sched: Fix SCHED_MC regression caused by change in sched cpu_power
[linux-2.6/mini2440.git] / kernel / sched.c
blobed61192cfe676c6ccf5b163858654d16311d406c
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
282 user->tg->uid = user->uid;
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock);
312 #ifdef CONFIG_FAIR_GROUP_SCHED
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
317 return list_empty(&root_task_group.children);
319 #endif
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
344 struct task_group init_task_group;
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
349 struct task_group *tg;
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
378 #else
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
383 return NULL;
386 #endif /* CONFIG_GROUP_SCHED */
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
393 u64 exec_clock;
394 u64 min_vruntime;
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
399 struct list_head tasks;
400 struct list_head *balance_iterator;
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
406 struct sched_entity *curr, *next, *last;
408 unsigned int nr_spread_over;
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
424 #ifdef CONFIG_SMP
426 * the part of load.weight contributed by tasks
428 unsigned long task_weight;
431 * h_load = weight * f(tg)
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
436 unsigned long h_load;
439 * this cpu's part of tg->shares
441 unsigned long shares;
444 * load.weight at the time we set shares
446 unsigned long rq_weight;
447 #endif
448 #endif
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 spinlock_t rt_runtime_lock;
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
485 #ifdef CONFIG_SMP
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
515 static struct root_domain def_root_domain;
517 #endif
520 * This is the main, per-CPU runqueue data structure.
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
526 struct rq {
527 /* runqueue lock: */
528 spinlock_t lock;
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned long last_tick_seen;
539 unsigned char in_nohz_recently;
540 #endif
541 /* capture load from *all* tasks on this cpu: */
542 struct load_weight load;
543 unsigned long nr_load_updates;
544 u64 nr_switches;
545 u64 nr_migrations_in;
547 struct cfs_rq cfs;
548 struct rt_rq rt;
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
553 #endif
554 #ifdef CONFIG_RT_GROUP_SCHED
555 struct list_head leaf_rt_rq_list;
556 #endif
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
564 unsigned long nr_uninterruptible;
566 struct task_struct *curr, *idle;
567 unsigned long next_balance;
568 struct mm_struct *prev_mm;
570 u64 clock;
572 atomic_t nr_iowait;
574 #ifdef CONFIG_SMP
575 struct root_domain *rd;
576 struct sched_domain *sd;
578 unsigned char idle_at_tick;
579 /* For active balancing */
580 int post_schedule;
581 int active_balance;
582 int push_cpu;
583 /* cpu of this runqueue: */
584 int cpu;
585 int online;
587 unsigned long avg_load_per_task;
589 struct task_struct *migration_thread;
590 struct list_head migration_queue;
592 u64 rt_avg;
593 u64 age_stamp;
594 u64 idle_stamp;
595 u64 avg_idle;
596 #endif
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
602 #ifdef CONFIG_SCHED_HRTICK
603 #ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606 #endif
607 struct hrtimer hrtick_timer;
608 #endif
610 #ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
616 /* sys_sched_yield() stats */
617 unsigned int yld_count;
619 /* schedule() stats */
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
624 /* try_to_wake_up() stats */
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
628 /* BKL stats */
629 unsigned int bkl_count;
630 #endif
633 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
635 static inline
636 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
641 static inline int cpu_of(struct rq *rq)
643 #ifdef CONFIG_SMP
644 return rq->cpu;
645 #else
646 return 0;
647 #endif
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664 #define raw_rq() (&__raw_get_cpu_var(runqueues))
666 inline void update_rq_clock(struct rq *rq)
668 rq->clock = sched_clock_cpu(cpu_of(rq));
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
674 #ifdef CONFIG_SCHED_DEBUG
675 # define const_debug __read_mostly
676 #else
677 # define const_debug static const
678 #endif
681 * runqueue_is_locked
682 * @cpu: the processor in question.
