mlock: count attempts to free mlocked page
[linux-2.6/mini2440.git] / mm / page_alloc.c
blobcfbadad75d1d01f4a3aa2d180f82f95517322cc8
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
55 * Array of node states.
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
68 EXPORT_SYMBOL(node_states);
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
79 static void __free_pages_ok(struct page *page, unsigned int order);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
101 #endif
105 EXPORT_SYMBOL(totalram_pages);
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
121 int min_free_kbytes = 1024;
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
170 int page_group_by_mobility_disabled __read_mostly;
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
193 return ret;
196 static int page_is_consistent(struct zone *zone, struct page *page)
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
203 return 1;
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone *zone, struct page *page)
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
215 return 0;
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
220 return 0;
222 #endif
224 static void bad_page(struct page *page)
226 void *pc = page_get_page_cgroup(page);
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
239 dump_stack();
240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page *page)
264 __free_pages_ok(page, compound_order(page));
267 void prep_compound_page(struct page *page, unsigned long order)
269 int i;
270 int nr_pages = 1 << order;
271 struct page *p = page + 1;
273 set_compound_page_dtor(page, free_compound_page);
274 set_compound_order(page, order);
275 __SetPageHead(page);
276 for (i = 1; i < nr_pages; i++, p++) {
277 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
278 p = pfn_to_page(page_to_pfn(page) + i);
279 __SetPageTail(p);
280 p->first_page = page;
284 static void destroy_compound_page(struct page *page, unsigned long order)
286 int i;
287 int nr_pages = 1 << order;
288 struct page *p = page + 1;
290 if (unlikely(compound_order(page) != order))
291 bad_page(page);
293 if (unlikely(!PageHead(page)))
294 bad_page(page);
295 __ClearPageHead(page);
296 for (i = 1; i < nr_pages; i++, p++) {
297 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
298 p = pfn_to_page(page_to_pfn(page) + i);
300 if (unlikely(!PageTail(p) |
301 (p->first_page != page)))
302 bad_page(page);
303 __ClearPageTail(p);
307 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
309 int i;
312 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
313 * and __GFP_HIGHMEM from hard or soft interrupt context.
315 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
316 for (i = 0; i < (1 << order); i++)
317 clear_highpage(page + i);
320 static inline void set_page_order(struct page *page, int order)
322 set_page_private(page, order);
323 __SetPageBuddy(page);
326 static inline void rmv_page_order(struct page *page)
328 __ClearPageBuddy(page);
329 set_page_private(page, 0);
333 * Locate the struct page for both the matching buddy in our
334 * pair (buddy1) and the combined O(n+1) page they form (page).
336 * 1) Any buddy B1 will have an order O twin B2 which satisfies
337 * the following equation:
338 * B2 = B1 ^ (1 << O)
339 * For example, if the starting buddy (buddy2) is #8 its order
340 * 1 buddy is #10:
341 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
343 * 2) Any buddy B will have an order O+1 parent P which
344 * satisfies the following equation:
345 * P = B & ~(1 << O)
347 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
349 static inline struct page *
350 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
352 unsigned long buddy_idx = page_idx ^ (1 << order);
354 return page + (buddy_idx - page_idx);
357 static inline unsigned long
358 __find_combined_index(unsigned long page_idx, unsigned int order)
360 return (page_idx & ~(1 << order));
364 * This function checks whether a page is free && is the buddy
365 * we can do coalesce a page and its buddy if
366 * (a) the buddy is not in a hole &&
367 * (b) the buddy is in the buddy system &&
368 * (c) a page and its buddy have the same order &&
369 * (d) a page and its buddy are in the same zone.
371 * For recording whether a page is in the buddy system, we use PG_buddy.
372 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
374 * For recording page's order, we use page_private(page).
376 static inline int page_is_buddy(struct page *page, struct page *buddy,
377 int order)
379 if (!pfn_valid_within(page_to_pfn(buddy)))
380 return 0;
382 if (page_zone_id(page) != page_zone_id(buddy))
383 return 0;
385 if (PageBuddy(buddy) && page_order(buddy) == order) {
386 BUG_ON(page_count(buddy) != 0);
387 return 1;
389 return 0;
393 * Freeing function for a buddy system allocator.
395 * The concept of a buddy system is to maintain direct-mapped table
396 * (containing bit values) for memory blocks of various "orders".
397 * The bottom level table contains the map for the smallest allocatable
398 * units of memory (here, pages), and each level above it describes
399 * pairs of units from the levels below, hence, "buddies".
400 * At a high level, all that happens here is marking the table entry
401 * at the bottom level available, and propagating the changes upward
402 * as necessary, plus some accounting needed to play nicely with other
403 * parts of the VM system.
404 * At each level, we keep a list of pages, which are heads of continuous
405 * free pages of length of (1 << order) and marked with PG_buddy. Page's
406 * order is recorded in page_private(page) field.
407 * So when we are allocating or freeing one, we can derive the state of the
408 * other. That is, if we allocate a small block, and both were
409 * free, the remainder of the region must be split into blocks.
410 * If a block is freed, and its buddy is also free, then this
411 * triggers coalescing into a block of larger size.
413 * -- wli
416 static inline void __free_one_page(struct page *page,
417 struct zone *zone, unsigned int order)
419 unsigned long page_idx;
420 int order_size = 1 << order;
421 int migratetype = get_pageblock_migratetype(page);
423 if (unlikely(PageCompound(page)))
424 destroy_compound_page(page, order);
426 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
428 VM_BUG_ON(page_idx & (order_size - 1));
429 VM_BUG_ON(bad_range(zone, page));
431 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
432 while (order < MAX_ORDER-1) {
433 unsigned long combined_idx;
434 struct page *buddy;
436 buddy = __page_find_buddy(page, page_idx, order);
437 if (!page_is_buddy(page, buddy, order))
438 break;
440 /* Our buddy is free, merge with it and move up one order. */
441 list_del(&buddy->lru);
442 zone->free_area[order].nr_free--;
443 rmv_page_order(buddy);
444 combined_idx = __find_combined_index(page_idx, order);
445 page = page + (combined_idx - page_idx);
446 page_idx = combined_idx;
447 order++;
449 set_page_order(page, order);
450 list_add(&page->lru,
451 &zone->free_area[order].free_list[migratetype]);
452 zone->free_area[order].nr_free++;
455 static inline int free_pages_check(struct page *page)
457 free_page_mlock(page);
458 if (unlikely(page_mapcount(page) |
459 (page->mapping != NULL) |
460 (page_get_page_cgroup(page) != NULL) |
461 (page_count(page) != 0) |
462 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
463 bad_page(page);
464 if (PageDirty(page))
465 __ClearPageDirty(page);
466 if (PageSwapBacked(page))
467 __ClearPageSwapBacked(page);
469 * For now, we report if PG_reserved was found set, but do not
470 * clear it, and do not free the page. But we shall soon need
471 * to do more, for when the ZERO_PAGE count wraps negative.
473 return PageReserved(page);
477 * Frees a list of pages.
478 * Assumes all pages on list are in same zone, and of same order.
479 * count is the number of pages to free.
481 * If the zone was previously in an "all pages pinned" state then look to
482 * see if this freeing clears that state.
484 * And clear the zone's pages_scanned counter, to hold off the "all pages are
485 * pinned" detection logic.
487 static void free_pages_bulk(struct zone *zone, int count,
488 struct list_head *list, int order)
490 spin_lock(&zone->lock);
491 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
492 zone->pages_scanned = 0;
493 while (count--) {
494 struct page *page;
496 VM_BUG_ON(list_empty(list));
497 page = list_entry(list->prev, struct page, lru);
498 /* have to delete it as __free_one_page list manipulates */
499 list_del(&page->lru);
500 __free_one_page(page, zone, order);
502 spin_unlock(&zone->lock);
505 static void free_one_page(struct zone *zone, struct page *page, int order)
507 spin_lock(&zone->lock);
508 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
509 zone->pages_scanned = 0;
510 __free_one_page(page, zone, order);
511 spin_unlock(&zone->lock);
514 static void __free_pages_ok(struct page *page, unsigned int order)
516 unsigned long flags;
517 int i;
518 int reserved = 0;
520 for (i = 0 ; i < (1 << order) ; ++i)
521 reserved += free_pages_check(page + i);
522 if (reserved)
523 return;
525 if (!PageHighMem(page)) {
526 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
527 debug_check_no_obj_freed(page_address(page),
528 PAGE_SIZE << order);
530 arch_free_page(page, order);
531 kernel_map_pages(page, 1 << order, 0);
533 local_irq_save(flags);
534 __count_vm_events(PGFREE, 1 << order);
535 free_one_page(page_zone(page), page, order);
536 local_irq_restore(flags);
540 * permit the bootmem allocator to evade page validation on high-order frees
542 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
544 if (order == 0) {
545 __ClearPageReserved(page);
546 set_page_count(page, 0);
547 set_page_refcounted(page);
548 __free_page(page);
549 } else {
550 int loop;
552 prefetchw(page);
553 for (loop = 0; loop < BITS_PER_LONG; loop++) {
554 struct page *p = &page[loop];
556 if (loop + 1 < BITS_PER_LONG)
557 prefetchw(p + 1);
558 __ClearPageReserved(p);
559 set_page_count(p, 0);
562 set_page_refcounted(page);
563 __free_pages(page, order);
569 * The order of subdivision here is critical for the IO subsystem.
570 * Please do not alter this order without good reasons and regression
571 * testing. Specifically, as large blocks of memory are subdivided,
572 * the order in which smaller blocks are delivered depends on the order
573 * they're subdivided in this function. This is the primary factor
574 * influencing the order in which pages are delivered to the IO
575 * subsystem according to empirical testing, and this is also justified
576 * by considering the behavior of a buddy system containing a single
577 * large block of memory acted on by a series of small allocations.
578 * This behavior is a critical factor in sglist merging's success.
580 * -- wli
582 static inline void expand(struct zone *zone, struct page *page,
583 int low, int high, struct free_area *area,
584 int migratetype)
586 unsigned long size = 1 << high;
588 while (high > low) {
589 area--;
590 high--;
591 size >>= 1;
592 VM_BUG_ON(bad_range(zone, &page[size]));
593 list_add(&page[size].lru, &area->free_list[migratetype]);
594 area->nr_free++;
595 set_page_order(&page[size], high);
600 * This page is about to be returned from the page allocator
602 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
604 if (unlikely(page_mapcount(page) |
605 (page->mapping != NULL) |
606 (page_get_page_cgroup(page) != NULL) |
607 (page_count(page) != 0) |
608 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
609 bad_page(page);
612 * For now, we report if PG_reserved was found set, but do not
613 * clear it, and do not allocate the page: as a safety net.
615 if (PageReserved(page))
616 return 1;
618 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
619 1 << PG_referenced | 1 << PG_arch_1 |
620 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk
621 #ifdef CONFIG_UNEVICTABLE_LRU
622 | 1 << PG_mlocked
623 #endif
625 set_page_private(page, 0);
626 set_page_refcounted(page);
628 arch_alloc_page(page, order);
629 kernel_map_pages(page, 1 << order, 1);
631 if (gfp_flags & __GFP_ZERO)
632 prep_zero_page(page, order, gfp_flags);
634 if (order && (gfp_flags & __GFP_COMP))
635 prep_compound_page(page, order);
637 return 0;
641 * Go through the free lists for the given migratetype and remove
642 * the smallest available page from the freelists
644 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
645 int migratetype)
647 unsigned int current_order;
648 struct free_area * area;
649 struct page *page;
651 /* Find a page of the appropriate size in the preferred list */
652 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
653 area = &(zone->free_area[current_order]);
654 if (list_empty(&area->free_list[migratetype]))
655 continue;
657 page = list_entry(area->free_list[migratetype].next,
658 struct page, lru);
659 list_del(&page->lru);
660 rmv_page_order(page);
661 area->nr_free--;
662 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
663 expand(zone, page, order, current_order, area, migratetype);
664 return page;
667 return NULL;
672 * This array describes the order lists are fallen back to when
673 * the free lists for the desirable migrate type are depleted
675 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
676 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
677 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
678 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
679 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
683 * Move the free pages in a range to the free lists of the requested type.
684 * Note that start_page and end_pages are not aligned on a pageblock
685 * boundary. If alignment is required, use move_freepages_block()
687 static int move_freepages(struct zone *zone,
688 struct page *start_page, struct page *end_page,
689 int migratetype)
691 struct page *page;
692 unsigned long order;
693 int pages_moved = 0;
695 #ifndef CONFIG_HOLES_IN_ZONE
697 * page_zone is not safe to call in this context when
698 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
699 * anyway as we check zone boundaries in move_freepages_block().
700 * Remove at a later date when no bug reports exist related to
701 * grouping pages by mobility
703 BUG_ON(page_zone(start_page) != page_zone(end_page));
704 #endif
706 for (page = start_page; page <= end_page;) {
707 /* Make sure we are not inadvertently changing nodes */
708 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
710 if (!pfn_valid_within(page_to_pfn(page))) {
711 page++;
712 continue;
715 if (!PageBuddy(page)) {
716 page++;
717 continue;
720 order = page_order(page);
721 list_del(&page->lru);
722 list_add(&page->lru,
723 &zone->free_area[order].free_list[migratetype]);
724 page += 1 << order;
725 pages_moved += 1 << order;
728 return pages_moved;
731 static int move_freepages_block(struct zone *zone, struct page *page,
732 int migratetype)
734 unsigned long start_pfn, end_pfn;
735 struct page *start_page, *end_page;
737 start_pfn = page_to_pfn(page);
738 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
739 start_page = pfn_to_page(start_pfn);
740 end_page = start_page + pageblock_nr_pages - 1;
741 end_pfn = start_pfn + pageblock_nr_pages - 1;
743 /* Do not cross zone boundaries */
744 if (start_pfn < zone->zone_start_pfn)
745 start_page = page;
746 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
747 return 0;
749 return move_freepages(zone, start_page, end_page, migratetype);
752 /* Remove an element from the buddy allocator from the fallback list */
753 static struct page *__rmqueue_fallback(struct zone *zone, int order,
754 int start_migratetype)
756 struct free_area * area;
757 int current_order;
758 struct page *page;
759 int migratetype, i;
761 /* Find the largest possible block of pages in the other list */
762 for (current_order = MAX_ORDER-1; current_order >= order;
763 --current_order) {
764 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
765 migratetype = fallbacks[start_migratetype][i];
767 /* MIGRATE_RESERVE handled later if necessary */
768 if (migratetype == MIGRATE_RESERVE)
769 continue;
771 area = &(zone->free_area[current_order]);
772 if (list_empty(&area->free_list[migratetype]))
773 continue;
775 page = list_entry(area->free_list[migratetype].next,
776 struct page, lru);
777 area->nr_free--;
780 * If breaking a large block of pages, move all free
781 * pages to the preferred allocation list. If falling
782 * back for a reclaimable kernel allocation, be more
783 * agressive about taking ownership of free pages
785 if (unlikely(current_order >= (pageblock_order >> 1)) ||
786 start_migratetype == MIGRATE_RECLAIMABLE) {
787 unsigned long pages;
788 pages = move_freepages_block(zone, page,
789 start_migratetype);
791 /* Claim the whole block if over half of it is free */
792 if (pages >= (1 << (pageblock_order-1)))
793 set_pageblock_migratetype(page,
794 start_migratetype);
796 migratetype = start_migratetype;
799 /* Remove the page from the freelists */
800 list_del(&page->lru);
801 rmv_page_order(page);
802 __mod_zone_page_state(zone, NR_FREE_PAGES,
803 -(1UL << order));
805 if (current_order == pageblock_order)
806 set_pageblock_migratetype(page,
807 start_migratetype);
809 expand(zone, page, order, current_order, area, migratetype);
810 return page;
814 /* Use MIGRATE_RESERVE rather than fail an allocation */
815 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
819 * Do the hard work of removing an element from the buddy allocator.
