_slab(page);
2857 if (cachep->flags & SLAB_RED_ZONE) {
2858 verify_redzone_free(cachep, objp);
2859 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2860 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2862 if (cachep->flags & SLAB_STORE_USER)
2863 *dbg_userword(cachep, objp) = caller;
2865 objnr = obj_to_index(cachep, slabp, objp);
2867 BUG_ON(objnr >= cachep->num);
2868 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2870 #ifdef CONFIG_DEBUG_SLAB_LEAK
2871 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2872 #endif
2873 if (cachep->flags & SLAB_POISON) {
2874 #ifdef CONFIG_DEBUG_PAGEALLOC
2875 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2876 store_stackinfo(cachep, objp, (unsigned long)caller);
2877 kernel_map_pages(virt_to_page(objp),
2878 cachep->buffer_size / PAGE_SIZE, 0);
2879 } else {
2880 poison_obj(cachep, objp, POISON_FREE);
2882 #else
2883 poison_obj(cachep, objp, POISON_FREE);
2884 #endif
2886 return objp;
2889 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2891 kmem_bufctl_t i;
2892 int entries = 0;
2894 /* Check slab's freelist to see if this obj is there. */
2895 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2896 entries++;
2897 if (entries > cachep->num || i >= cachep->num)
2898 goto bad;
2900 if (entries != cachep->num - slabp->inuse) {
2901 bad:
2902 printk(KERN_ERR "slab: Internal list corruption detected in "
2903 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2904 cachep->name, cachep->num, slabp, slabp->inuse);
2905 for (i = 0;
2906 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2907 i++) {
2908 if (i % 16 == 0)
2909 printk("\n%03x:", i);
2910 printk(" %02x", ((unsigned char *)slabp)[i]);
2912 printk("\n");
2913 BUG();
2916 #else
2917 #define kfree_debugcheck(x) do { } while(0)
2918 #define cache_free_debugcheck(x,objp,z) (objp)
2919 #define check_slabp(x,y) do { } while(0)
2920 #endif
2922 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2924 int batchcount;
2925 struct kmem_list3 *l3;
2926 struct array_cache *ac;
2927 int node;
2929 retry:
2930 check_irq_off();
2931 node = numa_node_id();
2932 ac = cpu_cache_get(cachep);
2933 batchcount = ac->batchcount;
2934 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2936 * If there was little recent activity on this cache, then
2937 * perform only a partial refill. Otherwise we could generate
2938 * refill bouncing.
2940 batchcount = BATCHREFILL_LIMIT;
2942 l3 = cachep->nodelists[node];
2944 BUG_ON(ac->avail > 0 || !l3);
2945 spin_lock(&l3->list_lock);
2947 /* See if we can refill from the shared array */
2948 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2949 goto alloc_done;
2951 while (batchcount > 0) {
2952 struct list_head *entry;
2953 struct slab *slabp;
2954 /* Get slab alloc is to come from. */
2955 entry = l3->slabs_partial.next;
2956 if (entry == &l3->slabs_partial) {
2957 l3->free_touched = 1;
2958 entry = l3->slabs_free.next;
2959 if (entry == &l3->slabs_free)
2960 goto must_grow;
2963 slabp = list_entry(entry, struct slab, list);
2964 check_slabp(cachep, slabp);
2965 check_spinlock_acquired(cachep);
2968 * The slab was either on partial or free list so
2969 * there must be at least one object available for
2970 * allocation.
2972 BUG_ON(slabp->inuse >= cachep->num);
2974 while (slabp->inuse < cachep->num && batchcount--) {
2975 STATS_INC_ALLOCED(cachep);
2976 STATS_INC_ACTIVE(cachep);
2977 STATS_SET_HIGH(cachep);
2979 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2980 node);
2982 check_slabp(cachep, slabp);
2984 /* move slabp to correct slabp list: */
2985 list_del(&slabp->list);
2986 if (slabp->free == BUFCTL_END)
2987 list_add(&slabp->list, &l3->slabs_full);
2988 else
2989 list_add(&slabp->list, &l3->slabs_partial);
2992 must_grow:
2993 l3->free_objects -= ac->avail;
2994 alloc_done:
2995 spin_unlock(&l3->list_lock);
2997 if (unlikely(!ac->avail)) {
2998 int x;
2999 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3001 /* cache_grow can reenable interrupts, then ac could change. */
3002 ac = cpu_cache_get(cachep);
3003 if (!x && ac->avail == 0) /* no objects in sight? abort */
3004 return NULL;
3006 if (!ac->avail) /* objects refilled by interrupt? */
3007 goto retry;
3009 ac->touched = 1;
3010 return ac->entry[--ac->avail];
3013 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3014 gfp_t flags)
3016 might_sleep_if(flags & __GFP_WAIT);
3017 #if DEBUG
3018 kmem_flagcheck(cachep, flags);
3019 #endif
3022 #if DEBUG
3023 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3024 gfp_t flags, void *objp, void *caller)
3026 if (!objp)
3027 return objp;
3028 if (cachep->flags & SLAB_POISON) {
3029 #ifdef CONFIG_DEBUG_PAGEALLOC
3030 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3031 kernel_map_pages(virt_to_page(objp),
3032 cachep->buffer_size / PAGE_SIZE, 1);
3033 else
3034 check_poison_obj(cachep, objp);
3035 #else
3036 check_poison_obj(cachep, objp);
3037 #endif
3038 poison_obj(cachep, objp, POISON_INUSE);
3040 if (cachep->flags & SLAB_STORE_USER)
3041 *dbg_userword(cachep, objp) = caller;
3043 if (cachep->flags & SLAB_RED_ZONE) {
3044 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3045 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3046 slab_error(cachep, "double free, or memory outside"
3047 " object was overwritten");
3048 printk(KERN_ERR
3049 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3050 objp, *dbg_redzone1(cachep, objp),
3051 *dbg_redzone2(cachep, objp));
3053 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3054 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3056 #ifdef CONFIG_DEBUG_SLAB_LEAK
3058 struct slab *slabp;
3059 unsigned objnr;
3061 slabp = page_get_slab(virt_to_head_page(objp));
3062 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3063 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3065 #endif
3066 objp += obj_offset(cachep);
3067 if (cachep->ctor && cachep->flags & SLAB_POISON)
3068 cachep->ctor(objp);
3069 #if ARCH_SLAB_MINALIGN
3070 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3071 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3072 objp, ARCH_SLAB_MINALIGN);
3074 #endif
3075 return objp;
3077 #else
3078 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3079 #endif
3081 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3083 if (cachep == &cache_cache)
3084 return false;
3086 return should_failslab(obj_size(cachep), flags);
3089 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3091 void *objp;
3092 struct array_cache *ac;
3094 check_irq_off();
3096 ac = cpu_cache_get(cachep);
3097 if (likely(ac->avail)) {
3098 STATS_INC_ALLOCHIT(cachep);
3099 ac->touched = 1;
3100 objp = ac->entry[--ac->avail];
3101 } else {
3102 STATS_INC_ALLOCMISS(cachep);
3103 objp = cache_alloc_refill(cachep, flags);
3106 * To avoid a false negative, if an object that is in one of the
3107 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3108 * treat the array pointers as a reference to the object.