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
688 int runqueue_is_locked(int cpu)
690 return spin_is_locked(&cpu_rq(cpu)->lock);
694 * Debugging: various feature bits
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
700 enum {
701 #include "sched_features.h"
704 #undef SCHED_FEAT
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
713 #undef SCHED_FEAT
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
724 #undef SCHED_FEAT
726 static int sched_feat_show(struct seq_file *m, void *v)
728 int i;
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
735 seq_puts(m, "\n");
737 return 0;
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
749 if (cnt > 63)
750 cnt = 63;
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
755 buf[cnt] = 0;
757 if (strncmp(buf, "NO_", 3) == 0) {
758 neg = 1;
759 cmp += 3;
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
774 if (!sched_feat_names[i])
775 return -EINVAL;
777 filp->f_pos += cnt;
779 return cnt;
782 static int sched_feat_open(struct inode *inode, struct file *filp)
784 return single_open(filp, sched_feat_show, NULL);
787 static const struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
795 static __init int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
800 return 0;
802 late_initcall(sched_init_debug);
804 #endif
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
826 unsigned int sysctl_sched_shares_thresh = 4;
829 * period over which we average the RT time consumption, measured
830 * in ms.
832 * default: 1s
834 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
837 * period over which we measure -rt task cpu usage in us.
838 * default: 1s
840 unsigned int sysctl_sched_rt_period = 1000000;
842 static __read_mostly int scheduler_running;
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
848 int sysctl_sched_rt_runtime = 950000;
850 static inline u64 global_rt_period(void)
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
855 static inline u64 global_rt_runtime(void)
857 if (sysctl_sched_rt_runtime < 0)
858 return RUNTIME_INF;
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
863 #ifndef prepare_arch_switch
864 # define prepare_arch_switch(next) do { } while (0)
865 #endif
866 #ifndef finish_arch_switch
867 # define finish_arch_switch(prev) do { } while (0)
868 #endif
870 static inline int task_current(struct rq *rq, struct task_struct *p)
872 return rq->curr == p;
875 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
876 static inline int task_running(struct rq *rq, struct task_struct *p)
878 return task_current(rq, p);
881 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
885 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887 #ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890 #endif
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898 spin_unlock_irq(&rq->lock);
901 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
902 static inline int task_running(struct rq *rq, struct task_struct *p)
904 #ifdef CONFIG_SMP
905 return p->oncpu;
906 #else
907 return task_current(rq, p);
908 #endif
911 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 #ifdef CONFIG_SMP
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
919 next->oncpu = 1;
920 #endif
921 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 spin_unlock_irq(&rq->lock);
923 #else
924 spin_unlock(&rq->lock);
925 #endif
928 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 #ifdef CONFIG_SMP
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
936 smp_wmb();
937 prev->oncpu = 0;
938 #endif
939 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
941 #endif
943 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
949 static inline struct rq *__task_rq_lock(struct task_struct *p)
950 __acquires(rq->lock)
952 for (;;) {
953 struct rq *rq = task_rq(p);
954 spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 spin_unlock(&rq->lock);
962 * task_rq_lock - lock the runqueue a given task resides on and disable
963 * interrupts. Note the ordering: we can safely lookup the task_rq without
964 * explicitly disabling preemption.
966 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967 __acquires(rq->lock)
969 struct rq *rq;
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
974 spin_lock(&rq->lock);
975 if (likely(rq == task_rq(p)))
976 return rq;
977 spin_unlock_irqrestore(&rq->lock, *flags);
981 void task_rq_unlock_wait(struct task_struct *p)
983 struct rq *rq = task_rq(p);
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986 spin_unlock_wait(&rq->lock);
989 static void __task_rq_unlock(struct rq *rq)
990 __releases(rq->lock)
992 spin_unlock(&rq->lock);
995 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
996 __releases(rq->lock)
998 spin_unlock_irqrestore(&rq->lock, *flags);
1002 * this_rq_lock - lock this runqueue and disable interrupts.
