fcntl: rename F_OWNER_GID to F_OWNER_PGRP
[linux-2.6/mini2440.git] / crypto / async_tx / async_raid6_recov.c
blob943f2abac9b44fa6cab26fc763c1939702e7a6e8
1 /*
2 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
3 * Copyright(c) 2009 Intel Corporation
5 * based on raid6recov.c:
6 * Copyright 2002 H. Peter Anvin
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 51
20 * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/raid/pq.h>
27 #include <linux/async_tx.h>
29 static struct dma_async_tx_descriptor *
30 async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
31 size_t len, struct async_submit_ctl *submit)
33 struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
34 &dest, 1, srcs, 2, len);
35 struct dma_device *dma = chan ? chan->device : NULL;
36 const u8 *amul, *bmul;
37 u8 ax, bx;
38 u8 *a, *b, *c;
40 if (dma) {
41 dma_addr_t dma_dest[2];
42 dma_addr_t dma_src[2];
43 struct device *dev = dma->dev;
44 struct dma_async_tx_descriptor *tx;
45 enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
47 if (submit->flags & ASYNC_TX_FENCE)
48 dma_flags |= DMA_PREP_FENCE;
49 dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
50 dma_src[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
51 dma_src[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
52 tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 2, coef,
53 len, dma_flags);
54 if (tx) {
55 async_tx_submit(chan, tx, submit);
56 return tx;
59 /* could not get a descriptor, unmap and fall through to
60 * the synchronous path
62 dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
63 dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
64 dma_unmap_page(dev, dma_src[1], len, DMA_TO_DEVICE);
67 /* run the operation synchronously */
68 async_tx_quiesce(&submit->depend_tx);
69 amul = raid6_gfmul[coef[0]];
70 bmul = raid6_gfmul[coef[1]];
71 a = page_address(srcs[0]);
72 b = page_address(srcs[1]);
73 c = page_address(dest);
75 while (len--) {
76 ax = amul[*a++];
77 bx = bmul[*b++];
78 *c++ = ax ^ bx;
81 return NULL;
84 static struct dma_async_tx_descriptor *
85 async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
86 struct async_submit_ctl *submit)
88 struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
89 &dest, 1, &src, 1, len);
90 struct dma_device *dma = chan ? chan->device : NULL;
91 const u8 *qmul; /* Q multiplier table */
92 u8 *d, *s;
94 if (dma) {
95 dma_addr_t dma_dest[2];
96 dma_addr_t dma_src[1];
97 struct device *dev = dma->dev;
98 struct dma_async_tx_descriptor *tx;
99 enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
101 if (submit->flags & ASYNC_TX_FENCE)
102 dma_flags |= DMA_PREP_FENCE;
103 dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
104 dma_src[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
105 tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 1, &coef,
106 len, dma_flags);
107 if (tx) {
108 async_tx_submit(chan, tx, submit);
109 return tx;
112 /* could not get a descriptor, unmap and fall through to
113 * the synchronous path
115 dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
116 dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
119 /* no channel available, or failed to allocate a descriptor, so
120 * perform the operation synchronously
122 async_tx_quiesce(&submit->depend_tx);
123 qmul = raid6_gfmul[coef];
124 d = page_address(dest);
125 s = page_address(src);
127 while (len--)
128 *d++ = qmul[*s++];
130 return NULL;
133 static struct dma_async_tx_descriptor *
134 __2data_recov_4(int disks, size_t bytes, int faila, int failb,
135 struct page **blocks, struct async_submit_ctl *submit)
137 struct dma_async_tx_descriptor *tx = NULL;
138 struct page *p, *q, *a, *b;
139 struct page *srcs[2];
140 unsigned char coef[2];
141 enum async_tx_flags flags = submit->flags;
142 dma_async_tx_callback cb_fn = submit->cb_fn;
143 void *cb_param = submit->cb_param;
144 void *scribble = submit->scribble;
146 p = blocks[disks-2];
147 q = blocks[disks-1];
149 a = blocks[faila];
150 b = blocks[failb];
152 /* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
153 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
154 srcs[0] = p;
155 srcs[1] = q;
156 coef[0] = raid6_gfexi[failb-faila];
157 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
158 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
159 tx = async_sum_product(b, srcs, coef, bytes, submit);
161 /* Dy = P+Pxy+Dx */
162 srcs[0] = p;
163 srcs[1] = b;
164 init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
165 cb_param, scribble);
166 tx = async_xor(a, srcs, 0, 2, bytes, submit);
168 return tx;
172 static struct dma_async_tx_descriptor *
173 __2data_recov_5(int disks, size_t bytes, int faila, int failb,
174 struct page **blocks, struct async_submit_ctl *submit)
176 struct dma_async_tx_descriptor *tx = NULL;
177 struct page *p, *q, *g, *dp, *dq;
178 struct page *srcs[2];
179 unsigned char coef[2];
180 enum async_tx_flags flags = submit->flags;
181 dma_async_tx_callback cb_fn = submit->cb_fn;
182 void *cb_param = submit->cb_param;
183 void *scribble = submit->scribble;
184 int good_srcs, good, i;
186 good_srcs = 0;
187 good = -1;
188 for (i = 0; i < disks-2; i++) {
189 if (blocks[i] == NULL)