820 * Call me with the zone->lock already held.
822 static struct page *__rmqueue(struct zone *zone, unsigned int order,
823 int migratetype)
825 struct page *page;
827 page = __rmqueue_smallest(zone, order, migratetype);
829 if (unlikely(!page))
830 page = __rmqueue_fallback(zone, order, migratetype);
832 return page;
836 * Obtain a specified number of elements from the buddy allocator, all under
837 * a single hold of the lock, for efficiency. Add them to the supplied list.
838 * Returns the number of new pages which were placed at *list.
840 static int rmqueue_bulk(struct zone *zone, unsigned int order,
841 unsigned long count, struct list_head *list,
842 int migratetype)
844 int i;
846 spin_lock(&zone->lock);
847 for (i = 0; i < count; ++i) {
848 struct page *page = __rmqueue(zone, order, migratetype);
849 if (unlikely(page == NULL))
850 break;
853 * Split buddy pages returned by expand() are received here
854 * in physical page order. The page is added to the callers and
855 * list and the list head then moves forward. From the callers
856 * perspective, the linked list is ordered by page number in
857 * some conditions. This is useful for IO devices that can
858 * merge IO requests if the physical pages are ordered
859 * properly.
861 list_add(&page->lru, list);
862 set_page_private(page, migratetype);
863 list = &page->lru;
865 spin_unlock(&zone->lock);
866 return i;
869 #ifdef CONFIG_NUMA
871 * Called from the vmstat counter updater to drain pagesets of this
872 * currently executing processor on remote nodes after they have
873 * expired.
875 * Note that this function must be called with the thread pinned to
876 * a single processor.
878 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
880 unsigned long flags;
881 int to_drain;
883 local_irq_save(flags);
884 if (pcp->count >= pcp->batch)
885 to_drain = pcp->batch;
886 else
887 to_drain = pcp->count;
888 free_pages_bulk(zone, to_drain, &pcp->list, 0);
889 pcp->count -= to_drain;
890 local_irq_restore(flags);
892 #endif
895 * Drain pages of the indicated processor.
897 * The processor must either be the current processor and the
898 * thread pinned to the current processor or a processor that
899 * is not online.
901 static void drain_pages(unsigned int cpu)
903 unsigned long flags;
904 struct zone *zone;
906 for_each_zone(zone) {
907 struct per_cpu_pageset *pset;
908 struct per_cpu_pages *pcp;
910 if (!populated_zone(zone))
911 continue;
913 pset = zone_pcp(zone, cpu);
915 pcp = &pset->pcp;
916 local_irq_save(flags);
917 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
918 pcp->count = 0;
919 local_irq_restore(flags);
924 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
926 void drain_local_pages(void *arg)
928 drain_pages(smp_processor_id());
932 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
934 void drain_all_pages(void)
936 on_each_cpu(drain_local_pages, NULL, 1);
939 #ifdef CONFIG_HIBERNATION
941 void mark_free_pages(struct zone *zone)
943 unsigned long pfn, max_zone_pfn;
944 unsigned long flags;
945 int order, t;
946 struct list_head *curr;
948 if (!zone->spanned_pages)
949 return;
951 spin_lock_irqsave(&zone->lock, flags);
953 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
954 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
955 if (pfn_valid(pfn)) {
956 struct page *page = pfn_to_page(pfn);
958 if (!swsusp_page_is_forbidden(page))
959 swsusp_unset_page_free(page);
962 for_each_migratetype_order(order, t) {
963 list_for_each(curr, &zone->free_area[order].free_list[t]) {
964 unsigned long i;
966 pfn = page_to_pfn(list_entry(curr, struct page, lru));
967 for (i = 0; i < (1UL << order); i++)
968 swsusp_set_page_free(pfn_to_page(pfn + i));
971 spin_unlock_irqrestore(&zone->lock, flags);
973 #endif /* CONFIG_PM */
976 * Free a 0-order page
978 static void free_hot_cold_page(struct page *page, int cold)
980 struct zone *zone = page_zone(page);
981 struct per_cpu_pages *pcp;
982 unsigned long flags;
984 if (PageAnon(page))
985 page->mapping = NULL;
986 if (free_pages_check(page))
987 return;
989 if (!PageHighMem(page)) {
990 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
991 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
993 arch_free_page(page, 0);
994 kernel_map_pages(page, 1, 0);
996 pcp = &zone_pcp(zone, get_cpu())->pcp;
997 local_irq_save(flags);
998 __count_vm_event(PGFREE);
999 if (cold)
1000 list_add_tail(&page->lru, &pcp->list);
1001 else
1002 list_add(&page->lru, &pcp->list);
1003 set_page_private(page, get_pageblock_migratetype(page));
1004 pcp->count++;
1005 if (pcp->count >= pcp->high) {
1006 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1007 pcp->count -= pcp->batch;
1009 local_irq_restore(flags);
1010 put_cpu();
1013 void free_hot_page(struct page *page)
1015 free_hot_cold_page(page, 0);
1018 void free_cold_page(struct page *page)
1020 free_hot_cold_page(page, 1);
1024 * split_page takes a non-compound higher-order page, and splits it into
1025 * n (1<<order) sub-pages: page[0..n]
1026 * Each sub-page must be freed individually.
1028 * Note: this is probably too low level an operation for use in drivers.
1029 * Please consult with lkml before using this in your driver.
1031 void split_page(struct page *page, unsigned int order)
1033 int i;
1035 VM_BUG_ON(PageCompound(page));
1036 VM_BUG_ON(!page_count(page));
1037 for (i = 1; i < (1 << order); i++)
1038 set_page_refcounted(page + i);
1042 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1043 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1044 * or two.
1046 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1047 struct zone *zone, int order, gfp_t gfp_flags)
1049 unsigned long flags;
1050 struct page *page;
1051 int cold = !!(gfp_flags & __GFP_COLD);
1052 int cpu;
1053 int migratetype = allocflags_to_migratetype(gfp_flags);
1055 again:
1056 cpu = get_cpu();
1057 if (likely(order == 0)) {
1058 struct per_cpu_pages *pcp;
1060 pcp = &zone_pcp(zone, cpu)->pcp;
1061 local_irq_save(flags);
1062 if (!pcp->count) {
1063 pcp->count = rmqueue_bulk(zone, 0,
1064 pcp->batch, &pcp->list, migratetype);
1065 if (unlikely(!pcp->count))
1066 goto failed;
1069 /* Find a page of the appropriate migrate type */
1070 if (cold) {
1071 list_for_each_entry_reverse(page, &pcp->list, lru)
1072 if (page_private(page) == migratetype)
1073 break;
1074 } else {
1075 list_for_each_entry(page, &pcp->list, lru)
1076 if (page_private(page) == migratetype)
1077 break;
1080 /* Allocate more to the pcp list if necessary */
1081 if (unlikely(&page->lru == &pcp->list)) {
1082 pcp->count += rmqueue_bulk(zone, 0,
1083 pcp->batch, &pcp->list, migratetype);
1084 page = list_entry(pcp->list.next, struct page, lru);
1087 list_del(&page->lru);
1088 pcp->count--;
1089 } else {
1090 spin_lock_irqsave(&zone->lock, flags);
1091 page = __rmqueue(zone, order, migratetype);
1092 spin_unlock(&zone->lock);
1093 if (!page)
1094 goto failed;
1097 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1098 zone_statistics(preferred_zone, zone);
1099 local_irq_restore(flags);
1100 put_cpu();
1102 VM_BUG_ON(bad_range(zone, page));
1103 if (prep_new_page(page, order, gfp_flags))
1104 goto again;
1105 return page;
1107 failed:
1108 local_irq_restore(flags);
1109 put_cpu();
1110 return NULL;
1113 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1114 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1115 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1116 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1117 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1118 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1119 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1121 #ifdef CONFIG_FAIL_PAGE_ALLOC
1123 static struct fail_page_alloc_attr {
1124 struct fault_attr attr;
1126 u32 ignore_gfp_highmem;
1127 u32 ignore_gfp_wait;
1128 u32 min_order;
1130 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1132 struct dentry *ignore_gfp_highmem_file;
1133 struct dentry *ignore_gfp_wait_file;
1134 struct dentry *min_order_file;
1136 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1138 } fail_page_alloc = {
1139 .attr = FAULT_ATTR_INITIALIZER,
1140 .ignore_gfp_wait = 1,
1141 .ignore_gfp_highmem = 1,
1142 .min_order = 1,
1145 static int __init setup_fail_page_alloc(char *str)
1147 return setup_fault_attr(&fail_page_alloc.attr, str);
1149 __setup("fail_page_alloc=", setup_fail_page_alloc);
1151 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1153 if (order < fail_page_alloc.min_order)
1154 return 0;
1155 if (gfp_mask & __GFP_NOFAIL)
1156 return 0;
1157 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1158 return 0;
1159 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1160 return 0;
1162 return should_fail(&fail_page_alloc.attr, 1 << order);
1165 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1167 static int __init fail_page_alloc_debugfs(void)
1169 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1170 struct dentry *dir;
1171 int err;
1173 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1174 "fail_page_alloc");
1175 if (err)
1176 return err;
1177 dir = fail_page_alloc.attr.dentries.dir;
1179 fail_page_alloc.ignore_gfp_wait_file =
1180 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1181 &fail_page_alloc.ignore_gfp_wait);
1183 fail_page_alloc.ignore_gfp_highmem_file =
1184 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1185 &fail_page_alloc.ignore_gfp_highmem);
1186 fail_page_alloc.min_order_file =
1187 debugfs_create_u32("min-order", mode, dir,
1188 &fail_page_alloc.min_order);
1190 if (!fail_page_alloc.ignore_gfp_wait_file ||
1191 !fail_page_alloc.ignore_gfp_highmem_file ||
1192 !fail_page_alloc.min_order_file) {
1193 err = -ENOMEM;
1194 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1195 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1196 debugfs_remove(fail_page_alloc.min_order_file);
1197 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1200 return err;
1203 late_initcall(fail_page_alloc_debugfs);
1205 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1207 #else /* CONFIG_FAIL_PAGE_ALLOC */
1209 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1211 return 0;
1214 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1217 * Return 1 if free pages are above 'mark'. This takes into account the order
1218 * of the allocation.
1220 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1221 int classzone_idx, int alloc_flags)
1223 /* free_pages my go negative - that's OK */
1224 long min = mark;
1225 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1226 int o;
1228 if (alloc_flags & ALLOC_HIGH)
1229 min -= min / 2;
1230 if (alloc_flags & ALLOC_HARDER)
1231 min -= min / 4;
1233 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1234 return 0;
1235 for (o = 0; o < order; o++) {
1236 /* At the next order, this order's pages become unavailable */
1237 free_pages -= z->free_area[o].nr_free << o;
1239 /* Require fewer higher order pages to be free */
1240 min >>= 1;
1242 if (free_pages <= min)
1243 return 0;
1245 return 1;
1248 #ifdef CONFIG_NUMA
1250 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1251 * skip over zones that are not allowed by the cpuset, or that have
1252 * been recently (in last second) found to be nearly full. See further
1253 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1254 * that have to skip over a lot of full or unallowed zones.
1256 * If the zonelist cache is present in the passed in zonelist, then
1257 * returns a pointer to the allowed node mask (either the current
1258 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1260 * If the zonelist cache is not available for this zonelist, does
1261 * nothing and returns NULL.
1263 * If the fullzones BITMAP in the zonelist cache is stale (more than
1264 * a second since last zap'd) then we zap it out (clear its bits.)
1266 * We hold off even calling zlc_setup, until after we've checked the
1267 * first zone in the zonelist, on the theory that most allocations will
1268 * be satisfied from that first zone, so best to examine that zone as
1269 * quickly as we can.
1271 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1273 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1274 nodemask_t *allowednodes; /* zonelist_cache approximation */
1276 zlc = zonelist->zlcache_ptr;
1277 if (!zlc)
1278 return NULL;
1280 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1281 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1282 zlc->last_full_zap = jiffies;
1285 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1286 &cpuset_current_mems_allowed :
1287 &node_states[N_HIGH_MEMORY];
1288 return allowednodes;
1292 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1293 * if it is worth looking at further for free memory:
1294 * 1) Check that the zone isn't thought to be full (doesn't have its
1295 * bit set in the zonelist_cache fullzones BITMAP).
1296 * 2) Check that the zones node (obtained from the zonelist_cache
1297 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1298 * Return true (non-zero) if zone is worth looking at further, or
1299 * else return false (zero) if it is not.
1301 * This check -ignores- the distinction between various watermarks,
1302 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1303 * found to be full for any variation of these watermarks, it will
1304 * be considered full for up to one second by all requests, unless
1305 * we are so low on memory on all allowed nodes that we are forced
1306 * into the second scan of the zonelist.
1308 * In the second scan we ignore this zonelist cache and exactly
1309 * apply the watermarks to all zones, even it is slower to do so.
1310 * We are low on memory in the second scan, and should leave no stone
1311 * unturned looking for a free page.
1313 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1314 nodemask_t *allowednodes)
1316 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1317 int i; /* index of *z in zonelist zones */
1318 int n; /* node that zone *z is on */
1320 zlc = zonelist->zlcache_ptr;
1321 if (!zlc)
1322 return 1;
1324 i = z - zonelist->_zonerefs;
1325 n = zlc->z_to_n[i];
1327 /* This zone is worth trying if it is allowed but not full */
1328 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1332 * Given 'z' scanning a zonelist, set the corresponding bit in
1333 * zlc->fullzones, so that subsequent attempts to allocate a page
1334 * from that zone don't waste time re-examining it.
1336 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1338 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1339 int i; /* index of *z in zonelist zones */
1341 zlc = zonelist->zlcache_ptr;
1342 if (!zlc)
1343 return;
1345 i = z - zonelist->_zonerefs;
1347 set_bit(i, zlc->fullzones);
1350 #else /* CONFIG_NUMA */
1352 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1354 return NULL;
1357 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1358 nodemask_t *allowednodes)
1360 return 1;
1363 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1366 #endif /* CONFIG_NUMA */
1369 * get_page_from_freelist goes through the zonelist trying to allocate
1370 * a page.
1372 static struct page *
1373 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1374 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1376 struct zoneref *z;
1377 struct page *page = NULL;
1378 int classzone_idx;
1379 struct zone *zone, *preferred_zone;
1380 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1381 int zlc_active = 0; /* set if using zonelist_cache */
1382 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1384 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1385 &preferred_zone);
1386 if (!preferred_zone)
1387 return NULL;
1389 classzone_idx = zone_idx(preferred_zone);
1391 zonelist_scan:
1393 * Scan zonelist, looking for a zone with enough free.
