Drop ARPHRD_IEEE802154_PHY
[linux-2.6/mini2440.git] / net / core / dev.c
blob4b837896ebd25a6e9ef612fa62393a940c7c47a8
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
131 #include "net-sysfs.h"
133 /* Instead of increasing this, you should create a hash table. */
134 #define MAX_GRO_SKBS 8
136 /* This should be increased if a protocol with a bigger head is added. */
137 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
167 #define PTYPE_HASH_SIZE (16)
168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
170 static DEFINE_SPINLOCK(ptype_lock);
171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 static struct list_head ptype_all __read_mostly; /* Taps */
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
178 * Pure readers hold dev_base_lock for reading.
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
193 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
197 #define NETDEV_HASHBITS 8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
214 struct net *net = dev_net(dev);
216 ASSERT_RTNL();
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
229 ASSERT_RTNL();
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
240 * Our notifier list
243 static RAW_NOTIFIER_HEAD(netdev_chain);
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 #ifdef CONFIG_LOCKDEP
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
273 ARPHRD_VOID, ARPHRD_NONE};
275 static const char *const netdev_lock_name[] =
276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
291 "_xmit_VOID", "_xmit_NONE"};
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
298 int i;
300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
301 if (netdev_lock_type[i] == dev_type)
302 return i;
303 /* the last key is used by default */
304 return ARRAY_SIZE(netdev_lock_type) - 1;
307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
308 unsigned short dev_type)
310 int i;
312 i = netdev_lock_pos(dev_type);
313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
314 netdev_lock_name[i]);
317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
319 int i;
321 i = netdev_lock_pos(dev->type);
322 lockdep_set_class_and_name(&dev->addr_list_lock,
323 &netdev_addr_lock_key[i],
324 netdev_lock_name[i]);
326 #else
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 #endif
336 /*******************************************************************************
338 Protocol management and registration routines
340 *******************************************************************************/
343 * Add a protocol ID to the list. Now that the input handler is
344 * smarter we can dispense with all the messy stuff that used to be
345 * here.
347 * BEWARE!!! Protocol handlers, mangling input packets,
348 * MUST BE last in hash buckets and checking protocol handlers
349 * MUST start from promiscuous ptype_all chain in net_bh.
350 * It is true now, do not change it.
351 * Explanation follows: if protocol handler, mangling packet, will
352 * be the first on list, it is not able to sense, that packet
353 * is cloned and should be copied-on-write, so that it will
354 * change it and subsequent readers will get broken packet.
355 * --ANK (980803)
359 * dev_add_pack - add packet handler
360 * @pt: packet type declaration
362 * Add a protocol handler to the networking stack. The passed &packet_type
363 * is linked into kernel lists and may not be freed until it has been
364 * removed from the kernel lists.
366 * This call does not sleep therefore it can not
367 * guarantee all CPU's that are in middle of receiving packets
368 * will see the new packet type (until the next received packet).
371 void dev_add_pack(struct packet_type *pt)
373 int hash;
375 spin_lock_bh(&ptype_lock);
376 if (pt->type == htons(ETH_P_ALL))
377 list_add_rcu(&pt->list, &ptype_all);
378 else {
379 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
380 list_add_rcu(&pt->list, &ptype_base[hash]);
382 spin_unlock_bh(&ptype_lock);
386 * __dev_remove_pack - remove packet handler
387 * @pt: packet type declaration
389 * Remove a protocol handler that was previously added to the kernel
390 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
391 * from the kernel lists and can be freed or reused once this function
392 * returns.
394 * The packet type might still be in use by receivers
395 * and must not be freed until after all the CPU's have gone
396 * through a quiescent state.
398 void __dev_remove_pack(struct packet_type *pt)
400 struct list_head *head;
401 struct packet_type *pt1;
403 spin_lock_bh(&ptype_lock);
405 if (pt->type == htons(ETH_P_ALL))
406 head = &ptype_all;
407 else
408 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
410 list_for_each_entry(pt1, head, list) {
411 if (pt == pt1) {
412 list_del_rcu(&pt->list);
413 goto out;
417 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
418 out:
419 spin_unlock_bh(&ptype_lock);
422 * dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
430 * This call sleeps to guarantee that no CPU is looking at the packet
431 * type after return.
433 void dev_remove_pack(struct packet_type *pt)
435 __dev_remove_pack(pt);
437 synchronize_net();
440 /******************************************************************************
442 Device Boot-time Settings Routines
444 *******************************************************************************/
446 /* Boot time configuration table */
447 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
450 * netdev_boot_setup_add - add new setup entry
451 * @name: name of the device
452 * @map: configured settings for the device
454 * Adds new setup entry to the dev_boot_setup list. The function
455 * returns 0 on error and 1 on success. This is a generic routine to
456 * all netdevices.
458 static int netdev_boot_setup_add(char *name, struct ifmap *map)
460 struct netdev_boot_setup *s;
461 int i;
463 s = dev_boot_setup;
464 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
465 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
466 memset(s[i].name, 0, sizeof(s[i].name));
467 strlcpy(s[i].name, name, IFNAMSIZ);
468 memcpy(&s[i].map, map, sizeof(s[i].map));
469 break;
473 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
477 * netdev_boot_setup_check - check boot time settings
478 * @dev: the netdevice
480 * Check boot time settings for the device.
481 * The found settings are set for the device to be used
482 * later in the device probing.
483 * Returns 0 if no settings found, 1 if they are.
485 int netdev_boot_setup_check(struct net_device *dev)
487 struct netdev_boot_setup *s = dev_boot_setup;
488 int i;
490 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
491 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
492 !strcmp(dev->name, s[i].name)) {
493 dev->irq = s[i].map.irq;
494 dev->base_addr = s[i].map.base_addr;
495 dev->mem_start = s[i].map.mem_start;
496 dev->mem_end = s[i].map.mem_end;
497 return 1;
500 return 0;
505 * netdev_boot_base - get address from boot time settings
506 * @prefix: prefix for network device
507 * @unit: id for network device
509 * Check boot time settings for the base address of device.
510 * The found settings are set for the device to be used
511 * later in the device probing.
512 * Returns 0 if no settings found.
514 unsigned long netdev_boot_base(const char *prefix, int unit)
516 const struct netdev_boot_setup *s = dev_boot_setup;
517 char name[IFNAMSIZ];
518 int i;
520 sprintf(name, "%s%d", prefix, unit);
523 * If device already registered then return base of 1
524 * to indicate not to probe for this interface
526 if (__dev_get_by_name(&init_net, name))
527 return 1;
529 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
530 if (!strcmp(name, s[i].name))
531 return s[i].map.base_addr;
532 return 0;
536 * Saves at boot time configured settings for any netdevice.
538 int __init netdev_boot_setup(char *str)
540 int ints[5];
541 struct ifmap map;
543 str = get_options(str, ARRAY_SIZE(ints), ints);
544 if (!str || !*str)
545 return 0;
547 /* Save settings */
548 memset(&map, 0, sizeof(map));
549 if (ints[0] > 0)
550 map.irq = ints[1];
551 if (ints[0] > 1)
552 map.base_addr = ints[2];
553 if (ints[0] > 2)
554 map.mem_start = ints[3];
555 if (ints[0] > 3)
556 map.mem_end = ints[4];
558 /* Add new entry to the list */
559 return netdev_boot_setup_add(str, &map);
562 __setup("netdev=", netdev_boot_setup);
564 /*******************************************************************************
566 Device Interface Subroutines
568 *******************************************************************************/
571 * __dev_get_by_name - find a device by its name
572 * @net: the applicable net namespace
573 * @name: name to find
575 * Find an interface by name. Must be called under RTNL semaphore
576 * or @dev_base_lock. If the name is found a pointer to the device
577 * is returned. If the name is not found then %NULL is returned. The
578 * reference counters are not incremented so the caller must be
579 * careful with locks.
582 struct net_device *__dev_get_by_name(struct net *net, const char *name)
584 struct hlist_node *p;
586 hlist_for_each(p, dev_name_hash(net, name)) {
587 struct net_device *dev
588 = hlist_entry(p, struct net_device, name_hlist);
589 if (!strncmp(dev->name, name, IFNAMSIZ))
590 return dev;
592 return NULL;
596 * dev_get_by_name - find a device by its name
597 * @net: the applicable net namespace
598 * @name: name to find
600 * Find an interface by name. This can be called from any
601 * context and does its own locking. The returned handle has
602 * the usage count incremented and the caller must use dev_put() to
603 * release it when it is no longer needed. %NULL is returned if no
604 * matching device is found.
607 struct net_device *dev_get_by_name(struct net *net, const char *name)
609 struct net_device *dev;
611 read_lock(&dev_base_lock);
612 dev = __dev_get_by_name(net, name);
613 if (dev)
614 dev_hold(dev);
615 read_unlock(&dev_base_lock);
616 return dev;
620 * __dev_get_by_index - find a device by its ifindex
621 * @net: the applicable net namespace
622 * @ifindex: index of device
624 * Search for an interface by index. Returns %NULL if the device
625 * is not found or a pointer to the device. The device has not
626 * had its reference counter increased so the caller must be careful
627 * about locking. The caller must hold either the RTNL semaphore
628 * or @dev_base_lock.
631 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
633 struct hlist_node *p;
635 hlist_for_each(p, dev_index_hash(net, ifindex)) {
636 struct net_device *dev
637 = hlist_entry(p, struct net_device, index_hlist);
638 if (dev->ifindex == ifindex)
639 return dev;
641 return NULL;
646 * dev_get_by_index - find a device by its ifindex
647 * @net: the applicable net namespace
648 * @ifindex: index of device
650 * Search for an interface by index. Returns NULL if the device
651 * is not found or a pointer to the device. The device returned has
652 * had a reference added and the pointer is safe until the user calls
653 * dev_put to indicate they have finished with it.
656 struct net_device *dev_get_by_index(struct net *net, int ifindex)
658 struct net_device *dev;
660 read_lock(&dev_base_lock);
661 dev = __dev_get_by_index(net, ifindex);
662 if (dev)
663 dev_hold(dev);
664 read_unlock(&dev_base_lock);
665 return dev;
669 * dev_getbyhwaddr - find a device by its hardware address
670 * @net: the applicable net namespace
671 * @type: media type of device
672 * @ha: hardware address
674 * Search for an interface by MAC address. Returns NULL if the device
675 * is not found or a pointer to the device. The caller must hold the
676 * rtnl semaphore. The returned device has not had its ref count increased
677 * and the caller must therefore be careful about locking
679 * BUGS:
680 * If the API was consistent this would be __dev_get_by_hwaddr
683 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
685 struct net_device *dev;
687 ASSERT_RTNL();
689 for_each_netdev(net, dev)
690 if (dev->type == type &&
691 !memcmp(dev->dev_addr, ha, dev->addr_len))
692 return dev;
694 return NULL;
697 EXPORT_SYMBOL(dev_getbyhwaddr);
699 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
701 struct net_device *dev;
703 ASSERT_RTNL();
704 for_each_netdev(net, dev)
705 if (dev->type == type)
706 return dev;
708 return NULL;
711 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
713 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
715 struct net_device *dev;
717 rtnl_lock();
718 dev = __dev_getfirstbyhwtype(net, type);
719 if (dev)
720 dev_hold(dev);
721 rtnl_unlock();
722 return dev;
725 EXPORT_SYMBOL(dev_getfirstbyhwtype);
728 * dev_get_by_flags - find any device with given flags
729 * @net: the applicable net namespace
730 * @if_flags: IFF_* values
731 * @mask: bitmask of bits in if_flags to check
733 * Search for any interface with the given flags. Returns NULL if a device
734 * is not found or a pointer to the device. The device returned has
735 * had a reference added and the pointer is safe until the user calls
736 * dev_put to indicate they have finished with it.
739 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
741 struct net_device *dev, *ret;
743 ret = NULL;
744 read_lock(&dev_base_lock);
745 for_each_netdev(net, dev) {
746 if (((dev->flags ^ if_flags) & mask) == 0) {
747 dev_hold(dev);
748 ret = dev;
749 break;
752 read_unlock(&dev_base_lock);
753 return ret;
757 * dev_valid_name - check if name is okay for network device
758 * @name: name string
760 * Network device names need to be valid file names to
761 * to allow sysfs to work. We also disallow any kind of
762 * whitespace.
764 int dev_valid_name(const char *name)
766 if (*name == '\0')
767 return 0;
768 if (strlen(name) >= IFNAMSIZ)
769 return 0;
770 if (!strcmp(name, ".") || !strcmp(name, ".."))
771 return 0;
773 while (*name) {
774 if (*name == '/' || isspace(*name))
775 return 0;
776 name++;
778 return 1;
782 * __dev_alloc_name - allocate a name for a device
783 * @net: network namespace to allocate the device name in
784 * @name: name format string
785 * @buf: scratch buffer and result name string
787 * Passed a format string - eg "lt%d" it will try and find a suitable
788 * id. It scans list of devices to build up a free map, then chooses
789 * the first empty slot. The caller must hold the dev_base or rtnl lock
790 * while allocating the name and adding the device in order to avoid
791 * duplicates.
792 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
793 * Returns the number of the unit assigned or a negative errno code.
796 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
798 int i = 0;
799 const char *p;
800 const int max_netdevices = 8*PAGE_SIZE;
801 unsigned long *inuse;
802 struct net_device *d;
804 p = strnchr(name, IFNAMSIZ-1, '%');
805 if (p) {
807 * Verify the string as this thing may have come from
808 * the user. There must be either one "%d" and no other "%"
809 * characters.
811 if (p[1] != 'd' || strchr(p + 2, '%'))
812 return -EINVAL;
814 /* Use one page as a bit array of possible slots */
815 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
816 if (!inuse)
817 return -ENOMEM;
819 for_each_netdev(net, d) {
820 if (!sscanf(d->name, name, &i))
821 continue;
822 if (i < 0 || i >= max_netdevices)
823 continue;
825 /* avoid cases where sscanf is not exact inverse of printf */
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!strncmp(buf, d->name, IFNAMSIZ))
828 set_bit(i, inuse);
831 i = find_first_zero_bit(inuse, max_netdevices);
832 free_page((unsigned long) inuse);
835 snprintf(buf, IFNAMSIZ, name, i);
836 if (!__dev_get_by_name(net, buf))
837 return i;
839 /* It is possible to run out of possible slots
840 * when the name is long and there isn't enough space left
841 * for the digits, or if all bits are used.
843 return -ENFILE;
847 * dev_alloc_name - allocate a name for a device
848 * @dev: device
849 * @name: name format string
851 * Passed a format string - eg "lt%d" it will try and find a suitable
852 * id. It scans list of devices to build up a free map, then chooses
853 * the first empty slot. The caller must hold the dev_base or rtnl lock
854 * while allocating the name and adding the device in order to avoid
855 * duplicates.
856 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
857 * Returns the number of the unit assigned or a negative errno code.
860 int dev_alloc_name(struct net_device *dev, const char *name)
862 char buf[IFNAMSIZ];
863 struct net *net;
864 int ret;
866 BUG_ON(!dev_net(dev));
867 net = dev_net(dev);
868 ret = __dev_alloc_name(net, name, buf);
869 if (ret >= 0)
870 strlcpy(dev->name, buf, IFNAMSIZ);
871 return ret;
876 * dev_change_name - change name of a device
877 * @dev: device
878 * @newname: name (or format string) must be at least IFNAMSIZ
880 * Change name of a device, can pass format strings "eth%d".
881 * for wildcarding.
883 int dev_change_name(struct net_device *dev, const char *newname)
885 char oldname[IFNAMSIZ];
886 int err = 0;
887 int ret;
888 struct net *net;
890 ASSERT_RTNL();
891 BUG_ON(!dev_net(dev));
893 net = dev_net(dev);
894 if (dev->flags & IFF_UP)
895 return -EBUSY;
897 if (!dev_valid_name(newname))
898 return -EINVAL;
900 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
901 return 0;
903 memcpy(oldname, dev->name, IFNAMSIZ);
905 if (strchr(newname, '%')) {
906 err = dev_alloc_name(dev, newname);
907 if (err < 0)
908 return err;
910 else if (__dev_get_by_name(net, newname))
911 return -EEXIST;
912 else
913 strlcpy(dev->name, newname, IFNAMSIZ);
915 rollback:
916 /* For now only devices in the initial network namespace
917 * are in sysfs.
919 if (net == &init_net) {
920 ret = device_rename(&dev->dev, dev->name);
921 if (ret) {
922 memcpy(dev->name, oldname, IFNAMSIZ);
923 return ret;
927 write_lock_bh(&dev_base_lock);
928 hlist_del(&dev->name_hlist);
929 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
930 write_unlock_bh(&dev_base_lock);
932 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
933 ret = notifier_to_errno(ret);
935 if (ret) {
936 if (err) {
937 printk(KERN_ERR
938 "%s: name change rollback failed: %d.\n",
939 dev->name, ret);
940 } else {
941 err = ret;
942 memcpy(dev->name, oldname, IFNAMSIZ);
943 goto rollback;
947 return err;
951 * dev_set_alias - change ifalias of a device
952 * @dev: device
953 * @alias: name up to IFALIASZ
954 * @len: limit of bytes to copy from info
956 * Set ifalias for a device,
958 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
960 ASSERT_RTNL();
962 if (len >= IFALIASZ)
963 return -EINVAL;
965 if (!len) {
966 if (dev->ifalias) {
967 kfree(dev->ifalias);
968 dev->ifalias = NULL;
970 return 0;
973 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
974 if (!dev->ifalias)
975 return -ENOMEM;
977 strlcpy(dev->ifalias, alias, len+1);
978 return len;
983 * netdev_features_change - device changes features
984 * @dev: device to cause notification
986 * Called to indicate a device has changed features.