3110 kmemleak_erase(&ac->entry[ac->avail]);
3111 return objp;
3114 #ifdef CONFIG_NUMA
3116 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3118 * If we are in_interrupt, then process context, including cpusets and
3119 * mempolicy, may not apply and should not be used for allocation policy.
3121 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3123 int nid_alloc, nid_here;
3125 if (in_interrupt() || (flags & __GFP_THISNODE))
3126 return NULL;
3127 nid_alloc = nid_here = numa_node_id();
3128 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3129 nid_alloc = cpuset_mem_spread_node();
3130 else if (current->mempolicy)
3131 nid_alloc = slab_node(current->mempolicy);
3132 if (nid_alloc != nid_here)
3133 return ____cache_alloc_node(cachep, flags, nid_alloc);
3134 return NULL;
3138 * Fallback function if there was no memory available and no objects on a
3139 * certain node and fall back is permitted. First we scan all the
3140 * available nodelists for available objects. If that fails then we
3141 * perform an allocation without specifying a node. This allows the page
3142 * allocator to do its reclaim / fallback magic. We then insert the
3143 * slab into the proper nodelist and then allocate from it.
3145 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3147 struct zonelist *zonelist;
3148 gfp_t local_flags;
3149 struct zoneref *z;
3150 struct zone *zone;
3151 enum zone_type high_zoneidx = gfp_zone(flags);
3152 void *obj = NULL;
3153 int nid;
3155 if (flags & __GFP_THISNODE)
3156 return NULL;
3158 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3159 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3161 retry:
3163 * Look through allowed nodes for objects available
3164 * from existing per node queues.
3166 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3167 nid = zone_to_nid(zone);
3169 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3170 cache->nodelists[nid] &&
3171 cache->nodelists[nid]->free_objects) {
3172 obj = ____cache_alloc_node(cache,
3173 flags | GFP_THISNODE, nid);
3174 if (obj)
3175 break;
3179 if (!obj) {
3181 * This allocation will be performed within the constraints
3182 * of the current cpuset / memory policy requirements.
3183 * We may trigger various forms of reclaim on the allowed
3184 * set and go into memory reserves if necessary.
3186 if (local_flags & __GFP_WAIT)
3187 local_irq_enable();
3188 kmem_flagcheck(cache, flags);
3189 obj = kmem_getpages(cache, local_flags, numa_node_id());
3190 if (local_flags & __GFP_WAIT)
3191 local_irq_disable();
3192 if (obj) {
3194 * Insert into the appropriate per node queues
3196 nid = page_to_nid(virt_to_page(obj));
3197 if (cache_grow(cache, flags, nid, obj)) {
3198 obj = ____cache_alloc_node(cache,
3199 flags | GFP_THISNODE, nid);
3200 if (!obj)
3202 * Another processor may allocate the
3203 * objects in the slab since we are
3204 * not holding any locks.
3206 goto retry;
3207 } else {
3208 /* cache_grow already freed obj */
3209 obj = NULL;
3213 return obj;
3217 * A interface to enable slab creation on nodeid
3219 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3220 int nodeid)
3222 struct list_head *entry;
3223 struct slab *slabp;
3224 struct kmem_list3 *l3;
3225 void *obj;
3226 int x;
3228 l3 = cachep->nodelists[nodeid];
3229 BUG_ON(!l3);
3231 retry:
3232 check_irq_off();
3233 spin_lock(&l3->list_lock);
3234 entry = l3->slabs_partial.next;
3235 if (entry == &l3->slabs_partial) {
3236 l3->free_touched = 1;
3237 entry = l3->slabs_free.next;
3238 if (entry == &l3->slabs_free)
3239 goto must_grow;
3242 slabp = list_entry(entry, struct slab, list);
3243 check_spinlock_acquired_node(cachep, nodeid);
3244 check_slabp(cachep, slabp);
3246 STATS_INC_NODEALLOCS(cachep);
3247 STATS_INC_ACTIVE(cachep);
3248 STATS_SET_HIGH(cachep);
3250 BUG_ON(slabp->inuse == cachep->num);
3252 obj = slab_get_obj(cachep, slabp, nodeid);
3253 check_slabp(cachep, slabp);
3254 l3->free_objects--;
3255 /* move slabp to correct slabp list: */
3256 list_del(&slabp->list);
3258 if (slabp->free == BUFCTL_END)
3259 list_add(&slabp->list, &l3->slabs_full);
3260 else
3261 list_add(&slabp->list, &l3->slabs_partial);
3263 spin_unlock(&l3->list_lock);
3264 goto done;
3266 must_grow:
3267 spin_unlock(&l3->list_lock);
3268 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3269 if (x)
3270 goto retry;
3272 return fallback_alloc(cachep, flags);
3274 done:
3275 return obj;
3279 * kmem_cache_alloc_node - Allocate an object on the specified node
3280 * @cachep: The cache to allocate from.