1394 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1396 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1397 high_zoneidx, nodemask) {
1398 if (NUMA_BUILD && zlc_active &&
1399 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1400 continue;
1401 if ((alloc_flags & ALLOC_CPUSET) &&
1402 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1403 goto try_next_zone;
1405 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1406 unsigned long mark;
1407 if (alloc_flags & ALLOC_WMARK_MIN)
1408 mark = zone->pages_min;
1409 else if (alloc_flags & ALLOC_WMARK_LOW)
1410 mark = zone->pages_low;
1411 else
1412 mark = zone->pages_high;
1413 if (!zone_watermark_ok(zone, order, mark,
1414 classzone_idx, alloc_flags)) {
1415 if (!zone_reclaim_mode ||
1416 !zone_reclaim(zone, gfp_mask, order))
1417 goto this_zone_full;
1421 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1422 if (page)
1423 break;
1424 this_zone_full:
1425 if (NUMA_BUILD)
1426 zlc_mark_zone_full(zonelist, z);
1427 try_next_zone:
1428 if (NUMA_BUILD && !did_zlc_setup) {
1429 /* we do zlc_setup after the first zone is tried */
1430 allowednodes = zlc_setup(zonelist, alloc_flags);
1431 zlc_active = 1;
1432 did_zlc_setup = 1;
1436 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1437 /* Disable zlc cache for second zonelist scan */
1438 zlc_active = 0;
1439 goto zonelist_scan;
1441 return page;
1445 * This is the 'heart' of the zoned buddy allocator.
1447 struct page *
1448 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1449 struct zonelist *zonelist, nodemask_t *nodemask)
1451 const gfp_t wait = gfp_mask & __GFP_WAIT;
1452 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1453 struct zoneref *z;
1454 struct zone *zone;
1455 struct page *page;
1456 struct reclaim_state reclaim_state;
1457 struct task_struct *p = current;
1458 int do_retry;
1459 int alloc_flags;
1460 unsigned long did_some_progress;
1461 unsigned long pages_reclaimed = 0;
1463 might_sleep_if(wait);
1465 if (should_fail_alloc_page(gfp_mask, order))
1466 return NULL;
1468 restart:
1469 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1471 if (unlikely(!z->zone)) {
1473 * Happens if we have an empty zonelist as a result of
1474 * GFP_THISNODE being used on a memoryless node
1476 return NULL;
1479 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1480 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1481 if (page)
1482 goto got_pg;
1485 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1486 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1487 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1488 * using a larger set of nodes after it has established that the
1489 * allowed per node queues are empty and that nodes are
1490 * over allocated.
1492 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1493 goto nopage;
1495 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1496 wakeup_kswapd(zone, order);
1499 * OK, we're below the kswapd watermark and have kicked background
1500 * reclaim. Now things get more complex, so set up alloc_flags according
1501 * to how we want to proceed.
1503 * The caller may dip into page reserves a bit more if the caller
1504 * cannot run direct reclaim, or if the caller has realtime scheduling
1505 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1506 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1508 alloc_flags = ALLOC_WMARK_MIN;
1509 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1510 alloc_flags |= ALLOC_HARDER;
1511 if (gfp_mask & __GFP_HIGH)
1512 alloc_flags |= ALLOC_HIGH;
1513 if (wait)
1514 alloc_flags |= ALLOC_CPUSET;
1517 * Go through the zonelist again. Let __GFP_HIGH and allocations
1518 * coming from realtime tasks go deeper into reserves.
1520 * This is the last chance, in general, before the goto nopage.
1521 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1522 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1524 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1525 high_zoneidx, alloc_flags);
1526 if (page)
1527 goto got_pg;
1529 /* This allocation should allow future memory freeing. */
1531 rebalance:
1532 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1533 && !in_interrupt()) {
1534 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1535 nofail_alloc:
1536 /* go through the zonelist yet again, ignoring mins */
1537 page = get_page_from_freelist(gfp_mask, nodemask, order,
1538 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1539 if (page)
1540 goto got_pg;
1541 if (gfp_mask & __GFP_NOFAIL) {
1542 congestion_wait(WRITE, HZ/50);
1543 goto nofail_alloc;
1546 goto nopage;
1549 /* Atomic allocations - we can't balance anything */
1550 if (!wait)
1551 goto nopage;
1553 cond_resched();
1555 /* We now go into synchronous reclaim */
1556 cpuset_memory_pressure_bump();
1557 p->flags |= PF_MEMALLOC;
1558 reclaim_state.reclaimed_slab = 0;
1559 p->reclaim_state = &reclaim_state;
1561 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1563 p->reclaim_state = NULL;
1564 p->flags &= ~PF_MEMALLOC;
1566 cond_resched();
1568 if (order != 0)
1569 drain_all_pages();
1571 if (likely(did_some_progress)) {
1572 page = get_page_from_freelist(gfp_mask, nodemask, order,
1573 zonelist, high_zoneidx, alloc_flags);
1574 if (page)
1575 goto got_pg;
1576 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1577 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1578 schedule_timeout_uninterruptible(1);
1579 goto restart;
1583 * Go through the zonelist yet one more time, keep
1584 * very high watermark here, this is only to catch
1585 * a parallel oom killing, we must fail if we're still
1586 * under heavy pressure.
1588 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1589 order, zonelist, high_zoneidx,
1590 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1591 if (page) {
1592 clear_zonelist_oom(zonelist, gfp_mask);
1593 goto got_pg;
1596 /* The OOM killer will not help higher order allocs so fail */
1597 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1598 clear_zonelist_oom(zonelist, gfp_mask);
1599 goto nopage;
1602 out_of_memory(zonelist, gfp_mask, order);
1603 clear_zonelist_oom(zonelist, gfp_mask);
1604 goto restart;
1608 * Don't let big-order allocations loop unless the caller explicitly
1609 * requests that. Wait for some write requests to complete then retry.
1611 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1612 * means __GFP_NOFAIL, but that may not be true in other
1613 * implementations.
1615 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1616 * specified, then we retry until we no longer reclaim any pages
1617 * (above), or we've reclaimed an order of pages at least as
1618 * large as the allocation's order. In both cases, if the
1619 * allocation still fails, we stop retrying.
1621 pages_reclaimed += did_some_progress;
1622 do_retry = 0;
1623 if (!(gfp_mask & __GFP_NORETRY)) {
1624 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1625 do_retry = 1;
1626 } else {
1627 if (gfp_mask & __GFP_REPEAT &&
1628 pages_reclaimed < (1 << order))
1629 do_retry = 1;
1631 if (gfp_mask & __GFP_NOFAIL)
1632 do_retry = 1;
1634 if (do_retry) {
1635 congestion_wait(WRITE, HZ/50);
1636 goto rebalance;
1639 nopage:
1640 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1641 printk(KERN_WARNING "%s: page allocation failure."
1642 " order:%d, mode:0x%x\n",
1643 p->comm, order, gfp_mask);
1644 dump_stack();
1645 show_mem();
1647 got_pg:
1648 return page;
1650 EXPORT_SYMBOL(__alloc_pages_internal);
1653 * Common helper functions.
1655 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1657 struct page * page;
1658 page = alloc_pages(gfp_mask, order);
1659 if (!page)
1660 return 0;
1661 return (unsigned long) page_address(page);
1664 EXPORT_SYMBOL(__get_free_pages);
1666 unsigned long get_zeroed_page(gfp_t gfp_mask)
1668 struct page * page;
1671 * get_zeroed_page() returns a 32-bit address, which cannot represent
1672 * a highmem page
1674 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1676 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1677 if (page)
1678 return (unsigned long) page_address(page);
1679 return 0;
1682 EXPORT_SYMBOL(get_zeroed_page);
1684 void __pagevec_free(struct pagevec *pvec)
1686 int i = pagevec_count(pvec);
1688 while (--i >= 0)
1689 free_hot_cold_page(pvec->pages[i], pvec->cold);
1692 void __free_pages(struct page *page, unsigned int order)
1694 if (put_page_testzero(page)) {
1695 if (order == 0)
1696 free_hot_page(page);
1697 else
1698 __free_pages_ok(page, order);
1702 EXPORT_SYMBOL(__free_pages);
1704 void free_pages(unsigned long addr, unsigned int order)
1706 if (addr != 0) {
1707 VM_BUG_ON(!virt_addr_valid((void *)addr));
1708 __free_pages(virt_to_page((void *)addr), order);
1712 EXPORT_SYMBOL(free_pages);
1715 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1716 * @size: the number of bytes to allocate
1717 * @gfp_mask: GFP flags for the allocation
1719 * This function is similar to alloc_pages(), except that it allocates the
1720 * minimum number of pages to satisfy the request. alloc_pages() can only
1721 * allocate memory in power-of-two pages.
1723 * This function is also limited by MAX_ORDER.
1725 * Memory allocated by this function must be released by free_pages_exact().
1727 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1729 unsigned int order = get_order(size);
1730 unsigned long addr;
1732 addr = __get_free_pages(gfp_mask, order);
1733 if (addr) {
1734 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1735 unsigned long used = addr + PAGE_ALIGN(size);
1737 split_page(virt_to_page(addr), order);
1738 while (used < alloc_end) {
1739 free_page(used);
1740 used += PAGE_SIZE;
1744 return (void *)addr;
1746 EXPORT_SYMBOL(alloc_pages_exact);
1749 * free_pages_exact - release memory allocated via alloc_pages_exact()
1750 * @virt: the value returned by alloc_pages_exact.
1751 * @size: size of allocation, same value as passed to alloc_pages_exact().
1753 * Release the memory allocated by a previous call to alloc_pages_exact.
1755 void free_pages_exact(void *virt, size_t size)
1757 unsigned long addr = (unsigned long)virt;
1758 unsigned long end = addr + PAGE_ALIGN(size);
1760 while (addr < end) {
1761 free_page(addr);
1762 addr += PAGE_SIZE;
1765 EXPORT_SYMBOL(free_pages_exact);
1767 static unsigned int nr_free_zone_pages(int offset)
1769 struct zoneref *z;
1770 struct zone *zone;
1772 /* Just pick one node, since fallback list is circular */
1773 unsigned int sum = 0;
1775 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1777 for_each_zone_zonelist(zone, z, zonelist, offset) {
1778 unsigned long size = zone->present_pages;
1779 unsigned long high = zone->pages_high;
1780 if (size > high)
1781 sum += size - high;
1784 return sum;
1788 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1790 unsigned int nr_free_buffer_pages(void)
1792 return nr_free_zone_pages(gfp_zone(GFP_USER));
1794 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1797 * Amount of free RAM allocatable within all zones
1799 unsigned int nr_free_pagecache_pages(void)
1801 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1804 static inline void show_node(struct zone *zone)
1806 if (NUMA_BUILD)
1807 printk("Node %d ", zone_to_nid(zone));
1810 void si_meminfo(struct sysinfo *val)
1812 val->totalram = totalram_pages;
1813 val->sharedram = 0;
1814 val->freeram = global_page_state(NR_FREE_PAGES);
1815 val->bufferram = nr_blockdev_pages();
1816 val->totalhigh = totalhigh_pages;
1817 val->freehigh = nr_free_highpages();
1818 val->mem_unit = PAGE_SIZE;
1821 EXPORT_SYMBOL(si_meminfo);
1823 #ifdef CONFIG_NUMA
1824 void si_meminfo_node(struct sysinfo *val, int nid)
1826 pg_data_t *pgdat = NODE_DATA(nid);
1828 val->totalram = pgdat->node_present_pages;
1829 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1830 #ifdef CONFIG_HIGHMEM
1831 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1832 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1833 NR_FREE_PAGES);
1834 #else
1835 val->totalhigh = 0;
1836 val->freehigh = 0;
1837 #endif
1838 val->mem_unit = PAGE_SIZE;
1840 #endif
1842 #define K(x) ((x) << (PAGE_SHIFT-10))
1845 * Show free area list (used inside shift_scroll-lock stuff)
1846 * We also calculate the percentage fragmentation. We do this by counting the
1847 * memory on each free list with the exception of the first item on the list.
1849 void show_free_areas(void)
1851 int cpu;
1852 struct zone *zone;
1854 for_each_zone(zone) {
1855 if (!populated_zone(zone))
1856 continue;
1858 show_node(zone);
1859 printk("%s per-cpu:\n", zone->name);
1861 for_each_online_cpu(cpu) {
1862 struct per_cpu_pageset *pageset;
1864 pageset = zone_pcp(zone, cpu);
1866 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1867 cpu, pageset->pcp.high,
1868 pageset->pcp.batch, pageset->pcp.count);
1872 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1873 " inactive_file:%lu"
1874 //TODO: check/adjust line lengths
1875 #ifdef CONFIG_UNEVICTABLE_LRU
1876 " unevictable:%lu"
1877 #endif
1878 " dirty:%lu writeback:%lu unstable:%lu\n"
1879 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1880 global_page_state(NR_ACTIVE_ANON),
1881 global_page_state(NR_ACTIVE_FILE),
1882 global_page_state(NR_INACTIVE_ANON),
1883 global_page_state(NR_INACTIVE_FILE),
1884 #ifdef CONFIG_UNEVICTABLE_LRU
1885 global_page_state(NR_UNEVICTABLE),
1886 #endif
1887 global_page_state(NR_FILE_DIRTY),
1888 global_page_state(NR_WRITEBACK),
1889 global_page_state(NR_UNSTABLE_NFS),
1890 global_page_state(NR_FREE_PAGES),
1891 global_page_state(NR_SLAB_RECLAIMABLE) +
1892 global_page_state(NR_SLAB_UNRECLAIMABLE),
1893 global_page_state(NR_FILE_MAPPED),
1894 global_page_state(NR_PAGETABLE),
1895 global_page_state(NR_BOUNCE));
1897 for_each_zone(zone) {
1898 int i;
1900 if (!populated_zone(zone))
1901 continue;
1903 show_node(zone);
1904 printk("%s"
1905 " free:%lukB"
1906 " min:%lukB"
1907 " low:%lukB"
1908 " high:%lukB"
1909 " active_anon:%lukB"
1910 " inactive_anon:%lukB"
1911 " active_file:%lukB"
1912 " inactive_file:%lukB"
1913 #ifdef CONFIG_UNEVICTABLE_LRU
1914 " unevictable:%lukB"
1915 #endif
1916 " present:%lukB"
1917 " pages_scanned:%lu"
1918 " all_unreclaimable? %s"
1919 "\n",
1920 zone->name,
1921 K(zone_page_state(zone, NR_FREE_PAGES)),
1922 K(zone->pages_min),
1923 K(zone->pages_low),
1924 K(zone->pages_high),
1925 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1926 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1927 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1928 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1929 #ifdef CONFIG_UNEVICTABLE_LRU
1930 K(zone_page_state(zone, NR_UNEVICTABLE)),
1931 #endif
1932 K(zone->present_pages),
1933 zone->pages_scanned,
1934 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1936 printk("lowmem_reserve[]:");
1937 for (i = 0; i < MAX_NR_ZONES; i++)
1938 printk(" %lu", zone->lowmem_reserve[i]);
1939 printk("\n");
1942 for_each_zone(zone) {
1943 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1945 if (!populated_zone(zone))
1946 continue;
1948 show_node(zone);
1949 printk("%s: ", zone->name);
1951 spin_lock_irqsave(&zone->lock, flags);
1952 for (order = 0; order < MAX_ORDER; order++) {
1953 nr[order] = zone->free_area[order].nr_free;
1954 total += nr[order] << order;
1956 spin_unlock_irqrestore(&zone->lock, flags);
1957 for (order = 0; order < MAX_ORDER; order++)
1958 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1959 printk("= %lukB\n", K(total));
1962 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1964 show_swap_cache_info();
1967 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1969 zoneref->zone = zone;
1970 zoneref->zone_idx = zone_idx(zone);
1974 * Builds allocation fallback zone lists.
1976 * Add all populated zones of a node to the zonelist.
1978 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1979 int nr_zones, enum zone_type zone_type)
1981 struct zone *zone;
1983 BUG_ON(zone_type >= MAX_NR_ZONES);
1984 zone_type++;
1986 do {
1987 zone_type--;
1988 zone = pgdat->node_zones + zone_type;
1989 if (populated_zone(zone)) {
1990 zoneref_set_zone(zone,
1991 &zonelist->_zonerefs[nr_zones++]);
1992 check_highest_zone(zone_type);
1995 } while (zone_type);
1996 return nr_zones;
2001 * zonelist_order:
2002 * 0 = automatic detection of better ordering.