988 void netdev_features_change(struct net_device *dev)
990 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
992 EXPORT_SYMBOL(netdev_features_change);
995 * netdev_state_change - device changes state
996 * @dev: device to cause notification
998 * Called to indicate a device has changed state. This function calls
999 * the notifier chains for netdev_chain and sends a NEWLINK message
1000 * to the routing socket.
1002 void netdev_state_change(struct net_device *dev)
1004 if (dev->flags & IFF_UP) {
1005 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1006 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1010 void netdev_bonding_change(struct net_device *dev)
1012 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1014 EXPORT_SYMBOL(netdev_bonding_change);
1017 * dev_load - load a network module
1018 * @net: the applicable net namespace
1019 * @name: name of interface
1021 * If a network interface is not present and the process has suitable
1022 * privileges this function loads the module. If module loading is not
1023 * available in this kernel then it becomes a nop.
1026 void dev_load(struct net *net, const char *name)
1028 struct net_device *dev;
1030 read_lock(&dev_base_lock);
1031 dev = __dev_get_by_name(net, name);
1032 read_unlock(&dev_base_lock);
1034 if (!dev && capable(CAP_SYS_MODULE))
1035 request_module("%s", name);
1039 * dev_open - prepare an interface for use.
1040 * @dev: device to open
1042 * Takes a device from down to up state. The device's private open
1043 * function is invoked and then the multicast lists are loaded. Finally
1044 * the device is moved into the up state and a %NETDEV_UP message is
1045 * sent to the netdev notifier chain.
1047 * Calling this function on an active interface is a nop. On a failure
1048 * a negative errno code is returned.
1050 int dev_open(struct net_device *dev)
1052 const struct net_device_ops *ops = dev->netdev_ops;
1053 int ret;
1055 ASSERT_RTNL();
1058 * Is it already up?
1061 if (dev->flags & IFF_UP)
1062 return 0;
1065 * Is it even present?
1067 if (!netif_device_present(dev))
1068 return -ENODEV;
1070 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1071 ret = notifier_to_errno(ret);
1072 if (ret)
1073 return ret;
1076 * Call device private open method
1078 set_bit(__LINK_STATE_START, &dev->state);
1080 if (ops->ndo_validate_addr)
1081 ret = ops->ndo_validate_addr(dev);
1083 if (!ret && ops->ndo_open)
1084 ret = ops->ndo_open(dev);
1087 * If it went open OK then:
1090 if (ret)
1091 clear_bit(__LINK_STATE_START, &dev->state);
1092 else {
1094 * Set the flags.
1096 dev->flags |= IFF_UP;
1099 * Enable NET_DMA
1101 net_dmaengine_get();
1104 * Initialize multicasting status
1106 dev_set_rx_mode(dev);
1109 * Wakeup transmit queue engine
1111 dev_activate(dev);
1114 * ... and announce new interface.
1116 call_netdevice_notifiers(NETDEV_UP, dev);
1119 return ret;
1123 * dev_close - shutdown an interface.
1124 * @dev: device to shutdown
1126 * This function moves an active device into down state. A
1127 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1128 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1129 * chain.
1131 int dev_close(struct net_device *dev)
1133 const struct net_device_ops *ops = dev->netdev_ops;
1134 ASSERT_RTNL();
1136 might_sleep();
1138 if (!(dev->flags & IFF_UP))
1139 return 0;
1142 * Tell people we are going down, so that they can
1143 * prepare to death, when device is still operating.
1145 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1147 clear_bit(__LINK_STATE_START, &dev->state);
1149 /* Synchronize to scheduled poll. We cannot touch poll list,
1150 * it can be even on different cpu. So just clear netif_running().
1152 * dev->stop() will invoke napi_disable() on all of it's
1153 * napi_struct instances on this device.
1155 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1157 dev_deactivate(dev);
1160 * Call the device specific close. This cannot fail.
1161 * Only if device is UP
1163 * We allow it to be called even after a DETACH hot-plug
1164 * event.
1166 if (ops->ndo_stop)
1167 ops->ndo_stop(dev);
1170 * Device is now down.
1173 dev->flags &= ~IFF_UP;
1176 * Tell people we are down
1178 call_netdevice_notifiers(NETDEV_DOWN, dev);
1181 * Shutdown NET_DMA
1183 net_dmaengine_put();
1185 return 0;
1190 * dev_disable_lro - disable Large Receive Offload on a device
1191 * @dev: device
1193 * Disable Large Receive Offload (LRO) on a net device. Must be
1194 * called under RTNL. This is needed if received packets may be
1195 * forwarded to another interface.
1197 void dev_disable_lro(struct net_device *dev)
1199 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1200 dev->ethtool_ops->set_flags) {
1201 u32 flags = dev->ethtool_ops->get_flags(dev);
1202 if (flags & ETH_FLAG_LRO) {
1203 flags &= ~ETH_FLAG_LRO;
1204 dev->ethtool_ops->set_flags(dev, flags);
1207 WARN_ON(dev->features & NETIF_F_LRO);
1209 EXPORT_SYMBOL(dev_disable_lro);
1212 static int dev_boot_phase = 1;
1215 * Device change register/unregister. These are not inline or static
1216 * as we export them to the world.
1220 * register_netdevice_notifier - register a network notifier block
1221 * @nb: notifier
1223 * Register a notifier to be called when network device events occur.
1224 * The notifier passed is linked into the kernel structures and must
1225 * not be reused until it has been unregistered. A negative errno code
1226 * is returned on a failure.
1228 * When registered all registration and up events are replayed
1229 * to the new notifier to allow device to have a race free
1230 * view of the network device list.
1233 int register_netdevice_notifier(struct notifier_block *nb)
1235 struct net_device *dev;
1236 struct net_device *last;
1237 struct net *net;
1238 int err;
1240 rtnl_lock();
1241 err = raw_notifier_chain_register(&netdev_chain, nb);
1242 if (err)
1243 goto unlock;
1244 if (dev_boot_phase)
1245 goto unlock;
1246 for_each_net(net) {
1247 for_each_netdev(net, dev) {
1248 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1249 err = notifier_to_errno(err);
1250 if (err)
1251 goto rollback;
1253 if (!(dev->flags & IFF_UP))
1254 continue;
1256 nb->notifier_call(nb, NETDEV_UP, dev);
1260 unlock:
1261 rtnl_unlock();
1262 return err;
1264 rollback:
1265 last = dev;
1266 for_each_net(net) {
1267 for_each_netdev(net, dev) {
1268 if (dev == last)
1269 break;
1271 if (dev->flags & IFF_UP) {
1272 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1273 nb->notifier_call(nb, NETDEV_DOWN, dev);
1275 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1279 raw_notifier_chain_unregister(&netdev_chain, nb);
1280 goto unlock;
1284 * unregister_netdevice_notifier - unregister a network notifier block
1285 * @nb: notifier
1287 * Unregister a notifier previously registered by
1288 * register_netdevice_notifier(). The notifier is unlinked into the
1289 * kernel structures and may then be reused. A negative errno code
1290 * is returned on a failure.
1293 int unregister_netdevice_notifier(struct notifier_block *nb)
1295 int err;
1297 rtnl_lock();
1298 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1299 rtnl_unlock();
1300 return err;
1304 * call_netdevice_notifiers - call all network notifier blocks
1305 * @val: value passed unmodified to notifier function
1306 * @dev: net_device pointer passed unmodified to notifier function
1308 * Call all network notifier blocks. Parameters and return value
1309 * are as for raw_notifier_call_chain().
1312 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1314 return raw_notifier_call_chain(&netdev_chain, val, dev);
1317 /* When > 0 there are consumers of rx skb time stamps */
1318 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1320 void net_enable_timestamp(void)
1322 atomic_inc(&netstamp_needed);
1325 void net_disable_timestamp(void)
1327 atomic_dec(&netstamp_needed);
1330 static inline void net_timestamp(struct sk_buff *skb)
1332 if (atomic_read(&netstamp_needed))
1333 __net_timestamp(skb);
1334 else
1335 skb->tstamp.tv64 = 0;
1339 * Support routine. Sends outgoing frames to any network
1340 * taps currently in use.
1343 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1345 struct packet_type *ptype;
1347 #ifdef CONFIG_NET_CLS_ACT
1348 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1349 net_timestamp(skb);
1350 #else
1351 net_timestamp(skb);
1352 #endif
1354 rcu_read_lock();
1355 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1356 /* Never send packets back to the socket
1357 * they originated from - MvS (miquels@drinkel.ow.org)
1359 if ((ptype->dev == dev || !ptype->dev) &&
1360 (ptype->af_packet_priv == NULL ||
1361 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1362 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1363 if (!skb2)
1364 break;
1366 /* skb->nh should be correctly
1367 set by sender, so that the second statement is
1368 just protection against buggy protocols.
1370 skb_reset_mac_header(skb2);
1372 if (skb_network_header(skb2) < skb2->data ||
1373 skb2->network_header > skb2->tail) {
1374 if (net_ratelimit())
1375 printk(KERN_CRIT "protocol %04x is "
1376 "buggy, dev %s\n",
1377 skb2->protocol, dev->name);
1378 skb_reset_network_header(skb2);
1381 skb2->transport_header = skb2->network_header;
1382 skb2->pkt_type = PACKET_OUTGOING;
1383 ptype->func(skb2, skb->dev, ptype, skb->dev);
1386 rcu_read_unlock();
1390 static inline void __netif_reschedule(struct Qdisc *q)
1392 struct softnet_data *sd;
1393 unsigned long flags;
1395 local_irq_save(flags);
1396 sd = &__get_cpu_var(softnet_data);
1397 q->next_sched = sd->output_queue;
1398 sd->output_queue = q;
1399 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1400 local_irq_restore(flags);
1403 void __netif_schedule(struct Qdisc *q)
1405 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1406 __netif_reschedule(q);
1408 EXPORT_SYMBOL(__netif_schedule);
1410 void dev_kfree_skb_irq(struct sk_buff *skb)
1412 if (atomic_dec_and_test(&skb->users)) {
1413 struct softnet_data *sd;
1414 unsigned long flags;
1416 local_irq_save(flags);
1417 sd = &__get_cpu_var(softnet_data);
1418 skb->next = sd->completion_queue;
1419 sd->completion_queue = skb;
1420 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1421 local_irq_restore(flags);
1424 EXPORT_SYMBOL(dev_kfree_skb_irq);
1426 void dev_kfree_skb_any(struct sk_buff *skb)
1428 if (in_irq() || irqs_disabled())
1429 dev_kfree_skb_irq(skb);
1430 else
1431 dev_kfree_skb(skb);
1433 EXPORT_SYMBOL(dev_kfree_skb_any);
1437 * netif_device_detach - mark device as removed
1438 * @dev: network device
1440 * Mark device as removed from system and therefore no longer available.
1442 void netif_device_detach(struct net_device *dev)
1444 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1445 netif_running(dev)) {
1446 netif_tx_stop_all_queues(dev);
1449 EXPORT_SYMBOL(netif_device_detach);
1452 * netif_device_attach - mark device as attached
1453 * @dev: network device
1455 * Mark device as attached from system and restart if needed.
1457 void netif_device_attach(struct net_device *dev)
1459 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1460 netif_running(dev)) {
1461 netif_tx_wake_all_queues(dev);
1462 __netdev_watchdog_up(dev);
1465 EXPORT_SYMBOL(netif_device_attach);
1467 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1469 return ((features & NETIF_F_GEN_CSUM) ||
1470 ((features & NETIF_F_IP_CSUM) &&
1471 protocol == htons(ETH_P_IP)) ||
1472 ((features & NETIF_F_IPV6_CSUM) &&
1473 protocol == htons(ETH_P_IPV6)) ||
1474 ((features & NETIF_F_FCOE_CRC) &&
1475 protocol == htons(ETH_P_FCOE)));
1478 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1480 if (can_checksum_protocol(dev->features, skb->protocol))
1481 return true;
1483 if (skb->protocol == htons(ETH_P_8021Q)) {
1484 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1485 if (can_checksum_protocol(dev->features & dev->vlan_features,
1486 veh->h_vlan_encapsulated_proto))
1487 return true;
1490 return false;
1494 * Invalidate hardware checksum when packet is to be mangled, and
1495 * complete checksum manually on outgoing path.
1497 int skb_checksum_help(struct sk_buff *skb)
1499 __wsum csum;
1500 int ret = 0, offset;
1502 if (skb->ip_summed == CHECKSUM_COMPLETE)
1503 goto out_set_summed;
1505 if (unlikely(skb_shinfo(skb)->gso_size)) {
1506 /* Let GSO fix up the checksum. */
1507 goto out_set_summed;
1510 offset = skb->csum_start - skb_headroom(skb);
1511 BUG_ON(offset >= skb_headlen(skb));
1512 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1514 offset += skb->csum_offset;
1515 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1517 if (skb_cloned(skb) &&
1518 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1519 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1520 if (ret)
1521 goto out;
1524 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1525 out_set_summed:
1526 skb->ip_summed = CHECKSUM_NONE;
1527 out:
1528 return ret;
1532 * skb_gso_segment - Perform segmentation on skb.
1533 * @skb: buffer to segment
1534 * @features: features for the output path (see dev->features)
1536 * This function segments the given skb and returns a list of segments.
1538 * It may return NULL if the skb requires no segmentation. This is
1539 * only possible when GSO is used for verifying header integrity.
1541 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1543 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1544 struct packet_type *ptype;
1545 __be16 type = skb->protocol;
1546 int err;
1548 skb_reset_mac_header(skb);
1549 skb->mac_len = skb->network_header - skb->mac_header;
1550 __skb_pull(skb, skb->mac_len);
1552 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1553 struct net_device *dev = skb->dev;
1554 struct ethtool_drvinfo info = {};
1556 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1557 dev->ethtool_ops->get_drvinfo(dev, &info);
1559 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1560 "ip_summed=%d",
1561 info.driver, dev ? dev->features : 0L,
1562 skb->sk ? skb->sk->sk_route_caps : 0L,
1563 skb->len, skb->data_len, skb->ip_summed);
1565 if (skb_header_cloned(skb) &&
1566 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1567 return ERR_PTR(err);
1570 rcu_read_lock();
1571 list_for_each_entry_rcu(ptype,
1572 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1573 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1574 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1575 err = ptype->gso_send_check(skb);
1576 segs = ERR_PTR(err);
1577 if (err || skb_gso_ok(skb, features))
1578 break;
1579 __skb_push(skb, (skb->data -
1580 skb_network_header(skb)));
1582 segs = ptype->gso_segment(skb, features);
1583 break;
1586 rcu_read_unlock();
1588 __skb_push(skb, skb->data - skb_mac_header(skb));
1590 return segs;
1593 EXPORT_SYMBOL(skb_gso_segment);
1595 /* Take action when hardware reception checksum errors are detected. */
1596 #ifdef CONFIG_BUG
1597 void netdev_rx_csum_fault(struct net_device *dev)
1599 if (net_ratelimit()) {
1600 printk(KERN_ERR "%s: hw csum failure.\n",
1601 dev ? dev->name : "<unknown>");
1602 dump_stack();
1605 EXPORT_SYMBOL(netdev_rx_csum_fault);
1606 #endif
1608 /* Actually, we should eliminate this check as soon as we know, that:
1609 * 1. IOMMU is present and allows to map all the memory.
1610 * 2. No high memory really exists on this machine.
1613 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1615 #ifdef CONFIG_HIGHMEM
1616 int i;
1618 if (dev->features & NETIF_F_HIGHDMA)
1619 return 0;
1621 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1622 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1623 return 1;
1625 #endif
1626 return 0;
1629 struct dev_gso_cb {
1630 void (*destructor)(struct sk_buff *skb);
1633 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1635 static void dev_gso_skb_destructor(struct sk_buff *skb)
1637 struct dev_gso_cb *cb;
1639 do {
1640 struct sk_buff *nskb = skb->next;
1642 skb->next = nskb->next;
1643 nskb->next = NULL;
1644 kfree_skb(nskb);
1645 } while (skb->next);
1647 cb = DEV_GSO_CB(skb);
1648 if (cb->destructor)
1649 cb->destructor(skb);
1653 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1654 * @skb: buffer to segment
1656 * This function segments the given skb and stores the list of segments
1657 * in skb->next.
1659 static int dev_gso_segment(struct sk_buff *skb)
1661 struct net_device *dev = skb->dev;
1662 struct sk_buff *segs;
1663 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1664 NETIF_F_SG : 0);
1666 segs = skb_gso_segment(skb, features);
1668 /* Verifying header integrity only. */
1669 if (!segs)
1670 return 0;
1672 if (IS_ERR(segs))
1673 return PTR_ERR(segs);
1675 skb->next = segs;
1676 DEV_GSO_CB(skb)->destructor = skb->destructor;
1677 skb->destructor = dev_gso_skb_destructor;
1679 return 0;
1682 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1683 struct netdev_queue *txq)
1685 const struct net_device_ops *ops = dev->netdev_ops;
1686 int rc;
1688 if (likely(!skb->next)) {
1689 if (!list_empty(&ptype_all))
1690 dev_queue_xmit_nit(skb, dev);
1692 if (netif_needs_gso(dev, skb)) {
1693 if (unlikely(dev_gso_segment(skb)))
1694 goto out_kfree_skb;
1695 if (skb->next)
1696 goto gso;
1700 * If device doesnt need skb->dst, release it right now while
1701 * its hot in this cpu cache
1703 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1704 skb_dst_drop(skb);
1706 rc = ops->ndo_start_xmit(skb, dev);
1707 if (rc == NETDEV_TX_OK)
1708 txq_trans_update(txq);
1710 * TODO: if skb_orphan() was called by
1711 * dev->hard_start_xmit() (for example, the unmodified
1712 * igb driver does that; bnx2 doesn't), then
1713 * skb_tx_software_timestamp() will be unable to send
1714 * back the time stamp.