3281 * @flags: See kmalloc().
3282 * @nodeid: node number of the target node.
3283 * @caller: return address of caller, used for debug information
3285 * Identical to kmem_cache_alloc but it will allocate memory on the given
3286 * node, which can improve the performance for cpu bound structures.
3288 * Fallback to other node is possible if __GFP_THISNODE is not set.
3290 static __always_inline void *
3291 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3292 void *caller)
3294 unsigned long save_flags;
3295 void *ptr;
3297 flags &= gfp_allowed_mask;
3299 lockdep_trace_alloc(flags);
3301 if (slab_should_failslab(cachep, flags))
3302 return NULL;
3304 cache_alloc_debugcheck_before(cachep, flags);
3305 local_irq_save(save_flags);
3307 if (unlikely(nodeid == -1))
3308 nodeid = numa_node_id();
3310 if (unlikely(!cachep->nodelists[nodeid])) {
3311 /* Node not bootstrapped yet */
3312 ptr = fallback_alloc(cachep, flags);
3313 goto out;
3316 if (nodeid == numa_node_id()) {
3318 * Use the locally cached objects if possible.
3319 * However ____cache_alloc does not allow fallback
3320 * to other nodes. It may fail while we still have
3321 * objects on other nodes available.
3323 ptr = ____cache_alloc(cachep, flags);
3324 if (ptr)
3325 goto out;
3327 /* ___cache_alloc_node can fall back to other nodes */
3328 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3329 out:
3330 local_irq_restore(save_flags);
3331 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3332 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3333 flags);
3335 if (likely(ptr))
3336 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3338 if (unlikely((flags & __GFP_ZERO) && ptr))
3339 memset(ptr, 0, obj_size(cachep));
3341 return ptr;
3344 static __always_inline void *
3345 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3347 void *objp;
3349 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3350 objp = alternate_node_alloc(cache, flags);
3351 if (objp)
3352 goto out;
3354 objp = ____cache_alloc(cache, flags);
3357 * We may just have run out of memory on the local node.
3358 * ____cache_alloc_node() knows how to locate memory on other nodes
3360 if (!objp)
3361 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3363 out:
3364 return objp;
3366 #else
3368 static __always_inline void *
3369 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3371 return ____cache_alloc(cachep, flags);
3374 #endif /* CONFIG_NUMA */
3376 static __always_inline void *
3377 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3379 unsigned long save_flags;
3380 void *objp;
3382 flags &= gfp_allowed_mask;
3384 lockdep_trace_alloc(flags);
3386 if (slab_should_failslab(cachep, flags))
3387 return NULL;
3389 cache_alloc_debugcheck_before(cachep, flags);
3390 local_irq_save(save_flags);
3391 objp = __do_cache_alloc(cachep, flags);
3392 local_irq_restore(save_flags);
3393 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3394 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3395 flags);
3396 prefetchw(objp);
3398 if (likely(objp))
3399 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3401 if (unlikely((flags & __GFP_ZERO) && objp))
3402 memset(objp, 0, obj_size(cachep));
3404 return objp;
3408 * Caller needs to acquire correct kmem_list's list_lock
3410 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3411 int node)
3413 int i;
3414 struct kmem_list3 *l3;
3416 for (i = 0; i < nr_objects; i++) {
3417 void *objp = objpp[i];
3418 struct slab *slabp;
3420 slabp = virt_to_slab(objp);
3421 l3 = cachep->nodelists[node];
3422 list_del(&slabp->list);
3423 check_spinlock_acquired_node(cachep, node);
3424 check_slabp(cachep, slabp);
3425 slab_put_obj(cachep, slabp, objp, node);
3426 STATS_DEC_ACTIVE(cachep);
3427 l3->free_objects++;
3428 check_slabp(cachep, slabp);
3430 /* fixup slab chains */
3431 if (slabp->inuse == 0) {
3432 if (l3->free_objects > l3->free_limit) {
3433 l3->free_objects -= cachep->num;
3434 /* No need to drop any previously held
3435 * lock here, even if we have a off-slab slab
3436 * descriptor it is guaranteed to come from
3437 * a different cache, refer to comments before
3438 * alloc_slabmgmt.
3440 slab_destroy(cachep, slabp);
3441 } else {
3442 list_add(&slabp->list, &l3->slabs_free);
3444 } else {
3445 /* Unconditionally move a slab to the end of the
3446 * partial list on free - maximum time for the
3447 * other objects to be freed, too.
