coredump: kill mm->core_done
[linux-2.6/mini2440.git] / fs / exec.c
blobbff43aeb235e46e95eaa48571279960ef5185bfb
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
55 #include <asm/tlb.h>
57 #ifdef CONFIG_KMOD
58 #include <linux/kmod.h>
59 #endif
61 #ifdef __alpha__
62 /* for /sbin/loader handling in search_binary_handler() */
63 #include <linux/a.out.h>
64 #endif
66 int core_uses_pid;
67 char core_pattern[CORENAME_MAX_SIZE] = "core";
68 int suid_dumpable = 0;
70 /* The maximal length of core_pattern is also specified in sysctl.c */
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 int register_binfmt(struct linux_binfmt * fmt)
77 if (!fmt)
78 return -EINVAL;
79 write_lock(&binfmt_lock);
80 list_add(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
82 return 0;
85 EXPORT_SYMBOL(register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
105 * Also note that we take the address to load from from the file itself.
107 asmlinkage long sys_uselib(const char __user * library)
109 struct file * file;
110 struct nameidata nd;
111 int error;
113 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
114 if (error)
115 goto out;
117 error = -EINVAL;
118 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
119 goto exit;
121 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
122 if (error)
123 goto exit;
125 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
126 error = PTR_ERR(file);
127 if (IS_ERR(file))
128 goto out;
130 error = -ENOEXEC;
131 if(file->f_op) {
132 struct linux_binfmt * fmt;
134 read_lock(&binfmt_lock);
135 list_for_each_entry(fmt, &formats, lh) {
136 if (!fmt->load_shlib)
137 continue;
138 if (!try_module_get(fmt->module))
139 continue;
140 read_unlock(&binfmt_lock);
141 error = fmt->load_shlib(file);
142 read_lock(&binfmt_lock);
143 put_binfmt(fmt);
144 if (error != -ENOEXEC)
145 break;
147 read_unlock(&binfmt_lock);
149 fput(file);
150 out:
151 return error;
152 exit:
153 release_open_intent(&nd);
154 path_put(&nd.path);
155 goto out;
158 #ifdef CONFIG_MMU
160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
161 int write)
163 struct page *page;
164 int ret;
166 #ifdef CONFIG_STACK_GROWSUP
167 if (write) {
168 ret = expand_stack_downwards(bprm->vma, pos);
169 if (ret < 0)
170 return NULL;
172 #endif
173 ret = get_user_pages(current, bprm->mm, pos,
174 1, write, 1, &page, NULL);
175 if (ret <= 0)
176 return NULL;
178 if (write) {
179 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 struct rlimit *rlim;
183 * We've historically supported up to 32 pages (ARG_MAX)
184 * of argument strings even with small stacks
186 if (size <= ARG_MAX)
187 return page;
190 * Limit to 1/4-th the stack size for the argv+env strings.
191 * This ensures that:
192 * - the remaining binfmt code will not run out of stack space,
193 * - the program will have a reasonable amount of stack left
194 * to work from.
196 rlim = current->signal->rlim;
197 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
198 put_page(page);
199 return NULL;
203 return page;
206 static void put_arg_page(struct page *page)
208 put_page(page);
211 static void free_arg_page(struct linux_binprm *bprm, int i)
215 static void free_arg_pages(struct linux_binprm *bprm)
219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 struct page *page)
222 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
225 static int __bprm_mm_init(struct linux_binprm *bprm)
227 int err = -ENOMEM;
228 struct vm_area_struct *vma = NULL;
229 struct mm_struct *mm = bprm->mm;
231 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
232 if (!vma)
233 goto err;
235 down_write(&mm->mmap_sem);
236 vma->vm_mm = mm;
239 * Place the stack at the largest stack address the architecture
240 * supports. Later, we'll move this to an appropriate place. We don't
241 * use STACK_TOP because that can depend on attributes which aren't
242 * configured yet.
244 vma->vm_end = STACK_TOP_MAX;
245 vma->vm_start = vma->vm_end - PAGE_SIZE;
247 vma->vm_flags = VM_STACK_FLAGS;
248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 err = insert_vm_struct(mm, vma);
250 if (err) {
251 up_write(&mm->mmap_sem);
252 goto err;
255 mm->stack_vm = mm->total_vm = 1;
256 up_write(&mm->mmap_sem);
258 bprm->p = vma->vm_end - sizeof(void *);
260 return 0;
262 err:
263 if (vma) {
264 bprm->vma = NULL;
265 kmem_cache_free(vm_area_cachep, vma);
268 return err;
271 static bool valid_arg_len(struct linux_binprm *bprm, long len)
273 return len <= MAX_ARG_STRLEN;
276 #else
278 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
279 int write)
281 struct page *page;
283 page = bprm->page[pos / PAGE_SIZE];
284 if (!page && write) {
285 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
286 if (!page)
287 return NULL;
288 bprm->page[pos / PAGE_SIZE] = page;
291 return page;
294 static void put_arg_page(struct page *page)
298 static void free_arg_page(struct linux_binprm *bprm, int i)
300 if (bprm->page[i]) {
301 __free_page(bprm->page[i]);
302 bprm->page[i] = NULL;
306 static void free_arg_pages(struct linux_binprm *bprm)
308 int i;
310 for (i = 0; i < MAX_ARG_PAGES; i++)
311 free_arg_page(bprm, i);
314 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
315 struct page *page)
319 static int __bprm_mm_init(struct linux_binprm *bprm)
321 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
322 return 0;
325 static bool valid_arg_len(struct linux_binprm *bprm, long len)
327 return len <= bprm->p;
330 #endif /* CONFIG_MMU */
333 * Create a new mm_struct and populate it with a temporary stack
334 * vm_area_struct. We don't have enough context at this point to set the stack
335 * flags, permissions, and offset, so we use temporary values. We'll update
336 * them later in setup_arg_pages().