1716 * How can this be prevented? Always create another
1717 * reference to the socket before calling
1718 * dev->hard_start_xmit()? Prevent that skb_orphan()
1719 * does anything in dev->hard_start_xmit() by clearing
1720 * the skb destructor before the call and restoring it
1721 * afterwards, then doing the skb_orphan() ourselves?
1723 return rc;
1726 gso:
1727 do {
1728 struct sk_buff *nskb = skb->next;
1730 skb->next = nskb->next;
1731 nskb->next = NULL;
1732 rc = ops->ndo_start_xmit(nskb, dev);
1733 if (unlikely(rc != NETDEV_TX_OK)) {
1734 nskb->next = skb->next;
1735 skb->next = nskb;
1736 return rc;
1738 txq_trans_update(txq);
1739 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1740 return NETDEV_TX_BUSY;
1741 } while (skb->next);
1743 skb->destructor = DEV_GSO_CB(skb)->destructor;
1745 out_kfree_skb:
1746 kfree_skb(skb);
1747 return NETDEV_TX_OK;
1750 static u32 skb_tx_hashrnd;
1752 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1754 u32 hash;
1756 if (skb_rx_queue_recorded(skb)) {
1757 hash = skb_get_rx_queue(skb);
1758 while (unlikely (hash >= dev->real_num_tx_queues))
1759 hash -= dev->real_num_tx_queues;
1760 return hash;
1763 if (skb->sk && skb->sk->sk_hash)
1764 hash = skb->sk->sk_hash;
1765 else
1766 hash = skb->protocol;
1768 hash = jhash_1word(hash, skb_tx_hashrnd);
1770 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1772 EXPORT_SYMBOL(skb_tx_hash);
1774 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1775 struct sk_buff *skb)
1777 const struct net_device_ops *ops = dev->netdev_ops;
1778 u16 queue_index = 0;
1780 if (ops->ndo_select_queue)
1781 queue_index = ops->ndo_select_queue(dev, skb);
1782 else if (dev->real_num_tx_queues > 1)
1783 queue_index = skb_tx_hash(dev, skb);
1785 skb_set_queue_mapping(skb, queue_index);
1786 return netdev_get_tx_queue(dev, queue_index);
1789 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1790 struct net_device *dev,
1791 struct netdev_queue *txq)
1793 spinlock_t *root_lock = qdisc_lock(q);
1794 int rc;
1796 spin_lock(root_lock);
1797 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1798 kfree_skb(skb);
1799 rc = NET_XMIT_DROP;
1800 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1801 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1803 * This is a work-conserving queue; there are no old skbs
1804 * waiting to be sent out; and the qdisc is not running -
1805 * xmit the skb directly.
1807 __qdisc_update_bstats(q, skb->len);
1808 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1809 __qdisc_run(q);
1810 else
1811 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1813 rc = NET_XMIT_SUCCESS;
1814 } else {
1815 rc = qdisc_enqueue_root(skb, q);
1816 qdisc_run(q);
1818 spin_unlock(root_lock);
1820 return rc;
1824 * dev_queue_xmit - transmit a buffer
1825 * @skb: buffer to transmit
1827 * Queue a buffer for transmission to a network device. The caller must
1828 * have set the device and priority and built the buffer before calling
1829 * this function. The function can be called from an interrupt.
1831 * A negative errno code is returned on a failure. A success does not
1832 * guarantee the frame will be transmitted as it may be dropped due
1833 * to congestion or traffic shaping.
1835 * -----------------------------------------------------------------------------------
1836 * I notice this method can also return errors from the queue disciplines,
1837 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1838 * be positive.
1840 * Regardless of the return value, the skb is consumed, so it is currently
1841 * difficult to retry a send to this method. (You can bump the ref count
1842 * before sending to hold a reference for retry if you are careful.)
1844 * When calling this method, interrupts MUST be enabled. This is because
1845 * the BH enable code must have IRQs enabled so that it will not deadlock.
1846 * --BLG
1848 int dev_queue_xmit(struct sk_buff *skb)
1850 struct net_device *dev = skb->dev;
1851 struct netdev_queue *txq;
1852 struct Qdisc *q;
1853 int rc = -ENOMEM;
1855 /* GSO will handle the following emulations directly. */
1856 if (netif_needs_gso(dev, skb))
1857 goto gso;
1859 if (skb_has_frags(skb) &&
1860 !(dev->features & NETIF_F_FRAGLIST) &&
1861 __skb_linearize(skb))
1862 goto out_kfree_skb;
1864 /* Fragmented skb is linearized if device does not support SG,
1865 * or if at least one of fragments is in highmem and device
1866 * does not support DMA from it.
1868 if (skb_shinfo(skb)->nr_frags &&
1869 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1870 __skb_linearize(skb))
1871 goto out_kfree_skb;
1873 /* If packet is not checksummed and device does not support
1874 * checksumming for this protocol, complete checksumming here.
1876 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1877 skb_set_transport_header(skb, skb->csum_start -
1878 skb_headroom(skb));
1879 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1880 goto out_kfree_skb;
1883 gso:
1884 /* Disable soft irqs for various locks below. Also
1885 * stops preemption for RCU.
1887 rcu_read_lock_bh();
1889 txq = dev_pick_tx(dev, skb);
1890 q = rcu_dereference(txq->qdisc);
1892 #ifdef CONFIG_NET_CLS_ACT
1893 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1894 #endif
1895 if (q->enqueue) {
1896 rc = __dev_xmit_skb(skb, q, dev, txq);
1897 goto out;
1900 /* The device has no queue. Common case for software devices:
1901 loopback, all the sorts of tunnels...
1903 Really, it is unlikely that netif_tx_lock protection is necessary
1904 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1905 counters.)
1906 However, it is possible, that they rely on protection
1907 made by us here.
1909 Check this and shot the lock. It is not prone from deadlocks.
1910 Either shot noqueue qdisc, it is even simpler 8)
1912 if (dev->flags & IFF_UP) {
1913 int cpu = smp_processor_id(); /* ok because BHs are off */
1915 if (txq->xmit_lock_owner != cpu) {
1917 HARD_TX_LOCK(dev, txq, cpu);
1919 if (!netif_tx_queue_stopped(txq)) {
1920 rc = 0;
1921 if (!dev_hard_start_xmit(skb, dev, txq)) {
1922 HARD_TX_UNLOCK(dev, txq);
1923 goto out;
1926 HARD_TX_UNLOCK(dev, txq);
1927 if (net_ratelimit())
1928 printk(KERN_CRIT "Virtual device %s asks to "
1929 "queue packet!\n", dev->name);
1930 } else {
1931 /* Recursion is detected! It is possible,
1932 * unfortunately */
1933 if (net_ratelimit())
1934 printk(KERN_CRIT "Dead loop on virtual device "
1935 "%s, fix it urgently!\n", dev->name);
1939 rc = -ENETDOWN;
1940 rcu_read_unlock_bh();
1942 out_kfree_skb:
1943 kfree_skb(skb);
1944 return rc;
1945 out:
1946 rcu_read_unlock_bh();
1947 return rc;
1951 /*=======================================================================
1952 Receiver routines
1953 =======================================================================*/
1955 int netdev_max_backlog __read_mostly = 1000;
1956 int netdev_budget __read_mostly = 300;
1957 int weight_p __read_mostly = 64; /* old backlog weight */
1959 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1963 * netif_rx - post buffer to the network code
1964 * @skb: buffer to post
1966 * This function receives a packet from a device driver and queues it for
1967 * the upper (protocol) levels to process. It always succeeds. The buffer
1968 * may be dropped during processing for congestion control or by the
1969 * protocol layers.
1971 * return values:
1972 * NET_RX_SUCCESS (no congestion)
1973 * NET_RX_DROP (packet was dropped)
1977 int netif_rx(struct sk_buff *skb)
1979 struct softnet_data *queue;
1980 unsigned long flags;
1982 /* if netpoll wants it, pretend we never saw it */
1983 if (netpoll_rx(skb))
1984 return NET_RX_DROP;
1986 if (!skb->tstamp.tv64)
1987 net_timestamp(skb);
1990 * The code is rearranged so that the path is the most
1991 * short when CPU is congested, but is still operating.
1993 local_irq_save(flags);
1994 queue = &__get_cpu_var(softnet_data);
1996 __get_cpu_var(netdev_rx_stat).total++;
1997 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1998 if (queue->input_pkt_queue.qlen) {
1999 enqueue:
2000 __skb_queue_tail(&queue->input_pkt_queue, skb);
2001 local_irq_restore(flags);
2002 return NET_RX_SUCCESS;
2005 napi_schedule(&queue->backlog);
2006 goto enqueue;
2009 __get_cpu_var(netdev_rx_stat).dropped++;
2010 local_irq_restore(flags);
2012 kfree_skb(skb);
2013 return NET_RX_DROP;
2016 int netif_rx_ni(struct sk_buff *skb)
2018 int err;
2020 preempt_disable();
2021 err = netif_rx(skb);
2022 if (local_softirq_pending())
2023 do_softirq();
2024 preempt_enable();
2026 return err;
2029 EXPORT_SYMBOL(netif_rx_ni);
2031 static void net_tx_action(struct softirq_action *h)
2033 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2035 if (sd->completion_queue) {
2036 struct sk_buff *clist;
2038 local_irq_disable();
2039 clist = sd->completion_queue;
2040 sd->completion_queue = NULL;
2041 local_irq_enable();
2043 while (clist) {
2044 struct sk_buff *skb = clist;
2045 clist = clist->next;
2047 WARN_ON(atomic_read(&skb->users));
2048 __kfree_skb(skb);
2052 if (sd->output_queue) {
2053 struct Qdisc *head;
2055 local_irq_disable();
2056 head = sd->output_queue;
2057 sd->output_queue = NULL;
2058 local_irq_enable();
2060 while (head) {
2061 struct Qdisc *q = head;
2062 spinlock_t *root_lock;
2064 head = head->next_sched;
2066 root_lock = qdisc_lock(q);
2067 if (spin_trylock(root_lock)) {
2068 smp_mb__before_clear_bit();
2069 clear_bit(__QDISC_STATE_SCHED,
2070 &q->state);
2071 qdisc_run(q);
2072 spin_unlock(root_lock);
2073 } else {
2074 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2075 &q->state)) {
2076 __netif_reschedule(q);
2077 } else {
2078 smp_mb__before_clear_bit();
2079 clear_bit(__QDISC_STATE_SCHED,
2080 &q->state);
2087 static inline int deliver_skb(struct sk_buff *skb,
2088 struct packet_type *pt_prev,
2089 struct net_device *orig_dev)
2091 atomic_inc(&skb->users);
2092 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2095 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2097 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2098 /* This hook is defined here for ATM LANE */
2099 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2100 unsigned char *addr) __read_mostly;
2101 EXPORT_SYMBOL(br_fdb_test_addr_hook);
2102 #endif
2105 * If bridge module is loaded call bridging hook.
2106 * returns NULL if packet was consumed.
2108 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2109 struct sk_buff *skb) __read_mostly;
2110 EXPORT_SYMBOL(br_handle_frame_hook);
2112 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2113 struct packet_type **pt_prev, int *ret,
2114 struct net_device *orig_dev)
2116 struct net_bridge_port *port;
2118 if (skb->pkt_type == PACKET_LOOPBACK ||
2119 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2120 return skb;
2122 if (*pt_prev) {
2123 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2124 *pt_prev = NULL;
2127 return br_handle_frame_hook(port, skb);
2129 #else
2130 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2131 #endif
2133 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2134 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2135 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2137 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2138 struct packet_type **pt_prev,
2139 int *ret,
2140 struct net_device *orig_dev)
2142 if (skb->dev->macvlan_port == NULL)
2143 return skb;
2145 if (*pt_prev) {
2146 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2147 *pt_prev = NULL;
2149 return macvlan_handle_frame_hook(skb);
2151 #else
2152 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2153 #endif
2155 #ifdef CONFIG_NET_CLS_ACT
2156 /* TODO: Maybe we should just force sch_ingress to be compiled in
2157 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2158 * a compare and 2 stores extra right now if we dont have it on
2159 * but have CONFIG_NET_CLS_ACT
2160 * NOTE: This doesnt stop any functionality; if you dont have
2161 * the ingress scheduler, you just cant add policies on ingress.
2164 static int ing_filter(struct sk_buff *skb)
2166 struct net_device *dev = skb->dev;
2167 u32 ttl = G_TC_RTTL(skb->tc_verd);
2168 struct netdev_queue *rxq;
2169 int result = TC_ACT_OK;
2170 struct Qdisc *q;
2172 if (MAX_RED_LOOP < ttl++) {
2173 printk(KERN_WARNING
2174 "Redir loop detected Dropping packet (%d->%d)\n",
2175 skb->iif, dev->ifindex);
2176 return TC_ACT_SHOT;
2179 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2180 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2182 rxq = &dev->rx_queue;
2184 q = rxq->qdisc;
2185 if (q != &noop_qdisc) {
2186 spin_lock(qdisc_lock(q));
2187 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2188 result = qdisc_enqueue_root(skb, q);
2189 spin_unlock(qdisc_lock(q));
2192 return result;
2195 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2196 struct packet_type **pt_prev,
2197 int *ret, struct net_device *orig_dev)
2199 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2200 goto out;
2202 if (*pt_prev) {
2203 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2204 *pt_prev = NULL;
2205 } else {
2206 /* Huh? Why does turning on AF_PACKET affect this? */
2207 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2210 switch (ing_filter(skb)) {
2211 case TC_ACT_SHOT:
2212 case TC_ACT_STOLEN:
2213 kfree_skb(skb);
2214 return NULL;
2217 out:
2218 skb->tc_verd = 0;
2219 return skb;
2221 #endif
2224 * netif_nit_deliver - deliver received packets to network taps
2225 * @skb: buffer
2227 * This function is used to deliver incoming packets to network
2228 * taps. It should be used when the normal netif_receive_skb path
2229 * is bypassed, for example because of VLAN acceleration.
2231 void netif_nit_deliver(struct sk_buff *skb)
2233 struct packet_type *ptype;
2235 if (list_empty(&ptype_all))
2236 return;
2238 skb_reset_network_header(skb);
2239 skb_reset_transport_header(skb);
2240 skb->mac_len = skb->network_header - skb->mac_header;
2242 rcu_read_lock();
2243 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2244 if (!ptype->dev || ptype->dev == skb->dev)
2245 deliver_skb(skb, ptype, skb->dev);
2247 rcu_read_unlock();
2251 * netif_receive_skb - process receive buffer from network
2252 * @skb: buffer to process
2254 * netif_receive_skb() is the main receive data processing function.
2255 * It always succeeds. The buffer may be dropped during processing
2256 * for congestion control or by the protocol layers.
2258 * This function may only be called from softirq context and interrupts
2259 * should be enabled.