3449 list_add_tail(&slabp->list, &l3->slabs_partial);
3454 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3456 int batchcount;
3457 struct kmem_list3 *l3;
3458 int node = numa_node_id();
3460 batchcount = ac->batchcount;
3461 #if DEBUG
3462 BUG_ON(!batchcount || batchcount > ac->avail);
3463 #endif
3464 check_irq_off();
3465 l3 = cachep->nodelists[node];
3466 spin_lock(&l3->list_lock);
3467 if (l3->shared) {
3468 struct array_cache *shared_array = l3->shared;
3469 int max = shared_array->limit - shared_array->avail;
3470 if (max) {
3471 if (batchcount > max)
3472 batchcount = max;
3473 memcpy(&(shared_array->entry[shared_array->avail]),
3474 ac->entry, sizeof(void *) * batchcount);
3475 shared_array->avail += batchcount;
3476 goto free_done;
3480 free_block(cachep, ac->entry, batchcount, node);
3481 free_done:
3482 #if STATS
3484 int i = 0;
3485 struct list_head *p;
3487 p = l3->slabs_free.next;
3488 while (p != &(l3->slabs_free)) {
3489 struct slab *slabp;
3491 slabp = list_entry(p, struct slab, list);
3492 BUG_ON(slabp->inuse);
3494 i++;
3495 p = p->next;
3497 STATS_SET_FREEABLE(cachep, i);
3499 #endif
3500 spin_unlock(&l3->list_lock);
3501 ac->avail -= batchcount;
3502 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3506 * Release an obj back to its cache. If the obj has a constructed state, it must
3507 * be in this state _before_ it is released. Called with disabled ints.
3509 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3511 struct array_cache *ac = cpu_cache_get(cachep);
3513 check_irq_off();
3514 kmemleak_free_recursive(objp, cachep->flags);
3515 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3517 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3520 * Skip calling cache_free_alien() when the platform is not numa.
3521 * This will avoid cache misses that happen while accessing slabp (which
3522 * is per page memory reference) to get nodeid. Instead use a global
3523 * variable to skip the call, which is mostly likely to be present in
3524 * the cache.
3526 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3527 return;
3529 if (likely(ac->avail < ac->limit)) {
3530 STATS_INC_FREEHIT(cachep);
3531 ac->entry[ac->avail++] = objp;
3532 return;
3533 } else {
3534 STATS_INC_FREEMISS(cachep);
3535 cache_flusharray(cachep, ac);
3536 ac->entry[ac->avail++] = objp;
3541 * kmem_cache_alloc - Allocate an object
3542 * @cachep: The cache to allocate from.
3543 * @flags: See kmalloc().
3545 * Allocate an object from this cache. The flags are only relevant
3546 * if the cache has no available objects.
3548 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3550 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3552 trace_kmem_cache_alloc(_RET_IP_, ret,
3553 obj_size(cachep), cachep->buffer_size, flags);
3555 return ret;
3557 EXPORT_SYMBOL(kmem_cache_alloc);
3559 #ifdef CONFIG_KMEMTRACE
3560 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3562 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3564 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3565 #endif
3568 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3569 * @cachep: the cache we're checking against
3570 * @ptr: pointer to validate
3572 * This verifies that the untrusted pointer looks sane;
3573 * it is _not_ a guarantee that the pointer is actually
3574 * part of the slab cache in question, but it at least
3575 * validates that the pointer can be dereferenced and
3576 * looks half-way sane.
3578 * Currently only used for dentry validation.
3580 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3582 unsigned long addr = (unsigned long)ptr;
3583 unsigned long min_addr = PAGE_OFFSET;
3584 unsigned long align_mask = BYTES_PER_WORD - 1;
3585 unsigned long size = cachep->buffer_size;
3586 struct page *page;
3588 if (unlikely(addr < min_addr))
3589 goto out;
3590 if (unlikely(addr > (unsigned long)high_memory - size))
3591 goto out;
3592 if (unlikely(addr & align_mask))
3593 goto out;
3594 if (unlikely(!kern_addr_valid(addr)))
3595 goto out;
3596 if (unlikely(!kern_addr_valid(addr + size - 1)))
3597 goto out;
3598 page = virt_to_page(ptr);
3599 if (unlikely(!PageSlab(page)))
3600 goto out;
3601 if (unlikely(page_get_cache(page) != cachep))
3602 goto out;
3603 return 1;
3604 out:
3605 return 0;
3608 #ifdef CONFIG_NUMA
3609 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3611 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3612 __builtin_return_address(0));
3614 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3615 obj_size(cachep), cachep->buffer_size,
3616 flags, nodeid);
3618 return ret;
3620 EXPORT_SYMBOL(kmem_cache_alloc_node);
3622 #ifdef CONFIG_KMEMTRACE
3623 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3624 gfp_t flags,
3625 int nodeid)
3627 return __cache_alloc_node(cachep, flags, nodeid,
3628 __builtin_return_address(0));
3630 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3631 #endif
3633 static __always_inline void *
3634 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3636 struct kmem_cache *cachep;
3637 void *ret;
3639 cachep = kmem_find_general_cachep(size, flags);
3640 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3641 return cachep;
3642 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3644 trace_kmalloc_node((unsigned long) caller, ret,
3645 size, cachep->buffer_size, flags, node);
3647 return ret;
3650 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3651 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3653 return __do_kmalloc_node(size, flags, node,
3654 __builtin_return_address(0));
3656 EXPORT_SYMBOL(__kmalloc_node);
3658 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3659 int node, unsigned long caller)
3661 return __do_kmalloc_node(size, flags, node, (void *)caller);
3663 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3664 #else
3665 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3667 return __do_kmalloc_node(size, flags, node, NULL);
3669 EXPORT_SYMBOL(__kmalloc_node);
3670 #endif /* CONFIG_DEBUG_SLAB */
3671 #endif /* CONFIG_NUMA */
3674 * __do_kmalloc - allocate memory
3675 * @size: how many bytes of memory are required.