2003 * 1 = order by ([node] distance, -zonetype)
2004 * 2 = order by (-zonetype, [node] distance)
2006 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2007 * the same zonelist. So only NUMA can configure this param.
2009 #define ZONELIST_ORDER_DEFAULT 0
2010 #define ZONELIST_ORDER_NODE 1
2011 #define ZONELIST_ORDER_ZONE 2
2013 /* zonelist order in the kernel.
2014 * set_zonelist_order() will set this to NODE or ZONE.
2016 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2017 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2020 #ifdef CONFIG_NUMA
2021 /* The value user specified ....changed by config */
2022 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2023 /* string for sysctl */
2024 #define NUMA_ZONELIST_ORDER_LEN 16
2025 char numa_zonelist_order[16] = "default";
2028 * interface for configure zonelist ordering.
2029 * command line option "numa_zonelist_order"
2030 * = "[dD]efault - default, automatic configuration.
2031 * = "[nN]ode - order by node locality, then by zone within node
2032 * = "[zZ]one - order by zone, then by locality within zone
2035 static int __parse_numa_zonelist_order(char *s)
2037 if (*s == 'd' || *s == 'D') {
2038 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2039 } else if (*s == 'n' || *s == 'N') {
2040 user_zonelist_order = ZONELIST_ORDER_NODE;
2041 } else if (*s == 'z' || *s == 'Z') {
2042 user_zonelist_order = ZONELIST_ORDER_ZONE;
2043 } else {
2044 printk(KERN_WARNING
2045 "Ignoring invalid numa_zonelist_order value: "
2046 "%s\n", s);
2047 return -EINVAL;
2049 return 0;
2052 static __init int setup_numa_zonelist_order(char *s)
2054 if (s)
2055 return __parse_numa_zonelist_order(s);
2056 return 0;
2058 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2061 * sysctl handler for numa_zonelist_order
2063 int numa_zonelist_order_handler(ctl_table *table, int write,
2064 struct file *file, void __user *buffer, size_t *length,
2065 loff_t *ppos)
2067 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2068 int ret;
2070 if (write)
2071 strncpy(saved_string, (char*)table->data,
2072 NUMA_ZONELIST_ORDER_LEN);
2073 ret = proc_dostring(table, write, file, buffer, length, ppos);
2074 if (ret)
2075 return ret;
2076 if (write) {
2077 int oldval = user_zonelist_order;
2078 if (__parse_numa_zonelist_order((char*)table->data)) {
2080 * bogus value. restore saved string
2082 strncpy((char*)table->data, saved_string,
2083 NUMA_ZONELIST_ORDER_LEN);
2084 user_zonelist_order = oldval;
2085 } else if (oldval != user_zonelist_order)
2086 build_all_zonelists();
2088 return 0;
2092 #define MAX_NODE_LOAD (num_online_nodes())
2093 static int node_load[MAX_NUMNODES];
2096 * find_next_best_node - find the next node that should appear in a given node's fallback list
2097 * @node: node whose fallback list we're appending
2098 * @used_node_mask: nodemask_t of already used nodes
2100 * We use a number of factors to determine which is the next node that should
2101 * appear on a given node's fallback list. The node should not have appeared
2102 * already in @node's fallback list, and it should be the next closest node
2103 * according to the distance array (which contains arbitrary distance values
2104 * from each node to each node in the system), and should also prefer nodes
2105 * with no CPUs, since presumably they'll have very little allocation pressure
2106 * on them otherwise.
2107 * It returns -1 if no node is found.
2109 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2111 int n, val;
2112 int min_val = INT_MAX;
2113 int best_node = -1;
2114 node_to_cpumask_ptr(tmp, 0);
2116 /* Use the local node if we haven't already */
2117 if (!node_isset(node, *used_node_mask)) {
2118 node_set(node, *used_node_mask);
2119 return node;
2122 for_each_node_state(n, N_HIGH_MEMORY) {
2124 /* Don't want a node to appear more than once */
2125 if (node_isset(n, *used_node_mask))
2126 continue;
2128 /* Use the distance array to find the distance */
2129 val = node_distance(node, n);
2131 /* Penalize nodes under us ("prefer the next node") */
2132 val += (n < node);
2134 /* Give preference to headless and unused nodes */
2135 node_to_cpumask_ptr_next(tmp, n);
2136 if (!cpus_empty(*tmp))
2137 val += PENALTY_FOR_NODE_WITH_CPUS;
2139 /* Slight preference for less loaded node */
2140 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2141 val += node_load[n];
2143 if (val < min_val) {
2144 min_val = val;
2145 best_node = n;
2149 if (best_node >= 0)
2150 node_set(best_node, *used_node_mask);
2152 return best_node;
2157 * Build zonelists ordered by node and zones within node.
2158 * This results in maximum locality--normal zone overflows into local
2159 * DMA zone, if any--but risks exhausting DMA zone.
2161 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2163 int j;
2164 struct zonelist *zonelist;
2166 zonelist = &pgdat->node_zonelists[0];
2167 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2169 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2170 MAX_NR_ZONES - 1);
2171 zonelist->_zonerefs[j].zone = NULL;
2172 zonelist->_zonerefs[j].zone_idx = 0;
2176 * Build gfp_thisnode zonelists
2178 static void build_thisnode_zonelists(pg_data_t *pgdat)
2180 int j;
2181 struct zonelist *zonelist;
2183 zonelist = &pgdat->node_zonelists[1];
2184 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2185 zonelist->_zonerefs[j].zone = NULL;
2186 zonelist->_zonerefs[j].zone_idx = 0;
2190 * Build zonelists ordered by zone and nodes within zones.
2191 * This results in conserving DMA zone[s] until all Normal memory is
2192 * exhausted, but results in overflowing to remote node while memory
2193 * may still exist in local DMA zone.
2195 static int node_order[MAX_NUMNODES];
2197 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2199 int pos, j, node;
2200 int zone_type; /* needs to be signed */
2201 struct zone *z;
2202 struct zonelist *zonelist;
2204 zonelist = &pgdat->node_zonelists[0];
2205 pos = 0;
2206 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2207 for (j = 0; j < nr_nodes; j++) {
2208 node = node_order[j];
2209 z = &NODE_DATA(node)->node_zones[zone_type];
2210 if (populated_zone(z)) {
2211 zoneref_set_zone(z,
2212 &zonelist->_zonerefs[pos++]);
2213 check_highest_zone(zone_type);
2217 zonelist->_zonerefs[pos].zone = NULL;
2218 zonelist->_zonerefs[pos].zone_idx = 0;
2221 static int default_zonelist_order(void)
2223 int nid, zone_type;
2224 unsigned long low_kmem_size,total_size;
2225 struct zone *z;
2226 int average_size;
2228 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2229 * If they are really small and used heavily, the system can fall
2230 * into OOM very easily.
2231 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2233 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2234 low_kmem_size = 0;
2235 total_size = 0;
2236 for_each_online_node(nid) {
2237 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2238 z = &NODE_DATA(nid)->node_zones[zone_type];
2239 if (populated_zone(z)) {
2240 if (zone_type < ZONE_NORMAL)
2241 low_kmem_size += z->present_pages;
2242 total_size += z->present_pages;
2246 if (!low_kmem_size || /* there are no DMA area. */
2247 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2248 return ZONELIST_ORDER_NODE;
2250 * look into each node's config.
2251 * If there is a node whose DMA/DMA32 memory is very big area on
2252 * local memory, NODE_ORDER may be suitable.
2254 average_size = total_size /
2255 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2256 for_each_online_node(nid) {
2257 low_kmem_size = 0;
2258 total_size = 0;
2259 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2260 z = &NODE_DATA(nid)->node_zones[zone_type];
2261 if (populated_zone(z)) {
2262 if (zone_type < ZONE_NORMAL)
2263 low_kmem_size += z->present_pages;
2264 total_size += z->present_pages;
2267 if (low_kmem_size &&
2268 total_size > average_size && /* ignore small node */
2269 low_kmem_size > total_size * 70/100)
2270 return ZONELIST_ORDER_NODE;
2272 return ZONELIST_ORDER_ZONE;
2275 static void set_zonelist_order(void)
2277 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2278 current_zonelist_order = default_zonelist_order();
2279 else
2280 current_zonelist_order = user_zonelist_order;
2283 static void build_zonelists(pg_data_t *pgdat)
2285 int j, node, load;
2286 enum zone_type i;
2287 nodemask_t used_mask;
2288 int local_node, prev_node;
2289 struct zonelist *zonelist;
2290 int order = current_zonelist_order;
2292 /* initialize zonelists */
2293 for (i = 0; i < MAX_ZONELISTS; i++) {
2294 zonelist = pgdat->node_zonelists + i;
2295 zonelist->_zonerefs[0].zone = NULL;
2296 zonelist->_zonerefs[0].zone_idx = 0;
2299 /* NUMA-aware ordering of nodes */
2300 local_node = pgdat->node_id;
2301 load = num_online_nodes();
2302 prev_node = local_node;
2303 nodes_clear(used_mask);
2305 memset(node_load, 0, sizeof(node_load));
2306 memset(node_order, 0, sizeof(node_order));
2307 j = 0;
2309 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2310 int distance = node_distance(local_node, node);
2313 * If another node is sufficiently far away then it is better
2314 * to reclaim pages in a zone before going off node.
2316 if (distance > RECLAIM_DISTANCE)
2317 zone_reclaim_mode = 1;
2320 * We don't want to pressure a particular node.
2321 * So adding penalty to the first node in same
2322 * distance group to make it round-robin.
2324 if (distance != node_distance(local_node, prev_node))
2325 node_load[node] = load;
2327 prev_node = node;
2328 load--;
2329 if (order == ZONELIST_ORDER_NODE)
2330 build_zonelists_in_node_order(pgdat, node);
2331 else
2332 node_order[j++] = node; /* remember order */
2335 if (order == ZONELIST_ORDER_ZONE) {
2336 /* calculate node order -- i.e., DMA last! */
2337 build_zonelists_in_zone_order(pgdat, j);
2340 build_thisnode_zonelists(pgdat);
2343 /* Construct the zonelist performance cache - see further mmzone.h */
2344 static void build_zonelist_cache(pg_data_t *pgdat)
2346 struct zonelist *zonelist;
2347 struct zonelist_cache *zlc;
2348 struct zoneref *z;
2350 zonelist = &pgdat->node_zonelists[0];
2351 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2352 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2353 for (z = zonelist->_zonerefs; z->zone; z++)
2354 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2358 #else /* CONFIG_NUMA */
2360 static void set_zonelist_order(void)
2362 current_zonelist_order = ZONELIST_ORDER_ZONE;
2365 static void build_zonelists(pg_data_t *pgdat)
2367 int node, local_node;
2368 enum zone_type j;
2369 struct zonelist *zonelist;
2371 local_node = pgdat->node_id;
2373 zonelist = &pgdat->node_zonelists[0];
2374 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2377 * Now we build the zonelist so that it contains the zones
2378 * of all the other nodes.
2379 * We don't want to pressure a particular node, so when
2380 * building the zones for node N, we make sure that the
2381 * zones coming right after the local ones are those from
2382 * node N+1 (modulo N)
2384 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2385 if (!node_online(node))
2386 continue;
2387 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2388 MAX_NR_ZONES - 1);
2390 for (node = 0; node < local_node; node++) {
2391 if (!node_online(node))
2392 continue;
2393 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2394 MAX_NR_ZONES - 1);
2397 zonelist->_zonerefs[j].zone = NULL;
2398 zonelist->_zonerefs[j].zone_idx = 0;
2401 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2402 static void build_zonelist_cache(pg_data_t *pgdat)
2404 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2407 #endif /* CONFIG_NUMA */
2409 /* return values int ....just for stop_machine() */
2410 static int __build_all_zonelists(void *dummy)
2412 int nid;
2414 for_each_online_node(nid) {
2415 pg_data_t *pgdat = NODE_DATA(nid);
2417 build_zonelists(pgdat);
2418 build_zonelist_cache(pgdat);
2420 return 0;
2423 void build_all_zonelists(void)
2425 set_zonelist_order();
2427 if (system_state == SYSTEM_BOOTING) {
2428 __build_all_zonelists(NULL);
2429 mminit_verify_zonelist();
2430 cpuset_init_current_mems_allowed();
2431 } else {
2432 /* we have to stop all cpus to guarantee there is no user
2433 of zonelist */
2434 stop_machine(__build_all_zonelists, NULL, NULL);
2435 /* cpuset refresh routine should be here */
2437 vm_total_pages = nr_free_pagecache_pages();
2439 * Disable grouping by mobility if the number of pages in the
2440 * system is too low to allow the mechanism to work. It would be
2441 * more accurate, but expensive to check per-zone. This check is
2442 * made on memory-hotadd so a system can start with mobility
2443 * disabled and enable it later
2445 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2446 page_group_by_mobility_disabled = 1;
2447 else
2448 page_group_by_mobility_disabled = 0;
2450 printk("Built %i zonelists in %s order, mobility grouping %s. "
2451 "Total pages: %ld\n",
2452 num_online_nodes(),
2453 zonelist_order_name[current_zonelist_order],
2454 page_group_by_mobility_disabled ? "off" : "on",
2455 vm_total_pages);
2456 #ifdef CONFIG_NUMA
2457 printk("Policy zone: %s\n", zone_names[policy_zone]);
2458 #endif
2462 * Helper functions to size the waitqueue hash table.
2463 * Essentially these want to choose hash table sizes sufficiently
2464 * large so that collisions trying to wait on pages are rare.
2465 * But in fact, the number of active page waitqueues on typical
2466 * systems is ridiculously low, less than 200. So this is even
2467 * conservative, even though it seems large.
2469 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2470 * waitqueues, i.e. the size of the waitq table given the number of pages.
2472 #define PAGES_PER_WAITQUEUE 256
2474 #ifndef CONFIG_MEMORY_HOTPLUG
2475 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2477 unsigned long size = 1;
2479 pages /= PAGES_PER_WAITQUEUE;
2481 while (size < pages)
2482 size <<= 1;
2485 * Once we have dozens or even hundreds of threads sleeping
2486 * on IO we've got bigger problems than wait queue collision.
2487 * Limit the size of the wait table to a reasonable size.
2489 size = min(size, 4096UL);
2491 return max(size, 4UL);
2493 #else
2495 * A zone's size might be changed by hot-add, so it is not possible to determine
2496 * a suitable size for its wait_table. So we use the maximum size now.
2498 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2500 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2501 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2502 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2504 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2505 * or more by the traditional way. (See above). It equals:
2507 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2508 * ia64(16K page size) : = ( 8G + 4M)byte.
2509 * powerpc (64K page size) : = (32G +16M)byte.
2511 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2513 return 4096UL;
2515 #endif
2518 * This is an integer logarithm so that shifts can be used later
2519 * to extract the more random high bits from the multiplicative
2520 * hash function before the remainder is taken.