2261 * Return values (usually ignored):
2262 * NET_RX_SUCCESS: no congestion
2263 * NET_RX_DROP: packet was dropped
2265 int netif_receive_skb(struct sk_buff *skb)
2267 struct packet_type *ptype, *pt_prev;
2268 struct net_device *orig_dev;
2269 struct net_device *null_or_orig;
2270 int ret = NET_RX_DROP;
2271 __be16 type;
2273 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2274 return NET_RX_SUCCESS;
2276 /* if we've gotten here through NAPI, check netpoll */
2277 if (netpoll_receive_skb(skb))
2278 return NET_RX_DROP;
2280 if (!skb->tstamp.tv64)
2281 net_timestamp(skb);
2283 if (!skb->iif)
2284 skb->iif = skb->dev->ifindex;
2286 null_or_orig = NULL;
2287 orig_dev = skb->dev;
2288 if (orig_dev->master) {
2289 if (skb_bond_should_drop(skb))
2290 null_or_orig = orig_dev; /* deliver only exact match */
2291 else
2292 skb->dev = orig_dev->master;
2295 __get_cpu_var(netdev_rx_stat).total++;
2297 skb_reset_network_header(skb);
2298 skb_reset_transport_header(skb);
2299 skb->mac_len = skb->network_header - skb->mac_header;
2301 pt_prev = NULL;
2303 rcu_read_lock();
2305 #ifdef CONFIG_NET_CLS_ACT
2306 if (skb->tc_verd & TC_NCLS) {
2307 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2308 goto ncls;
2310 #endif
2312 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2313 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2314 ptype->dev == orig_dev) {
2315 if (pt_prev)
2316 ret = deliver_skb(skb, pt_prev, orig_dev);
2317 pt_prev = ptype;
2321 #ifdef CONFIG_NET_CLS_ACT
2322 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2323 if (!skb)
2324 goto out;
2325 ncls:
2326 #endif
2328 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2329 if (!skb)
2330 goto out;
2331 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2332 if (!skb)
2333 goto out;
2335 type = skb->protocol;
2336 list_for_each_entry_rcu(ptype,
2337 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2338 if (ptype->type == type &&
2339 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2340 ptype->dev == orig_dev)) {
2341 if (pt_prev)
2342 ret = deliver_skb(skb, pt_prev, orig_dev);
2343 pt_prev = ptype;
2347 if (pt_prev) {
2348 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2349 } else {
2350 kfree_skb(skb);
2351 /* Jamal, now you will not able to escape explaining
2352 * me how you were going to use this. :-)
2354 ret = NET_RX_DROP;
2357 out:
2358 rcu_read_unlock();
2359 return ret;
2362 /* Network device is going away, flush any packets still pending */
2363 static void flush_backlog(void *arg)
2365 struct net_device *dev = arg;
2366 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2367 struct sk_buff *skb, *tmp;
2369 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2370 if (skb->dev == dev) {
2371 __skb_unlink(skb, &queue->input_pkt_queue);
2372 kfree_skb(skb);
2376 static int napi_gro_complete(struct sk_buff *skb)
2378 struct packet_type *ptype;
2379 __be16 type = skb->protocol;
2380 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2381 int err = -ENOENT;
2383 if (NAPI_GRO_CB(skb)->count == 1) {
2384 skb_shinfo(skb)->gso_size = 0;
2385 goto out;
2388 rcu_read_lock();
2389 list_for_each_entry_rcu(ptype, head, list) {
2390 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2391 continue;
2393 err = ptype->gro_complete(skb);
2394 break;
2396 rcu_read_unlock();
2398 if (err) {
2399 WARN_ON(&ptype->list == head);
2400 kfree_skb(skb);
2401 return NET_RX_SUCCESS;
2404 out:
2405 return netif_receive_skb(skb);
2408 void napi_gro_flush(struct napi_struct *napi)
2410 struct sk_buff *skb, *next;
2412 for (skb = napi->gro_list; skb; skb = next) {
2413 next = skb->next;
2414 skb->next = NULL;
2415 napi_gro_complete(skb);
2418 napi->gro_count = 0;
2419 napi->gro_list = NULL;
2421 EXPORT_SYMBOL(napi_gro_flush);
2423 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2425 struct sk_buff **pp = NULL;
2426 struct packet_type *ptype;
2427 __be16 type = skb->protocol;
2428 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2429 int same_flow;
2430 int mac_len;
2431 int ret;
2433 if (!(skb->dev->features & NETIF_F_GRO))
2434 goto normal;
2436 if (skb_is_gso(skb) || skb_has_frags(skb))
2437 goto normal;
2439 rcu_read_lock();
2440 list_for_each_entry_rcu(ptype, head, list) {
2441 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2442 continue;
2444 skb_set_network_header(skb, skb_gro_offset(skb));
2445 mac_len = skb->network_header - skb->mac_header;
2446 skb->mac_len = mac_len;
2447 NAPI_GRO_CB(skb)->same_flow = 0;
2448 NAPI_GRO_CB(skb)->flush = 0;
2449 NAPI_GRO_CB(skb)->free = 0;
2451 pp = ptype->gro_receive(&napi->gro_list, skb);
2452 break;
2454 rcu_read_unlock();
2456 if (&ptype->list == head)
2457 goto normal;
2459 same_flow = NAPI_GRO_CB(skb)->same_flow;
2460 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2462 if (pp) {
2463 struct sk_buff *nskb = *pp;
2465 *pp = nskb->next;
2466 nskb->next = NULL;
2467 napi_gro_complete(nskb);
2468 napi->gro_count--;
2471 if (same_flow)
2472 goto ok;
2474 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2475 goto normal;
2477 napi->gro_count++;
2478 NAPI_GRO_CB(skb)->count = 1;
2479 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2480 skb->next = napi->gro_list;
2481 napi->gro_list = skb;
2482 ret = GRO_HELD;
2484 pull:
2485 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2486 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2488 BUG_ON(skb->end - skb->tail < grow);
2490 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2492 skb->tail += grow;
2493 skb->data_len -= grow;
2495 skb_shinfo(skb)->frags[0].page_offset += grow;
2496 skb_shinfo(skb)->frags[0].size -= grow;
2498 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2499 put_page(skb_shinfo(skb)->frags[0].page);
2500 memmove(skb_shinfo(skb)->frags,
2501 skb_shinfo(skb)->frags + 1,
2502 --skb_shinfo(skb)->nr_frags);
2507 return ret;
2509 normal:
2510 ret = GRO_NORMAL;
2511 goto pull;
2513 EXPORT_SYMBOL(dev_gro_receive);
2515 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2517 struct sk_buff *p;
2519 if (netpoll_rx_on(skb))
2520 return GRO_NORMAL;
2522 for (p = napi->gro_list; p; p = p->next) {
2523 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2524 && !compare_ether_header(skb_mac_header(p),
2525 skb_gro_mac_header(skb));
2526 NAPI_GRO_CB(p)->flush = 0;
2529 return dev_gro_receive(napi, skb);
2532 int napi_skb_finish(int ret, struct sk_buff *skb)
2534 int err = NET_RX_SUCCESS;
2536 switch (ret) {
2537 case GRO_NORMAL:
2538 return netif_receive_skb(skb);
2540 case GRO_DROP:
2541 err = NET_RX_DROP;
2542 /* fall through */
2544 case GRO_MERGED_FREE:
2545 kfree_skb(skb);
2546 break;
2549 return err;
2551 EXPORT_SYMBOL(napi_skb_finish);
2553 void skb_gro_reset_offset(struct sk_buff *skb)
2555 NAPI_GRO_CB(skb)->data_offset = 0;
2556 NAPI_GRO_CB(skb)->frag0 = NULL;
2557 NAPI_GRO_CB(skb)->frag0_len = 0;
2559 if (skb->mac_header == skb->tail &&
2560 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2561 NAPI_GRO_CB(skb)->frag0 =
2562 page_address(skb_shinfo(skb)->frags[0].page) +
2563 skb_shinfo(skb)->frags[0].page_offset;
2564 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2567 EXPORT_SYMBOL(skb_gro_reset_offset);
2569 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2571 skb_gro_reset_offset(skb);
2573 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2575 EXPORT_SYMBOL(napi_gro_receive);
2577 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2579 __skb_pull(skb, skb_headlen(skb));
2580 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2582 napi->skb = skb;
2584 EXPORT_SYMBOL(napi_reuse_skb);
2586 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2588 struct net_device *dev = napi->dev;
2589 struct sk_buff *skb = napi->skb;
2591 if (!skb) {
2592 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2593 if (!skb)
2594 goto out;
2596 skb_reserve(skb, NET_IP_ALIGN);
2598 napi->skb = skb;
2601 out:
2602 return skb;
2604 EXPORT_SYMBOL(napi_get_frags);
2606 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2608 int err = NET_RX_SUCCESS;
2610 switch (ret) {
2611 case GRO_NORMAL:
2612 case GRO_HELD:
2613 skb->protocol = eth_type_trans(skb, napi->dev);
2615 if (ret == GRO_NORMAL)
2616 return netif_receive_skb(skb);
2618 skb_gro_pull(skb, -ETH_HLEN);
2619 break;
2621 case GRO_DROP:
2622 err = NET_RX_DROP;
2623 /* fall through */
2625 case GRO_MERGED_FREE:
2626 napi_reuse_skb(napi, skb);
2627 break;
2630 return err;
2632 EXPORT_SYMBOL(napi_frags_finish);
2634 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2636 struct sk_buff *skb = napi->skb;
2637 struct ethhdr *eth;
2638 unsigned int hlen;
2639 unsigned int off;
2641 napi->skb = NULL;
2643 skb_reset_mac_header(skb);
2644 skb_gro_reset_offset(skb);
2646 off = skb_gro_offset(skb);
2647 hlen = off + sizeof(*eth);
2648 eth = skb_gro_header_fast(skb, off);
2649 if (skb_gro_header_hard(skb, hlen)) {
2650 eth = skb_gro_header_slow(skb, hlen, off);
2651 if (unlikely(!eth)) {
2652 napi_reuse_skb(napi, skb);
2653 skb = NULL;
2654 goto out;
2658 skb_gro_pull(skb, sizeof(*eth));
2661 * This works because the only protocols we care about don't require
2662 * special handling. We'll fix it up properly at the end.
2664 skb->protocol = eth->h_proto;
2666 out:
2667 return skb;
2669 EXPORT_SYMBOL(napi_frags_skb);
2671 int napi_gro_frags(struct napi_struct *napi)
2673 struct sk_buff *skb = napi_frags_skb(napi);
2675 if (!skb)
2676 return NET_RX_DROP;
2678 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2680 EXPORT_SYMBOL(napi_gro_frags);
2682 static int process_backlog(struct napi_struct *napi, int quota)
2684 int work = 0;
2685 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2686 unsigned long start_time = jiffies;
2688 napi->weight = weight_p;
2689 do {
2690 struct sk_buff *skb;
2692 local_irq_disable();
2693 skb = __skb_dequeue(&queue->input_pkt_queue);
2694 if (!skb) {
2695 __napi_complete(napi);
2696 local_irq_enable();
2697 break;
2699 local_irq_enable();
2701 netif_receive_skb(skb);
2702 } while (++work < quota && jiffies == start_time);
2704 return work;
2708 * __napi_schedule - schedule for receive
2709 * @n: entry to schedule
2711 * The entry's receive function will be scheduled to run
2713 void __napi_schedule(struct napi_struct *n)
2715 unsigned long flags;
2717 local_irq_save(flags);
2718 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2719 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2720 local_irq_restore(flags);
2722 EXPORT_SYMBOL(__napi_schedule);
2724 void __napi_complete(struct napi_struct *n)
2726 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2727 BUG_ON(n->gro_list);
2729 list_del(&n->poll_list);
2730 smp_mb__before_clear_bit();
2731 clear_bit(NAPI_STATE_SCHED, &n->state);
2733 EXPORT_SYMBOL(__napi_complete);
2735 void napi_complete(struct napi_struct *n)
2737 unsigned long flags;
2740 * don't let napi dequeue from the cpu poll list
2741 * just in case its running on a different cpu
2743 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2744 return;
2746 napi_gro_flush(n);
2747 local_irq_save(flags);
2748 __napi_complete(n);
2749 local_irq_restore(flags);
2751 EXPORT_SYMBOL(napi_complete);
2753 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2754 int (*poll)(struct napi_struct *, int), int weight)
2756 INIT_LIST_HEAD(&napi->poll_list);
2757 napi->gro_count = 0;
2758 napi->gro_list = NULL;
2759 napi->skb = NULL;
2760 napi->poll = poll;
2761 napi->weight = weight;
2762 list_add(&napi->dev_list, &dev->napi_list);
2763 napi->dev = dev;
2764 #ifdef CONFIG_NETPOLL
2765 spin_lock_init(&napi->poll_lock);
2766 napi->poll_owner = -1;
2767 #endif
2768 set_bit(NAPI_STATE_SCHED, &napi->state);
2770 EXPORT_SYMBOL(netif_napi_add);
2772 void netif_napi_del(struct napi_struct *napi)
2774 struct sk_buff *skb, *next;
2776 list_del_init(&napi->dev_list);
2777 napi_free_frags(napi);
2779 for (skb = napi->gro_list; skb; skb = next) {
2780 next = skb->next;
2781 skb->next = NULL;
2782 kfree_skb(skb);
2785 napi->gro_list = NULL;
2786 napi->gro_count = 0;
2788 EXPORT_SYMBOL(netif_napi_del);
2791 static void net_rx_action(struct softirq_action *h)
2793 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2794 unsigned long time_limit = jiffies + 2;
2795 int budget = netdev_budget;
2796 void *have;
2798 local_irq_disable();
2800 while (!list_empty(list)) {
2801 struct napi_struct *n;
2802 int work, weight;
2804 /* If softirq window is exhuasted then punt.
2805 * Allow this to run for 2 jiffies since which will allow
2806 * an average latency of 1.5/HZ.
2808 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2809 goto softnet_break;
2811 local_irq_enable();
2813 /* Even though interrupts have been re-enabled, this
2814 * access is safe because interrupts can only add new
2815 * entries to the tail of this list, and only ->poll()
2816 * calls can remove this head entry from the list.
2818 n = list_entry(list->next, struct napi_struct, poll_list);
2820 have = netpoll_poll_lock(n);
2822 weight = n->weight;
2824 /* This NAPI_STATE_SCHED test is for avoiding a race
2825 * with netpoll's poll_napi(). Only the entity which
2826 * obtains the lock and sees NAPI_STATE_SCHED set will
2827 * actually make the ->poll() call. Therefore we avoid
2828 * accidently calling ->poll() when NAPI is not scheduled.
2830 work = 0;
2831 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2832 work = n->poll(n, weight);
2833 trace_napi_poll(n);
2836 WARN_ON_ONCE(work > weight);
2838 budget -= work;
2840 local_irq_disable();
2842 /* Drivers must not modify the NAPI state if they
2843 * consume the entire weight. In such cases this code
2844 * still "owns" the NAPI instance and therefore can
2845 * move the instance around on the list at-will.
2847 if (unlikely(work == weight)) {
2848 if (unlikely(napi_disable_pending(n))) {
2849 local_irq_enable();
2850 napi_complete(n);
2851 local_irq_disable();
2852 } else
2853 list_move_tail(&n->poll_list, list);
2856 netpoll_poll_unlock(have);
2858 out:
2859 local_irq_enable();
2861 #ifdef CONFIG_NET_DMA
2863 * There may not be any more sk_buffs coming right now, so push
2864 * any pending DMA copies to hardware
2866 dma_issue_pending_all();
2867 #endif
2869 return;
2871 softnet_break:
2872 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2873 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2874 goto out;
2877 static gifconf_func_t * gifconf_list [NPROTO];
2880 * register_gifconf - register a SIOCGIF handler
2881 * @family: Address family
2882 * @gifconf: Function handler
2884 * Register protocol dependent address dumping routines. The handler
2885 * that is passed must not be freed or reused until it has been replaced
2886 * by another handler.
2888 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2890 if (family >= NPROTO)
2891 return -EINVAL;
2892 gifconf_list[family] = gifconf;
2893 return 0;
2898 * Map an interface index to its name (SIOCGIFNAME)
2902 * We need this ioctl for efficient implementation of the
2903 * if_indextoname() function required by the IPv6 API. Without
2904 * it, we would have to search all the interfaces to find a
2905 * match. --pb
2908 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2910 struct net_device *dev;
2911 struct ifreq ifr;
2914 * Fetch the caller's info block.
2917 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2918 return -EFAULT;
2920 read_lock(&dev_base_lock);
2921 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2922 if (!dev) {
2923 read_unlock(&dev_base_lock);
2924 return -ENODEV;
2927 strcpy(ifr.ifr_name, dev->name);
2928 read_unlock(&dev_base_lock);
2930 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2931 return -EFAULT;
2932 return 0;
2936 * Perform a SIOCGIFCONF call. This structure will change
2937 * size eventually, and there is nothing I can do about it.
2938 * Thus we will need a 'compatibility mode'.
2941 static int dev_ifconf(struct net *net, char __user *arg)
2943 struct ifconf ifc;
2944 struct net_device *dev;
2945 char __user *pos;
2946 int len;
2947 int total;
2948 int i;
2951 * Fetch the caller's info block.
2954 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2955 return -EFAULT;
2957 pos = ifc.ifc_buf;
2958 len = ifc.ifc_len;
2961 * Loop over the interfaces, and write an info block for each.
2964 total = 0;
2965 for_each_netdev(net, dev) {
2966 for (i = 0; i < NPROTO; i++) {
2967 if (gifconf_list[i]) {
2968 int done;
2969 if (!pos)
2970 done = gifconf_list[i](dev, NULL, 0);
2971 else
2972 done = gifconf_list[i](dev, pos + total,
2973 len - total);
2974 if (done < 0)
2975 return -EFAULT;
2976 total += done;
2982 * All done. Write the updated control block back to the caller.
2984 ifc.ifc_len = total;
2987 * Both BSD and Solaris return 0 here, so we do too.
2989 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2992 #ifdef CONFIG_PROC_FS
2994 * This is invoked by the /proc filesystem handler to display a device
2995 * in detail.
2997 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2998 __acquires(dev_base_lock)
3000 struct net *net = seq_file_net(seq);
3001 loff_t off;
3002 struct net_device *dev;
3004 read_lock(&dev_base_lock);
3005 if (!*pos)
3006 return SEQ_START_TOKEN;
3008 off = 1;
3009 for_each_netdev(net, dev)
3010 if (off++ == *pos)
3011 return dev;
3013 return NULL;
3016 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3018 struct net *net = seq_file_net(seq);
3019 ++*pos;
3020 return v == SEQ_START_TOKEN ?