1004 static struct rq *this_rq_lock(void)
1005 __acquires(rq->lock)
1007 struct rq *rq;
1009 local_irq_disable();
1010 rq = this_rq();
1011 spin_lock(&rq->lock);
1013 return rq;
1016 #ifdef CONFIG_SCHED_HRTICK
1018 * Use HR-timers to deliver accurate preemption points.
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1033 static inline int hrtick_enabled(struct rq *rq)
1035 if (!sched_feat(HRTICK))
1036 return 0;
1037 if (!cpu_active(cpu_of(rq)))
1038 return 0;
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1042 static void hrtick_clear(struct rq *rq)
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1052 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058 spin_lock(&rq->lock);
1059 update_rq_clock(rq);
1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061 spin_unlock(&rq->lock);
1063 return HRTIMER_NORESTART;
1066 #ifdef CONFIG_SMP
1068 * called from hardirq (IPI) context
1070 static void __hrtick_start(void *arg)
1072 struct rq *rq = arg;
1074 spin_lock(&rq->lock);
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
1077 spin_unlock(&rq->lock);
1081 * Called to set the hrtick timer state.
1083 * called with rq->lock held and irqs disabled
1085 static void hrtick_start(struct rq *rq, u64 delay)
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1090 hrtimer_set_expires(timer, time);
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096 rq->hrtick_csd_pending = 1;
1100 static int
1101 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103 int cpu = (int)(long)hcpu;
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
1112 hrtick_clear(cpu_rq(cpu));
1113 return NOTIFY_OK;
1116 return NOTIFY_DONE;
1119 static __init void init_hrtick(void)
1121 hotcpu_notifier(hotplug_hrtick, 0);
1123 #else
1125 * Called to set the hrtick timer state.
1127 * called with rq->lock held and irqs disabled
1129 static void hrtick_start(struct rq *rq, u64 delay)
1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132 HRTIMER_MODE_REL_PINNED, 0);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq *rq)
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1158 static inline void init_rq_hrtick(struct rq *rq)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1174 #ifdef CONFIG_SMP
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1180 static void resched_task(struct task_struct *p)
1182 int cpu;
1184 assert_spin_locked(&task_rq(p)->lock);
1186 if (test_tsk_need_resched(p))
1187 return;
1189 set_tsk_need_resched(p);
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1201 static void resched_cpu(int cpu)
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1212 #ifdef CONFIG_NO_HZ
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (cpu == smp_processor_id())
1228 return;
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq->curr != rq->idle)
1238 return;
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_need_resched(rq->idle);
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1252 #endif /* CONFIG_NO_HZ */
1254 static u64 sched_avg_period(void)
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1259 static void sched_avg_update(struct rq *rq)
1261 s64 period = sched_avg_period();
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1269 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct *p)
1278 assert_spin_locked(&task_rq(p)->lock);
1279 set_tsk_need_resched(p);
1282 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285 #endif /* CONFIG_SMP */
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1293 #define WMULT_SHIFT 32
1296 * Shift right and round:
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1301 * delta *= weight / lw
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1307 u64 tmp;
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1317 tmp = (u64)delta_exec * weight;
1319 * Check whether we'd overflow the 64-bit multiplication:
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426 CPUACCT_STAT_NSTATS,
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1433 #else
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1437 #endif
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 update_load_add(&rq->load, load);
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 update_load_sub(&rq->load, load);
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 struct task_group *parent, *child;
1459 int ret;
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463 down:
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1472 continue;
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
1482 out_unlock:
1483 rcu_read_unlock();
1485 return ret;
1488 static int tg_nop(struct task_group *tg, void *data)
1490 return 0;
1492 #endif
1494 #ifdef CONFIG_SMP
1495 /* Used instead of source_load when we know the type == 0 */
1496 static unsigned long weighted_cpuload(const int cpu)
1498 return cpu_rq(cpu)->load.weight;
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1508 static unsigned long source_load(int cpu, int type)
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1516 return min(rq->cpu_load[type-1], total);
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1523 static unsigned long target_load(int cpu, int type)
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1531 return max(rq->cpu_load[type-1], total);
1534 static struct sched_group *group_of(int cpu)
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1538 if (!sd)
1539 return NULL;
1541 return sd->groups;
1544 static unsigned long power_of(int cpu)
1546 struct sched_group *group = group_of(cpu);
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1551 return group->cpu_power;
1554 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1556 static unsigned long cpu_avg_load_per_task(int cpu)
1558 struct rq *rq = cpu_rq(cpu);
1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
1563 else
1564 rq->avg_load_per_task = 0;
1566 return rq->avg_load_per_task;
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1571 static __read_mostly unsigned long *update_shares_data;
1573 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1576 * Calculate and set the cpu's group shares.