2522 static inline unsigned long wait_table_bits(unsigned long size)
2524 return ffz(~size);
2527 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2530 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2531 * of blocks reserved is based on zone->pages_min. The memory within the
2532 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2533 * higher will lead to a bigger reserve which will get freed as contiguous
2534 * blocks as reclaim kicks in
2536 static void setup_zone_migrate_reserve(struct zone *zone)
2538 unsigned long start_pfn, pfn, end_pfn;
2539 struct page *page;
2540 unsigned long reserve, block_migratetype;
2542 /* Get the start pfn, end pfn and the number of blocks to reserve */
2543 start_pfn = zone->zone_start_pfn;
2544 end_pfn = start_pfn + zone->spanned_pages;
2545 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2546 pageblock_order;
2548 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2549 if (!pfn_valid(pfn))
2550 continue;
2551 page = pfn_to_page(pfn);
2553 /* Watch out for overlapping nodes */
2554 if (page_to_nid(page) != zone_to_nid(zone))
2555 continue;
2557 /* Blocks with reserved pages will never free, skip them. */
2558 if (PageReserved(page))
2559 continue;
2561 block_migratetype = get_pageblock_migratetype(page);
2563 /* If this block is reserved, account for it */
2564 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2565 reserve--;
2566 continue;
2569 /* Suitable for reserving if this block is movable */
2570 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2571 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2572 move_freepages_block(zone, page, MIGRATE_RESERVE);
2573 reserve--;
2574 continue;
2578 * If the reserve is met and this is a previous reserved block,
2579 * take it back
2581 if (block_migratetype == MIGRATE_RESERVE) {
2582 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2583 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2589 * Initially all pages are reserved - free ones are freed
2590 * up by free_all_bootmem() once the early boot process is
2591 * done. Non-atomic initialization, single-pass.
2593 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2594 unsigned long start_pfn, enum memmap_context context)
2596 struct page *page;
2597 unsigned long end_pfn = start_pfn + size;
2598 unsigned long pfn;
2599 struct zone *z;
2601 z = &NODE_DATA(nid)->node_zones[zone];
2602 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2604 * There can be holes in boot-time mem_map[]s
2605 * handed to this function. They do not
2606 * exist on hotplugged memory.
2608 if (context == MEMMAP_EARLY) {
2609 if (!early_pfn_valid(pfn))
2610 continue;
2611 if (!early_pfn_in_nid(pfn, nid))
2612 continue;
2614 page = pfn_to_page(pfn);
2615 set_page_links(page, zone, nid, pfn);
2616 mminit_verify_page_links(page, zone, nid, pfn);
2617 init_page_count(page);
2618 reset_page_mapcount(page);
2619 SetPageReserved(page);
2621 * Mark the block movable so that blocks are reserved for
2622 * movable at startup. This will force kernel allocations
2623 * to reserve their blocks rather than leaking throughout
2624 * the address space during boot when many long-lived
2625 * kernel allocations are made. Later some blocks near
2626 * the start are marked MIGRATE_RESERVE by
2627 * setup_zone_migrate_reserve()
2629 * bitmap is created for zone's valid pfn range. but memmap
2630 * can be created for invalid pages (for alignment)
2631 * check here not to call set_pageblock_migratetype() against
2632 * pfn out of zone.
2634 if ((z->zone_start_pfn <= pfn)
2635 && (pfn < z->zone_start_pfn + z->spanned_pages)
2636 && !(pfn & (pageblock_nr_pages - 1)))
2637 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2639 INIT_LIST_HEAD(&page->lru);
2640 #ifdef WANT_PAGE_VIRTUAL
2641 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2642 if (!is_highmem_idx(zone))
2643 set_page_address(page, __va(pfn << PAGE_SHIFT));
2644 #endif
2648 static void __meminit zone_init_free_lists(struct zone *zone)
2650 int order, t;
2651 for_each_migratetype_order(order, t) {
2652 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2653 zone->free_area[order].nr_free = 0;
2657 #ifndef __HAVE_ARCH_MEMMAP_INIT
2658 #define memmap_init(size, nid, zone, start_pfn) \
2659 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2660 #endif
2662 static int zone_batchsize(struct zone *zone)
2664 int batch;
2667 * The per-cpu-pages pools are set to around 1000th of the
2668 * size of the zone. But no more than 1/2 of a meg.
2670 * OK, so we don't know how big the cache is. So guess.
2672 batch = zone->present_pages / 1024;
2673 if (batch * PAGE_SIZE > 512 * 1024)
2674 batch = (512 * 1024) / PAGE_SIZE;
2675 batch /= 4; /* We effectively *= 4 below */
2676 if (batch < 1)
2677 batch = 1;
2680 * Clamp the batch to a 2^n - 1 value. Having a power
2681 * of 2 value was found to be more likely to have
2682 * suboptimal cache aliasing properties in some cases.
2684 * For example if 2 tasks are alternately allocating
2685 * batches of pages, one task can end up with a lot
2686 * of pages of one half of the possible page colors
2687 * and the other with pages of the other colors.
2689 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2691 return batch;
2694 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2696 struct per_cpu_pages *pcp;
2698 memset(p, 0, sizeof(*p));
2700 pcp = &p->pcp;
2701 pcp->count = 0;
2702 pcp->high = 6 * batch;
2703 pcp->batch = max(1UL, 1 * batch);
2704 INIT_LIST_HEAD(&pcp->list);
2708 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2709 * to the value high for the pageset p.
2712 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2713 unsigned long high)
2715 struct per_cpu_pages *pcp;
2717 pcp = &p->pcp;
2718 pcp->high = high;
2719 pcp->batch = max(1UL, high/4);
2720 if ((high/4) > (PAGE_SHIFT * 8))
2721 pcp->batch = PAGE_SHIFT * 8;
2725 #ifdef CONFIG_NUMA
2727 * Boot pageset table. One per cpu which is going to be used for all
2728 * zones and all nodes. The parameters will be set in such a way
2729 * that an item put on a list will immediately be handed over to
2730 * the buddy list. This is safe since pageset manipulation is done
2731 * with interrupts disabled.
2733 * Some NUMA counter updates may also be caught by the boot pagesets.
2735 * The boot_pagesets must be kept even after bootup is complete for
2736 * unused processors and/or zones. They do play a role for bootstrapping
2737 * hotplugged processors.
2739 * zoneinfo_show() and maybe other functions do
2740 * not check if the processor is online before following the pageset pointer.
2741 * Other parts of the kernel may not check if the zone is available.
2743 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2746 * Dynamically allocate memory for the
2747 * per cpu pageset array in struct zone.
2749 static int __cpuinit process_zones(int cpu)
2751 struct zone *zone, *dzone;
2752 int node = cpu_to_node(cpu);
2754 node_set_state(node, N_CPU); /* this node has a cpu */
2756 for_each_zone(zone) {
2758 if (!populated_zone(zone))
2759 continue;
2761 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2762 GFP_KERNEL, node);
2763 if (!zone_pcp(zone, cpu))
2764 goto bad;
2766 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2768 if (percpu_pagelist_fraction)
2769 setup_pagelist_highmark(zone_pcp(zone, cpu),
2770 (zone->present_pages / percpu_pagelist_fraction));
2773 return 0;
2774 bad:
2775 for_each_zone(dzone) {
2776 if (!populated_zone(dzone))
2777 continue;
2778 if (dzone == zone)
2779 break;
2780 kfree(zone_pcp(dzone, cpu));
2781 zone_pcp(dzone, cpu) = NULL;
2783 return -ENOMEM;
2786 static inline void free_zone_pagesets(int cpu)
2788 struct zone *zone;
2790 for_each_zone(zone) {
2791 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2793 /* Free per_cpu_pageset if it is slab allocated */
2794 if (pset != &boot_pageset[cpu])
2795 kfree(pset);
2796 zone_pcp(zone, cpu) = NULL;
2800 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2801 unsigned long action,
2802 void *hcpu)
2804 int cpu = (long)hcpu;
2805 int ret = NOTIFY_OK;
2807 switch (action) {
2808 case CPU_UP_PREPARE:
2809 case CPU_UP_PREPARE_FROZEN:
2810 if (process_zones(cpu))
2811 ret = NOTIFY_BAD;
2812 break;
2813 case CPU_UP_CANCELED:
2814 case CPU_UP_CANCELED_FROZEN:
2815 case CPU_DEAD:
2816 case CPU_DEAD_FROZEN:
2817 free_zone_pagesets(cpu);
2818 break;
2819 default:
2820 break;
2822 return ret;
2825 static struct notifier_block __cpuinitdata pageset_notifier =
2826 { &pageset_cpuup_callback, NULL, 0 };
2828 void __init setup_per_cpu_pageset(void)
2830 int err;
2832 /* Initialize per_cpu_pageset for cpu 0.
2833 * A cpuup callback will do this for every cpu
2834 * as it comes online
2836 err = process_zones(smp_processor_id());
2837 BUG_ON(err);
2838 register_cpu_notifier(&pageset_notifier);
2841 #endif
2843 static noinline __init_refok
2844 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2846 int i;
2847 struct pglist_data *pgdat = zone->zone_pgdat;
2848 size_t alloc_size;
2851 * The per-page waitqueue mechanism uses hashed waitqueues
2852 * per zone.
2854 zone->wait_table_hash_nr_entries =
2855 wait_table_hash_nr_entries(zone_size_pages);
2856 zone->wait_table_bits =
2857 wait_table_bits(zone->wait_table_hash_nr_entries);
2858 alloc_size = zone->wait_table_hash_nr_entries
2859 * sizeof(wait_queue_head_t);
2861 if (!slab_is_available()) {
2862 zone->wait_table = (wait_queue_head_t *)
2863 alloc_bootmem_node(pgdat, alloc_size);
2864 } else {
2866 * This case means that a zone whose size was 0 gets new memory
2867 * via memory hot-add.
2868 * But it may be the case that a new node was hot-added. In
2869 * this case vmalloc() will not be able to use this new node's
2870 * memory - this wait_table must be initialized to use this new
2871 * node itself as well.
2872 * To use this new node's memory, further consideration will be
2873 * necessary.
2875 zone->wait_table = vmalloc(alloc_size);
2877 if (!zone->wait_table)
2878 return -ENOMEM;
2880 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2881 init_waitqueue_head(zone->wait_table + i);
2883 return 0;
2886 static __meminit void zone_pcp_init(struct zone *zone)
2888 int cpu;
2889 unsigned long batch = zone_batchsize(zone);
2891 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2892 #ifdef CONFIG_NUMA
2893 /* Early boot. Slab allocator not functional yet */
2894 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2895 setup_pageset(&boot_pageset[cpu],0);
2896 #else
2897 setup_pageset(zone_pcp(zone,cpu), batch);
2898 #endif
2900 if (zone->present_pages)
2901 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2902 zone->name, zone->present_pages, batch);
2905 __meminit int init_currently_empty_zone(struct zone *zone,
2906 unsigned long zone_start_pfn,
2907 unsigned long size,
2908 enum memmap_context context)
2910 struct pglist_data *pgdat = zone->zone_pgdat;
2911 int ret;
2912 ret = zone_wait_table_init(zone, size);
2913 if (ret)
2914 return ret;
2915 pgdat->nr_zones = zone_idx(zone) + 1;
2917 zone->zone_start_pfn = zone_start_pfn;
2919 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2920 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2921 pgdat->node_id,
2922 (unsigned long)zone_idx(zone),
2923 zone_start_pfn, (zone_start_pfn + size));
2925 zone_init_free_lists(zone);
2927 return 0;
2930 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2932 * Basic iterator support. Return the first range of PFNs for a node
2933 * Note: nid == MAX_NUMNODES returns first region regardless of node
2935 static int __meminit first_active_region_index_in_nid(int nid)
2937 int i;
2939 for (i = 0; i < nr_nodemap_entries; i++)
2940 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2941 return i;
2943 return -1;
2947 * Basic iterator support. Return the next active range of PFNs for a node
2948 * Note: nid == MAX_NUMNODES returns next region regardless of node
2950 static int __meminit next_active_region_index_in_nid(int index, int nid)
2952 for (index = index + 1; index < nr_nodemap_entries; index++)
2953 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2954 return index;
2956 return -1;
2959 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2961 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2962 * Architectures may implement their own version but if add_active_range()
2963 * was used and there are no special requirements, this is a convenient
2964 * alternative
2966 int __meminit early_pfn_to_nid(unsigned long pfn)
2968 int i;
2970 for (i = 0; i < nr_nodemap_entries; i++) {
2971 unsigned long start_pfn = early_node_map[i].start_pfn;
2972 unsigned long end_pfn = early_node_map[i].end_pfn;
2974 if (start_pfn <= pfn && pfn < end_pfn)
2975 return early_node_map[i].nid;
2978 return 0;
2980 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2982 /* Basic iterator support to walk early_node_map[] */
2983 #define for_each_active_range_index_in_nid(i, nid) \
2984 for (i = first_active_region_index_in_nid(nid); i != -1; \
2985 i = next_active_region_index_in_nid(i, nid))
2988 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2989 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2990 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2992 * If an architecture guarantees that all ranges registered with
2993 * add_active_ranges() contain no holes and may be freed, this
2994 * this function may be used instead of calling free_bootmem() manually.
2996 void __init free_bootmem_with_active_regions(int nid,
2997 unsigned long max_low_pfn)
2999 int i;
3001 for_each_active_range_index_in_nid(i, nid) {
3002 unsigned long size_pages = 0;
3003 unsigned long end_pfn = early_node_map[i].end_pfn;
3005 if (early_node_map[i].start_pfn >= max_low_pfn)
3006 continue;
3008 if (end_pfn > max_low_pfn)
3009 end_pfn = max_low_pfn;
3011 size_pages = end_pfn - early_node_map[i].start_pfn;
3012 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3013 PFN_PHYS(early_node_map[i].start_pfn),
3014 size_pages << PAGE_SHIFT);
3018 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3020 int i;
3021 int ret;
3023 for_each_active_range_index_in_nid(i, nid) {
3024 ret = work_fn(early_node_map[i].start_pfn,
3025 early_node_map[i].end_pfn, data);
3026 if (ret)
3027 break;
3031 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3032 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3034 * If an architecture guarantees that all ranges registered with
3035 * add_active_ranges() contain no holes and may be freed, this
3036 * function may be used instead of calling memory_present() manually.
3038 void __init sparse_memory_present_with_active_regions(int nid)
3040 int i;
3042 for_each_active_range_index_in_nid(i, nid)
3043 memory_present(early_node_map[i].nid,
3044 early_node_map[i].start_pfn,
3045 early_node_map[i].end_pfn);
3049 * push_node_boundaries - Push node boundaries to at least the requested boundary
3050 * @nid: The nid of the node to push the boundary for
3051 * @start_pfn: The start pfn of the node
3052 * @end_pfn: The end pfn of the node
3054 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3055 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3056 * be hotplugged even though no physical memory exists. This function allows
3057 * an arch to push out the node boundaries so mem_map is allocated that can
3058 * be used later.
3060 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3061 void __init push_node_boundaries(unsigned int nid,
3062 unsigned long start_pfn, unsigned long end_pfn)
3064 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3065 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3066 nid, start_pfn, end_pfn);
3068 /* Initialise the boundary for this node if necessary */
3069 if (node_boundary_end_pfn[nid] == 0)
3070 node_boundary_start_pfn[nid] = -1UL;
3072 /* Update the boundaries */
3073 if (node_boundary_start_pfn[nid] > start_pfn)
3074 node_boundary_start_pfn[nid] = start_pfn;
3075 if (node_boundary_end_pfn[nid] < end_pfn)
3076 node_boundary_end_pfn[nid] = end_pfn;
3079 /* If necessary, push the node boundary out for reserve hotadd */
3080 static void __meminit account_node_boundary(unsigned int nid,
3081 unsigned long *start_pfn, unsigned long *end_pfn)
3083 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3084 "Entering account_node_boundary(%u, %lu, %lu)\n",
3085 nid, *start_pfn, *end_pfn);
3087 /* Return if boundary information has not been provided */
3088 if (node_boundary_end_pfn[nid] == 0)
3089 return;
3091 /* Check the boundaries and update if necessary */
3092 if (node_boundary_start_pfn[nid] < *start_pfn)
3093 *start_pfn = node_boundary_start_pfn[nid];
3094 if (node_boundary_end_pfn[nid] > *end_pfn)
3095 *end_pfn = node_boundary_end_pfn[nid];
3097 #else
3098 void __init push_node_boundaries(unsigned int nid,
3099 unsigned long start_pfn, unsigned long end_pfn) {}
3101 static void __meminit account_node_boundary(unsigned int nid,
3102 unsigned long *start_pfn, unsigned long *end_pfn) {}
3103 #endif
3107 * get_pfn_range_for_nid - Return the start and end page frames for a node
3108 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3109 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3110 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3112 * It returns the start and end page frame of a node based on information
3113 * provided by an arch calling add_active_range(). If called for a node
3114 * with no available memory, a warning is printed and the start and end
3115 * PFNs will be 0.