3021 first_net_device(net) : next_net_device((struct net_device *)v);
3024 void dev_seq_stop(struct seq_file *seq, void *v)
3025 __releases(dev_base_lock)
3027 read_unlock(&dev_base_lock);
3030 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3032 const struct net_device_stats *stats = dev_get_stats(dev);
3034 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3035 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3036 dev->name, stats->rx_bytes, stats->rx_packets,
3037 stats->rx_errors,
3038 stats->rx_dropped + stats->rx_missed_errors,
3039 stats->rx_fifo_errors,
3040 stats->rx_length_errors + stats->rx_over_errors +
3041 stats->rx_crc_errors + stats->rx_frame_errors,
3042 stats->rx_compressed, stats->multicast,
3043 stats->tx_bytes, stats->tx_packets,
3044 stats->tx_errors, stats->tx_dropped,
3045 stats->tx_fifo_errors, stats->collisions,
3046 stats->tx_carrier_errors +
3047 stats->tx_aborted_errors +
3048 stats->tx_window_errors +
3049 stats->tx_heartbeat_errors,
3050 stats->tx_compressed);
3054 * Called from the PROCfs module. This now uses the new arbitrary sized
3055 * /proc/net interface to create /proc/net/dev
3057 static int dev_seq_show(struct seq_file *seq, void *v)
3059 if (v == SEQ_START_TOKEN)
3060 seq_puts(seq, "Inter-| Receive "
3061 " | Transmit\n"
3062 " face |bytes packets errs drop fifo frame "
3063 "compressed multicast|bytes packets errs "
3064 "drop fifo colls carrier compressed\n");
3065 else
3066 dev_seq_printf_stats(seq, v);
3067 return 0;
3070 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3072 struct netif_rx_stats *rc = NULL;
3074 while (*pos < nr_cpu_ids)
3075 if (cpu_online(*pos)) {
3076 rc = &per_cpu(netdev_rx_stat, *pos);
3077 break;
3078 } else
3079 ++*pos;
3080 return rc;
3083 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3085 return softnet_get_online(pos);
3088 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3090 ++*pos;
3091 return softnet_get_online(pos);
3094 static void softnet_seq_stop(struct seq_file *seq, void *v)
3098 static int softnet_seq_show(struct seq_file *seq, void *v)
3100 struct netif_rx_stats *s = v;
3102 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3103 s->total, s->dropped, s->time_squeeze, 0,
3104 0, 0, 0, 0, /* was fastroute */
3105 s->cpu_collision );
3106 return 0;
3109 static const struct seq_operations dev_seq_ops = {
3110 .start = dev_seq_start,
3111 .next = dev_seq_next,
3112 .stop = dev_seq_stop,
3113 .show = dev_seq_show,
3116 static int dev_seq_open(struct inode *inode, struct file *file)
3118 return seq_open_net(inode, file, &dev_seq_ops,
3119 sizeof(struct seq_net_private));
3122 static const struct file_operations dev_seq_fops = {
3123 .owner = THIS_MODULE,
3124 .open = dev_seq_open,
3125 .read = seq_read,
3126 .llseek = seq_lseek,
3127 .release = seq_release_net,
3130 static const struct seq_operations softnet_seq_ops = {
3131 .start = softnet_seq_start,
3132 .next = softnet_seq_next,
3133 .stop = softnet_seq_stop,
3134 .show = softnet_seq_show,
3137 static int softnet_seq_open(struct inode *inode, struct file *file)
3139 return seq_open(file, &softnet_seq_ops);
3142 static const struct file_operations softnet_seq_fops = {
3143 .owner = THIS_MODULE,
3144 .open = softnet_seq_open,
3145 .read = seq_read,
3146 .llseek = seq_lseek,
3147 .release = seq_release,
3150 static void *ptype_get_idx(loff_t pos)
3152 struct packet_type *pt = NULL;
3153 loff_t i = 0;
3154 int t;
3156 list_for_each_entry_rcu(pt, &ptype_all, list) {
3157 if (i == pos)
3158 return pt;
3159 ++i;
3162 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3163 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3164 if (i == pos)
3165 return pt;
3166 ++i;
3169 return NULL;
3172 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3173 __acquires(RCU)
3175 rcu_read_lock();
3176 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3179 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3181 struct packet_type *pt;
3182 struct list_head *nxt;
3183 int hash;
3185 ++*pos;
3186 if (v == SEQ_START_TOKEN)
3187 return ptype_get_idx(0);
3189 pt = v;
3190 nxt = pt->list.next;
3191 if (pt->type == htons(ETH_P_ALL)) {
3192 if (nxt != &ptype_all)
3193 goto found;
3194 hash = 0;
3195 nxt = ptype_base[0].next;
3196 } else
3197 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3199 while (nxt == &ptype_base[hash]) {
3200 if (++hash >= PTYPE_HASH_SIZE)
3201 return NULL;
3202 nxt = ptype_base[hash].next;
3204 found:
3205 return list_entry(nxt, struct packet_type, list);
3208 static void ptype_seq_stop(struct seq_file *seq, void *v)
3209 __releases(RCU)
3211 rcu_read_unlock();
3214 static int ptype_seq_show(struct seq_file *seq, void *v)
3216 struct packet_type *pt = v;
3218 if (v == SEQ_START_TOKEN)
3219 seq_puts(seq, "Type Device Function\n");
3220 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3221 if (pt->type == htons(ETH_P_ALL))
3222 seq_puts(seq, "ALL ");
3223 else
3224 seq_printf(seq, "%04x", ntohs(pt->type));
3226 seq_printf(seq, " %-8s %pF\n",
3227 pt->dev ? pt->dev->name : "", pt->func);
3230 return 0;
3233 static const struct seq_operations ptype_seq_ops = {
3234 .start = ptype_seq_start,
3235 .next = ptype_seq_next,
3236 .stop = ptype_seq_stop,
3237 .show = ptype_seq_show,
3240 static int ptype_seq_open(struct inode *inode, struct file *file)
3242 return seq_open_net(inode, file, &ptype_seq_ops,
3243 sizeof(struct seq_net_private));
3246 static const struct file_operations ptype_seq_fops = {
3247 .owner = THIS_MODULE,
3248 .open = ptype_seq_open,
3249 .read = seq_read,
3250 .llseek = seq_lseek,
3251 .release = seq_release_net,
3255 static int __net_init dev_proc_net_init(struct net *net)
3257 int rc = -ENOMEM;
3259 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3260 goto out;
3261 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3262 goto out_dev;
3263 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3264 goto out_softnet;
3266 if (wext_proc_init(net))
3267 goto out_ptype;
3268 rc = 0;
3269 out:
3270 return rc;
3271 out_ptype:
3272 proc_net_remove(net, "ptype");
3273 out_softnet:
3274 proc_net_remove(net, "softnet_stat");
3275 out_dev:
3276 proc_net_remove(net, "dev");
3277 goto out;
3280 static void __net_exit dev_proc_net_exit(struct net *net)
3282 wext_proc_exit(net);
3284 proc_net_remove(net, "ptype");
3285 proc_net_remove(net, "softnet_stat");
3286 proc_net_remove(net, "dev");
3289 static struct pernet_operations __net_initdata dev_proc_ops = {
3290 .init = dev_proc_net_init,
3291 .exit = dev_proc_net_exit,
3294 static int __init dev_proc_init(void)
3296 return register_pernet_subsys(&dev_proc_ops);
3298 #else
3299 #define dev_proc_init() 0
3300 #endif /* CONFIG_PROC_FS */
3304 * netdev_set_master - set up master/slave pair
3305 * @slave: slave device
3306 * @master: new master device
3308 * Changes the master device of the slave. Pass %NULL to break the
3309 * bonding. The caller must hold the RTNL semaphore. On a failure
3310 * a negative errno code is returned. On success the reference counts
3311 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3312 * function returns zero.
3314 int netdev_set_master(struct net_device *slave, struct net_device *master)
3316 struct net_device *old = slave->master;
3318 ASSERT_RTNL();
3320 if (master) {
3321 if (old)
3322 return -EBUSY;
3323 dev_hold(master);
3326 slave->master = master;
3328 synchronize_net();
3330 if (old)
3331 dev_put(old);
3333 if (master)
3334 slave->flags |= IFF_SLAVE;
3335 else
3336 slave->flags &= ~IFF_SLAVE;
3338 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3339 return 0;
3342 static void dev_change_rx_flags(struct net_device *dev, int flags)
3344 const struct net_device_ops *ops = dev->netdev_ops;
3346 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3347 ops->ndo_change_rx_flags(dev, flags);
3350 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3352 unsigned short old_flags = dev->flags;
3353 uid_t uid;
3354 gid_t gid;
3356 ASSERT_RTNL();
3358 dev->flags |= IFF_PROMISC;
3359 dev->promiscuity += inc;
3360 if (dev->promiscuity == 0) {
3362 * Avoid overflow.
3363 * If inc causes overflow, untouch promisc and return error.
3365 if (inc < 0)
3366 dev->flags &= ~IFF_PROMISC;
3367 else {
3368 dev->promiscuity -= inc;
3369 printk(KERN_WARNING "%s: promiscuity touches roof, "
3370 "set promiscuity failed, promiscuity feature "
3371 "of device might be broken.\n", dev->name);
3372 return -EOVERFLOW;
3375 if (dev->flags != old_flags) {
3376 printk(KERN_INFO "device %s %s promiscuous mode\n",
3377 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3378 "left");
3379 if (audit_enabled) {
3380 current_uid_gid(&uid, &gid);
3381 audit_log(current->audit_context, GFP_ATOMIC,
3382 AUDIT_ANOM_PROMISCUOUS,
3383 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3384 dev->name, (dev->flags & IFF_PROMISC),
3385 (old_flags & IFF_PROMISC),
3386 audit_get_loginuid(current),
3387 uid, gid,
3388 audit_get_sessionid(current));
3391 dev_change_rx_flags(dev, IFF_PROMISC);
3393 return 0;
3397 * dev_set_promiscuity - update promiscuity count on a device
3398 * @dev: device
3399 * @inc: modifier
3401 * Add or remove promiscuity from a device. While the count in the device
3402 * remains above zero the interface remains promiscuous. Once it hits zero
3403 * the device reverts back to normal filtering operation. A negative inc
3404 * value is used to drop promiscuity on the device.
3405 * Return 0 if successful or a negative errno code on error.
3407 int dev_set_promiscuity(struct net_device *dev, int inc)
3409 unsigned short old_flags = dev->flags;
3410 int err;
3412 err = __dev_set_promiscuity(dev, inc);
3413 if (err < 0)
3414 return err;
3415 if (dev->flags != old_flags)
3416 dev_set_rx_mode(dev);
3417 return err;
3421 * dev_set_allmulti - update allmulti count on a device
3422 * @dev: device
3423 * @inc: modifier
3425 * Add or remove reception of all multicast frames to a device. While the
3426 * count in the device remains above zero the interface remains listening
3427 * to all interfaces. Once it hits zero the device reverts back to normal
3428 * filtering operation. A negative @inc value is used to drop the counter
3429 * when releasing a resource needing all multicasts.
3430 * Return 0 if successful or a negative errno code on error.
3433 int dev_set_allmulti(struct net_device *dev, int inc)
3435 unsigned short old_flags = dev->flags;
3437 ASSERT_RTNL();
3439 dev->flags |= IFF_ALLMULTI;
3440 dev->allmulti += inc;
3441 if (dev->allmulti == 0) {
3443 * Avoid overflow.
3444 * If inc causes overflow, untouch allmulti and return error.
3446 if (inc < 0)
3447 dev->flags &= ~IFF_ALLMULTI;
3448 else {
3449 dev->allmulti -= inc;
3450 printk(KERN_WARNING "%s: allmulti touches roof, "
3451 "set allmulti failed, allmulti feature of "
3452 "device might be broken.\n", dev->name);
3453 return -EOVERFLOW;
3456 if (dev->flags ^ old_flags) {
3457 dev_change_rx_flags(dev, IFF_ALLMULTI);
3458 dev_set_rx_mode(dev);
3460 return 0;
3464 * Upload unicast and multicast address lists to device and
3465 * configure RX filtering. When the device doesn't support unicast
3466 * filtering it is put in promiscuous mode while unicast addresses
3467 * are present.
3469 void __dev_set_rx_mode(struct net_device *dev)
3471 const struct net_device_ops *ops = dev->netdev_ops;
3473 /* dev_open will call this function so the list will stay sane. */
3474 if (!(dev->flags&IFF_UP))
3475 return;
3477 if (!netif_device_present(dev))
3478 return;
3480 if (ops->ndo_set_rx_mode)
3481 ops->ndo_set_rx_mode(dev);
3482 else {
3483 /* Unicast addresses changes may only happen under the rtnl,
3484 * therefore calling __dev_set_promiscuity here is safe.
3486 if (dev->uc.count > 0 && !dev->uc_promisc) {
3487 __dev_set_promiscuity(dev, 1);
3488 dev->uc_promisc = 1;
3489 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3490 __dev_set_promiscuity(dev, -1);
3491 dev->uc_promisc = 0;
3494 if (ops->ndo_set_multicast_list)
3495 ops->ndo_set_multicast_list(dev);
3499 void dev_set_rx_mode(struct net_device *dev)
3501 netif_addr_lock_bh(dev);
3502 __dev_set_rx_mode(dev);
3503 netif_addr_unlock_bh(dev);
3506 /* hw addresses list handling functions */
3508 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3509 int addr_len, unsigned char addr_type)
3511 struct netdev_hw_addr *ha;
3512 int alloc_size;
3514 if (addr_len > MAX_ADDR_LEN)
3515 return -EINVAL;
3517 list_for_each_entry(ha, &list->list, list) {
3518 if (!memcmp(ha->addr, addr, addr_len) &&
3519 ha->type == addr_type) {
3520 ha->refcount++;
3521 return 0;
3526 alloc_size = sizeof(*ha);
3527 if (alloc_size < L1_CACHE_BYTES)
3528 alloc_size = L1_CACHE_BYTES;
3529 ha = kmalloc(alloc_size, GFP_ATOMIC);
3530 if (!ha)
3531 return -ENOMEM;
3532 memcpy(ha->addr, addr, addr_len);
3533 ha->type = addr_type;
3534 ha->refcount = 1;
3535 ha->synced = false;
3536 list_add_tail_rcu(&ha->list, &list->list);
3537 list->count++;
3538 return 0;
3541 static void ha_rcu_free(struct rcu_head *head)
3543 struct netdev_hw_addr *ha;
3545 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3546 kfree(ha);
3549 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3550 int addr_len, unsigned char addr_type)
3552 struct netdev_hw_addr *ha;
3554 list_for_each_entry(ha, &list->list, list) {
3555 if (!memcmp(ha->addr, addr, addr_len) &&
3556 (ha->type == addr_type || !addr_type)) {
3557 if (--ha->refcount)
3558 return 0;
3559 list_del_rcu(&ha->list);
3560 call_rcu(&ha->rcu_head, ha_rcu_free);
3561 list->count--;
3562 return 0;
3565 return -ENOENT;
3568 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3569 struct netdev_hw_addr_list *from_list,
3570 int addr_len,
3571 unsigned char addr_type)
3573 int err;
3574 struct netdev_hw_addr *ha, *ha2;
3575 unsigned char type;
3577 list_for_each_entry(ha, &from_list->list, list) {
3578 type = addr_type ? addr_type : ha->type;
3579 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3580 if (err)
3581 goto unroll;
3583 return 0;
3585 unroll:
3586 list_for_each_entry(ha2, &from_list->list, list) {
3587 if (ha2 == ha)
3588 break;
3589 type = addr_type ? addr_type : ha2->type;
3590 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3592 return err;
3595 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3596 struct netdev_hw_addr_list *from_list,
3597 int addr_len,
3598 unsigned char addr_type)
3600 struct netdev_hw_addr *ha;
3601 unsigned char type;
3603 list_for_each_entry(ha, &from_list->list, list) {
3604 type = addr_type ? addr_type : ha->type;
3605 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3609 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3610 struct netdev_hw_addr_list *from_list,
3611 int addr_len)
3613 int err = 0;
3614 struct netdev_hw_addr *ha, *tmp;
3616 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3617 if (!ha->synced) {
3618 err = __hw_addr_add(to_list, ha->addr,
3619 addr_len, ha->type);
3620 if (err)
3621 break;
3622 ha->synced = true;
3623 ha->refcount++;
3624 } else if (ha->refcount == 1) {
3625 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3626 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3629 return err;
3632 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3633 struct netdev_hw_addr_list *from_list,
3634 int addr_len)
3636 struct netdev_hw_addr *ha, *tmp;
3638 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3639 if (ha->synced) {
3640 __hw_addr_del(to_list, ha->addr,
3641 addr_len, ha->type);
3642 ha->synced = false;
3643 __hw_addr_del(from_list, ha->addr,
3644 addr_len, ha->type);
3649 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3651 struct netdev_hw_addr *ha, *tmp;
3653 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3654 list_del_rcu(&ha->list);
3655 call_rcu(&ha->rcu_head, ha_rcu_free);
3657 list->count = 0;
3660 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3662 INIT_LIST_HEAD(&list->list);
3663 list->count = 0;
3666 /* Device addresses handling functions */
3668 static void dev_addr_flush(struct net_device *dev)
3670 /* rtnl_mutex must be held here */
3672 __hw_addr_flush(&dev->dev_addrs);
3673 dev->dev_addr = NULL;
3676 static int dev_addr_init(struct net_device *dev)
3678 unsigned char addr[MAX_ADDR_LEN];
3679 struct netdev_hw_addr *ha;
3680 int err;
3682 /* rtnl_mutex must be held here */
3684 __hw_addr_init(&dev->dev_addrs);
3685 memset(addr, 0, sizeof(addr));
3686 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3687 NETDEV_HW_ADDR_T_LAN);
3688 if (!err) {
3690 * Get the first (previously created) address from the list
3691 * and set dev_addr pointer to this location.
3693 ha = list_first_entry(&dev->dev_addrs.list,
3694 struct netdev_hw_addr, list);
3695 dev->dev_addr = ha->addr;
3697 return err;
3701 * dev_addr_add - Add a device address
3702 * @dev: device
3703 * @addr: address to add
3704 * @addr_type: address type
3706 * Add a device address to the device or increase the reference count if
3707 * it already exists.
3709 * The caller must hold the rtnl_mutex.
3711 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3712 unsigned char addr_type)
3714 int err;
3716 ASSERT_RTNL();
3718 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3719 if (!err)
3720 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3721 return err;
3723 EXPORT_SYMBOL(dev_addr_add);
3726 * dev_addr_del - Release a device address.
3727 * @dev: device
3728 * @addr: address to delete
3729 * @addr_type: address type
3731 * Release reference to a device address and remove it from the device
3732 * if the reference count drops to zero.
3734 * The caller must hold the rtnl_mutex.
3736 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3737 unsigned char addr_type)
3739 int err;
3740 struct netdev_hw_addr *ha;
3742 ASSERT_RTNL();
3745 * We can not remove the first address from the list because
3746 * dev->dev_addr points to that.