338 int bprm_mm_init(struct linux_binprm *bprm)
340 int err;
341 struct mm_struct *mm = NULL;
343 bprm->mm = mm = mm_alloc();
344 err = -ENOMEM;
345 if (!mm)
346 goto err;
348 err = init_new_context(current, mm);
349 if (err)
350 goto err;
352 err = __bprm_mm_init(bprm);
353 if (err)
354 goto err;
356 return 0;
358 err:
359 if (mm) {
360 bprm->mm = NULL;
361 mmdrop(mm);
364 return err;
368 * count() counts the number of strings in array ARGV.
370 static int count(char __user * __user * argv, int max)
372 int i = 0;
374 if (argv != NULL) {
375 for (;;) {
376 char __user * p;
378 if (get_user(p, argv))
379 return -EFAULT;
380 if (!p)
381 break;
382 argv++;
383 if(++i > max)
384 return -E2BIG;
385 cond_resched();
388 return i;
392 * 'copy_strings()' copies argument/environment strings from the old
393 * processes's memory to the new process's stack. The call to get_user_pages()
394 * ensures the destination page is created and not swapped out.
396 static int copy_strings(int argc, char __user * __user * argv,
397 struct linux_binprm *bprm)
399 struct page *kmapped_page = NULL;
400 char *kaddr = NULL;
401 unsigned long kpos = 0;
402 int ret;
404 while (argc-- > 0) {
405 char __user *str;
406 int len;
407 unsigned long pos;
409 if (get_user(str, argv+argc) ||
410 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
411 ret = -EFAULT;
412 goto out;
415 if (!valid_arg_len(bprm, len)) {
416 ret = -E2BIG;
417 goto out;
420 /* We're going to work our way backwords. */
421 pos = bprm->p;
422 str += len;
423 bprm->p -= len;
425 while (len > 0) {
426 int offset, bytes_to_copy;
428 offset = pos % PAGE_SIZE;
429 if (offset == 0)
430 offset = PAGE_SIZE;
432 bytes_to_copy = offset;
433 if (bytes_to_copy > len)
434 bytes_to_copy = len;
436 offset -= bytes_to_copy;
437 pos -= bytes_to_copy;
438 str -= bytes_to_copy;
439 len -= bytes_to_copy;
441 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
442 struct page *page;
444 page = get_arg_page(bprm, pos, 1);
445 if (!page) {
446 ret = -E2BIG;
447 goto out;
450 if (kmapped_page) {
451 flush_kernel_dcache_page(kmapped_page);
452 kunmap(kmapped_page);
453 put_arg_page(kmapped_page);
455 kmapped_page = page;
456 kaddr = kmap(kmapped_page);
457 kpos = pos & PAGE_MASK;
458 flush_arg_page(bprm, kpos, kmapped_page);
460 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
461 ret = -EFAULT;
462 goto out;
466 ret = 0;
467 out:
468 if (kmapped_page) {
469 flush_kernel_dcache_page(kmapped_page);
470 kunmap(kmapped_page);
471 put_arg_page(kmapped_page);
473 return ret;
477 * Like copy_strings, but get argv and its values from kernel memory.
479 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
481 int r;
482 mm_segment_t oldfs = get_fs();
483 set_fs(KERNEL_DS);
484 r = copy_strings(argc, (char __user * __user *)argv, bprm);
485 set_fs(oldfs);
486 return r;
488 EXPORT_SYMBOL(copy_strings_kernel);
490 #ifdef CONFIG_MMU
493 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
494 * the binfmt code determines where the new stack should reside, we shift it to
495 * its final location. The process proceeds as follows:
497 * 1) Use shift to calculate the new vma endpoints.
498 * 2) Extend vma to cover both the old and new ranges. This ensures the
499 * arguments passed to subsequent functions are consistent.
500 * 3) Move vma's page tables to the new range.
501 * 4) Free up any cleared pgd range.
502 * 5) Shrink the vma to cover only the new range.
504 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
506 struct mm_struct *mm = vma->vm_mm;
507 unsigned long old_start = vma->vm_start;
508 unsigned long old_end = vma->vm_end;
509 unsigned long length = old_end - old_start;
510 unsigned long new_start = old_start - shift;
511 unsigned long new_end = old_end - shift;
512 struct mmu_gather *tlb;
514 BUG_ON(new_start > new_end);
517 * ensure there are no vmas between where we want to go
518 * and where we are
520 if (vma != find_vma(mm, new_start))
521 return -EFAULT;
524 * cover the whole range: [new_start, old_end)
526 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
529 * move the page tables downwards, on failure we rely on
530 * process cleanup to remove whatever mess we made.
532 if (length != move_page_tables(vma, old_start,
533 vma, new_start, length))
534 return -ENOMEM;
536 lru_add_drain();
537 tlb = tlb_gather_mmu(mm, 0);
538 if (new_end > old_start) {
540 * when the old and new regions overlap clear from new_end.
542 free_pgd_range(tlb, new_end, old_end, new_end,
543 vma->vm_next ? vma->vm_next->vm_start : 0);
544 } else {
546 * otherwise, clean from old_start; this is done to not touch
547 * the address space in [new_end, old_start) some architectures
548 * have constraints on va-space that make this illegal (IA64) -
549 * for the others its just a little faster.
551 free_pgd_range(tlb, old_start, old_end, new_end,
552 vma->vm_next ? vma->vm_next->vm_start : 0);
554 tlb_finish_mmu(tlb, new_end, old_end);
557 * shrink the vma to just the new range.
559 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
561 return 0;
564 #define EXTRA_STACK_VM_PAGES 20 /* random */
567 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
568 * the stack is optionally relocated, and some extra space is added.