1578 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 unsigned long *usd_rq_weight)
1583 unsigned long shares, rq_weight;
1584 int boost = 0;
1586 rq_weight = usd_rq_weight[cpu];
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
1605 spin_lock_irqsave(&rq->lock, flags);
1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 __set_se_shares(tg->se[cpu], shares);
1609 spin_unlock_irqrestore(&rq->lock, flags);
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1618 static int tg_shares_up(struct task_group *tg, void *data)
1620 unsigned long weight, rq_weight = 0, shares = 0;
1621 unsigned long *usd_rq_weight;
1622 struct sched_domain *sd = data;
1623 unsigned long flags;
1624 int i;
1626 if (!tg->se[0])
1627 return 0;
1629 local_irq_save(flags);
1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1632 for_each_cpu(i, sched_domain_span(sd)) {
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd_rq_weight[i] = weight;
1637 * If there are currently no tasks on the cpu pretend there
1638 * is one of average load so that when a new task gets to
1639 * run here it will not get delayed by group starvation.
1641 if (!weight)
1642 weight = NICE_0_LOAD;
1644 rq_weight += weight;
1645 shares += tg->cfs_rq[i]->shares;
1648 if ((!shares && rq_weight) || shares > tg->shares)
1649 shares = tg->shares;
1651 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1652 shares = tg->shares;
1654 for_each_cpu(i, sched_domain_span(sd))
1655 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1657 local_irq_restore(flags);
1659 return 0;
1663 * Compute the cpu's hierarchical load factor for each task group.
1664 * This needs to be done in a top-down fashion because the load of a child
1665 * group is a fraction of its parents load.
1667 static int tg_load_down(struct task_group *tg, void *data)
1669 unsigned long load;
1670 long cpu = (long)data;
1672 if (!tg->parent) {
1673 load = cpu_rq(cpu)->load.weight;
1674 } else {
1675 load = tg->parent->cfs_rq[cpu]->h_load;
1676 load *= tg->cfs_rq[cpu]->shares;
1677 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 tg->cfs_rq[cpu]->h_load = load;
1682 return 0;
1685 static void update_shares(struct sched_domain *sd)
1687 s64 elapsed;
1688 u64 now;
1690 if (root_task_group_empty())
1691 return;
1693 now = cpu_clock(raw_smp_processor_id());
1694 elapsed = now - sd->last_update;
1696 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1697 sd->last_update = now;
1698 walk_tg_tree(tg_nop, tg_shares_up, sd);
1702 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1704 if (root_task_group_empty())
1705 return;
1707 spin_unlock(&rq->lock);
1708 update_shares(sd);
1709 spin_lock(&rq->lock);
1712 static void update_h_load(long cpu)
1714 if (root_task_group_empty())
1715 return;
1717 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 #else
1722 static inline void update_shares(struct sched_domain *sd)
1726 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1730 #endif
1732 #ifdef CONFIG_PREEMPT
1734 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1738 * way at the expense of forcing extra atomic operations in all
1739 * invocations. This assures that the double_lock is acquired using the
1740 * same underlying policy as the spinlock_t on this architecture, which
1741 * reduces latency compared to the unfair variant below. However, it
1742 * also adds more overhead and therefore may reduce throughput.