3748 ha = list_first_entry(&dev->dev_addrs.list,
3749 struct netdev_hw_addr, list);
3750 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3751 return -ENOENT;
3753 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3754 addr_type);
3755 if (!err)
3756 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3757 return err;
3759 EXPORT_SYMBOL(dev_addr_del);
3762 * dev_addr_add_multiple - Add device addresses from another device
3763 * @to_dev: device to which addresses will be added
3764 * @from_dev: device from which addresses will be added
3765 * @addr_type: address type - 0 means type will be used from from_dev
3767 * Add device addresses of the one device to another.
3769 * The caller must hold the rtnl_mutex.
3771 int dev_addr_add_multiple(struct net_device *to_dev,
3772 struct net_device *from_dev,
3773 unsigned char addr_type)
3775 int err;
3777 ASSERT_RTNL();
3779 if (from_dev->addr_len != to_dev->addr_len)
3780 return -EINVAL;
3781 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3782 to_dev->addr_len, addr_type);
3783 if (!err)
3784 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3785 return err;
3787 EXPORT_SYMBOL(dev_addr_add_multiple);
3790 * dev_addr_del_multiple - Delete device addresses by another device
3791 * @to_dev: device where the addresses will be deleted
3792 * @from_dev: device by which addresses the addresses will be deleted
3793 * @addr_type: address type - 0 means type will used from from_dev
3795 * Deletes addresses in to device by the list of addresses in from device.
3797 * The caller must hold the rtnl_mutex.
3799 int dev_addr_del_multiple(struct net_device *to_dev,
3800 struct net_device *from_dev,
3801 unsigned char addr_type)
3803 ASSERT_RTNL();
3805 if (from_dev->addr_len != to_dev->addr_len)
3806 return -EINVAL;
3807 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3808 to_dev->addr_len, addr_type);
3809 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3810 return 0;
3812 EXPORT_SYMBOL(dev_addr_del_multiple);
3814 /* multicast addresses handling functions */
3816 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3817 void *addr, int alen, int glbl)
3819 struct dev_addr_list *da;
3821 for (; (da = *list) != NULL; list = &da->next) {
3822 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3823 alen == da->da_addrlen) {
3824 if (glbl) {
3825 int old_glbl = da->da_gusers;
3826 da->da_gusers = 0;
3827 if (old_glbl == 0)
3828 break;
3830 if (--da->da_users)
3831 return 0;
3833 *list = da->next;
3834 kfree(da);
3835 (*count)--;
3836 return 0;
3839 return -ENOENT;
3842 int __dev_addr_add(struct dev_addr_list **list, int *count,
3843 void *addr, int alen, int glbl)
3845 struct dev_addr_list *da;
3847 for (da = *list; da != NULL; da = da->next) {
3848 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3849 da->da_addrlen == alen) {
3850 if (glbl) {
3851 int old_glbl = da->da_gusers;
3852 da->da_gusers = 1;
3853 if (old_glbl)
3854 return 0;
3856 da->da_users++;
3857 return 0;
3861 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3862 if (da == NULL)
3863 return -ENOMEM;
3864 memcpy(da->da_addr, addr, alen);
3865 da->da_addrlen = alen;
3866 da->da_users = 1;
3867 da->da_gusers = glbl ? 1 : 0;
3868 da->next = *list;
3869 *list = da;
3870 (*count)++;
3871 return 0;
3875 * dev_unicast_delete - Release secondary unicast address.
3876 * @dev: device
3877 * @addr: address to delete
3879 * Release reference to a secondary unicast address and remove it
3880 * from the device if the reference count drops to zero.
3882 * The caller must hold the rtnl_mutex.
3884 int dev_unicast_delete(struct net_device *dev, void *addr)
3886 int err;
3888 ASSERT_RTNL();
3890 netif_addr_lock_bh(dev);
3891 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
3892 NETDEV_HW_ADDR_T_UNICAST);
3893 if (!err)
3894 __dev_set_rx_mode(dev);
3895 netif_addr_unlock_bh(dev);
3896 return err;
3898 EXPORT_SYMBOL(dev_unicast_delete);
3901 * dev_unicast_add - add a secondary unicast address
3902 * @dev: device
3903 * @addr: address to add
3905 * Add a secondary unicast address to the device or increase
3906 * the reference count if it already exists.
3908 * The caller must hold the rtnl_mutex.
3910 int dev_unicast_add(struct net_device *dev, void *addr)
3912 int err;
3914 ASSERT_RTNL();
3916 netif_addr_lock_bh(dev);
3917 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
3918 NETDEV_HW_ADDR_T_UNICAST);
3919 if (!err)
3920 __dev_set_rx_mode(dev);
3921 netif_addr_unlock_bh(dev);
3922 return err;
3924 EXPORT_SYMBOL(dev_unicast_add);
3926 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3927 struct dev_addr_list **from, int *from_count)
3929 struct dev_addr_list *da, *next;
3930 int err = 0;
3932 da = *from;
3933 while (da != NULL) {
3934 next = da->next;
3935 if (!da->da_synced) {
3936 err = __dev_addr_add(to, to_count,
3937 da->da_addr, da->da_addrlen, 0);
3938 if (err < 0)
3939 break;
3940 da->da_synced = 1;
3941 da->da_users++;
3942 } else if (da->da_users == 1) {
3943 __dev_addr_delete(to, to_count,
3944 da->da_addr, da->da_addrlen, 0);
3945 __dev_addr_delete(from, from_count,
3946 da->da_addr, da->da_addrlen, 0);
3948 da = next;
3950 return err;
3952 EXPORT_SYMBOL_GPL(__dev_addr_sync);
3954 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3955 struct dev_addr_list **from, int *from_count)
3957 struct dev_addr_list *da, *next;
3959 da = *from;
3960 while (da != NULL) {
3961 next = da->next;
3962 if (da->da_synced) {
3963 __dev_addr_delete(to, to_count,
3964 da->da_addr, da->da_addrlen, 0);
3965 da->da_synced = 0;
3966 __dev_addr_delete(from, from_count,
3967 da->da_addr, da->da_addrlen, 0);
3969 da = next;
3972 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
3975 * dev_unicast_sync - Synchronize device's unicast list to another device
3976 * @to: destination device
3977 * @from: source device
3979 * Add newly added addresses to the destination device and release
3980 * addresses that have no users left. The source device must be
3981 * locked by netif_tx_lock_bh.
3983 * This function is intended to be called from the dev->set_rx_mode
3984 * function of layered software devices.
3986 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3988 int err = 0;
3990 if (to->addr_len != from->addr_len)
3991 return -EINVAL;
3993 netif_addr_lock_bh(to);
3994 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
3995 if (!err)
3996 __dev_set_rx_mode(to);
3997 netif_addr_unlock_bh(to);
3998 return err;
4000 EXPORT_SYMBOL(dev_unicast_sync);
4003 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4004 * @to: destination device
4005 * @from: source device
4007 * Remove all addresses that were added to the destination device by
4008 * dev_unicast_sync(). This function is intended to be called from the
4009 * dev->stop function of layered software devices.
4011 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4013 if (to->addr_len != from->addr_len)
4014 return;
4016 netif_addr_lock_bh(from);
4017 netif_addr_lock(to);
4018 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4019 __dev_set_rx_mode(to);
4020 netif_addr_unlock(to);
4021 netif_addr_unlock_bh(from);
4023 EXPORT_SYMBOL(dev_unicast_unsync);
4025 static void dev_unicast_flush(struct net_device *dev)
4027 netif_addr_lock_bh(dev);
4028 __hw_addr_flush(&dev->uc);
4029 netif_addr_unlock_bh(dev);
4032 static void dev_unicast_init(struct net_device *dev)
4034 __hw_addr_init(&dev->uc);
4038 static void __dev_addr_discard(struct dev_addr_list **list)
4040 struct dev_addr_list *tmp;
4042 while (*list != NULL) {
4043 tmp = *list;
4044 *list = tmp->next;
4045 if (tmp->da_users > tmp->da_gusers)
4046 printk("__dev_addr_discard: address leakage! "
4047 "da_users=%d\n", tmp->da_users);
4048 kfree(tmp);
4052 static void dev_addr_discard(struct net_device *dev)
4054 netif_addr_lock_bh(dev);
4056 __dev_addr_discard(&dev->mc_list);
4057 dev->mc_count = 0;
4059 netif_addr_unlock_bh(dev);
4063 * dev_get_flags - get flags reported to userspace
4064 * @dev: device
4066 * Get the combination of flag bits exported through APIs to userspace.
4068 unsigned dev_get_flags(const struct net_device *dev)
4070 unsigned flags;
4072 flags = (dev->flags & ~(IFF_PROMISC |
4073 IFF_ALLMULTI |
4074 IFF_RUNNING |
4075 IFF_LOWER_UP |
4076 IFF_DORMANT)) |
4077 (dev->gflags & (IFF_PROMISC |
4078 IFF_ALLMULTI));
4080 if (netif_running(dev)) {
4081 if (netif_oper_up(dev))
4082 flags |= IFF_RUNNING;
4083 if (netif_carrier_ok(dev))
4084 flags |= IFF_LOWER_UP;
4085 if (netif_dormant(dev))
4086 flags |= IFF_DORMANT;
4089 return flags;
4093 * dev_change_flags - change device settings
4094 * @dev: device
4095 * @flags: device state flags
4097 * Change settings on device based state flags. The flags are
4098 * in the userspace exported format.
4100 int dev_change_flags(struct net_device *dev, unsigned flags)
4102 int ret, changes;
4103 int old_flags = dev->flags;
4105 ASSERT_RTNL();
4108 * Set the flags on our device.
4111 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4112 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4113 IFF_AUTOMEDIA)) |
4114 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4115 IFF_ALLMULTI));
4118 * Load in the correct multicast list now the flags have changed.
4121 if ((old_flags ^ flags) & IFF_MULTICAST)
4122 dev_change_rx_flags(dev, IFF_MULTICAST);
4124 dev_set_rx_mode(dev);
4127 * Have we downed the interface. We handle IFF_UP ourselves
4128 * according to user attempts to set it, rather than blindly
4129 * setting it.
4132 ret = 0;
4133 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4134 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4136 if (!ret)
4137 dev_set_rx_mode(dev);
4140 if (dev->flags & IFF_UP &&
4141 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4142 IFF_VOLATILE)))
4143 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4145 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4146 int inc = (flags & IFF_PROMISC) ? +1 : -1;
4147 dev->gflags ^= IFF_PROMISC;
4148 dev_set_promiscuity(dev, inc);
4151 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4152 is important. Some (broken) drivers set IFF_PROMISC, when
4153 IFF_ALLMULTI is requested not asking us and not reporting.
4155 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4156 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
4157 dev->gflags ^= IFF_ALLMULTI;
4158 dev_set_allmulti(dev, inc);
4161 /* Exclude state transition flags, already notified */
4162 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4163 if (changes)
4164 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4166 return ret;
4170 * dev_set_mtu - Change maximum transfer unit
4171 * @dev: device
4172 * @new_mtu: new transfer unit
4174 * Change the maximum transfer size of the network device.
4176 int dev_set_mtu(struct net_device *dev, int new_mtu)
4178 const struct net_device_ops *ops = dev->netdev_ops;
4179 int err;
4181 if (new_mtu == dev->mtu)
4182 return 0;
4184 /* MTU must be positive. */
4185 if (new_mtu < 0)
4186 return -EINVAL;
4188 if (!netif_device_present(dev))
4189 return -ENODEV;
4191 err = 0;
4192 if (ops->ndo_change_mtu)
4193 err = ops->ndo_change_mtu(dev, new_mtu);
4194 else
4195 dev->mtu = new_mtu;
4197 if (!err && dev->flags & IFF_UP)
4198 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4199 return err;
4203 * dev_set_mac_address - Change Media Access Control Address
4204 * @dev: device
4205 * @sa: new address
4207 * Change the hardware (MAC) address of the device
4209 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4211 const struct net_device_ops *ops = dev->netdev_ops;
4212 int err;
4214 if (!ops->ndo_set_mac_address)
4215 return -EOPNOTSUPP;
4216 if (sa->sa_family != dev->type)
4217 return -EINVAL;
4218 if (!netif_device_present(dev))
4219 return -ENODEV;
4220 err = ops->ndo_set_mac_address(dev, sa);
4221 if (!err)
4222 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4223 return err;
4227 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4229 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4231 int err;
4232 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4234 if (!dev)
4235 return -ENODEV;
4237 switch (cmd) {
4238 case SIOCGIFFLAGS: /* Get interface flags */
4239 ifr->ifr_flags = (short) dev_get_flags(dev);
4240 return 0;
4242 case SIOCGIFMETRIC: /* Get the metric on the interface
4243 (currently unused) */
4244 ifr->ifr_metric = 0;
4245 return 0;
4247 case SIOCGIFMTU: /* Get the MTU of a device */
4248 ifr->ifr_mtu = dev->mtu;
4249 return 0;
4251 case SIOCGIFHWADDR:
4252 if (!dev->addr_len)
4253 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4254 else
4255 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4256 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4257 ifr->ifr_hwaddr.sa_family = dev->type;
4258 return 0;
4260 case SIOCGIFSLAVE:
4261 err = -EINVAL;
4262 break;
4264 case SIOCGIFMAP:
4265 ifr->ifr_map.mem_start = dev->mem_start;
4266 ifr->ifr_map.mem_end = dev->mem_end;
4267 ifr->ifr_map.base_addr = dev->base_addr;
4268 ifr->ifr_map.irq = dev->irq;
4269 ifr->ifr_map.dma = dev->dma;
4270 ifr->ifr_map.port = dev->if_port;
4271 return 0;
4273 case SIOCGIFINDEX:
4274 ifr->ifr_ifindex = dev->ifindex;
4275 return 0;
4277 case SIOCGIFTXQLEN:
4278 ifr->ifr_qlen = dev->tx_queue_len;
4279 return 0;
4281 default:
4282 /* dev_ioctl() should ensure this case
4283 * is never reached
4285 WARN_ON(1);
4286 err = -EINVAL;
4287 break;
4290 return err;
4294 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4296 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4298 int err;
4299 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4300 const struct net_device_ops *ops;
4302 if (!dev)
4303 return -ENODEV;
4305 ops = dev->netdev_ops;
4307 switch (cmd) {
4308 case SIOCSIFFLAGS: /* Set interface flags */
4309 return dev_change_flags(dev, ifr->ifr_flags);
4311 case SIOCSIFMETRIC: /* Set the metric on the interface
4312 (currently unused) */
4313 return -EOPNOTSUPP;
4315 case SIOCSIFMTU: /* Set the MTU of a device */
4316 return dev_set_mtu(dev, ifr->ifr_mtu);
4318 case SIOCSIFHWADDR:
4319 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4321 case SIOCSIFHWBROADCAST:
4322 if (ifr->ifr_hwaddr.sa_family != dev->type)
4323 return -EINVAL;
4324 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4325 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4326 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4327 return 0;
4329 case SIOCSIFMAP:
4330 if (ops->ndo_set_config) {
4331 if (!netif_device_present(dev))
4332 return -ENODEV;
4333 return ops->ndo_set_config(dev, &ifr->ifr_map);
4335 return -EOPNOTSUPP;
4337 case SIOCADDMULTI:
4338 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4339 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4340 return -EINVAL;
4341 if (!netif_device_present(dev))
4342 return -ENODEV;
4343 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4344 dev->addr_len, 1);
4346 case SIOCDELMULTI:
4347 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4348 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4349 return -EINVAL;
4350 if (!netif_device_present(dev))
4351 return -ENODEV;
4352 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4353 dev->addr_len, 1);
4355 case SIOCSIFTXQLEN:
4356 if (ifr->ifr_qlen < 0)
4357 return -EINVAL;
4358 dev->tx_queue_len = ifr->ifr_qlen;
4359 return 0;
4361 case SIOCSIFNAME:
4362 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4363 return dev_change_name(dev, ifr->ifr_newname);
4366 * Unknown or private ioctl
4369 default:
4370 if ((cmd >= SIOCDEVPRIVATE &&
4371 cmd <= SIOCDEVPRIVATE + 15) ||
4372 cmd == SIOCBONDENSLAVE ||
4373 cmd == SIOCBONDRELEASE ||
4374 cmd == SIOCBONDSETHWADDR ||
4375 cmd == SIOCBONDSLAVEINFOQUERY ||
4376 cmd == SIOCBONDINFOQUERY ||
4377 cmd == SIOCBONDCHANGEACTIVE ||
4378 cmd == SIOCGMIIPHY ||
4379 cmd == SIOCGMIIREG ||
4380 cmd == SIOCSMIIREG ||
4381 cmd == SIOCBRADDIF ||
4382 cmd == SIOCBRDELIF ||
4383 cmd == SIOCSHWTSTAMP ||
4384 cmd == SIOCWANDEV) {
4385 err = -EOPNOTSUPP;
4386 if (ops->ndo_do_ioctl) {
4387 if (netif_device_present(dev))
4388 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4389 else
4390 err = -ENODEV;
4392 } else
4393 err = -EINVAL;
4396 return err;
4400 * This function handles all "interface"-type I/O control requests. The actual
4401 * 'doing' part of this is dev_ifsioc above.
4405 * dev_ioctl - network device ioctl
4406 * @net: the applicable net namespace
4407 * @cmd: command to issue
4408 * @arg: pointer to a struct ifreq in user space
4410 * Issue ioctl functions to devices. This is normally called by the
4411 * user space syscall interfaces but can sometimes be useful for
4412 * other purposes. The return value is the return from the syscall if
4413 * positive or a negative errno code on error.
4416 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4418 struct ifreq ifr;
4419 int ret;
4420 char *colon;
4422 /* One special case: SIOCGIFCONF takes ifconf argument
4423 and requires shared lock, because it sleeps writing
4424 to user space.