3117 void __meminit get_pfn_range_for_nid(unsigned int nid,
3118 unsigned long *start_pfn, unsigned long *end_pfn)
3120 int i;
3121 *start_pfn = -1UL;
3122 *end_pfn = 0;
3124 for_each_active_range_index_in_nid(i, nid) {
3125 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3126 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3129 if (*start_pfn == -1UL)
3130 *start_pfn = 0;
3132 /* Push the node boundaries out if requested */
3133 account_node_boundary(nid, start_pfn, end_pfn);
3137 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3138 * assumption is made that zones within a node are ordered in monotonic
3139 * increasing memory addresses so that the "highest" populated zone is used
3141 static void __init find_usable_zone_for_movable(void)
3143 int zone_index;
3144 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3145 if (zone_index == ZONE_MOVABLE)
3146 continue;
3148 if (arch_zone_highest_possible_pfn[zone_index] >
3149 arch_zone_lowest_possible_pfn[zone_index])
3150 break;
3153 VM_BUG_ON(zone_index == -1);
3154 movable_zone = zone_index;
3158 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3159 * because it is sized independant of architecture. Unlike the other zones,
3160 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3161 * in each node depending on the size of each node and how evenly kernelcore
3162 * is distributed. This helper function adjusts the zone ranges
3163 * provided by the architecture for a given node by using the end of the
3164 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3165 * zones within a node are in order of monotonic increases memory addresses
3167 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3168 unsigned long zone_type,
3169 unsigned long node_start_pfn,
3170 unsigned long node_end_pfn,
3171 unsigned long *zone_start_pfn,
3172 unsigned long *zone_end_pfn)
3174 /* Only adjust if ZONE_MOVABLE is on this node */
3175 if (zone_movable_pfn[nid]) {
3176 /* Size ZONE_MOVABLE */
3177 if (zone_type == ZONE_MOVABLE) {
3178 *zone_start_pfn = zone_movable_pfn[nid];
3179 *zone_end_pfn = min(node_end_pfn,
3180 arch_zone_highest_possible_pfn[movable_zone]);
3182 /* Adjust for ZONE_MOVABLE starting within this range */
3183 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3184 *zone_end_pfn > zone_movable_pfn[nid]) {
3185 *zone_end_pfn = zone_movable_pfn[nid];
3187 /* Check if this whole range is within ZONE_MOVABLE */
3188 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3189 *zone_start_pfn = *zone_end_pfn;
3194 * Return the number of pages a zone spans in a node, including holes
3195 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3197 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3198 unsigned long zone_type,
3199 unsigned long *ignored)
3201 unsigned long node_start_pfn, node_end_pfn;
3202 unsigned long zone_start_pfn, zone_end_pfn;
3204 /* Get the start and end of the node and zone */
3205 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3206 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3207 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3208 adjust_zone_range_for_zone_movable(nid, zone_type,
3209 node_start_pfn, node_end_pfn,
3210 &zone_start_pfn, &zone_end_pfn);
3212 /* Check that this node has pages within the zone's required range */
3213 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3214 return 0;
3216 /* Move the zone boundaries inside the node if necessary */
3217 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3218 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3220 /* Return the spanned pages */
3221 return zone_end_pfn - zone_start_pfn;
3225 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3226 * then all holes in the requested range will be accounted for.
3228 static unsigned long __meminit __absent_pages_in_range(int nid,
3229 unsigned long range_start_pfn,
3230 unsigned long range_end_pfn)
3232 int i = 0;
3233 unsigned long prev_end_pfn = 0, hole_pages = 0;
3234 unsigned long start_pfn;
3236 /* Find the end_pfn of the first active range of pfns in the node */
3237 i = first_active_region_index_in_nid(nid);
3238 if (i == -1)
3239 return 0;
3241 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3243 /* Account for ranges before physical memory on this node */
3244 if (early_node_map[i].start_pfn > range_start_pfn)
3245 hole_pages = prev_end_pfn - range_start_pfn;
3247 /* Find all holes for the zone within the node */
3248 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3250 /* No need to continue if prev_end_pfn is outside the zone */
3251 if (prev_end_pfn >= range_end_pfn)
3252 break;
3254 /* Make sure the end of the zone is not within the hole */
3255 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3256 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3258 /* Update the hole size cound and move on */
3259 if (start_pfn > range_start_pfn) {
3260 BUG_ON(prev_end_pfn > start_pfn);
3261 hole_pages += start_pfn - prev_end_pfn;
3263 prev_end_pfn = early_node_map[i].end_pfn;
3266 /* Account for ranges past physical memory on this node */
3267 if (range_end_pfn > prev_end_pfn)
3268 hole_pages += range_end_pfn -
3269 max(range_start_pfn, prev_end_pfn);
3271 return hole_pages;
3275 * absent_pages_in_range - Return number of page frames in holes within a range
3276 * @start_pfn: The start PFN to start searching for holes
3277 * @end_pfn: The end PFN to stop searching for holes
3279 * It returns the number of pages frames in memory holes within a range.
3281 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3282 unsigned long end_pfn)
3284 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3287 /* Return the number of page frames in holes in a zone on a node */
3288 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3289 unsigned long zone_type,
3290 unsigned long *ignored)
3292 unsigned long node_start_pfn, node_end_pfn;
3293 unsigned long zone_start_pfn, zone_end_pfn;
3295 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3296 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3297 node_start_pfn);
3298 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3299 node_end_pfn);
3301 adjust_zone_range_for_zone_movable(nid, zone_type,
3302 node_start_pfn, node_end_pfn,
3303 &zone_start_pfn, &zone_end_pfn);
3304 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3307 #else
3308 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3309 unsigned long zone_type,
3310 unsigned long *zones_size)
3312 return zones_size[zone_type];
3315 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3316 unsigned long zone_type,
3317 unsigned long *zholes_size)
3319 if (!zholes_size)
3320 return 0;
3322 return zholes_size[zone_type];
3325 #endif
3327 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3328 unsigned long *zones_size, unsigned long *zholes_size)
3330 unsigned long realtotalpages, totalpages = 0;
3331 enum zone_type i;
3333 for (i = 0; i < MAX_NR_ZONES; i++)
3334 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3335 zones_size);
3336 pgdat->node_spanned_pages = totalpages;
3338 realtotalpages = totalpages;
3339 for (i = 0; i < MAX_NR_ZONES; i++)
3340 realtotalpages -=
3341 zone_absent_pages_in_node(pgdat->node_id, i,
3342 zholes_size);
3343 pgdat->node_present_pages = realtotalpages;
3344 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3345 realtotalpages);
3348 #ifndef CONFIG_SPARSEMEM
3350 * Calculate the size of the zone->blockflags rounded to an unsigned long
3351 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3352 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3353 * round what is now in bits to nearest long in bits, then return it in
3354 * bytes.
3356 static unsigned long __init usemap_size(unsigned long zonesize)
3358 unsigned long usemapsize;
3360 usemapsize = roundup(zonesize, pageblock_nr_pages);
3361 usemapsize = usemapsize >> pageblock_order;
3362 usemapsize *= NR_PAGEBLOCK_BITS;
3363 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3365 return usemapsize / 8;
3368 static void __init setup_usemap(struct pglist_data *pgdat,
3369 struct zone *zone, unsigned long zonesize)
3371 unsigned long usemapsize = usemap_size(zonesize);
3372 zone->pageblock_flags = NULL;
3373 if (usemapsize) {
3374 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3375 memset(zone->pageblock_flags, 0, usemapsize);
3378 #else
3379 static void inline setup_usemap(struct pglist_data *pgdat,
3380 struct zone *zone, unsigned long zonesize) {}
3381 #endif /* CONFIG_SPARSEMEM */
3383 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3385 /* Return a sensible default order for the pageblock size. */
3386 static inline int pageblock_default_order(void)
3388 if (HPAGE_SHIFT > PAGE_SHIFT)
3389 return HUGETLB_PAGE_ORDER;
3391 return MAX_ORDER-1;
3394 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3395 static inline void __init set_pageblock_order(unsigned int order)
3397 /* Check that pageblock_nr_pages has not already been setup */
3398 if (pageblock_order)
3399 return;
3402 * Assume the largest contiguous order of interest is a huge page.
3403 * This value may be variable depending on boot parameters on IA64
3405 pageblock_order = order;
3407 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3410 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3411 * and pageblock_default_order() are unused as pageblock_order is set
3412 * at compile-time. See include/linux/pageblock-flags.h for the values of
3413 * pageblock_order based on the kernel config
3415 static inline int pageblock_default_order(unsigned int order)
3417 return MAX_ORDER-1;
3419 #define set_pageblock_order(x) do {} while (0)
3421 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3424 * Set up the zone data structures:
3425 * - mark all pages reserved
3426 * - mark all memory queues empty
3427 * - clear the memory bitmaps
3429 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3430 unsigned long *zones_size, unsigned long *zholes_size)
3432 enum zone_type j;
3433 int nid = pgdat->node_id;
3434 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3435 int ret;
3437 pgdat_resize_init(pgdat);
3438 pgdat->nr_zones = 0;
3439 init_waitqueue_head(&pgdat->kswapd_wait);
3440 pgdat->kswapd_max_order = 0;
3442 for (j = 0; j < MAX_NR_ZONES; j++) {
3443 struct zone *zone = pgdat->node_zones + j;
3444 unsigned long size, realsize, memmap_pages;
3445 enum lru_list l;
3447 size = zone_spanned_pages_in_node(nid, j, zones_size);
3448 realsize = size - zone_absent_pages_in_node(nid, j,
3449 zholes_size);
3452 * Adjust realsize so that it accounts for how much memory
3453 * is used by this zone for memmap. This affects the watermark
3454 * and per-cpu initialisations
3456 memmap_pages =
3457 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3458 if (realsize >= memmap_pages) {
3459 realsize -= memmap_pages;
3460 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3461 "%s zone: %lu pages used for memmap\n",
3462 zone_names[j], memmap_pages);
3463 } else
3464 printk(KERN_WARNING
3465 " %s zone: %lu pages exceeds realsize %lu\n",
3466 zone_names[j], memmap_pages, realsize);
3468 /* Account for reserved pages */
3469 if (j == 0 && realsize > dma_reserve) {
3470 realsize -= dma_reserve;
3471 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3472 "%s zone: %lu pages reserved\n",
3473 zone_names[0], dma_reserve);
3476 if (!is_highmem_idx(j))
3477 nr_kernel_pages += realsize;
3478 nr_all_pages += realsize;
3480 zone->spanned_pages = size;
3481 zone->present_pages = realsize;
3482 #ifdef CONFIG_NUMA
3483 zone->node = nid;
3484 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3485 / 100;
3486 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3487 #endif
3488 zone->name = zone_names[j];
3489 spin_lock_init(&zone->lock);
3490 spin_lock_init(&zone->lru_lock);
3491 zone_seqlock_init(zone);
3492 zone->zone_pgdat = pgdat;
3494 zone->prev_priority = DEF_PRIORITY;
3496 zone_pcp_init(zone);
3497 for_each_lru(l) {
3498 INIT_LIST_HEAD(&zone->lru[l].list);
3499 zone->lru[l].nr_scan = 0;
3501 zone->recent_rotated[0] = 0;
3502 zone->recent_rotated[1] = 0;
3503 zone->recent_scanned[0] = 0;
3504 zone->recent_scanned[1] = 0;
3505 zap_zone_vm_stats(zone);
3506 zone->flags = 0;
3507 if (!size)
3508 continue;
3510 set_pageblock_order(pageblock_default_order());
3511 setup_usemap(pgdat, zone, size);
3512 ret = init_currently_empty_zone(zone, zone_start_pfn,
3513 size, MEMMAP_EARLY);
3514 BUG_ON(ret);
3515 memmap_init(size, nid, j, zone_start_pfn);
3516 zone_start_pfn += size;
3520 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3522 /* Skip empty nodes */
3523 if (!pgdat->node_spanned_pages)
3524 return;
3526 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3527 /* ia64 gets its own node_mem_map, before this, without bootmem */
3528 if (!pgdat->node_mem_map) {
3529 unsigned long size, start, end;
3530 struct page *map;
3533 * The zone's endpoints aren't required to be MAX_ORDER
3534 * aligned but the node_mem_map endpoints must be in order
3535 * for the buddy allocator to function correctly.
3537 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3538 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3539 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3540 size = (end - start) * sizeof(struct page);
3541 map = alloc_remap(pgdat->node_id, size);
3542 if (!map)
3543 map = alloc_bootmem_node(pgdat, size);
3544 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3546 #ifndef CONFIG_NEED_MULTIPLE_NODES
3548 * With no DISCONTIG, the global mem_map is just set as node 0's
3550 if (pgdat == NODE_DATA(0)) {
3551 mem_map = NODE_DATA(0)->node_mem_map;
3552 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3553 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3554 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3555 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3557 #endif
3558 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3561 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3562 unsigned long node_start_pfn, unsigned long *zholes_size)
3564 pg_data_t *pgdat = NODE_DATA(nid);
3566 pgdat->node_id = nid;
3567 pgdat->node_start_pfn = node_start_pfn;
3568 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3570 alloc_node_mem_map(pgdat);
3571 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3572 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3573 nid, (unsigned long)pgdat,
3574 (unsigned long)pgdat->node_mem_map);
3575 #endif
3577 free_area_init_core(pgdat, zones_size, zholes_size);
3580 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3582 #if MAX_NUMNODES > 1
3584 * Figure out the number of possible node ids.
3586 static void __init setup_nr_node_ids(void)
3588 unsigned int node;
3589 unsigned int highest = 0;
3591 for_each_node_mask(node, node_possible_map)
3592 highest = node;
3593 nr_node_ids = highest + 1;
3595 #else
3596 static inline void setup_nr_node_ids(void)
3599 #endif
3602 * add_active_range - Register a range of PFNs backed by physical memory
3603 * @nid: The node ID the range resides on
3604 * @start_pfn: The start PFN of the available physical memory
3605 * @end_pfn: The end PFN of the available physical memory
3607 * These ranges are stored in an early_node_map[] and later used by
3608 * free_area_init_nodes() to calculate zone sizes and holes. If the
3609 * range spans a memory hole, it is up to the architecture to ensure
3610 * the memory is not freed by the bootmem allocator. If possible
3611 * the range being registered will be merged with existing ranges.