570 int setup_arg_pages(struct linux_binprm *bprm,
571 unsigned long stack_top,
572 int executable_stack)
574 unsigned long ret;
575 unsigned long stack_shift;
576 struct mm_struct *mm = current->mm;
577 struct vm_area_struct *vma = bprm->vma;
578 struct vm_area_struct *prev = NULL;
579 unsigned long vm_flags;
580 unsigned long stack_base;
582 #ifdef CONFIG_STACK_GROWSUP
583 /* Limit stack size to 1GB */
584 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
585 if (stack_base > (1 << 30))
586 stack_base = 1 << 30;
588 /* Make sure we didn't let the argument array grow too large. */
589 if (vma->vm_end - vma->vm_start > stack_base)
590 return -ENOMEM;
592 stack_base = PAGE_ALIGN(stack_top - stack_base);
594 stack_shift = vma->vm_start - stack_base;
595 mm->arg_start = bprm->p - stack_shift;
596 bprm->p = vma->vm_end - stack_shift;
597 #else
598 stack_top = arch_align_stack(stack_top);
599 stack_top = PAGE_ALIGN(stack_top);
600 stack_shift = vma->vm_end - stack_top;
602 bprm->p -= stack_shift;
603 mm->arg_start = bprm->p;
604 #endif
606 if (bprm->loader)
607 bprm->loader -= stack_shift;
608 bprm->exec -= stack_shift;
610 down_write(&mm->mmap_sem);
611 vm_flags = VM_STACK_FLAGS;
614 * Adjust stack execute permissions; explicitly enable for
615 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
616 * (arch default) otherwise.
618 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
619 vm_flags |= VM_EXEC;
620 else if (executable_stack == EXSTACK_DISABLE_X)
621 vm_flags &= ~VM_EXEC;
622 vm_flags |= mm->def_flags;
624 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
625 vm_flags);
626 if (ret)
627 goto out_unlock;
628 BUG_ON(prev != vma);
630 /* Move stack pages down in memory. */
631 if (stack_shift) {
632 ret = shift_arg_pages(vma, stack_shift);
633 if (ret) {
634 up_write(&mm->mmap_sem);
635 return ret;
639 #ifdef CONFIG_STACK_GROWSUP
640 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
641 #else
642 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
643 #endif
644 ret = expand_stack(vma, stack_base);
645 if (ret)
646 ret = -EFAULT;
648 out_unlock:
649 up_write(&mm->mmap_sem);
650 return 0;
652 EXPORT_SYMBOL(setup_arg_pages);
654 #endif /* CONFIG_MMU */
656 struct file *open_exec(const char *name)
658 struct nameidata nd;
659 int err;
660 struct file *file;
662 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
663 file = ERR_PTR(err);
665 if (!err) {
666 struct inode *inode = nd.path.dentry->d_inode;
667 file = ERR_PTR(-EACCES);
668 if (S_ISREG(inode->i_mode)) {
669 int err = vfs_permission(&nd, MAY_EXEC);
670 file = ERR_PTR(err);
671 if (!err) {
672 file = nameidata_to_filp(&nd,
673 O_RDONLY|O_LARGEFILE);
674 if (!IS_ERR(file)) {
675 err = deny_write_access(file);
676 if (err) {
677 fput(file);
678 file = ERR_PTR(err);
681 out:
682 return file;
685 release_open_intent(&nd);
686 path_put(&nd.path);
688 goto out;
691 EXPORT_SYMBOL(open_exec);
693 int kernel_read(struct file *file, unsigned long offset,
694 char *addr, unsigned long count)
696 mm_segment_t old_fs;
697 loff_t pos = offset;
698 int result;
700 old_fs = get_fs();
701 set_fs(get_ds());
702 /* The cast to a user pointer is valid due to the set_fs() */
703 result = vfs_read(file, (void __user *)addr, count, &pos);
704 set_fs(old_fs);
705 return result;
708 EXPORT_SYMBOL(kernel_read);
710 static int exec_mmap(struct mm_struct *mm)
712 struct task_struct *tsk;
713 struct mm_struct * old_mm, *active_mm;
715 /* Notify parent that we're no longer interested in the old VM */
716 tsk = current;
717 old_mm = current->mm;
718 mm_release(tsk, old_mm);
720 if (old_mm) {
722 * Make sure that if there is a core dump in progress
723 * for the old mm, we get out and die instead of going
724 * through with the exec. We must hold mmap_sem around
725 * checking core_state and changing tsk->mm.
727 down_read(&old_mm->mmap_sem);
728 if (unlikely(old_mm->core_state)) {
729 up_read(&old_mm->mmap_sem);
730 return -EINTR;
733 task_lock(tsk);
734 active_mm = tsk->active_mm;
735 tsk->mm = mm;
736 tsk->active_mm = mm;
737 activate_mm(active_mm, mm);
738 task_unlock(tsk);
739 mm_update_next_owner(old_mm);
740 arch_pick_mmap_layout(mm);
741 if (old_mm) {
742 up_read(&old_mm->mmap_sem);
743 BUG_ON(active_mm != old_mm);
744 mmput(old_mm);
745 return 0;
747 mmdrop(active_mm);
748 return 0;
752 * This function makes sure the current process has its own signal table,
753 * so that flush_signal_handlers can later reset the handlers without
754 * disturbing other processes. (Other processes might share the signal
755 * table via the CLONE_SIGHAND option to clone().)
757 static int de_thread(struct task_struct *tsk)
759 struct signal_struct *sig = tsk->signal;
760 struct sighand_struct *oldsighand = tsk->sighand;
761 spinlock_t *lock = &oldsighand->siglock;
762 struct task_struct *leader = NULL;
763 int count;
765 if (thread_group_empty(tsk))
766 goto no_thread_group;
769 * Kill all other threads in the thread group.
771 spin_lock_irq(lock);
772 if (signal_group_exit(sig)) {
774 * Another group action in progress, just
775 * return so that the signal is processed.