3676 * @flags: the type of memory to allocate (see kmalloc).
3677 * @caller: function caller for debug tracking of the caller
3679 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3680 void *caller)
3682 struct kmem_cache *cachep;
3683 void *ret;
3685 /* If you want to save a few bytes .text space: replace
3686 * __ with kmem_.
3687 * Then kmalloc uses the uninlined functions instead of the inline
3688 * functions.
3690 cachep = __find_general_cachep(size, flags);
3691 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3692 return cachep;
3693 ret = __cache_alloc(cachep, flags, caller);
3695 trace_kmalloc((unsigned long) caller, ret,
3696 size, cachep->buffer_size, flags);
3698 return ret;
3702 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3703 void *__kmalloc(size_t size, gfp_t flags)
3705 return __do_kmalloc(size, flags, __builtin_return_address(0));
3707 EXPORT_SYMBOL(__kmalloc);
3709 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3711 return __do_kmalloc(size, flags, (void *)caller);
3713 EXPORT_SYMBOL(__kmalloc_track_caller);
3715 #else
3716 void *__kmalloc(size_t size, gfp_t flags)
3718 return __do_kmalloc(size, flags, NULL);
3720 EXPORT_SYMBOL(__kmalloc);
3721 #endif
3724 * kmem_cache_free - Deallocate an object
3725 * @cachep: The cache the allocation was from.
3726 * @objp: The previously allocated object.
3728 * Free an object which was previously allocated from this
3729 * cache.
3731 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3733 unsigned long flags;
3735 local_irq_save(flags);
3736 debug_check_no_locks_freed(objp, obj_size(cachep));
3737 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3738 debug_check_no_obj_freed(objp, obj_size(cachep));
3739 __cache_free(cachep, objp);
3740 local_irq_restore(flags);
3742 trace_kmem_cache_free(_RET_IP_, objp);
3744 EXPORT_SYMBOL(kmem_cache_free);
3747 * kfree - free previously allocated memory
3748 * @objp: pointer returned by kmalloc.
3750 * If @objp is NULL, no operation is performed.
3752 * Don't free memory not originally allocated by kmalloc()
3753 * or you will run into trouble.
3755 void kfree(const void *objp)
3757 struct kmem_cache *c;
3758 unsigned long flags;
3760 trace_kfree(_RET_IP_, objp);
3762 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3763 return;
3764 local_irq_save(flags);
3765 kfree_debugcheck(objp);
3766 c = virt_to_cache(objp);
3767 debug_check_no_locks_freed(objp, obj_size(c));
3768 debug_check_no_obj_freed(objp, obj_size(c));
3769 __cache_free(c, (void *)objp);
3770 local_irq_restore(flags);
3772 EXPORT_SYMBOL(kfree);
3774 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3776 return obj_size(cachep);
3778 EXPORT_SYMBOL(kmem_cache_size);
3780 const char *kmem_cache_name(struct kmem_cache *cachep)
3782 return cachep->name;
3784 EXPORT_SYMBOL_GPL(kmem_cache_name);
3787 * This initializes kmem_list3 or resizes various caches for all nodes.
3789 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3791 int node;
3792 struct kmem_list3 *l3;
3793 struct array_cache *new_shared;
3794 struct array_cache **new_alien = NULL;
3796 for_each_online_node(node) {
3798 if (use_alien_caches) {
3799 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3800 if (!new_alien)
3801 goto fail;
3804 new_shared = NULL;
3805 if (cachep->shared) {
3806 new_shared = alloc_arraycache(node,
3807 cachep->shared*cachep->batchcount,
3808 0xbaadf00d, gfp);
3809 if (!new_shared) {
3810 free_alien_cache(new_alien);
3811 goto fail;
3815 l3 = cachep->nodelists[node];
3816 if (l3) {
3817 struct array_cache *shared = l3->shared;
3819 spin_lock_irq(&l3->list_lock);
3821 if (shared)
3822 free_block(cachep, shared->entry,
3823 shared->avail, node);
3825 l3->shared = new_shared;
3826 if (!l3->alien) {
3827 l3->alien = new_alien;
3828 new_alien = NULL;
3830 l3->free_limit = (1 + nr_cpus_node(node)) *
3831 cachep->batchcount + cachep->num;
3832 spin_unlock_irq(&l3->list_lock);
3833 kfree(shared);
3834 free_alien_cache(new_alien);
3835 continue;
3837 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3838 if (!l3) {
3839 free_alien_cache(new_alien);
3840 kfree(new_shared);
3841 goto fail;
3844 kmem_list3_init(l3);
3845 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3846 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3847 l3->shared = new_shared;
3848 l3->alien = new_alien;
3849 l3->free_limit = (1 + nr_cpus_node(node)) *
3850 cachep->batchcount + cachep->num;
3851 cachep->nodelists[node] = l3;
3853 return 0;
3855 fail:
3856 if (!cachep->next.next) {
3857 /* Cache is not active yet. Roll back what we did */
3858 node--;
3859 while (node >= 0) {
3860 if (cachep->nodelists[node]) {
3861 l3 = cachep->nodelists[node];
3863 kfree(l3->shared);
3864 free_alien_cache(l3->alien);
3865 kfree(l3);
3866 cachep->nodelists[node] = NULL;
3868 node--;
3871 return -ENOMEM;
3874 struct ccupdate_struct {
3875 struct kmem_cache *cachep;
3876 struct array_cache *new[NR_CPUS];
3879 static void do_ccupdate_local(void *info)
3881 struct ccupdate_struct *new = info;
3882 struct array_cache *old;
3884 check_irq_off();
3885 old = cpu_cache_get(new->cachep);
3887 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3888 new->new[smp_processor_id()] = old;
3891 /* Always called with the cache_chain_mutex held */
3892 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3893 int batchcount, int shared, gfp_t gfp)
3895 struct ccupdate_struct *new;
3896 int i;
3898 new = kzalloc(sizeof(*new), gfp);
3899 if (!new)
3900 return -ENOMEM;
3902 for_each_online_cpu(i) {
3903 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3904 batchcount, gfp);
3905 if (!new->new[i]) {
3906 for (i--; i >= 0; i--)
3907 kfree(new->new[i]);
3908 kfree(new);
3909 return -ENOMEM;
3912 new->cachep = cachep;
3914 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3916 check_irq_on();
3917 cachep->batchcount = batchcount;
3918 cachep->limit = limit;
3919 cachep->shared = shared;
3921 for_each_online_cpu(i) {
3922 struct array_cache *ccold = new->new[i];
3923 if (!ccold)
3924 continue;
3925 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3926 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3927 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3928 kfree(ccold);
3930 kfree(new);
3931 return alloc_kmemlist(cachep, gfp);
3934 /* Called with cache_chain_mutex held always */
3935 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3937 int err;
3938 int limit, shared;
3941 * The head array serves three purposes:
3942 * - create a LIFO ordering, i.e. return objects that are cache-warm
3943 * - reduce the number of spinlock operations.