3613 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3614 unsigned long end_pfn)
3616 int i;
3618 mminit_dprintk(MMINIT_TRACE, "memory_register",
3619 "Entering add_active_range(%d, %#lx, %#lx) "
3620 "%d entries of %d used\n",
3621 nid, start_pfn, end_pfn,
3622 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3624 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3626 /* Merge with existing active regions if possible */
3627 for (i = 0; i < nr_nodemap_entries; i++) {
3628 if (early_node_map[i].nid != nid)
3629 continue;
3631 /* Skip if an existing region covers this new one */
3632 if (start_pfn >= early_node_map[i].start_pfn &&
3633 end_pfn <= early_node_map[i].end_pfn)
3634 return;
3636 /* Merge forward if suitable */
3637 if (start_pfn <= early_node_map[i].end_pfn &&
3638 end_pfn > early_node_map[i].end_pfn) {
3639 early_node_map[i].end_pfn = end_pfn;
3640 return;
3643 /* Merge backward if suitable */
3644 if (start_pfn < early_node_map[i].end_pfn &&
3645 end_pfn >= early_node_map[i].start_pfn) {
3646 early_node_map[i].start_pfn = start_pfn;
3647 return;
3651 /* Check that early_node_map is large enough */
3652 if (i >= MAX_ACTIVE_REGIONS) {
3653 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3654 MAX_ACTIVE_REGIONS);
3655 return;
3658 early_node_map[i].nid = nid;
3659 early_node_map[i].start_pfn = start_pfn;
3660 early_node_map[i].end_pfn = end_pfn;
3661 nr_nodemap_entries = i + 1;
3665 * remove_active_range - Shrink an existing registered range of PFNs
3666 * @nid: The node id the range is on that should be shrunk
3667 * @start_pfn: The new PFN of the range
3668 * @end_pfn: The new PFN of the range
3670 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3671 * The map is kept near the end physical page range that has already been
3672 * registered. This function allows an arch to shrink an existing registered
3673 * range.
3675 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3676 unsigned long end_pfn)
3678 int i, j;
3679 int removed = 0;
3681 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3682 nid, start_pfn, end_pfn);
3684 /* Find the old active region end and shrink */
3685 for_each_active_range_index_in_nid(i, nid) {
3686 if (early_node_map[i].start_pfn >= start_pfn &&
3687 early_node_map[i].end_pfn <= end_pfn) {
3688 /* clear it */
3689 early_node_map[i].start_pfn = 0;
3690 early_node_map[i].end_pfn = 0;
3691 removed = 1;
3692 continue;
3694 if (early_node_map[i].start_pfn < start_pfn &&
3695 early_node_map[i].end_pfn > start_pfn) {
3696 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3697 early_node_map[i].end_pfn = start_pfn;
3698 if (temp_end_pfn > end_pfn)
3699 add_active_range(nid, end_pfn, temp_end_pfn);
3700 continue;
3702 if (early_node_map[i].start_pfn >= start_pfn &&
3703 early_node_map[i].end_pfn > end_pfn &&
3704 early_node_map[i].start_pfn < end_pfn) {
3705 early_node_map[i].start_pfn = end_pfn;
3706 continue;
3710 if (!removed)
3711 return;
3713 /* remove the blank ones */
3714 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3715 if (early_node_map[i].nid != nid)
3716 continue;
3717 if (early_node_map[i].end_pfn)
3718 continue;
3719 /* we found it, get rid of it */
3720 for (j = i; j < nr_nodemap_entries - 1; j++)
3721 memcpy(&early_node_map[j], &early_node_map[j+1],
3722 sizeof(early_node_map[j]));
3723 j = nr_nodemap_entries - 1;
3724 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3725 nr_nodemap_entries--;
3730 * remove_all_active_ranges - Remove all currently registered regions
3732 * During discovery, it may be found that a table like SRAT is invalid
3733 * and an alternative discovery method must be used. This function removes
3734 * all currently registered regions.
3736 void __init remove_all_active_ranges(void)
3738 memset(early_node_map, 0, sizeof(early_node_map));
3739 nr_nodemap_entries = 0;
3740 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3741 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3742 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3743 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3746 /* Compare two active node_active_regions */
3747 static int __init cmp_node_active_region(const void *a, const void *b)
3749 struct node_active_region *arange = (struct node_active_region *)a;
3750 struct node_active_region *brange = (struct node_active_region *)b;
3752 /* Done this way to avoid overflows */
3753 if (arange->start_pfn > brange->start_pfn)
3754 return 1;
3755 if (arange->start_pfn < brange->start_pfn)
3756 return -1;
3758 return 0;
3761 /* sort the node_map by start_pfn */
3762 static void __init sort_node_map(void)
3764 sort(early_node_map, (size_t)nr_nodemap_entries,
3765 sizeof(struct node_active_region),
3766 cmp_node_active_region, NULL);
3769 /* Find the lowest pfn for a node */
3770 static unsigned long __init find_min_pfn_for_node(int nid)
3772 int i;
3773 unsigned long min_pfn = ULONG_MAX;
3775 /* Assuming a sorted map, the first range found has the starting pfn */
3776 for_each_active_range_index_in_nid(i, nid)
3777 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3779 if (min_pfn == ULONG_MAX) {
3780 printk(KERN_WARNING
3781 "Could not find start_pfn for node %d\n", nid);
3782 return 0;
3785 return min_pfn;
3789 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3791 * It returns the minimum PFN based on information provided via
3792 * add_active_range().
3794 unsigned long __init find_min_pfn_with_active_regions(void)
3796 return find_min_pfn_for_node(MAX_NUMNODES);
3800 * early_calculate_totalpages()
3801 * Sum pages in active regions for movable zone.
3802 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3804 static unsigned long __init early_calculate_totalpages(void)
3806 int i;
3807 unsigned long totalpages = 0;
3809 for (i = 0; i < nr_nodemap_entries; i++) {
3810 unsigned long pages = early_node_map[i].end_pfn -
3811 early_node_map[i].start_pfn;
3812 totalpages += pages;
3813 if (pages)
3814 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3816 return totalpages;
3820 * Find the PFN the Movable zone begins in each node. Kernel memory
3821 * is spread evenly between nodes as long as the nodes have enough
3822 * memory. When they don't, some nodes will have more kernelcore than
3823 * others
3825 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3827 int i, nid;
3828 unsigned long usable_startpfn;
3829 unsigned long kernelcore_node, kernelcore_remaining;
3830 unsigned long totalpages = early_calculate_totalpages();
3831 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3834 * If movablecore was specified, calculate what size of
3835 * kernelcore that corresponds so that memory usable for
3836 * any allocation type is evenly spread. If both kernelcore
3837 * and movablecore are specified, then the value of kernelcore
3838 * will be used for required_kernelcore if it's greater than
3839 * what movablecore would have allowed.
3841 if (required_movablecore) {
3842 unsigned long corepages;
3845 * Round-up so that ZONE_MOVABLE is at least as large as what
3846 * was requested by the user
3848 required_movablecore =
3849 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3850 corepages = totalpages - required_movablecore;
3852 required_kernelcore = max(required_kernelcore, corepages);
3855 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3856 if (!required_kernelcore)
3857 return;
3859 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3860 find_usable_zone_for_movable();
3861 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3863 restart:
3864 /* Spread kernelcore memory as evenly as possible throughout nodes */
3865 kernelcore_node = required_kernelcore / usable_nodes;
3866 for_each_node_state(nid, N_HIGH_MEMORY) {
3868 * Recalculate kernelcore_node if the division per node
3869 * now exceeds what is necessary to satisfy the requested
3870 * amount of memory for the kernel
3872 if (required_kernelcore < kernelcore_node)
3873 kernelcore_node = required_kernelcore / usable_nodes;
3876 * As the map is walked, we track how much memory is usable
3877 * by the kernel using kernelcore_remaining. When it is
3878 * 0, the rest of the node is usable by ZONE_MOVABLE
3880 kernelcore_remaining = kernelcore_node;
3882 /* Go through each range of PFNs within this node */
3883 for_each_active_range_index_in_nid(i, nid) {
3884 unsigned long start_pfn, end_pfn;
3885 unsigned long size_pages;
3887 start_pfn = max(early_node_map[i].start_pfn,
3888 zone_movable_pfn[nid]);
3889 end_pfn = early_node_map[i].end_pfn;
3890 if (start_pfn >= end_pfn)
3891 continue;
3893 /* Account for what is only usable for kernelcore */
3894 if (start_pfn < usable_startpfn) {
3895 unsigned long kernel_pages;
3896 kernel_pages = min(end_pfn, usable_startpfn)
3897 - start_pfn;
3899 kernelcore_remaining -= min(kernel_pages,
3900 kernelcore_remaining);
3901 required_kernelcore -= min(kernel_pages,
3902 required_kernelcore);
3904 /* Continue if range is now fully accounted */
3905 if (end_pfn <= usable_startpfn) {
3908 * Push zone_movable_pfn to the end so
3909 * that if we have to rebalance
3910 * kernelcore across nodes, we will
3911 * not double account here
3913 zone_movable_pfn[nid] = end_pfn;
3914 continue;
3916 start_pfn = usable_startpfn;
3920 * The usable PFN range for ZONE_MOVABLE is from
3921 * start_pfn->end_pfn. Calculate size_pages as the
3922 * number of pages used as kernelcore
3924 size_pages = end_pfn - start_pfn;
3925 if (size_pages > kernelcore_remaining)
3926 size_pages = kernelcore_remaining;
3927 zone_movable_pfn[nid] = start_pfn + size_pages;
3930 * Some kernelcore has been met, update counts and
3931 * break if the kernelcore for this node has been
3932 * satisified
3934 required_kernelcore -= min(required_kernelcore,
3935 size_pages);
3936 kernelcore_remaining -= size_pages;
3937 if (!kernelcore_remaining)
3938 break;
3943 * If there is still required_kernelcore, we do another pass with one
3944 * less node in the count. This will push zone_movable_pfn[nid] further
3945 * along on the nodes that still have memory until kernelcore is
3946 * satisified
3948 usable_nodes--;
3949 if (usable_nodes && required_kernelcore > usable_nodes)
3950 goto restart;
3952 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3953 for (nid = 0; nid < MAX_NUMNODES; nid++)
3954 zone_movable_pfn[nid] =
3955 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3958 /* Any regular memory on that node ? */
3959 static void check_for_regular_memory(pg_data_t *pgdat)
3961 #ifdef CONFIG_HIGHMEM
3962 enum zone_type zone_type;
3964 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3965 struct zone *zone = &pgdat->node_zones[zone_type];
3966 if (zone->present_pages)
3967 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3969 #endif
3973 * free_area_init_nodes - Initialise all pg_data_t and zone data
3974 * @max_zone_pfn: an array of max PFNs for each zone
3976 * This will call free_area_init_node() for each active node in the system.
3977 * Using the page ranges provided by add_active_range(), the size of each
3978 * zone in each node and their holes is calculated. If the maximum PFN
3979 * between two adjacent zones match, it is assumed that the zone is empty.
3980 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3981 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3982 * starts where the previous one ended. For example, ZONE_DMA32 starts
3983 * at arch_max_dma_pfn.
3985 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3987 unsigned long nid;
3988 int i;
3990 /* Sort early_node_map as initialisation assumes it is sorted */
3991 sort_node_map();
3993 /* Record where the zone boundaries are */
3994 memset(arch_zone_lowest_possible_pfn, 0,
3995 sizeof(arch_zone_lowest_possible_pfn));
3996 memset(arch_zone_highest_possible_pfn, 0,
3997 sizeof(arch_zone_highest_possible_pfn));
3998 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3999 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4000 for (i = 1; i < MAX_NR_ZONES; i++) {
4001 if (i == ZONE_MOVABLE)
4002 continue;
4003 arch_zone_lowest_possible_pfn[i] =
4004 arch_zone_highest_possible_pfn[i-1];
4005 arch_zone_highest_possible_pfn[i] =
4006 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4008 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4009 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4011 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4012 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4013 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4015 /* Print out the zone ranges */
4016 printk("Zone PFN ranges:\n");
4017 for (i = 0; i < MAX_NR_ZONES; i++) {
4018 if (i == ZONE_MOVABLE)
4019 continue;
4020 printk(" %-8s %0#10lx -> %0#10lx\n",
4021 zone_names[i],
4022 arch_zone_lowest_possible_pfn[i],
4023 arch_zone_highest_possible_pfn[i]);
4026 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4027 printk("Movable zone start PFN for each node\n");
4028 for (i = 0; i < MAX_NUMNODES; i++) {
4029 if (zone_movable_pfn[i])
4030 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4033 /* Print out the early_node_map[] */
4034 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4035 for (i = 0; i < nr_nodemap_entries; i++)
4036 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4037 early_node_map[i].start_pfn,
4038 early_node_map[i].end_pfn);
4040 /* Initialise every node */
4041 mminit_verify_pageflags_layout();
4042 setup_nr_node_ids();
4043 for_each_online_node(nid) {
4044 pg_data_t *pgdat = NODE_DATA(nid);
4045 free_area_init_node(nid, NULL,
4046 find_min_pfn_for_node(nid), NULL);
4048 /* Any memory on that node */
4049 if (pgdat->node_present_pages)
4050 node_set_state(nid, N_HIGH_MEMORY);
4051 check_for_regular_memory(pgdat);
4055 static int __init cmdline_parse_core(char *p, unsigned long *core)
4057 unsigned long long coremem;
4058 if (!p)
4059 return -EINVAL;
4061 coremem = memparse(p, &p);
4062 *core = coremem >> PAGE_SHIFT;
4064 /* Paranoid check that UL is enough for the coremem value */
4065 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4067 return 0;
4071 * kernelcore=size sets the amount of memory for use for allocations that
4072 * cannot be reclaimed or migrated.
4074 static int __init cmdline_parse_kernelcore(char *p)
4076 return cmdline_parse_core(p, &required_kernelcore);
4080 * movablecore=size sets the amount of memory for use for allocations that
4081 * can be reclaimed or migrated.
4083 static int __init cmdline_parse_movablecore(char *p)
4085 return cmdline_parse_core(p, &required_movablecore);
4088 early_param("kernelcore", cmdline_parse_kernelcore);
4089 early_param("movablecore", cmdline_parse_movablecore);
4091 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4094 * set_dma_reserve - set the specified number of pages reserved in the first zone
4095 * @new_dma_reserve: The number of pages to mark reserved
4097 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4098 * In the DMA zone, a significant percentage may be consumed by kernel image
4099 * and other unfreeable allocations which can skew the watermarks badly. This
4100 * function may optionally be used to account for unfreeable pages in the
4101 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4102 * smaller per-cpu batchsize.
4104 void __init set_dma_reserve(unsigned long new_dma_reserve)
4106 dma_reserve = new_dma_reserve;
4109 #ifndef CONFIG_NEED_MULTIPLE_NODES
4110 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4111 EXPORT_SYMBOL(contig_page_data);
4112 #endif
4114 void __init free_area_init(unsigned long *zones_size)
4116 free_area_init_node(0, zones_size,
4117 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4120 static int page_alloc_cpu_notify(struct notifier_block *self,
4121 unsigned long action, void *hcpu)
4123 int cpu = (unsigned long)hcpu;
4125 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4126 drain_pages(cpu);
4129 * Spill the event counters of the dead processor
4130 * into the current processors event counters.
4131 * This artificially elevates the count of the current
4132 * processor.
4134 vm_events_fold_cpu(cpu);
4137 * Zero the differential counters of the dead processor
4138 * so that the vm statistics are consistent.
4140 * This is only okay since the processor is dead and cannot
4141 * race with what we are doing.
4143 refresh_cpu_vm_stats(cpu);
4145 return NOTIFY_OK;
4148 void __init page_alloc_init(void)
4150 hotcpu_notifier(page_alloc_cpu_notify, 0);
4154 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4155 * or min_free_kbytes changes.