777 spin_unlock_irq(lock);
778 return -EAGAIN;
780 sig->group_exit_task = tsk;
781 zap_other_threads(tsk);
783 /* Account for the thread group leader hanging around: */
784 count = thread_group_leader(tsk) ? 1 : 2;
785 sig->notify_count = count;
786 while (atomic_read(&sig->count) > count) {
787 __set_current_state(TASK_UNINTERRUPTIBLE);
788 spin_unlock_irq(lock);
789 schedule();
790 spin_lock_irq(lock);
792 spin_unlock_irq(lock);
795 * At this point all other threads have exited, all we have to
796 * do is to wait for the thread group leader to become inactive,
797 * and to assume its PID:
799 if (!thread_group_leader(tsk)) {
800 leader = tsk->group_leader;
802 sig->notify_count = -1; /* for exit_notify() */
803 for (;;) {
804 write_lock_irq(&tasklist_lock);
805 if (likely(leader->exit_state))
806 break;
807 __set_current_state(TASK_UNINTERRUPTIBLE);
808 write_unlock_irq(&tasklist_lock);
809 schedule();
812 if (unlikely(task_child_reaper(tsk) == leader))
813 task_active_pid_ns(tsk)->child_reaper = tsk;
815 * The only record we have of the real-time age of a
816 * process, regardless of execs it's done, is start_time.
817 * All the past CPU time is accumulated in signal_struct
818 * from sister threads now dead. But in this non-leader
819 * exec, nothing survives from the original leader thread,
820 * whose birth marks the true age of this process now.
821 * When we take on its identity by switching to its PID, we
822 * also take its birthdate (always earlier than our own).
824 tsk->start_time = leader->start_time;
826 BUG_ON(!same_thread_group(leader, tsk));
827 BUG_ON(has_group_leader_pid(tsk));
829 * An exec() starts a new thread group with the
830 * TGID of the previous thread group. Rehash the
831 * two threads with a switched PID, and release
832 * the former thread group leader:
835 /* Become a process group leader with the old leader's pid.
836 * The old leader becomes a thread of the this thread group.
837 * Note: The old leader also uses this pid until release_task
838 * is called. Odd but simple and correct.
840 detach_pid(tsk, PIDTYPE_PID);
841 tsk->pid = leader->pid;
842 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
843 transfer_pid(leader, tsk, PIDTYPE_PGID);
844 transfer_pid(leader, tsk, PIDTYPE_SID);
845 list_replace_rcu(&leader->tasks, &tsk->tasks);
847 tsk->group_leader = tsk;
848 leader->group_leader = tsk;
850 tsk->exit_signal = SIGCHLD;
852 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
853 leader->exit_state = EXIT_DEAD;
855 write_unlock_irq(&tasklist_lock);
858 sig->group_exit_task = NULL;
859 sig->notify_count = 0;
861 no_thread_group:
862 exit_itimers(sig);
863 flush_itimer_signals();
864 if (leader)
865 release_task(leader);
867 if (atomic_read(&oldsighand->count) != 1) {
868 struct sighand_struct *newsighand;
870 * This ->sighand is shared with the CLONE_SIGHAND
871 * but not CLONE_THREAD task, switch to the new one.
873 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
874 if (!newsighand)
875 return -ENOMEM;
877 atomic_set(&newsighand->count, 1);
878 memcpy(newsighand->action, oldsighand->action,
879 sizeof(newsighand->action));
881 write_lock_irq(&tasklist_lock);
882 spin_lock(&oldsighand->siglock);
883 rcu_assign_pointer(tsk->sighand, newsighand);
884 spin_unlock(&oldsighand->siglock);
885 write_unlock_irq(&tasklist_lock);
887 __cleanup_sighand(oldsighand);
890 BUG_ON(!thread_group_leader(tsk));
891 return 0;
895 * These functions flushes out all traces of the currently running executable
896 * so that a new one can be started
898 static void flush_old_files(struct files_struct * files)
900 long j = -1;
901 struct fdtable *fdt;
903 spin_lock(&files->file_lock);
904 for (;;) {
905 unsigned long set, i;
907 j++;
908 i = j * __NFDBITS;
909 fdt = files_fdtable(files);
910 if (i >= fdt->max_fds)
911 break;
912 set = fdt->close_on_exec->fds_bits[j];
913 if (!set)
914 continue;
915 fdt->close_on_exec->fds_bits[j] = 0;
916 spin_unlock(&files->file_lock);
917 for ( ; set ; i++,set >>= 1) {
918 if (set & 1) {
919 sys_close(i);
922 spin_lock(&files->file_lock);
925 spin_unlock(&files->file_lock);
928 char *get_task_comm(char *buf, struct task_struct *tsk)
930 /* buf must be at least sizeof(tsk->comm) in size */
931 task_lock(tsk);
932 strncpy(buf, tsk->comm, sizeof(tsk->comm));
933 task_unlock(tsk);
934 return buf;
937 void set_task_comm(struct task_struct *tsk, char *buf)
939 task_lock(tsk);
940 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
941 task_unlock(tsk);
944 int flush_old_exec(struct linux_binprm * bprm)
946 char * name;
947 int i, ch, retval;
948 char tcomm[sizeof(current->comm)];
951 * Make sure we have a private signal table and that
952 * we are unassociated from the previous thread group.
954 retval = de_thread(current);
955 if (retval)
956 goto out;
958 set_mm_exe_file(bprm->mm, bprm->file);
961 * Release all of the old mmap stuff
963 retval = exec_mmap(bprm->mm);
964 if (retval)
965 goto out;
967 bprm->mm = NULL; /* We're using it now */
969 /* This is the point of no return */
970 current->sas_ss_sp = current->sas_ss_size = 0;
972 if (current->euid == current->uid && current->egid == current->gid)
973 set_dumpable(current->mm, 1);
974 else
975 set_dumpable(current->mm, suid_dumpable);
977 name = bprm->filename;
979 /* Copies the binary name from after last slash */
980 for (i=0; (ch = *(name++)) != '\0';) {
981 if (ch == '/')
982 i = 0; /* overwrite what we wrote */
983 else
984 if (i < (sizeof(tcomm) - 1))
985 tcomm[i++] = ch;
987 tcomm[i] = '\0';
988 set_task_comm(current, tcomm);
990 current->flags &= ~PF_RANDOMIZE;
991 flush_thread();
993 /* Set the new mm task size. We have to do that late because it may
994 * depend on TIF_32BIT which is only updated in flush_thread() on
995 * some architectures like powerpc
997 current->mm->task_size = TASK_SIZE;
999 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1000 suid_keys(current);
1001 set_dumpable(current->mm, suid_dumpable);
1002 current->pdeath_signal = 0;
1003 } else if (file_permission(bprm->file, MAY_READ) ||
1004 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1005 suid_keys(current);
1006 set_dumpable(current->mm, suid_dumpable);
1009 /* An exec changes our domain. We are no longer part of the thread
1010 group */
1012 current->self_exec_id++;
1014 flush_signal_handlers(current, 0);
1015 flush_old_files(current->files);
1017 return 0;
1019 out:
1020 return retval;
1023 EXPORT_SYMBOL(flush_old_exec);
1026 * Fill the binprm structure from the inode.