3944 * - reduce the number of linked list operations on the slab and
3945 * bufctl chains: array operations are cheaper.
3946 * The numbers are guessed, we should auto-tune as described by
3947 * Bonwick.
3949 if (cachep->buffer_size > 131072)
3950 limit = 1;
3951 else if (cachep->buffer_size > PAGE_SIZE)
3952 limit = 8;
3953 else if (cachep->buffer_size > 1024)
3954 limit = 24;
3955 else if (cachep->buffer_size > 256)
3956 limit = 54;
3957 else
3958 limit = 120;
3961 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3962 * allocation behaviour: Most allocs on one cpu, most free operations
3963 * on another cpu. For these cases, an efficient object passing between
3964 * cpus is necessary. This is provided by a shared array. The array
3965 * replaces Bonwick's magazine layer.
3966 * On uniprocessor, it's functionally equivalent (but less efficient)
3967 * to a larger limit. Thus disabled by default.
3969 shared = 0;
3970 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3971 shared = 8;
3973 #if DEBUG
3975 * With debugging enabled, large batchcount lead to excessively long
3976 * periods with disabled local interrupts. Limit the batchcount
3978 if (limit > 32)
3979 limit = 32;
3980 #endif
3981 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
3982 if (err)
3983 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3984 cachep->name, -err);
3985 return err;
3989 * Drain an array if it contains any elements taking the l3 lock only if
3990 * necessary. Note that the l3 listlock also protects the array_cache
3991 * if drain_array() is used on the shared array.
3993 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3994 struct array_cache *ac, int force, int node)
3996 int tofree;
3998 if (!ac || !ac->avail)
3999 return;
4000 if (ac->touched && !force) {
4001 ac->touched = 0;
4002 } else {
4003 spin_lock_irq(&l3->list_lock);
4004 if (ac->avail) {
4005 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4006 if (tofree > ac->avail)
4007 tofree = (ac->avail + 1) / 2;
4008 free_block(cachep, ac->entry, tofree, node);
4009 ac->avail -= tofree;
4010 memmove(ac->entry, &(ac->entry[tofree]),
4011 sizeof(void *) * ac->avail);
4013 spin_unlock_irq(&l3->list_lock);
4018 * cache_reap - Reclaim memory from caches.
4019 * @w: work descriptor
4021 * Called from workqueue/eventd every few seconds.
4022 * Purpose:
4023 * - clear the per-cpu caches for this CPU.
4024 * - return freeable pages to the main free memory pool.
4026 * If we cannot acquire the cache chain mutex then just give up - we'll try
4027 * again on the next iteration.
4029 static void cache_reap(struct work_struct *w)
4031 struct kmem_cache *searchp;
4032 struct kmem_list3 *l3;
4033 int node = numa_node_id();
4034 struct delayed_work *work = to_delayed_work(w);
4036 if (!mutex_trylock(&cache_chain_mutex))
4037 /* Give up. Setup the next iteration. */
4038 goto out;
4040 list_for_each_entry(searchp, &cache_chain, next) {
4041 check_irq_on();
4044 * We only take the l3 lock if absolutely necessary and we
4045 * have established with reasonable certainty that
4046 * we can do some work if the lock was obtained.
4048 l3 = searchp->nodelists[node];
4050 reap_alien(searchp, l3);
4052 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4055 * These are racy checks but it does not matter
4056 * if we skip one check or scan twice.
4058 if (time_after(l3->next_reap, jiffies))
4059 goto next;
4061 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4063 drain_array(searchp, l3, l3->shared, 0, node);
4065 if (l3->free_touched)
4066 l3->free_touched = 0;
4067 else {
4068 int freed;
4070 freed = drain_freelist(searchp, l3, (l3->free_limit +
4071 5 * searchp->num - 1) / (5 * searchp->num));
4072 STATS_ADD_REAPED(searchp, freed);
4074 next:
4075 cond_resched();
4077 check_irq_on();
4078 mutex_unlock(&cache_chain_mutex);
4079 next_reap_node();
4080 out:
4081 /* Set up the next iteration */
4082 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4085 #ifdef CONFIG_SLABINFO
4087 static void print_slabinfo_header(struct seq_file *m)
4090 * Output format version, so at least we can change it
4091 * without _too_ many complaints.