1744 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745 __releases(this_rq->lock)
1746 __acquires(busiest->lock)
1747 __acquires(this_rq->lock)
1749 spin_unlock(&this_rq->lock);
1750 double_rq_lock(this_rq, busiest);
1752 return 1;
1755 #else
1757 * Unfair double_lock_balance: Optimizes throughput at the expense of
1758 * latency by eliminating extra atomic operations when the locks are
1759 * already in proper order on entry. This favors lower cpu-ids and will
1760 * grant the double lock to lower cpus over higher ids under contention,
1761 * regardless of entry order into the function.
1763 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1764 __releases(this_rq->lock)
1765 __acquires(busiest->lock)
1766 __acquires(this_rq->lock)
1768 int ret = 0;
1770 if (unlikely(!spin_trylock(&busiest->lock))) {
1771 if (busiest < this_rq) {
1772 spin_unlock(&this_rq->lock);
1773 spin_lock(&busiest->lock);
1774 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1775 ret = 1;
1776 } else
1777 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1779 return ret;
1782 #endif /* CONFIG_PREEMPT */
1785 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1787 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1789 if (unlikely(!irqs_disabled())) {
1790 /* printk() doesn't work good under rq->lock */
1791 spin_unlock(&this_rq->lock);
1792 BUG_ON(1);
1795 return _double_lock_balance(this_rq, busiest);
1798 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1799 __releases(busiest->lock)
1801 spin_unlock(&busiest->lock);
1802 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1804 #endif
1806 #ifdef CONFIG_FAIR_GROUP_SCHED
1807 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1809 #ifdef CONFIG_SMP
1810 cfs_rq->shares = shares;
1811 #endif
1813 #endif
1815 static void calc_load_account_active(struct rq *this_rq);
1816 static void update_sysctl(void);
1818 #include "sched_stats.h"
1819 #include "sched_idletask.c"
1820 #include "sched_fair.c"
1821 #include "sched_rt.c"
1822 #ifdef CONFIG_SCHED_DEBUG
1823 # include "sched_debug.c"
1824 #endif
1826 #define sched_class_highest (&rt_sched_class)
1827 #define for_each_class(class) \
1828 for (class = sched_class_highest; class; class = class->next)
1830 static void inc_nr_running(struct rq *rq)
1832 rq->nr_running++;
1835 static void dec_nr_running(struct rq *rq)
1837 rq->nr_running--;
1840 static void set_load_weight(struct task_struct *p)
1842 if (task_has_rt_policy(p)) {
1843 p->se.load.weight = prio_to_weight[0] * 2;
1844 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1845 return;
1849 * SCHED_IDLE tasks get minimal weight:
1851 if (p->policy == SCHED_IDLE) {
1852 p->se.load.weight = WEIGHT_IDLEPRIO;
1853 p->se.load.inv_weight = WMULT_IDLEPRIO;
1854 return;
1857 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1858 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1861 static void update_avg(u64 *avg, u64 sample)
1863 s64 diff = sample - *avg;
1864 *avg += diff >> 3;
1867 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1869 if (wakeup)
1870 p->se.start_runtime = p->se.sum_exec_runtime;
1872 sched_info_queued(p);
1873 p->sched_class->enqueue_task(rq, p, wakeup);
1874 p->se.on_rq = 1;
1877 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1879 if (sleep) {
1880 if (p->se.last_wakeup) {
1881 update_avg(&p->se.avg_overlap,
1882 p->se.sum_exec_runtime - p->se.last_wakeup);
1883 p->se.last_wakeup = 0;
1884 } else {
1885 update_avg(&p->se.avg_wakeup,
1886 sysctl_sched_wakeup_granularity);
1890 sched_info_dequeued(p);
1891 p->sched_class->dequeue_task(rq, p, sleep);
1892 p->se.on_rq = 0;
1896 * __normal_prio - return the priority that is based on the static prio
1898 static inline int __normal_prio(struct task_struct *p)
1900 return p->static_prio;
1904 * Calculate the expected normal priority: i.e. priority
1905 * without taking RT-inheritance into account. Might be
1906 * boosted by interactivity modifiers. Changes upon fork,
1907 * setprio syscalls, and whenever the interactivity
1908 * estimator recalculates.