1027 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1029 int prepare_binprm(struct linux_binprm *bprm)
1031 int mode;
1032 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1033 int retval;
1035 mode = inode->i_mode;
1036 if (bprm->file->f_op == NULL)
1037 return -EACCES;
1039 bprm->e_uid = current->euid;
1040 bprm->e_gid = current->egid;
1042 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1043 /* Set-uid? */
1044 if (mode & S_ISUID) {
1045 current->personality &= ~PER_CLEAR_ON_SETID;
1046 bprm->e_uid = inode->i_uid;
1049 /* Set-gid? */
1051 * If setgid is set but no group execute bit then this
1052 * is a candidate for mandatory locking, not a setgid
1053 * executable.
1055 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1056 current->personality &= ~PER_CLEAR_ON_SETID;
1057 bprm->e_gid = inode->i_gid;
1061 /* fill in binprm security blob */
1062 retval = security_bprm_set(bprm);
1063 if (retval)
1064 return retval;
1066 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1067 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1070 EXPORT_SYMBOL(prepare_binprm);
1072 static int unsafe_exec(struct task_struct *p)
1074 int unsafe = 0;
1075 if (p->ptrace & PT_PTRACED) {
1076 if (p->ptrace & PT_PTRACE_CAP)
1077 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1078 else
1079 unsafe |= LSM_UNSAFE_PTRACE;
1081 if (atomic_read(&p->fs->count) > 1 ||
1082 atomic_read(&p->files->count) > 1 ||
1083 atomic_read(&p->sighand->count) > 1)
1084 unsafe |= LSM_UNSAFE_SHARE;
1086 return unsafe;
1089 void compute_creds(struct linux_binprm *bprm)
1091 int unsafe;
1093 if (bprm->e_uid != current->uid) {
1094 suid_keys(current);
1095 current->pdeath_signal = 0;
1097 exec_keys(current);
1099 task_lock(current);
1100 unsafe = unsafe_exec(current);
1101 security_bprm_apply_creds(bprm, unsafe);
1102 task_unlock(current);
1103 security_bprm_post_apply_creds(bprm);
1105 EXPORT_SYMBOL(compute_creds);
1108 * Arguments are '\0' separated strings found at the location bprm->p
1109 * points to; chop off the first by relocating brpm->p to right after
1110 * the first '\0' encountered.
1112 int remove_arg_zero(struct linux_binprm *bprm)
1114 int ret = 0;
1115 unsigned long offset;
1116 char *kaddr;
1117 struct page *page;
1119 if (!bprm->argc)
1120 return 0;
1122 do {
1123 offset = bprm->p & ~PAGE_MASK;
1124 page = get_arg_page(bprm, bprm->p, 0);
1125 if (!page) {
1126 ret = -EFAULT;
1127 goto out;
1129 kaddr = kmap_atomic(page, KM_USER0);
1131 for (; offset < PAGE_SIZE && kaddr[offset];
1132 offset++, bprm->p++)
1135 kunmap_atomic(kaddr, KM_USER0);
1136 put_arg_page(page);
1138 if (offset == PAGE_SIZE)
1139 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1140 } while (offset == PAGE_SIZE);
1142 bprm->p++;
1143 bprm->argc--;
1144 ret = 0;
1146 out:
1147 return ret;
1149 EXPORT_SYMBOL(remove_arg_zero);
1152 * cycle the list of binary formats handler, until one recognizes the image
1154 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1156 int try,retval;
1157 struct linux_binfmt *fmt;
1158 #ifdef __alpha__
1159 /* handle /sbin/loader.. */
1161 struct exec * eh = (struct exec *) bprm->buf;
1163 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1164 (eh->fh.f_flags & 0x3000) == 0x3000)
1166 struct file * file;
1167 unsigned long loader;
1169 allow_write_access(bprm->file);
1170 fput(bprm->file);
1171 bprm->file = NULL;
1173 loader = bprm->vma->vm_end - sizeof(void *);
1175 file = open_exec("/sbin/loader");
1176 retval = PTR_ERR(file);
1177 if (IS_ERR(file))
1178 return retval;
1180 /* Remember if the application is TASO. */
1181 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1183 bprm->file = file;
1184 bprm->loader = loader;
1185 retval = prepare_binprm(bprm);
1186 if (retval<0)
1187 return retval;
1188 /* should call search_binary_handler recursively here,
1189 but it does not matter */
1192 #endif
1193 retval = security_bprm_check(bprm);
1194 if (retval)
1195 return retval;
1197 /* kernel module loader fixup */
1198 /* so we don't try to load run modprobe in kernel space. */
1199 set_fs(USER_DS);
1201 retval = audit_bprm(bprm);
1202 if (retval)
1203 return retval;
1205 retval = -ENOENT;
1206 for (try=0; try<2; try++) {
1207 read_lock(&binfmt_lock);
1208 list_for_each_entry(fmt, &formats, lh) {
1209 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1210 if (!fn)
1211 continue;
1212 if (!try_module_get(fmt->module))
1213 continue;
1214 read_unlock(&binfmt_lock);
1215 retval = fn(bprm, regs);
1216 if (retval >= 0) {
1217 put_binfmt(fmt);
1218 allow_write_access(bprm->file);
1219 if (bprm->file)
1220 fput(bprm->file);
1221 bprm->file = NULL;
1222 current->did_exec = 1;
1223 proc_exec_connector(current);
1224 return retval;
1226 read_lock(&binfmt_lock);
1227 put_binfmt(fmt);
1228 if (retval != -ENOEXEC || bprm->mm == NULL)
1229 break;
1230 if (!bprm->file) {
1231 read_unlock(&binfmt_lock);
1232 return retval;
1235 read_unlock(&binfmt_lock);
1236 if (retval != -ENOEXEC || bprm->mm == NULL) {
1237 break;
1238 #ifdef CONFIG_KMOD
1239 }else{
1240 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1241 if (printable(bprm->buf[0]) &&
1242 printable(bprm->buf[1]) &&
1243 printable(bprm->buf[2]) &&
1244 printable(bprm->buf[3]))
1245 break; /* -ENOEXEC */
1246 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1247 #endif
1250 return retval;
1253 EXPORT_SYMBOL(search_binary_handler);
1255 void free_bprm(struct linux_binprm *bprm)
1257 free_arg_pages(bprm);
1258 kfree(bprm);
1262 * sys_execve() executes a new program.