4093 #if STATS
4094 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4095 #else
4096 seq_puts(m, "slabinfo - version: 2.1\n");
4097 #endif
4098 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4099 "<objperslab> <pagesperslab>");
4100 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4101 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4102 #if STATS
4103 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4104 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4105 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4106 #endif
4107 seq_putc(m, '\n');
4110 static void *s_start(struct seq_file *m, loff_t *pos)
4112 loff_t n = *pos;
4114 mutex_lock(&cache_chain_mutex);
4115 if (!n)
4116 print_slabinfo_header(m);
4118 return seq_list_start(&cache_chain, *pos);
4121 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4123 return seq_list_next(p, &cache_chain, pos);
4126 static void s_stop(struct seq_file *m, void *p)
4128 mutex_unlock(&cache_chain_mutex);
4131 static int s_show(struct seq_file *m, void *p)
4133 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4134 struct slab *slabp;
4135 unsigned long active_objs;
4136 unsigned long num_objs;
4137 unsigned long active_slabs = 0;
4138 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4139 const char *name;
4140 char *error = NULL;
4141 int node;
4142 struct kmem_list3 *l3;
4144 active_objs = 0;
4145 num_slabs = 0;
4146 for_each_online_node(node) {
4147 l3 = cachep->nodelists[node];
4148 if (!l3)
4149 continue;
4151 check_irq_on();
4152 spin_lock_irq(&l3->list_lock);
4154 list_for_each_entry(slabp, &l3->slabs_full, list) {
4155 if (slabp->inuse != cachep->num && !error)
4156 error = "slabs_full accounting error";
4157 active_objs += cachep->num;
4158 active_slabs++;
4160 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4161 if (slabp->inuse == cachep->num && !error)
4162 error = "slabs_partial inuse accounting error";
4163 if (!slabp->inuse && !error)
4164 error = "slabs_partial/inuse accounting error";
4165 active_objs += slabp->inuse;
4166 active_slabs++;
4168 list_for_each_entry(slabp, &l3->slabs_free, list) {
4169 if (slabp->inuse && !error)
4170 error = "slabs_free/inuse accounting error";
4171 num_slabs++;
4173 free_objects += l3->free_objects;
4174 if (l3->shared)
4175 shared_avail += l3->shared->avail;
4177 spin_unlock_irq(&l3->list_lock);
4179 num_slabs += active_slabs;
4180 num_objs = num_slabs * cachep->num;
4181 if (num_objs - active_objs != free_objects && !error)
4182 error = "free_objects accounting error";
4184 name = cachep->name;
4185 if (error)
4186 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4188 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4189 name, active_objs, num_objs, cachep->buffer_size,
4190 cachep->num, (1 << cachep->gfporder));
4191 seq_printf(m, " : tunables %4u %4u %4u",
4192 cachep->limit, cachep->batchcount, cachep->shared);
4193 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4194 active_slabs, num_slabs, shared_avail);
4195 #if STATS
4196 { /* list3 stats */
4197 unsigned long high = cachep->high_mark;
4198 unsigned long allocs = cachep->num_allocations;
4199 unsigned long grown = cachep->grown;
4200 unsigned long reaped = cachep->reaped;
4201 unsigned long errors = cachep->errors;
4202 unsigned long max_freeable = cachep->max_freeable;
4203 unsigned long node_allocs = cachep->node_allocs;
4204 unsigned long node_frees = cachep->node_frees;
4205 unsigned long overflows = cachep->node_overflow;
4207 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4208 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4209 reaped, errors, max_freeable, node_allocs,
4210 node_frees, overflows);
4212 /* cpu stats */
4214 unsigned long allochit = atomic_read(&cachep->allochit);
4215 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4216 unsigned long freehit = atomic_read(&cachep->freehit);
4217 unsigned long freemiss = atomic_read(&cachep->freemiss);
4219 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4220 allochit, allocmiss, freehit, freemiss);
4222 #endif
4223 seq_putc(m, '\n');
4224 return 0;
4228 * slabinfo_op - iterator that generates /proc/slabinfo
4230 * Output layout:
4231 * cache-name
4232 * num-active-objs
4233 * total-objs
4234 * object size
4235 * num-active-slabs
4236 * total-slabs
4237 * num-pages-per-slab
4238 * + further values on SMP and with statistics enabled
4241 static const struct seq_operations slabinfo_op = {
4242 .start = s_start,
4243 .next = s_next,
4244 .stop = s_stop,
4245 .show = s_show,
4248 #define MAX_SLABINFO_WRITE 128
4250 * slabinfo_write - Tuning for the slab allocator
4251 * @file: unused
4252 * @buffer: user buffer
4253 * @count: data length
4254 * @ppos: unused
4256 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4257 size_t count, loff_t *ppos)
4259 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4260 int limit, batchcount, shared, res;
4261 struct kmem_cache *cachep;
4263 if (count > MAX_SLABINFO_WRITE)
4264 return -EINVAL;
4265 if (copy_from_user(&kbuf, buffer, count))
4266 return -EFAULT;
4267 kbuf[MAX_SLABINFO_WRITE] = '\0';
4269 tmp = strchr(kbuf, ' ');
4270 if (!tmp)
4271 return -EINVAL;
4272 *tmp = '\0';
4273 tmp++;
4274 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4275 return -EINVAL;
4277 /* Find the cache in the chain of caches. */
4278 mutex_lock(&cache_chain_mutex);
4279 res = -EINVAL;