4157 static void calculate_totalreserve_pages(void)
4159 struct pglist_data *pgdat;
4160 unsigned long reserve_pages = 0;
4161 enum zone_type i, j;
4163 for_each_online_pgdat(pgdat) {
4164 for (i = 0; i < MAX_NR_ZONES; i++) {
4165 struct zone *zone = pgdat->node_zones + i;
4166 unsigned long max = 0;
4168 /* Find valid and maximum lowmem_reserve in the zone */
4169 for (j = i; j < MAX_NR_ZONES; j++) {
4170 if (zone->lowmem_reserve[j] > max)
4171 max = zone->lowmem_reserve[j];
4174 /* we treat pages_high as reserved pages. */
4175 max += zone->pages_high;
4177 if (max > zone->present_pages)
4178 max = zone->present_pages;
4179 reserve_pages += max;
4182 totalreserve_pages = reserve_pages;
4186 * setup_per_zone_lowmem_reserve - called whenever
4187 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4188 * has a correct pages reserved value, so an adequate number of
4189 * pages are left in the zone after a successful __alloc_pages().
4191 static void setup_per_zone_lowmem_reserve(void)
4193 struct pglist_data *pgdat;
4194 enum zone_type j, idx;
4196 for_each_online_pgdat(pgdat) {
4197 for (j = 0; j < MAX_NR_ZONES; j++) {
4198 struct zone *zone = pgdat->node_zones + j;
4199 unsigned long present_pages = zone->present_pages;
4201 zone->lowmem_reserve[j] = 0;
4203 idx = j;
4204 while (idx) {
4205 struct zone *lower_zone;
4207 idx--;
4209 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4210 sysctl_lowmem_reserve_ratio[idx] = 1;
4212 lower_zone = pgdat->node_zones + idx;
4213 lower_zone->lowmem_reserve[j] = present_pages /
4214 sysctl_lowmem_reserve_ratio[idx];
4215 present_pages += lower_zone->present_pages;
4220 /* update totalreserve_pages */
4221 calculate_totalreserve_pages();
4225 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4227 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4228 * with respect to min_free_kbytes.
4230 void setup_per_zone_pages_min(void)
4232 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4233 unsigned long lowmem_pages = 0;
4234 struct zone *zone;
4235 unsigned long flags;
4237 /* Calculate total number of !ZONE_HIGHMEM pages */
4238 for_each_zone(zone) {
4239 if (!is_highmem(zone))
4240 lowmem_pages += zone->present_pages;
4243 for_each_zone(zone) {
4244 u64 tmp;
4246 spin_lock_irqsave(&zone->lru_lock, flags);
4247 tmp = (u64)pages_min * zone->present_pages;
4248 do_div(tmp, lowmem_pages);
4249 if (is_highmem(zone)) {
4251 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4252 * need highmem pages, so cap pages_min to a small
4253 * value here.
4255 * The (pages_high-pages_low) and (pages_low-pages_min)
4256 * deltas controls asynch page reclaim, and so should
4257 * not be capped for highmem.
4259 int min_pages;
4261 min_pages = zone->present_pages / 1024;
4262 if (min_pages < SWAP_CLUSTER_MAX)
4263 min_pages = SWAP_CLUSTER_MAX;
4264 if (min_pages > 128)
4265 min_pages = 128;
4266 zone->pages_min = min_pages;
4267 } else {
4269 * If it's a lowmem zone, reserve a number of pages
4270 * proportionate to the zone's size.
4272 zone->pages_min = tmp;
4275 zone->pages_low = zone->pages_min + (tmp >> 2);
4276 zone->pages_high = zone->pages_min + (tmp >> 1);
4277 setup_zone_migrate_reserve(zone);
4278 spin_unlock_irqrestore(&zone->lru_lock, flags);
4281 /* update totalreserve_pages */
4282 calculate_totalreserve_pages();
4286 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4288 * The inactive anon list should be small enough that the VM never has to
4289 * do too much work, but large enough that each inactive page has a chance
4290 * to be referenced again before it is swapped out.
4292 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4293 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4294 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4295 * the anonymous pages are kept on the inactive list.
4297 * total target max
4298 * memory ratio inactive anon
4299 * -------------------------------------
4300 * 10MB 1 5MB
4301 * 100MB 1 50MB
4302 * 1GB 3 250MB
4303 * 10GB 10 0.9GB
4304 * 100GB 31 3GB
4305 * 1TB 101 10GB
4306 * 10TB 320 32GB
4308 void setup_per_zone_inactive_ratio(void)
4310 struct zone *zone;
4312 for_each_zone(zone) {
4313 unsigned int gb, ratio;
4315 /* Zone size in gigabytes */
4316 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4317 ratio = int_sqrt(10 * gb);
4318 if (!ratio)
4319 ratio = 1;
4321 zone->inactive_ratio = ratio;
4326 * Initialise min_free_kbytes.
4328 * For small machines we want it small (128k min). For large machines
4329 * we want it large (64MB max). But it is not linear, because network
4330 * bandwidth does not increase linearly with machine size. We use
4332 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4333 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4335 * which yields
4337 * 16MB: 512k
4338 * 32MB: 724k
4339 * 64MB: 1024k
4340 * 128MB: 1448k
4341 * 256MB: 2048k
4342 * 512MB: 2896k
4343 * 1024MB: 4096k
4344 * 2048MB: 5792k
4345 * 4096MB: 8192k
4346 * 8192MB: 11584k
4347 * 16384MB: 16384k
4349 static int __init init_per_zone_pages_min(void)
4351 unsigned long lowmem_kbytes;
4353 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4355 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4356 if (min_free_kbytes < 128)
4357 min_free_kbytes = 128;
4358 if (min_free_kbytes > 65536)
4359 min_free_kbytes = 65536;
4360 setup_per_zone_pages_min();
4361 setup_per_zone_lowmem_reserve();
4362 setup_per_zone_inactive_ratio();
4363 return 0;
4365 module_init(init_per_zone_pages_min)
4368 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4369 * that we can call two helper functions whenever min_free_kbytes
4370 * changes.
4372 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4373 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4375 proc_dointvec(table, write, file, buffer, length, ppos);
4376 if (write)
4377 setup_per_zone_pages_min();
4378 return 0;
4381 #ifdef CONFIG_NUMA
4382 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4383 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4385 struct zone *zone;
4386 int rc;
4388 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4389 if (rc)
4390 return rc;
4392 for_each_zone(zone)
4393 zone->min_unmapped_pages = (zone->present_pages *
4394 sysctl_min_unmapped_ratio) / 100;
4395 return 0;
4398 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4399 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4401 struct zone *zone;
4402 int rc;
4404 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4405 if (rc)
4406 return rc;
4408 for_each_zone(zone)
4409 zone->min_slab_pages = (zone->present_pages *
4410 sysctl_min_slab_ratio) / 100;
4411 return 0;
4413 #endif
4416 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4417 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4418 * whenever sysctl_lowmem_reserve_ratio changes.
4420 * The reserve ratio obviously has absolutely no relation with the
4421 * pages_min watermarks. The lowmem reserve ratio can only make sense
4422 * if in function of the boot time zone sizes.
4424 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4425 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4427 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4428 setup_per_zone_lowmem_reserve();
4429 return 0;
4433 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4434 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4435 * can have before it gets flushed back to buddy allocator.
4438 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4439 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4441 struct zone *zone;
4442 unsigned int cpu;
4443 int ret;
4445 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4446 if (!write || (ret == -EINVAL))
4447 return ret;
4448 for_each_zone(zone) {
4449 for_each_online_cpu(cpu) {
4450 unsigned long high;
4451 high = zone->present_pages / percpu_pagelist_fraction;
4452 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4455 return 0;
4458 int hashdist = HASHDIST_DEFAULT;
4460 #ifdef CONFIG_NUMA
4461 static int __init set_hashdist(char *str)
4463 if (!str)
4464 return 0;
4465 hashdist = simple_strtoul(str, &str, 0);
4466 return 1;
4468 __setup("hashdist=", set_hashdist);
4469 #endif
4472 * allocate a large system hash table from bootmem
4473 * - it is assumed that the hash table must contain an exact power-of-2
4474 * quantity of entries
4475 * - limit is the number of hash buckets, not the total allocation size
4477 void *__init alloc_large_system_hash(const char *tablename,
4478 unsigned long bucketsize,
4479 unsigned long numentries,
4480 int scale,
4481 int flags,
4482 unsigned int *_hash_shift,
4483 unsigned int *_hash_mask,
4484 unsigned long limit)
4486 unsigned long long max = limit;
4487 unsigned long log2qty, size;
4488 void *table = NULL;
4490 /* allow the kernel cmdline to have a say */
4491 if (!numentries) {
4492 /* round applicable memory size up to nearest megabyte */
4493 numentries = nr_kernel_pages;
4494 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4495 numentries >>= 20 - PAGE_SHIFT;
4496 numentries <<= 20 - PAGE_SHIFT;
4498 /* limit to 1 bucket per 2^scale bytes of low memory */
4499 if (scale > PAGE_SHIFT)
4500 numentries >>= (scale - PAGE_SHIFT);
4501 else
4502 numentries <<= (PAGE_SHIFT - scale);
4504 /* Make sure we've got at least a 0-order allocation.. */
4505 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4506 numentries = PAGE_SIZE / bucketsize;
4508 numentries = roundup_pow_of_two(numentries);
4510 /* limit allocation size to 1/16 total memory by default */
4511 if (max == 0) {
4512 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4513 do_div(max, bucketsize);
4516 if (numentries > max)
4517 numentries = max;
4519 log2qty = ilog2(numentries);
4521 do {
4522 size = bucketsize << log2qty;
4523 if (flags & HASH_EARLY)
4524 table = alloc_bootmem_nopanic(size);
4525 else if (hashdist)
4526 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4527 else {
4528 unsigned long order = get_order(size);
4529 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4531 * If bucketsize is not a power-of-two, we may free
4532 * some pages at the end of hash table.
4534 if (table) {
4535 unsigned long alloc_end = (unsigned long)table +
4536 (PAGE_SIZE << order);
4537 unsigned long used = (unsigned long)table +
4538 PAGE_ALIGN(size);
4539 split_page(virt_to_page(table), order);
4540 while (used < alloc_end) {
4541 free_page(used);
4542 used += PAGE_SIZE;
4546 } while (!table && size > PAGE_SIZE && --log2qty);
4548 if (!table)
4549 panic("Failed to allocate %s hash table\n", tablename);
4551 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4552 tablename,
4553 (1U << log2qty),
4554 ilog2(size) - PAGE_SHIFT,
4555 size);
4557 if (_hash_shift)
4558 *_hash_shift = log2qty;
4559 if (_hash_mask)
4560 *_hash_mask = (1 << log2qty) - 1;
4562 return table;
4565 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4566 struct page *pfn_to_page(unsigned long pfn)
4568 return __pfn_to_page(pfn);
4570 unsigned long page_to_pfn(struct page *page)
4572 return __page_to_pfn(page);
4574 EXPORT_SYMBOL(pfn_to_page);
4575 EXPORT_SYMBOL(page_to_pfn);
4576 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4578 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4579 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4580 unsigned long pfn)
4582 #ifdef CONFIG_SPARSEMEM
4583 return __pfn_to_section(pfn)->pageblock_flags;
4584 #else
4585 return zone->pageblock_flags;
4586 #endif /* CONFIG_SPARSEMEM */
4589 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4591 #ifdef CONFIG_SPARSEMEM
4592 pfn &= (PAGES_PER_SECTION-1);
4593 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4594 #else
4595 pfn = pfn - zone->zone_start_pfn;
4596 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4597 #endif /* CONFIG_SPARSEMEM */
4601 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4602 * @page: The page within the block of interest
4603 * @start_bitidx: The first bit of interest to retrieve
4604 * @end_bitidx: The last bit of interest
4605 * returns pageblock_bits flags
4607 unsigned long get_pageblock_flags_group(struct page *page,
4608 int start_bitidx, int end_bitidx)
4610 struct zone *zone;
4611 unsigned long *bitmap;
4612 unsigned long pfn, bitidx;
4613 unsigned long flags = 0;
4614 unsigned long value = 1;
4616 zone = page_zone(page);
4617 pfn = page_to_pfn(page);
4618 bitmap = get_pageblock_bitmap(zone, pfn);
4619 bitidx = pfn_to_bitidx(zone, pfn);
4621 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4622 if (test_bit(bitidx + start_bitidx, bitmap))
4623 flags |= value;
4625 return flags;
4629 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4630 * @page: The page within the block of interest
4631 * @start_bitidx: The first bit of interest
4632 * @end_bitidx: The last bit of interest
4633 * @flags: The flags to set
4635 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4636 int start_bitidx, int end_bitidx)
4638 struct zone *zone;
4639 unsigned long *bitmap;
4640 unsigned long pfn, bitidx;
4641 unsigned long value = 1;
4643 zone = page_zone(page);
4644 pfn = page_to_pfn(page);
4645 bitmap = get_pageblock_bitmap(zone, pfn);
4646 bitidx = pfn_to_bitidx(zone, pfn);
4647 VM_BUG_ON(pfn < zone->zone_start_pfn);
4648 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4650 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4651 if (flags & value)
4652 __set_bit(bitidx + start_bitidx, bitmap);
4653 else
4654 __clear_bit(bitidx + start_bitidx, bitmap);
4658 * This is designed as sub function...plz see page_isolation.c also.
4659 * set/clear page block's type to be ISOLATE.
4660 * page allocater never alloc memory from ISOLATE block.
4663 int set_migratetype_isolate(struct page *page)
4665 struct zone *zone;
4666 unsigned long flags;
4667 int ret = -EBUSY;
4669 zone = page_zone(page);
4670 spin_lock_irqsave(&zone->lock, flags);
4672 * In future, more migrate types will be able to be isolation target.
4674 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4675 goto out;
4676 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4677 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4678 ret = 0;
4679 out:
4680 spin_unlock_irqrestore(&zone->lock, flags);
4681 if (!ret)
4682 drain_all_pages();
4683 return ret;
4686 void unset_migratetype_isolate(struct page *page)
4688 struct zone *zone;
4689 unsigned long flags;
4690 zone = page_zone(page);
4691 spin_lock_irqsave(&zone->lock, flags);
4692 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4693 goto out;
4694 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4695 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4696 out:
4697 spin_unlock_irqrestore(&zone->lock, flags);
4700 #ifdef CONFIG_MEMORY_HOTREMOVE
4702 * All pages in the range must be isolated before calling this.
4704 void
4705 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4707 struct page *page;
4708 struct zone *zone;
4709 int order, i;
4710 unsigned long pfn;
4711 unsigned long flags;
4712 /* find the first valid pfn */
4713 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4714 if (pfn_valid(pfn))
4715 break;
4716 if (pfn == end_pfn)
4717 return;
4718 zone = page_zone(pfn_to_page(pfn));
4719 spin_lock_irqsave(&zone->lock, flags);
4720 pfn = start_pfn;
4721 while (pfn < end_pfn) {
4722 if (!pfn_valid(pfn)) {
4723 pfn++;
4724 continue;
4726 page = pfn_to_page(pfn);
4727 BUG_ON(page_count(page));
4728 BUG_ON(!PageBuddy(page));
4729 order = page_order(page);
4730 #ifdef CONFIG_DEBUG_VM
4731 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4732 pfn, 1 << order, end_pfn);
4733 #endif
4734 list_del(&page->lru);
4735 rmv_page_order(page);
4736 zone->free_area[order].nr_free--;
4737 __mod_zone_page_state(zone, NR_FREE_PAGES,
4738 - (1UL << order));
4739 for (i = 0; i < (1 << order); i++)
4740 SetPageReserved((page+i));
4741 pfn += (1 << order);
4743 spin_unlock_irqrestore(&zone->lock, flags);
4745 #endif