1910 static inline int normal_prio(struct task_struct *p)
1912 int prio;
1914 if (task_has_rt_policy(p))
1915 prio = MAX_RT_PRIO-1 - p->rt_priority;
1916 else
1917 prio = __normal_prio(p);
1918 return prio;
1922 * Calculate the current priority, i.e. the priority
1923 * taken into account by the scheduler. This value might
1924 * be boosted by RT tasks, or might be boosted by
1925 * interactivity modifiers. Will be RT if the task got
1926 * RT-boosted. If not then it returns p->normal_prio.
1928 static int effective_prio(struct task_struct *p)
1930 p->normal_prio = normal_prio(p);
1932 * If we are RT tasks or we were boosted to RT priority,
1933 * keep the priority unchanged. Otherwise, update priority
1934 * to the normal priority:
1936 if (!rt_prio(p->prio))
1937 return p->normal_prio;
1938 return p->prio;
1942 * activate_task - move a task to the runqueue.
1944 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1946 if (task_contributes_to_load(p))
1947 rq->nr_uninterruptible--;
1949 enqueue_task(rq, p, wakeup);
1950 inc_nr_running(rq);
1954 * deactivate_task - remove a task from the runqueue.
1956 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1958 if (task_contributes_to_load(p))
1959 rq->nr_uninterruptible++;
1961 dequeue_task(rq, p, sleep);
1962 dec_nr_running(rq);
1966 * task_curr - is this task currently executing on a CPU?
1967 * @p: the task in question.
1969 inline int task_curr(const struct task_struct *p)
1971 return cpu_curr(task_cpu(p)) == p;
1974 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1976 set_task_rq(p, cpu);
1977 #ifdef CONFIG_SMP
1979 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1980 * successfuly executed on another CPU. We must ensure that updates of
1981 * per-task data have been completed by this moment.
1983 smp_wmb();
1984 task_thread_info(p)->cpu = cpu;
1985 #endif
1988 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1989 const struct sched_class *prev_class,
1990 int oldprio, int running)
1992 if (prev_class != p->sched_class) {
1993 if (prev_class->switched_from)
1994 prev_class->switched_from(rq, p, running);
1995 p->sched_class->switched_to(rq, p, running);
1996 } else
1997 p->sched_class->prio_changed(rq, p, oldprio, running);
2001 * kthread_bind - bind a just-created kthread to a cpu.
2002 * @p: thread created by kthread_create().
2003 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2005 * Description: This function is equivalent to set_cpus_allowed(),
2006 * except that @cpu doesn't need to be online, and the thread must be
2007 * stopped (i.e., just returned from kthread_create()).
2009 * Function lives here instead of kthread.c because it messes with
2010 * scheduler internals which require locking.