4427 if (cmd == SIOCGIFCONF) {
4428 rtnl_lock();
4429 ret = dev_ifconf(net, (char __user *) arg);
4430 rtnl_unlock();
4431 return ret;
4433 if (cmd == SIOCGIFNAME)
4434 return dev_ifname(net, (struct ifreq __user *)arg);
4436 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4437 return -EFAULT;
4439 ifr.ifr_name[IFNAMSIZ-1] = 0;
4441 colon = strchr(ifr.ifr_name, ':');
4442 if (colon)
4443 *colon = 0;
4446 * See which interface the caller is talking about.
4449 switch (cmd) {
4451 * These ioctl calls:
4452 * - can be done by all.
4453 * - atomic and do not require locking.
4454 * - return a value
4456 case SIOCGIFFLAGS:
4457 case SIOCGIFMETRIC:
4458 case SIOCGIFMTU:
4459 case SIOCGIFHWADDR:
4460 case SIOCGIFSLAVE:
4461 case SIOCGIFMAP:
4462 case SIOCGIFINDEX:
4463 case SIOCGIFTXQLEN:
4464 dev_load(net, ifr.ifr_name);
4465 read_lock(&dev_base_lock);
4466 ret = dev_ifsioc_locked(net, &ifr, cmd);
4467 read_unlock(&dev_base_lock);
4468 if (!ret) {
4469 if (colon)
4470 *colon = ':';
4471 if (copy_to_user(arg, &ifr,
4472 sizeof(struct ifreq)))
4473 ret = -EFAULT;
4475 return ret;
4477 case SIOCETHTOOL:
4478 dev_load(net, ifr.ifr_name);
4479 rtnl_lock();
4480 ret = dev_ethtool(net, &ifr);
4481 rtnl_unlock();
4482 if (!ret) {
4483 if (colon)
4484 *colon = ':';
4485 if (copy_to_user(arg, &ifr,
4486 sizeof(struct ifreq)))
4487 ret = -EFAULT;
4489 return ret;
4492 * These ioctl calls:
4493 * - require superuser power.
4494 * - require strict serialization.
4495 * - return a value
4497 case SIOCGMIIPHY:
4498 case SIOCGMIIREG:
4499 case SIOCSIFNAME:
4500 if (!capable(CAP_NET_ADMIN))
4501 return -EPERM;
4502 dev_load(net, ifr.ifr_name);
4503 rtnl_lock();
4504 ret = dev_ifsioc(net, &ifr, cmd);
4505 rtnl_unlock();
4506 if (!ret) {
4507 if (colon)
4508 *colon = ':';
4509 if (copy_to_user(arg, &ifr,
4510 sizeof(struct ifreq)))
4511 ret = -EFAULT;
4513 return ret;
4516 * These ioctl calls:
4517 * - require superuser power.
4518 * - require strict serialization.
4519 * - do not return a value
4521 case SIOCSIFFLAGS:
4522 case SIOCSIFMETRIC:
4523 case SIOCSIFMTU:
4524 case SIOCSIFMAP:
4525 case SIOCSIFHWADDR:
4526 case SIOCSIFSLAVE:
4527 case SIOCADDMULTI:
4528 case SIOCDELMULTI:
4529 case SIOCSIFHWBROADCAST:
4530 case SIOCSIFTXQLEN:
4531 case SIOCSMIIREG:
4532 case SIOCBONDENSLAVE:
4533 case SIOCBONDRELEASE:
4534 case SIOCBONDSETHWADDR:
4535 case SIOCBONDCHANGEACTIVE:
4536 case SIOCBRADDIF:
4537 case SIOCBRDELIF:
4538 case SIOCSHWTSTAMP:
4539 if (!capable(CAP_NET_ADMIN))
4540 return -EPERM;
4541 /* fall through */
4542 case SIOCBONDSLAVEINFOQUERY:
4543 case SIOCBONDINFOQUERY:
4544 dev_load(net, ifr.ifr_name);
4545 rtnl_lock();
4546 ret = dev_ifsioc(net, &ifr, cmd);
4547 rtnl_unlock();
4548 return ret;
4550 case SIOCGIFMEM:
4551 /* Get the per device memory space. We can add this but
4552 * currently do not support it */
4553 case SIOCSIFMEM:
4554 /* Set the per device memory buffer space.
4555 * Not applicable in our case */
4556 case SIOCSIFLINK:
4557 return -EINVAL;
4560 * Unknown or private ioctl.
4562 default:
4563 if (cmd == SIOCWANDEV ||
4564 (cmd >= SIOCDEVPRIVATE &&
4565 cmd <= SIOCDEVPRIVATE + 15)) {
4566 dev_load(net, ifr.ifr_name);
4567 rtnl_lock();
4568 ret = dev_ifsioc(net, &ifr, cmd);
4569 rtnl_unlock();
4570 if (!ret && copy_to_user(arg, &ifr,
4571 sizeof(struct ifreq)))
4572 ret = -EFAULT;
4573 return ret;
4575 /* Take care of Wireless Extensions */
4576 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4577 return wext_handle_ioctl(net, &ifr, cmd, arg);
4578 return -EINVAL;
4584 * dev_new_index - allocate an ifindex
4585 * @net: the applicable net namespace
4587 * Returns a suitable unique value for a new device interface
4588 * number. The caller must hold the rtnl semaphore or the
4589 * dev_base_lock to be sure it remains unique.
4591 static int dev_new_index(struct net *net)
4593 static int ifindex;
4594 for (;;) {
4595 if (++ifindex <= 0)
4596 ifindex = 1;
4597 if (!__dev_get_by_index(net, ifindex))
4598 return ifindex;
4602 /* Delayed registration/unregisteration */
4603 static LIST_HEAD(net_todo_list);
4605 static void net_set_todo(struct net_device *dev)
4607 list_add_tail(&dev->todo_list, &net_todo_list);
4610 static void rollback_registered(struct net_device *dev)
4612 BUG_ON(dev_boot_phase);
4613 ASSERT_RTNL();
4615 /* Some devices call without registering for initialization unwind. */
4616 if (dev->reg_state == NETREG_UNINITIALIZED) {
4617 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4618 "was registered\n", dev->name, dev);
4620 WARN_ON(1);
4621 return;
4624 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4626 /* If device is running, close it first. */
4627 dev_close(dev);
4629 /* And unlink it from device chain. */
4630 unlist_netdevice(dev);
4632 dev->reg_state = NETREG_UNREGISTERING;
4634 synchronize_net();
4636 /* Shutdown queueing discipline. */
4637 dev_shutdown(dev);
4640 /* Notify protocols, that we are about to destroy
4641 this device. They should clean all the things.
4643 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4646 * Flush the unicast and multicast chains
4648 dev_unicast_flush(dev);
4649 dev_addr_discard(dev);
4651 if (dev->netdev_ops->ndo_uninit)
4652 dev->netdev_ops->ndo_uninit(dev);
4654 /* Notifier chain MUST detach us from master device. */
4655 WARN_ON(dev->master);
4657 /* Remove entries from kobject tree */
4658 netdev_unregister_kobject(dev);
4660 synchronize_net();
4662 dev_put(dev);
4665 static void __netdev_init_queue_locks_one(struct net_device *dev,
4666 struct netdev_queue *dev_queue,
4667 void *_unused)
4669 spin_lock_init(&dev_queue->_xmit_lock);
4670 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4671 dev_queue->xmit_lock_owner = -1;
4674 static void netdev_init_queue_locks(struct net_device *dev)
4676 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4677 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4680 unsigned long netdev_fix_features(unsigned long features, const char *name)
4682 /* Fix illegal SG+CSUM combinations. */
4683 if ((features & NETIF_F_SG) &&
4684 !(features & NETIF_F_ALL_CSUM)) {
4685 if (name)
4686 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4687 "checksum feature.\n", name);
4688 features &= ~NETIF_F_SG;
4691 /* TSO requires that SG is present as well. */
4692 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4693 if (name)
4694 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4695 "SG feature.\n", name);
4696 features &= ~NETIF_F_TSO;
4699 if (features & NETIF_F_UFO) {
4700 if (!(features & NETIF_F_GEN_CSUM)) {
4701 if (name)
4702 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4703 "since no NETIF_F_HW_CSUM feature.\n",
4704 name);
4705 features &= ~NETIF_F_UFO;
4708 if (!(features & NETIF_F_SG)) {
4709 if (name)
4710 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4711 "since no NETIF_F_SG feature.\n", name);
4712 features &= ~NETIF_F_UFO;
4716 return features;
4718 EXPORT_SYMBOL(netdev_fix_features);
4721 * register_netdevice - register a network device
4722 * @dev: device to register
4724 * Take a completed network device structure and add it to the kernel
4725 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4726 * chain. 0 is returned on success. A negative errno code is returned
4727 * on a failure to set up the device, or if the name is a duplicate.
4729 * Callers must hold the rtnl semaphore. You may want
4730 * register_netdev() instead of this.
4732 * BUGS:
4733 * The locking appears insufficient to guarantee two parallel registers
4734 * will not get the same name.
4737 int register_netdevice(struct net_device *dev)
4739 struct hlist_head *head;
4740 struct hlist_node *p;
4741 int ret;
4742 struct net *net = dev_net(dev);
4744 BUG_ON(dev_boot_phase);
4745 ASSERT_RTNL();
4747 might_sleep();
4749 /* When net_device's are persistent, this will be fatal. */
4750 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4751 BUG_ON(!net);
4753 spin_lock_init(&dev->addr_list_lock);
4754 netdev_set_addr_lockdep_class(dev);
4755 netdev_init_queue_locks(dev);
4757 dev->iflink = -1;
4759 /* Init, if this function is available */
4760 if (dev->netdev_ops->ndo_init) {
4761 ret = dev->netdev_ops->ndo_init(dev);
4762 if (ret) {
4763 if (ret > 0)
4764 ret = -EIO;
4765 goto out;
4769 if (!dev_valid_name(dev->name)) {
4770 ret = -EINVAL;
4771 goto err_uninit;
4774 dev->ifindex = dev_new_index(net);
4775 if (dev->iflink == -1)
4776 dev->iflink = dev->ifindex;
4778 /* Check for existence of name */
4779 head = dev_name_hash(net, dev->name);
4780 hlist_for_each(p, head) {
4781 struct net_device *d
4782 = hlist_entry(p, struct net_device, name_hlist);
4783 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4784 ret = -EEXIST;
4785 goto err_uninit;
4789 /* Fix illegal checksum combinations */
4790 if ((dev->features & NETIF_F_HW_CSUM) &&
4791 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4792 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4793 dev->name);
4794 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4797 if ((dev->features & NETIF_F_NO_CSUM) &&
4798 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4799 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4800 dev->name);
4801 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4804 dev->features = netdev_fix_features(dev->features, dev->name);
4806 /* Enable software GSO if SG is supported. */
4807 if (dev->features & NETIF_F_SG)
4808 dev->features |= NETIF_F_GSO;
4810 netdev_initialize_kobject(dev);
4811 ret = netdev_register_kobject(dev);
4812 if (ret)
4813 goto err_uninit;
4814 dev->reg_state = NETREG_REGISTERED;
4817 * Default initial state at registry is that the
4818 * device is present.
4821 set_bit(__LINK_STATE_PRESENT, &dev->state);
4823 dev_init_scheduler(dev);
4824 dev_hold(dev);
4825 list_netdevice(dev);
4827 /* Notify protocols, that a new device appeared. */
4828 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4829 ret = notifier_to_errno(ret);
4830 if (ret) {
4831 rollback_registered(dev);
4832 dev->reg_state = NETREG_UNREGISTERED;
4835 out:
4836 return ret;
4838 err_uninit:
4839 if (dev->netdev_ops->ndo_uninit)
4840 dev->netdev_ops->ndo_uninit(dev);
4841 goto out;
4845 * init_dummy_netdev - init a dummy network device for NAPI
4846 * @dev: device to init
4848 * This takes a network device structure and initialize the minimum
4849 * amount of fields so it can be used to schedule NAPI polls without
4850 * registering a full blown interface. This is to be used by drivers
4851 * that need to tie several hardware interfaces to a single NAPI
4852 * poll scheduler due to HW limitations.
4854 int init_dummy_netdev(struct net_device *dev)
4856 /* Clear everything. Note we don't initialize spinlocks
4857 * are they aren't supposed to be taken by any of the
4858 * NAPI code and this dummy netdev is supposed to be
4859 * only ever used for NAPI polls
4861 memset(dev, 0, sizeof(struct net_device));
4863 /* make sure we BUG if trying to hit standard
4864 * register/unregister code path
4866 dev->reg_state = NETREG_DUMMY;
4868 /* initialize the ref count */
4869 atomic_set(&dev->refcnt, 1);
4871 /* NAPI wants this */
4872 INIT_LIST_HEAD(&dev->napi_list);
4874 /* a dummy interface is started by default */
4875 set_bit(__LINK_STATE_PRESENT, &dev->state);
4876 set_bit(__LINK_STATE_START, &dev->state);
4878 return 0;
4880 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4884 * register_netdev - register a network device
4885 * @dev: device to register
4887 * Take a completed network device structure and add it to the kernel
4888 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4889 * chain. 0 is returned on success. A negative errno code is returned
4890 * on a failure to set up the device, or if the name is a duplicate.
4892 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4893 * and expands the device name if you passed a format string to
4894 * alloc_netdev.
4896 int register_netdev(struct net_device *dev)
4898 int err;
4900 rtnl_lock();
4903 * If the name is a format string the caller wants us to do a
4904 * name allocation.
4906 if (strchr(dev->name, '%')) {
4907 err = dev_alloc_name(dev, dev->name);
4908 if (err < 0)
4909 goto out;
4912 err = register_netdevice(dev);
4913 out:
4914 rtnl_unlock();
4915 return err;
4917 EXPORT_SYMBOL(register_netdev);
4920 * netdev_wait_allrefs - wait until all references are gone.
4922 * This is called when unregistering network devices.
4924 * Any protocol or device that holds a reference should register
4925 * for netdevice notification, and cleanup and put back the
4926 * reference if they receive an UNREGISTER event.
4927 * We can get stuck here if buggy protocols don't correctly
4928 * call dev_put.
4930 static void netdev_wait_allrefs(struct net_device *dev)
4932 unsigned long rebroadcast_time, warning_time;
4934 rebroadcast_time = warning_time = jiffies;
4935 while (atomic_read(&dev->refcnt) != 0) {
4936 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4937 rtnl_lock();
4939 /* Rebroadcast unregister notification */
4940 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4942 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4943 &dev->state)) {
4944 /* We must not have linkwatch events
4945 * pending on unregister. If this
4946 * happens, we simply run the queue
4947 * unscheduled, resulting in a noop
4948 * for this device.
4950 linkwatch_run_queue();
4953 __rtnl_unlock();
4955 rebroadcast_time = jiffies;
4958 msleep(250);
4960 if (time_after(jiffies, warning_time + 10 * HZ)) {
4961 printk(KERN_EMERG "unregister_netdevice: "
4962 "waiting for %s to become free. Usage "
4963 "count = %d\n",
4964 dev->name, atomic_read(&dev->refcnt));
4965 warning_time = jiffies;
4970 /* The sequence is:
4972 * rtnl_lock();
4973 * ...
4974 * register_netdevice(x1);
4975 * register_netdevice(x2);
4976 * ...
4977 * unregister_netdevice(y1);
4978 * unregister_netdevice(y2);
4979 * ...
4980 * rtnl_unlock();
4981 * free_netdev(y1);
4982 * free_netdev(y2);
4984 * We are invoked by rtnl_unlock().
4985 * This allows us to deal with problems:
4986 * 1) We can delete sysfs objects which invoke hotplug
4987 * without deadlocking with linkwatch via keventd.
4988 * 2) Since we run with the RTNL semaphore not held, we can sleep
4989 * safely in order to wait for the netdev refcnt to drop to zero.
4991 * We must not return until all unregister events added during
4992 * the interval the lock was held have been completed.
4994 void netdev_run_todo(void)
4996 struct list_head list;
4998 /* Snapshot list, allow later requests */
4999 list_replace_init(&net_todo_list, &list);
5001 __rtnl_unlock();
5003 while (!list_empty(&list)) {
5004 struct net_device *dev
5005 = list_entry(list.next, struct net_device, todo_list);
5006 list_del(&dev->todo_list);
5008 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5009 printk(KERN_ERR "network todo '%s' but state %d\n",
5010 dev->name, dev->reg_state);
5011 dump_stack();
5012 continue;
5015 dev->reg_state = NETREG_UNREGISTERED;
5017 on_each_cpu(flush_backlog, dev, 1);
5019 netdev_wait_allrefs(dev);
5021 /* paranoia */
5022 BUG_ON(atomic_read(&dev->refcnt));
5023 WARN_ON(dev->ip_ptr);
5024 WARN_ON(dev->ip6_ptr);
5025 WARN_ON(dev->dn_ptr);
5027 if (dev->destructor)
5028 dev->destructor(dev);
5030 /* Free network device */
5031 kobject_put(&dev->dev.kobj);
5036 * dev_get_stats - get network device statistics
5037 * @dev: device to get statistics from
5039 * Get network statistics from device. The device driver may provide
5040 * its own method by setting dev->netdev_ops->get_stats; otherwise
5041 * the internal statistics structure is used.