4280 list_for_each_entry(cachep, &cache_chain, next) {
4281 if (!strcmp(cachep->name, kbuf)) {
4282 if (limit < 1 || batchcount < 1 ||
4283 batchcount > limit || shared < 0) {
4284 res = 0;
4285 } else {
4286 res = do_tune_cpucache(cachep, limit,
4287 batchcount, shared,
4288 GFP_KERNEL);
4290 break;
4293 mutex_unlock(&cache_chain_mutex);
4294 if (res >= 0)
4295 res = count;
4296 return res;
4299 static int slabinfo_open(struct inode *inode, struct file *file)
4301 return seq_open(file, &slabinfo_op);
4304 static const struct file_operations proc_slabinfo_operations = {
4305 .open = slabinfo_open,
4306 .read = seq_read,
4307 .write = slabinfo_write,
4308 .llseek = seq_lseek,
4309 .release = seq_release,
4312 #ifdef CONFIG_DEBUG_SLAB_LEAK
4314 static void *leaks_start(struct seq_file *m, loff_t *pos)
4316 mutex_lock(&cache_chain_mutex);
4317 return seq_list_start(&cache_chain, *pos);
4320 static inline int add_caller(unsigned long *n, unsigned long v)
4322 unsigned long *p;
4323 int l;
4324 if (!v)
4325 return 1;
4326 l = n[1];
4327 p = n + 2;
4328 while (l) {
4329 int i = l/2;
4330 unsigned long *q = p + 2 * i;
4331 if (*q == v) {
4332 q[1]++;
4333 return 1;
4335 if (*q > v) {
4336 l = i;
4337 } else {
4338 p = q + 2;
4339 l -= i + 1;
4342 if (++n[1] == n[0])
4343 return 0;
4344 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4345 p[0] = v;
4346 p[1] = 1;
4347 return 1;
4350 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4352 void *p;
4353 int i;
4354 if (n[0] == n[1])
4355 return;
4356 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4357 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4358 continue;
4359 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4360 return;
4364 static void show_symbol(struct seq_file *m, unsigned long address)
4366 #ifdef CONFIG_KALLSYMS
4367 unsigned long offset, size;
4368 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4370 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4371 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4372 if (modname[0])
4373 seq_printf(m, " [%s]", modname);
4374 return;
4376 #endif
4377 seq_printf(m, "%p", (void *)address);
4380 static int leaks_show(struct seq_file *m, void *p)
4382 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4383 struct slab *slabp;
4384 struct kmem_list3 *l3;
4385 const char *name;
4386 unsigned long *n = m->private;
4387 int node;
4388 int i;
4390 if (!(cachep->flags & SLAB_STORE_USER))
4391 return 0;
4392 if (!(cachep->flags & SLAB_RED_ZONE))
4393 return 0;
4395 /* OK, we can do it */
4397 n[1] = 0;
4399 for_each_online_node(node) {
4400 l3 = cachep->nodelists[node];
4401 if (!l3)
4402 continue;
4404 check_irq_on();
4405 spin_lock_irq(&l3->list_lock);
4407 list_for_each_entry(slabp, &l3->slabs_full, list)
4408 handle_slab(n, cachep, slabp);
4409 list_for_each_entry(slabp, &l3->slabs_partial, list)
4410 handle_slab(n, cachep, slabp);
4411 spin_unlock_irq(&l3->list_lock);
4413 name = cachep->name;
4414 if (n[0] == n[1]) {
4415 /* Increase the buffer size */
4416 mutex_unlock(&cache_chain_mutex);
4417 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4418 if (!m->private) {
4419 /* Too bad, we are really out */
4420 m->private = n;
4421 mutex_lock(&cache_chain_mutex);
4422 return -ENOMEM;
4424 *(unsigned long *)m->private = n[0] * 2;
4425 kfree(n);
4426 mutex_lock(&cache_chain_mutex);
4427 /* Now make sure this entry will be retried */
4428 m->count = m->size;
4429 return 0;
4431 for (i = 0; i < n[1]; i++) {
4432 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4433 show_symbol(m, n[2*i+2]);
4434 seq_putc(m, '\n');
4437 return 0;
4440 static const struct seq_operations slabstats_op = {
4441 .start = leaks_start,
4442 .next = s_next,
4443 .stop = s_stop,
4444 .show = leaks_show,
4447 static int slabstats_open(struct inode *inode, struct file *file)
4449 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4450 int ret = -ENOMEM;
4451 if (n) {
4452 ret = seq_open(file, &slabstats_op);
4453 if (!ret) {
4454 struct seq_file *m = file->private_data;
4455 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4456 m->private = n;
4457 n = NULL;
4459 kfree(n);
4461 return ret;
4464 static const struct file_operations proc_slabstats_operations = {
4465 .open = slabstats_open,
4466 .read = seq_read,
4467 .llseek = seq_lseek,
4468 .release = seq_release_private,
4470 #endif
4472 static int __init slab_proc_init(void)
4474 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4475 #ifdef CONFIG_DEBUG_SLAB_LEAK
4476 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4477 #endif
4478 return 0;
4480 module_init(slab_proc_init);
4481 #endif
4484 * ksize - get the actual amount of memory allocated for a given object
4485 * @objp: Pointer to the object
4487 * kmalloc may internally round up allocations and return more memory
4488 * than requested. ksize() can be used to determine the actual amount of
4489 * memory allocated. The caller may use this additional memory, even though
4490 * a smaller amount of memory was initially specified with the kmalloc call.
4491 * The caller must guarantee that objp points to a valid object previously
4492 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4493 * must not be freed during the duration of the call.
4495 size_t ksize(const void *objp)
4497 BUG_ON(!objp);
4498 if (unlikely(objp == ZERO_SIZE_PTR))
4499 return 0;
4501 return obj_size(virt_to_cache(objp));
4503 EXPORT_SYMBOL(ksize);