1264 int do_execve(char * filename,
1265 char __user *__user *argv,
1266 char __user *__user *envp,
1267 struct pt_regs * regs)
1269 struct linux_binprm *bprm;
1270 struct file *file;
1271 struct files_struct *displaced;
1272 int retval;
1274 retval = unshare_files(&displaced);
1275 if (retval)
1276 goto out_ret;
1278 retval = -ENOMEM;
1279 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1280 if (!bprm)
1281 goto out_files;
1283 file = open_exec(filename);
1284 retval = PTR_ERR(file);
1285 if (IS_ERR(file))
1286 goto out_kfree;
1288 sched_exec();
1290 bprm->file = file;
1291 bprm->filename = filename;
1292 bprm->interp = filename;
1294 retval = bprm_mm_init(bprm);
1295 if (retval)
1296 goto out_file;
1298 bprm->argc = count(argv, MAX_ARG_STRINGS);
1299 if ((retval = bprm->argc) < 0)
1300 goto out_mm;
1302 bprm->envc = count(envp, MAX_ARG_STRINGS);
1303 if ((retval = bprm->envc) < 0)
1304 goto out_mm;
1306 retval = security_bprm_alloc(bprm);
1307 if (retval)
1308 goto out;
1310 retval = prepare_binprm(bprm);
1311 if (retval < 0)
1312 goto out;
1314 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1315 if (retval < 0)
1316 goto out;
1318 bprm->exec = bprm->p;
1319 retval = copy_strings(bprm->envc, envp, bprm);
1320 if (retval < 0)
1321 goto out;
1323 retval = copy_strings(bprm->argc, argv, bprm);
1324 if (retval < 0)
1325 goto out;
1327 current->flags &= ~PF_KTHREAD;
1328 retval = search_binary_handler(bprm,regs);
1329 if (retval >= 0) {
1330 /* execve success */
1331 security_bprm_free(bprm);
1332 acct_update_integrals(current);
1333 free_bprm(bprm);
1334 if (displaced)
1335 put_files_struct(displaced);
1336 return retval;
1339 out:
1340 if (bprm->security)
1341 security_bprm_free(bprm);
1343 out_mm:
1344 if (bprm->mm)
1345 mmput (bprm->mm);
1347 out_file:
1348 if (bprm->file) {
1349 allow_write_access(bprm->file);
1350 fput(bprm->file);
1352 out_kfree:
1353 free_bprm(bprm);
1355 out_files:
1356 if (displaced)
1357 reset_files_struct(displaced);
1358 out_ret:
1359 return retval;
1362 int set_binfmt(struct linux_binfmt *new)
1364 struct linux_binfmt *old = current->binfmt;
1366 if (new) {
1367 if (!try_module_get(new->module))
1368 return -1;
1370 current->binfmt = new;
1371 if (old)
1372 module_put(old->module);
1373 return 0;
1376 EXPORT_SYMBOL(set_binfmt);
1378 /* format_corename will inspect the pattern parameter, and output a
1379 * name into corename, which must have space for at least
1380 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1382 static int format_corename(char *corename, const char *pattern, long signr)
1384 const char *pat_ptr = pattern;
1385 char *out_ptr = corename;
1386 char *const out_end = corename + CORENAME_MAX_SIZE;
1387 int rc;
1388 int pid_in_pattern = 0;
1389 int ispipe = 0;
1391 if (*pattern == '|')
1392 ispipe = 1;
1394 /* Repeat as long as we have more pattern to process and more output
1395 space */
1396 while (*pat_ptr) {
1397 if (*pat_ptr != '%') {
1398 if (out_ptr == out_end)
1399 goto out;
1400 *out_ptr++ = *pat_ptr++;
1401 } else {
1402 switch (*++pat_ptr) {
1403 case 0:
1404 goto out;
1405 /* Double percent, output one percent */
1406 case '%':
1407 if (out_ptr == out_end)
1408 goto out;
1409 *out_ptr++ = '%';
1410 break;
1411 /* pid */
1412 case 'p':
1413 pid_in_pattern = 1;
1414 rc = snprintf(out_ptr, out_end - out_ptr,
1415 "%d", task_tgid_vnr(current));
1416 if (rc > out_end - out_ptr)
1417 goto out;
1418 out_ptr += rc;
1419 break;
1420 /* uid */
1421 case 'u':
1422 rc = snprintf(out_ptr, out_end - out_ptr,
1423 "%d", current->uid);
1424 if (rc > out_end - out_ptr)
1425 goto out;
1426 out_ptr += rc;
1427 break;
1428 /* gid */
1429 case 'g':
1430 rc = snprintf(out_ptr, out_end - out_ptr,
1431 "%d", current->gid);
1432 if (rc > out_end - out_ptr)
1433 goto out;
1434 out_ptr += rc;
1435 break;
1436 /* signal that caused the coredump */
1437 case 's':
1438 rc = snprintf(out_ptr, out_end - out_ptr,
1439 "%ld", signr);
1440 if (rc > out_end - out_ptr)
1441 goto out;
1442 out_ptr += rc;
1443 break;
1444 /* UNIX time of coredump */
1445 case 't': {
1446 struct timeval tv;
1447 do_gettimeofday(&tv);
1448 rc = snprintf(out_ptr, out_end - out_ptr,
1449 "%lu", tv.tv_sec);
1450 if (rc > out_end - out_ptr)
1451 goto out;
1452 out_ptr += rc;
1453 break;
1455 /* hostname */
1456 case 'h':
1457 down_read(&uts_sem);
1458 rc = snprintf(out_ptr, out_end - out_ptr,
1459 "%s", utsname()->nodename);
1460 up_read(&uts_sem);
1461 if (rc > out_end - out_ptr)
1462 goto out;
1463 out_ptr += rc;
1464 break;
1465 /* executable */
1466 case 'e':
1467 rc = snprintf(out_ptr, out_end - out_ptr,
1468 "%s", current->comm);
1469 if (rc > out_end - out_ptr)