190 continue;
191 if (i == faila || i == failb)
192 continue;
193 good = i;
194 good_srcs++;
196 BUG_ON(good_srcs > 1);
198 p = blocks[disks-2];
199 q = blocks[disks-1];
200 g = blocks[good];
202 /* Compute syndrome with zero for the missing data pages
203 * Use the dead data pages as temporary storage for delta p and
204 * delta q
206 dp = blocks[faila];
207 dq = blocks[failb];
209 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
210 tx = async_memcpy(dp, g, 0, 0, bytes, submit);
211 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
212 tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
214 /* compute P + Pxy */
215 srcs[0] = dp;
216 srcs[1] = p;
217 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
218 NULL, NULL, scribble);
219 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
221 /* compute Q + Qxy */
222 srcs[0] = dq;
223 srcs[1] = q;
224 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
225 NULL, NULL, scribble);
226 tx = async_xor(dq, srcs, 0, 2, bytes, submit);
228 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
229 srcs[0] = dp;
230 srcs[1] = dq;
231 coef[0] = raid6_gfexi[failb-faila];
232 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
233 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
234 tx = async_sum_product(dq, srcs, coef, bytes, submit);
236 /* Dy = P+Pxy+Dx */
237 srcs[0] = dp;
238 srcs[1] = dq;
239 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
240 cb_param, scribble);
241 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
243 return tx;
246 static struct dma_async_tx_descriptor *
247 __2data_recov_n(int disks, size_t bytes, int faila, int failb,
248 struct page **blocks, struct async_submit_ctl *submit)
250 struct dma_async_tx_descriptor *tx = NULL;
251 struct page *p, *q, *dp, *dq;
252 struct page *srcs[2];
253 unsigned char coef[2];
254 enum async_tx_flags flags = submit->flags;
255 dma_async_tx_callback cb_fn = submit->cb_fn;
256 void *cb_param = submit->cb_param;
257 void *scribble = submit->scribble;
259 p = blocks[disks-2];
260 q = blocks[disks-1];
262 /* Compute syndrome with zero for the missing data pages
263 * Use the dead data pages as temporary storage for
264 * delta p and delta q
266 dp = blocks[faila];
267 blocks[faila] = NULL;
268 blocks[disks-2] = dp;
269 dq = blocks[failb];
270 blocks[failb] = NULL;
271 blocks[disks-1] = dq;
273 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
274 tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
276 /* Restore pointer table */
277 blocks[faila] = dp;
278 blocks[failb] = dq;
279 blocks[disks-2] = p;
280 blocks[disks-1] = q;
282 /* compute P + Pxy */
283 srcs[0] = dp;
284 srcs[1] = p;
285 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
286 NULL, NULL, scribble);
287 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
289 /* compute Q + Qxy */
290 srcs[0] = dq;
291 srcs[1] = q;
292 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
293 NULL, NULL, scribble);
294 tx = async_xor(dq, srcs, 0, 2, bytes, submit);
296 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
297 srcs[0] = dp;
298 srcs[1] = dq;
299 coef[0] = raid6_gfexi[failb-faila];
300 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
301 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
302 tx = async_sum_product(dq, srcs, coef, bytes, submit);
304 /* Dy = P+Pxy+Dx */
305 srcs[0] = dp;
306 srcs[1] = dq;
307 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
308 cb_param, scribble);
309 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
311 return tx;
315 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
316 * @disks: number of disks in the RAID-6 array
317 * @bytes: block size
318 * @faila: first failed drive index
319 * @failb: second failed drive index
320 * @blocks: array of source pointers where the last two entries are p and q
321 * @submit: submission/completion modifiers
323 struct dma_async_tx_descriptor *
324 async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
325 struct page **blocks, struct async_submit_ctl *submit)
327 int non_zero_srcs, i;
329 BUG_ON(faila == failb);
330 if (failb < faila)
331 swap(faila, failb);
333 pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
335 /* we need to preserve the contents of 'blocks' for the async
336 * case, so punt to synchronous if a scribble buffer is not available
338 if (!submit->scribble) {
339 void **ptrs = (void **) blocks;
341 async_tx_quiesce(&submit->depend_tx);
342 for (i = 0; i < disks; i++)
343 if (blocks[i] == NULL)
344 ptrs[i] = (void *) raid6_empty_zero_page;
345 else
346 ptrs[i] = page_address(blocks[i]);
348 raid6_2data_recov(disks, bytes, faila, failb, ptrs);
350 async_tx_sync_epilog(submit);
352 return NULL;
355 non_zero_srcs = 0;
356 for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
357 if (blocks[i])
358 non_zero_srcs++;
359 switch (non_zero_srcs) {
360 case 0:
361 case 1:
362 /* There must be at least 2 sources - the failed devices. */
363 BUG();
365 case 2:
366 /* dma devices do not uniformly understand a zero source pq
367 * operation (in contrast to the synchronous case), so
368 * explicitly handle the special case of a 4 disk array with
369 * both data disks missing.