5043 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5045 const struct net_device_ops *ops = dev->netdev_ops;
5047 if (ops->ndo_get_stats)
5048 return ops->ndo_get_stats(dev);
5049 else {
5050 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5051 struct net_device_stats *stats = &dev->stats;
5052 unsigned int i;
5053 struct netdev_queue *txq;
5055 for (i = 0; i < dev->num_tx_queues; i++) {
5056 txq = netdev_get_tx_queue(dev, i);
5057 tx_bytes += txq->tx_bytes;
5058 tx_packets += txq->tx_packets;
5059 tx_dropped += txq->tx_dropped;
5061 if (tx_bytes || tx_packets || tx_dropped) {
5062 stats->tx_bytes = tx_bytes;
5063 stats->tx_packets = tx_packets;
5064 stats->tx_dropped = tx_dropped;
5066 return stats;
5069 EXPORT_SYMBOL(dev_get_stats);
5071 static void netdev_init_one_queue(struct net_device *dev,
5072 struct netdev_queue *queue,
5073 void *_unused)
5075 queue->dev = dev;
5078 static void netdev_init_queues(struct net_device *dev)
5080 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5081 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5082 spin_lock_init(&dev->tx_global_lock);
5086 * alloc_netdev_mq - allocate network device
5087 * @sizeof_priv: size of private data to allocate space for
5088 * @name: device name format string
5089 * @setup: callback to initialize device
5090 * @queue_count: the number of subqueues to allocate
5092 * Allocates a struct net_device with private data area for driver use
5093 * and performs basic initialization. Also allocates subquue structs
5094 * for each queue on the device at the end of the netdevice.
5096 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5097 void (*setup)(struct net_device *), unsigned int queue_count)
5099 struct netdev_queue *tx;
5100 struct net_device *dev;
5101 size_t alloc_size;
5102 struct net_device *p;
5104 BUG_ON(strlen(name) >= sizeof(dev->name));
5106 alloc_size = sizeof(struct net_device);
5107 if (sizeof_priv) {
5108 /* ensure 32-byte alignment of private area */
5109 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5110 alloc_size += sizeof_priv;
5112 /* ensure 32-byte alignment of whole construct */
5113 alloc_size += NETDEV_ALIGN - 1;
5115 p = kzalloc(alloc_size, GFP_KERNEL);
5116 if (!p) {
5117 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5118 return NULL;
5121 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5122 if (!tx) {
5123 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5124 "tx qdiscs.\n");
5125 goto free_p;
5128 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5129 dev->padded = (char *)dev - (char *)p;
5131 if (dev_addr_init(dev))
5132 goto free_tx;
5134 dev_unicast_init(dev);
5136 dev_net_set(dev, &init_net);
5138 dev->_tx = tx;
5139 dev->num_tx_queues = queue_count;
5140 dev->real_num_tx_queues = queue_count;
5142 dev->gso_max_size = GSO_MAX_SIZE;
5144 netdev_init_queues(dev);
5146 INIT_LIST_HEAD(&dev->napi_list);
5147 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5148 setup(dev);
5149 strcpy(dev->name, name);
5150 return dev;
5152 free_tx:
5153 kfree(tx);
5155 free_p:
5156 kfree(p);
5157 return NULL;
5159 EXPORT_SYMBOL(alloc_netdev_mq);
5162 * free_netdev - free network device
5163 * @dev: device
5165 * This function does the last stage of destroying an allocated device
5166 * interface. The reference to the device object is released.
5167 * If this is the last reference then it will be freed.
5169 void free_netdev(struct net_device *dev)
5171 struct napi_struct *p, *n;
5173 release_net(dev_net(dev));
5175 kfree(dev->_tx);
5177 /* Flush device addresses */
5178 dev_addr_flush(dev);
5180 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5181 netif_napi_del(p);
5183 /* Compatibility with error handling in drivers */
5184 if (dev->reg_state == NETREG_UNINITIALIZED) {
5185 kfree((char *)dev - dev->padded);
5186 return;
5189 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5190 dev->reg_state = NETREG_RELEASED;
5192 /* will free via device release */
5193 put_device(&dev->dev);
5197 * synchronize_net - Synchronize with packet receive processing
5199 * Wait for packets currently being received to be done.
5200 * Does not block later packets from starting.
5202 void synchronize_net(void)
5204 might_sleep();
5205 synchronize_rcu();
5209 * unregister_netdevice - remove device from the kernel
5210 * @dev: device
5212 * This function shuts down a device interface and removes it
5213 * from the kernel tables.
5215 * Callers must hold the rtnl semaphore. You may want
5216 * unregister_netdev() instead of this.
5219 void unregister_netdevice(struct net_device *dev)
5221 ASSERT_RTNL();
5223 rollback_registered(dev);
5224 /* Finish processing unregister after unlock */
5225 net_set_todo(dev);
5229 * unregister_netdev - remove device from the kernel
5230 * @dev: device
5232 * This function shuts down a device interface and removes it
5233 * from the kernel tables.
5235 * This is just a wrapper for unregister_netdevice that takes
5236 * the rtnl semaphore. In general you want to use this and not
5237 * unregister_netdevice.
5239 void unregister_netdev(struct net_device *dev)
5241 rtnl_lock();
5242 unregister_netdevice(dev);
5243 rtnl_unlock();
5246 EXPORT_SYMBOL(unregister_netdev);
5249 * dev_change_net_namespace - move device to different nethost namespace
5250 * @dev: device
5251 * @net: network namespace
5252 * @pat: If not NULL name pattern to try if the current device name
5253 * is already taken in the destination network namespace.
5255 * This function shuts down a device interface and moves it
5256 * to a new network namespace. On success 0 is returned, on
5257 * a failure a netagive errno code is returned.
5259 * Callers must hold the rtnl semaphore.
5262 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5264 char buf[IFNAMSIZ];
5265 const char *destname;
5266 int err;
5268 ASSERT_RTNL();
5270 /* Don't allow namespace local devices to be moved. */
5271 err = -EINVAL;
5272 if (dev->features & NETIF_F_NETNS_LOCAL)
5273 goto out;
5275 #ifdef CONFIG_SYSFS
5276 /* Don't allow real devices to be moved when sysfs
5277 * is enabled.
5279 err = -EINVAL;
5280 if (dev->dev.parent)
5281 goto out;
5282 #endif
5284 /* Ensure the device has been registrered */
5285 err = -EINVAL;
5286 if (dev->reg_state != NETREG_REGISTERED)
5287 goto out;
5289 /* Get out if there is nothing todo */
5290 err = 0;
5291 if (net_eq(dev_net(dev), net))
5292 goto out;
5294 /* Pick the destination device name, and ensure
5295 * we can use it in the destination network namespace.
5297 err = -EEXIST;
5298 destname = dev->name;
5299 if (__dev_get_by_name(net, destname)) {
5300 /* We get here if we can't use the current device name */
5301 if (!pat)
5302 goto out;
5303 if (!dev_valid_name(pat))
5304 goto out;
5305 if (strchr(pat, '%')) {
5306 if (__dev_alloc_name(net, pat, buf) < 0)
5307 goto out;
5308 destname = buf;
5309 } else
5310 destname = pat;
5311 if (__dev_get_by_name(net, destname))
5312 goto out;
5316 * And now a mini version of register_netdevice unregister_netdevice.
5319 /* If device is running close it first. */
5320 dev_close(dev);
5322 /* And unlink it from device chain */
5323 err = -ENODEV;
5324 unlist_netdevice(dev);
5326 synchronize_net();
5328 /* Shutdown queueing discipline. */
5329 dev_shutdown(dev);
5331 /* Notify protocols, that we are about to destroy
5332 this device. They should clean all the things.
5334 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5337 * Flush the unicast and multicast chains
5339 dev_unicast_flush(dev);
5340 dev_addr_discard(dev);
5342 netdev_unregister_kobject(dev);
5344 /* Actually switch the network namespace */
5345 dev_net_set(dev, net);
5347 /* Assign the new device name */
5348 if (destname != dev->name)
5349 strcpy(dev->name, destname);
5351 /* If there is an ifindex conflict assign a new one */
5352 if (__dev_get_by_index(net, dev->ifindex)) {
5353 int iflink = (dev->iflink == dev->ifindex);
5354 dev->ifindex = dev_new_index(net);
5355 if (iflink)
5356 dev->iflink = dev->ifindex;
5359 /* Fixup kobjects */
5360 err = netdev_register_kobject(dev);
5361 WARN_ON(err);
5363 /* Add the device back in the hashes */
5364 list_netdevice(dev);
5366 /* Notify protocols, that a new device appeared. */
5367 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5369 synchronize_net();
5370 err = 0;
5371 out:
5372 return err;
5374 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5376 static int dev_cpu_callback(struct notifier_block *nfb,
5377 unsigned long action,
5378 void *ocpu)
5380 struct sk_buff **list_skb;
5381 struct Qdisc **list_net;
5382 struct sk_buff *skb;
5383 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5384 struct softnet_data *sd, *oldsd;
5386 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5387 return NOTIFY_OK;
5389 local_irq_disable();
5390 cpu = smp_processor_id();
5391 sd = &per_cpu(softnet_data, cpu);
5392 oldsd = &per_cpu(softnet_data, oldcpu);
5394 /* Find end of our completion_queue. */
5395 list_skb = &sd->completion_queue;
5396 while (*list_skb)
5397 list_skb = &(*list_skb)->next;
5398 /* Append completion queue from offline CPU. */
5399 *list_skb = oldsd->completion_queue;
5400 oldsd->completion_queue = NULL;
5402 /* Find end of our output_queue. */
5403 list_net = &sd->output_queue;
5404 while (*list_net)
5405 list_net = &(*list_net)->next_sched;
5406 /* Append output queue from offline CPU. */
5407 *list_net = oldsd->output_queue;
5408 oldsd->output_queue = NULL;
5410 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5411 local_irq_enable();
5413 /* Process offline CPU's input_pkt_queue */
5414 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5415 netif_rx(skb);
5417 return NOTIFY_OK;
5422 * netdev_increment_features - increment feature set by one
5423 * @all: current feature set
5424 * @one: new feature set
5425 * @mask: mask feature set
5427 * Computes a new feature set after adding a device with feature set
5428 * @one to the master device with current feature set @all. Will not
5429 * enable anything that is off in @mask. Returns the new feature set.
5431 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5432 unsigned long mask)
5434 /* If device needs checksumming, downgrade to it. */
5435 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5436 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5437 else if (mask & NETIF_F_ALL_CSUM) {
5438 /* If one device supports v4/v6 checksumming, set for all. */
5439 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5440 !(all & NETIF_F_GEN_CSUM)) {
5441 all &= ~NETIF_F_ALL_CSUM;
5442 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5445 /* If one device supports hw checksumming, set for all. */
5446 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5447 all &= ~NETIF_F_ALL_CSUM;
5448 all |= NETIF_F_HW_CSUM;
5452 one |= NETIF_F_ALL_CSUM;
5454 one |= all & NETIF_F_ONE_FOR_ALL;
5455 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5456 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5458 return all;
5460 EXPORT_SYMBOL(netdev_increment_features);
5462 static struct hlist_head *netdev_create_hash(void)
5464 int i;
5465 struct hlist_head *hash;
5467 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5468 if (hash != NULL)
5469 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5470 INIT_HLIST_HEAD(&hash[i]);
5472 return hash;
5475 /* Initialize per network namespace state */
5476 static int __net_init netdev_init(struct net *net)
5478 INIT_LIST_HEAD(&net->dev_base_head);
5480 net->dev_name_head = netdev_create_hash();
5481 if (net->dev_name_head == NULL)
5482 goto err_name;
5484 net->dev_index_head = netdev_create_hash();
5485 if (net->dev_index_head == NULL)
5486 goto err_idx;
5488 return 0;
5490 err_idx:
5491 kfree(net->dev_name_head);
5492 err_name:
5493 return -ENOMEM;
5497 * netdev_drivername - network driver for the device
5498 * @dev: network device
5499 * @buffer: buffer for resulting name
5500 * @len: size of buffer
5502 * Determine network driver for device.
5504 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5506 const struct device_driver *driver;
5507 const struct device *parent;
5509 if (len <= 0 || !buffer)
5510 return buffer;
5511 buffer[0] = 0;
5513 parent = dev->dev.parent;
5515 if (!parent)
5516 return buffer;
5518 driver = parent->driver;
5519 if (driver && driver->name)
5520 strlcpy(buffer, driver->name, len);
5521 return buffer;
5524 static void __net_exit netdev_exit(struct net *net)
5526 kfree(net->dev_name_head);
5527 kfree(net->dev_index_head);
5530 static struct pernet_operations __net_initdata netdev_net_ops = {
5531 .init = netdev_init,
5532 .exit = netdev_exit,
5535 static void __net_exit default_device_exit(struct net *net)
5537 struct net_device *dev;
5539 * Push all migratable of the network devices back to the
5540 * initial network namespace
5542 rtnl_lock();
5543 restart:
5544 for_each_netdev(net, dev) {
5545 int err;
5546 char fb_name[IFNAMSIZ];
5548 /* Ignore unmoveable devices (i.e. loopback) */
5549 if (dev->features & NETIF_F_NETNS_LOCAL)
5550 continue;
5552 /* Delete virtual devices */
5553 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5554 dev->rtnl_link_ops->dellink(dev);
5555 goto restart;
5558 /* Push remaing network devices to init_net */
5559 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5560 err = dev_change_net_namespace(dev, &init_net, fb_name);
5561 if (err) {
5562 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5563 __func__, dev->name, err);
5564 BUG();
5566 goto restart;
5568 rtnl_unlock();
5571 static struct pernet_operations __net_initdata default_device_ops = {
5572 .exit = default_device_exit,
5576 * Initialize the DEV module. At boot time this walks the device list and
5577 * unhooks any devices that fail to initialise (normally hardware not
5578 * present) and leaves us with a valid list of present and active devices.
5583 * This is called single threaded during boot, so no need
5584 * to take the rtnl semaphore.
5586 static int __init net_dev_init(void)
5588 int i, rc = -ENOMEM;
5590 BUG_ON(!dev_boot_phase);
5592 if (dev_proc_init())
5593 goto out;
5595 if (netdev_kobject_init())
5596 goto out;
5598 INIT_LIST_HEAD(&ptype_all);
5599 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5600 INIT_LIST_HEAD(&ptype_base[i]);
5602 if (register_pernet_subsys(&netdev_net_ops))
5603 goto out;
5606 * Initialise the packet receive queues.
5609 for_each_possible_cpu(i) {
5610 struct softnet_data *queue;
5612 queue = &per_cpu(softnet_data, i);
5613 skb_queue_head_init(&queue->input_pkt_queue);
5614 queue->completion_queue = NULL;
5615 INIT_LIST_HEAD(&queue->poll_list);
5617 queue->backlog.poll = process_backlog;
5618 queue->backlog.weight = weight_p;
5619 queue->backlog.gro_list = NULL;
5620 queue->backlog.gro_count = 0;
5623 dev_boot_phase = 0;
5625 /* The loopback device is special if any other network devices
5626 * is present in a network namespace the loopback device must
5627 * be present. Since we now dynamically allocate and free the
5628 * loopback device ensure this invariant is maintained by
5629 * keeping the loopback device as the first device on the
5630 * list of network devices. Ensuring the loopback devices
5631 * is the first device that appears and the last network device
5632 * that disappears.
5634 if (register_pernet_device(&loopback_net_ops))
5635 goto out;
5637 if (register_pernet_device(&default_device_ops))
5638 goto out;
5640 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5641 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5643 hotcpu_notifier(dev_cpu_callback, 0);
5644 dst_init();
5645 dev_mcast_init();
5646 rc = 0;
5647 out:
5648 return rc;
5651 subsys_initcall(net_dev_init);
5653 static int __init initialize_hashrnd(void)
5655 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5656 return 0;
5659 late_initcall_sync(initialize_hashrnd);
5661 EXPORT_SYMBOL(__dev_get_by_index);
5662 EXPORT_SYMBOL(__dev_get_by_name);
5663 EXPORT_SYMBOL(__dev_remove_pack);
5664 EXPORT_SYMBOL(dev_valid_name);
5665 EXPORT_SYMBOL(dev_add_pack);
5666 EXPORT_SYMBOL(dev_alloc_name);
5667 EXPORT_SYMBOL(dev_close);
5668 EXPORT_SYMBOL(dev_get_by_flags);
5669 EXPORT_SYMBOL(dev_get_by_index);
5670 EXPORT_SYMBOL(dev_get_by_name);
5671 EXPORT_SYMBOL(dev_open);
5672 EXPORT_SYMBOL(dev_queue_xmit);
5673 EXPORT_SYMBOL(dev_remove_pack);
5674 EXPORT_SYMBOL(dev_set_allmulti);
5675 EXPORT_SYMBOL(dev_set_promiscuity);
5676 EXPORT_SYMBOL(dev_change_flags);
5677 EXPORT_SYMBOL(dev_set_mtu);
5678 EXPORT_SYMBOL(dev_set_mac_address);
5679 EXPORT_SYMBOL(free_netdev);
5680 EXPORT_SYMBOL(netdev_boot_setup_check);
5681 EXPORT_SYMBOL(netdev_set_master);
5682 EXPORT_SYMBOL(netdev_state_change);
5683 EXPORT_SYMBOL(netif_receive_skb);
5684 EXPORT_SYMBOL(netif_rx);
5685 EXPORT_SYMBOL(register_gifconf);
5686 EXPORT_SYMBOL(register_netdevice);
5687 EXPORT_SYMBOL(register_netdevice_notifier);
5688 EXPORT_SYMBOL(skb_checksum_help);
5689 EXPORT_SYMBOL(synchronize_net);
5690 EXPORT_SYMBOL(unregister_netdevice);
5691 EXPORT_SYMBOL(unregister_netdevice_notifier);
5692 EXPORT_SYMBOL(net_enable_timestamp);
5693 EXPORT_SYMBOL(net_disable_timestamp);
5694 EXPORT_SYMBOL(dev_get_flags);
5696 EXPORT_SYMBOL(dev_load);
5698 EXPORT_PER_CPU_SYMBOL(softnet_data);