1470 goto out;
1471 out_ptr += rc;
1472 break;
1473 /* core limit size */
1474 case 'c':
1475 rc = snprintf(out_ptr, out_end - out_ptr,
1476 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1477 if (rc > out_end - out_ptr)
1478 goto out;
1479 out_ptr += rc;
1480 break;
1481 default:
1482 break;
1484 ++pat_ptr;
1487 /* Backward compatibility with core_uses_pid:
1489 * If core_pattern does not include a %p (as is the default)
1490 * and core_uses_pid is set, then .%pid will be appended to
1491 * the filename. Do not do this for piped commands. */
1492 if (!ispipe && !pid_in_pattern
1493 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1494 rc = snprintf(out_ptr, out_end - out_ptr,
1495 ".%d", task_tgid_vnr(current));
1496 if (rc > out_end - out_ptr)
1497 goto out;
1498 out_ptr += rc;
1500 out:
1501 *out_ptr = 0;
1502 return ispipe;
1505 static int zap_process(struct task_struct *start)
1507 struct task_struct *t;
1508 int nr = 0;
1510 start->signal->flags = SIGNAL_GROUP_EXIT;
1511 start->signal->group_stop_count = 0;
1513 t = start;
1514 do {
1515 if (t != current && t->mm) {
1516 sigaddset(&t->pending.signal, SIGKILL);
1517 signal_wake_up(t, 1);
1518 nr++;
1520 } while_each_thread(start, t);
1522 return nr;
1525 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1526 struct core_state *core_state, int exit_code)
1528 struct task_struct *g, *p;
1529 unsigned long flags;
1530 int nr = -EAGAIN;
1532 spin_lock_irq(&tsk->sighand->siglock);
1533 if (!signal_group_exit(tsk->signal)) {
1534 mm->core_state = core_state;
1535 tsk->signal->group_exit_code = exit_code;
1536 nr = zap_process(tsk);
1538 spin_unlock_irq(&tsk->sighand->siglock);
1539 if (unlikely(nr < 0))
1540 return nr;
1542 if (atomic_read(&mm->mm_users) == nr + 1)
1543 goto done;
1545 * We should find and kill all tasks which use this mm, and we should
1546 * count them correctly into ->nr_threads. We don't take tasklist
1547 * lock, but this is safe wrt:
1549 * fork:
1550 * None of sub-threads can fork after zap_process(leader). All
1551 * processes which were created before this point should be
1552 * visible to zap_threads() because copy_process() adds the new
1553 * process to the tail of init_task.tasks list, and lock/unlock
1554 * of ->siglock provides a memory barrier.
1556 * do_exit:
1557 * The caller holds mm->mmap_sem. This means that the task which
1558 * uses this mm can't pass exit_mm(), so it can't exit or clear
1559 * its ->mm.
1561 * de_thread:
1562 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1563 * we must see either old or new leader, this does not matter.
1564 * However, it can change p->sighand, so lock_task_sighand(p)
1565 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1566 * it can't fail.
1568 * Note also that "g" can be the old leader with ->mm == NULL
1569 * and already unhashed and thus removed from ->thread_group.
1570 * This is OK, __unhash_process()->list_del_rcu() does not
1571 * clear the ->next pointer, we will find the new leader via
1572 * next_thread().
1574 rcu_read_lock();
1575 for_each_process(g) {
1576 if (g == tsk->group_leader)
1577 continue;
1578 if (g->flags & PF_KTHREAD)
1579 continue;
1580 p = g;
1581 do {
1582 if (p->mm) {
1583 if (unlikely(p->mm == mm)) {
1584 lock_task_sighand(p, &flags);
1585 nr += zap_process(p);
1586 unlock_task_sighand(p, &flags);
1588 break;
1590 } while_each_thread(g, p);
1592 rcu_read_unlock();
1593 done:
1594 atomic_set(&core_state->nr_threads, nr);
1595 return nr;
1598 static int coredump_wait(int exit_code, struct core_state *core_state)
1600 struct task_struct *tsk = current;
1601 struct mm_struct *mm = tsk->mm;
1602 struct completion *vfork_done;
1603 int core_waiters;
1605 init_completion(&core_state->startup);
1606 core_state->dumper.task = tsk;
1607 core_state->dumper.next = NULL;
1608 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1609 up_write(&mm->mmap_sem);
1611 if (unlikely(core_waiters < 0))
1612 goto fail;
1615 * Make sure nobody is waiting for us to release the VM,
1616 * otherwise we can deadlock when we wait on each other
1618 vfork_done = tsk->vfork_done;
1619 if (vfork_done) {
1620 tsk->vfork_done = NULL;
1621 complete(vfork_done);
1624 if (core_waiters)
1625 wait_for_completion(&core_state->startup);
1626 fail:
1627 return core_waiters;
1630 static void coredump_finish(struct mm_struct *mm)
1632 struct core_thread *curr, *next;
1633 struct task_struct *task;
1635 next = mm->core_state->dumper.next;
1636 while ((curr = next) != NULL) {
1637 next = curr->next;
1638 task = curr->task;
1640 * see exit_mm(), curr->task must not see
1641 * ->task == NULL before we read ->next.