371 return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
372 case 3:
373 /* dma devices do not uniformly understand a single
374 * source pq operation (in contrast to the synchronous
375 * case), so explicitly handle the special case of a 5 disk
376 * array with 2 of 3 data disks missing.
378 return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
379 default:
380 return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
383 EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
386 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
387 * @disks: number of disks in the RAID-6 array
388 * @bytes: block size
389 * @faila: failed drive index
390 * @blocks: array of source pointers where the last two entries are p and q
391 * @submit: submission/completion modifiers
393 struct dma_async_tx_descriptor *
394 async_raid6_datap_recov(int disks, size_t bytes, int faila,
395 struct page **blocks, struct async_submit_ctl *submit)
397 struct dma_async_tx_descriptor *tx = NULL;
398 struct page *p, *q, *dq;
399 u8 coef;
400 enum async_tx_flags flags = submit->flags;
401 dma_async_tx_callback cb_fn = submit->cb_fn;
402 void *cb_param = submit->cb_param;
403 void *scribble = submit->scribble;
404 int good_srcs, good, i;
405 struct page *srcs[2];
407 pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
409 /* we need to preserve the contents of 'blocks' for the async
410 * case, so punt to synchronous if a scribble buffer is not available
412 if (!scribble) {
413 void **ptrs = (void **) blocks;
415 async_tx_quiesce(&submit->depend_tx);
416 for (i = 0; i < disks; i++)
417 if (blocks[i] == NULL)
418 ptrs[i] = (void*)raid6_empty_zero_page;
419 else
420 ptrs[i] = page_address(blocks[i]);
422 raid6_datap_recov(disks, bytes, faila, ptrs);
424 async_tx_sync_epilog(submit);
426 return NULL;
429 good_srcs = 0;
430 good = -1;
431 for (i = 0; i < disks-2; i++) {
432 if (i == faila)
433 continue;
434 if (blocks[i]) {
435 good = i;
436 good_srcs++;
437 if (good_srcs > 1)
438 break;
441 BUG_ON(good_srcs == 0);
443 p = blocks[disks-2];
444 q = blocks[disks-1];
446 /* Compute syndrome with zero for the missing data page
447 * Use the dead data page as temporary storage for delta q
449 dq = blocks[faila];
450 blocks[faila] = NULL;
451 blocks[disks-1] = dq;
453 /* in the 4-disk case we only need to perform a single source
454 * multiplication with the one good data block.
456 if (good_srcs == 1) {
457 struct page *g = blocks[good];
459 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
460 scribble);
461 tx = async_memcpy(p, g, 0, 0, bytes, submit);
463 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
464 scribble);
465 tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
466 } else {
467 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
468 scribble);
469 tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
472 /* Restore pointer table */
473 blocks[faila] = dq;
474 blocks[disks-1] = q;
476 /* calculate g^{-faila} */
477 coef = raid6_gfinv[raid6_gfexp[faila]];
479 srcs[0] = dq;
480 srcs[1] = q;
481 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
482 NULL, NULL, scribble);
483 tx = async_xor(dq, srcs, 0, 2, bytes, submit);
485 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
486 tx = async_mult(dq, dq, coef, bytes, submit);
488 srcs[0] = p;
489 srcs[1] = dq;
490 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
491 cb_param, scribble);
492 tx = async_xor(p, srcs, 0, 2, bytes, submit);
494 return tx;
496 EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
498 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
499 MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
500 MODULE_LICENSE("GPL");