1643 smp_mb();
1644 curr->task = NULL;
1645 wake_up_process(task);
1648 mm->core_state = NULL;
1652 * set_dumpable converts traditional three-value dumpable to two flags and
1653 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1654 * these bits are not changed atomically. So get_dumpable can observe the
1655 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1656 * return either old dumpable or new one by paying attention to the order of
1657 * modifying the bits.
1659 * dumpable | mm->flags (binary)
1660 * old new | initial interim final
1661 * ---------+-----------------------
1662 * 0 1 | 00 01 01
1663 * 0 2 | 00 10(*) 11
1664 * 1 0 | 01 00 00
1665 * 1 2 | 01 11 11
1666 * 2 0 | 11 10(*) 00
1667 * 2 1 | 11 11 01
1669 * (*) get_dumpable regards interim value of 10 as 11.
1671 void set_dumpable(struct mm_struct *mm, int value)
1673 switch (value) {
1674 case 0:
1675 clear_bit(MMF_DUMPABLE, &mm->flags);
1676 smp_wmb();
1677 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1678 break;
1679 case 1:
1680 set_bit(MMF_DUMPABLE, &mm->flags);
1681 smp_wmb();
1682 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1683 break;
1684 case 2:
1685 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1686 smp_wmb();
1687 set_bit(MMF_DUMPABLE, &mm->flags);
1688 break;
1692 int get_dumpable(struct mm_struct *mm)
1694 int ret;
1696 ret = mm->flags & 0x3;
1697 return (ret >= 2) ? 2 : ret;
1700 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1702 struct core_state core_state;
1703 char corename[CORENAME_MAX_SIZE + 1];
1704 struct mm_struct *mm = current->mm;
1705 struct linux_binfmt * binfmt;
1706 struct inode * inode;
1707 struct file * file;
1708 int retval = 0;
1709 int fsuid = current->fsuid;
1710 int flag = 0;
1711 int ispipe = 0;
1712 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1713 char **helper_argv = NULL;
1714 int helper_argc = 0;
1715 char *delimit;
1717 audit_core_dumps(signr);
1719 binfmt = current->binfmt;
1720 if (!binfmt || !binfmt->core_dump)
1721 goto fail;
1722 down_write(&mm->mmap_sem);
1724 * If another thread got here first, or we are not dumpable, bail out.
1726 if (mm->core_state || !get_dumpable(mm)) {
1727 up_write(&mm->mmap_sem);
1728 goto fail;
1732 * We cannot trust fsuid as being the "true" uid of the
1733 * process nor do we know its entire history. We only know it
1734 * was tainted so we dump it as root in mode 2.
1736 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1737 flag = O_EXCL; /* Stop rewrite attacks */
1738 current->fsuid = 0; /* Dump root private */
1741 retval = coredump_wait(exit_code, &core_state);
1742 if (retval < 0)
1743 goto fail;
1746 * Clear any false indication of pending signals that might
1747 * be seen by the filesystem code called to write the core file.
1749 clear_thread_flag(TIF_SIGPENDING);
1752 * lock_kernel() because format_corename() is controlled by sysctl, which
1753 * uses lock_kernel()
1755 lock_kernel();
1756 ispipe = format_corename(corename, core_pattern, signr);
1757 unlock_kernel();
1759 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1760 * to a pipe. Since we're not writing directly to the filesystem
1761 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1762 * created unless the pipe reader choses to write out the core file
1763 * at which point file size limits and permissions will be imposed
1764 * as it does with any other process
1766 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1767 goto fail_unlock;
1769 if (ispipe) {
1770 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1771 /* Terminate the string before the first option */
1772 delimit = strchr(corename, ' ');
1773 if (delimit)
1774 *delimit = '\0';
1775 delimit = strrchr(helper_argv[0], '/');
1776 if (delimit)
1777 delimit++;
1778 else
1779 delimit = helper_argv[0];
1780 if (!strcmp(delimit, current->comm)) {
1781 printk(KERN_NOTICE "Recursive core dump detected, "
1782 "aborting\n");
1783 goto fail_unlock;
1786 core_limit = RLIM_INFINITY;
1788 /* SIGPIPE can happen, but it's just never processed */
1789 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1790 &file)) {
1791 printk(KERN_INFO "Core dump to %s pipe failed\n",
1792 corename);
1793 goto fail_unlock;
1795 } else
1796 file = filp_open(corename,
1797 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1798 0600);
1799 if (IS_ERR(file))
1800 goto fail_unlock;
1801 inode = file->f_path.dentry->d_inode;
1802 if (inode->i_nlink > 1)
1803 goto close_fail; /* multiple links - don't dump */
1804 if (!ispipe && d_unhashed(file->f_path.dentry))
1805 goto close_fail;
1807 /* AK: actually i see no reason to not allow this for named pipes etc.,
1808 but keep the previous behaviour for now. */
1809 if (!ispipe && !S_ISREG(inode->i_mode))
1810 goto close_fail;
1812 * Dont allow local users get cute and trick others to coredump
1813 * into their pre-created files:
1815 if (inode->i_uid != current->fsuid)
1816 goto close_fail;
1817 if (!file->f_op)
1818 goto close_fail;
1819 if (!file->f_op->write)
1820 goto close_fail;
1821 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1822 goto close_fail;
1824 retval = binfmt->core_dump(signr, regs, file, core_limit);
1826 if (retval)
1827 current->signal->group_exit_code |= 0x80;
1828 close_fail:
1829 filp_close(file, NULL);
1830 fail_unlock:
1831 if (helper_argv)
1832 argv_free(helper_argv);
1834 current->fsuid = fsuid;
1835 coredump_finish(mm);
1836 fail:
1837 return retval;