2012 void kthread_bind(struct task_struct *p, unsigned int cpu)
2014 struct rq *rq = cpu_rq(cpu);
2015 unsigned long flags;
2017 /* Must have done schedule() in kthread() before we set_task_cpu */
2018 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2019 WARN_ON(1);
2020 return;
2023 spin_lock_irqsave(&rq->lock, flags);
2024 set_task_cpu(p, cpu);
2025 p->cpus_allowed = cpumask_of_cpu(cpu);
2026 p->rt.nr_cpus_allowed = 1;
2027 p->flags |= PF_THREAD_BOUND;
2028 spin_unlock_irqrestore(&rq->lock, flags);
2030 EXPORT_SYMBOL(kthread_bind);
2032 #ifdef CONFIG_SMP
2034 * Is this task likely cache-hot:
2036 static int
2037 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2039 s64 delta;
2041 if (p->sched_class != &fair_sched_class)
2042 return 0;
2045 * Buddy candidates are cache hot:
2047 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2048 (&p->se == cfs_rq_of(&p->se)->next ||
2049 &p->se == cfs_rq_of(&p->se)->last))
2050 return 1;
2052 if (sysctl_sched_migration_cost == -1)
2053 return 1;
2054 if (sysctl_sched_migration_cost == 0)
2055 return 0;
2057 delta = now - p->se.exec_start;
2059 return delta < (s64)sysctl_sched_migration_cost;
2063 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2065 int old_cpu = task_cpu(p);
2066 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2067 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2068 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2069 u64 clock_offset;
2071 clock_offset = old_rq->clock - new_rq->clock;
2073 trace_sched_migrate_task(p, new_cpu);
2075 #ifdef CONFIG_SCHEDSTATS
2076 if (p->se.wait_start)
2077 p->se.wait_start -= clock_offset;
2078 if (p->se.sleep_start)
2079 p->se.sleep_start -= clock_offset;
2080 if (p->se.block_start)
2081 p->se.block_start -= clock_offset;
2082 #endif
2083 if (old_cpu != new_cpu) {
2084 p->se.nr_migrations++;
2085 new_rq->nr_migrations_in++;
2086 #ifdef CONFIG_SCHEDSTATS
2087 if (task_hot(p, old_rq->clock, NULL))
2088 schedstat_inc(p, se.nr_forced2_migrations);
2089 #endif
2090 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2091 1, 1, NULL, 0);
2093 p->se.vruntime -= old_cfsrq->min_vruntime -
2094 new_cfsrq->min_vruntime;
2096 __set_task_cpu(p, new_cpu);
2099 struct migration_req {
2100 struct list_head list;
2102 struct task_struct *task;
2103 int dest_cpu;
2105 struct completion done;
2109 * The task's runqueue lock must be held.
2110 * Returns true if you have to wait for migration thread.
2112 static int
2113 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2115 struct rq *rq = task_rq(p);
2118 * If the task is not on a runqueue (and not running), then
2119 * it is sufficient to simply update the task's cpu field.
2121 if (!p->se.on_rq && !task_running(rq, p)) {
2122 set_task_cpu(p, dest_cpu);
2123 return 0;
2126 init_completion(&req->done);
2127 req->task = p;
2128 req->dest_cpu = dest_cpu;
2129 list_add(&req->list, &rq->migration_queue);
2131 return 1;
2135 * wait_task_context_switch - wait for a thread to complete at least one
2136 * context switch.
2138 * @p must not be current.
2140 void wait_task_context_switch(struct task_struct *p)
2142 unsigned long nvcsw, nivcsw, flags;
2143 int running;
2144 struct rq *rq;
2146 nvcsw = p->nvcsw;
2147 nivcsw = p->nivcsw;
2148 for (;;) {
2150 * The runqueue is assigned before the actual context
2151 * switch. We need to take the runqueue lock.
2153 * We could check initially without the lock but it is
2154 * very likely that we need to take the lock in every
2155 * iteration.
2157 rq = task_rq_lock(p, &flags);
2158 running = task_running(rq, p);
2159 task_rq_unlock(rq, &flags);
2161 if (likely(!running))
2162 break;
2164 * The switch count is incremented before the actual
2165 * context switch. We thus wait for two switches to be
2166 * sure at least one completed.
2168 if ((p->nvcsw - nvcsw) > 1)
2169 break;
2170 if ((p->nivcsw - nivcsw) > 1)
2171 break;
2173 cpu_relax();
2178 * wait_task_inactive - wait for a thread to unschedule.
2180 * If @match_state is nonzero, it's the @p->state value just checked and
2181 * not expected to change. If it changes, i.e. @p might have woken up,
2182 * then return zero. When we succeed in waiting for @p to be off its CPU,
2183 * we return a positive number (its total switch count). If a second call
2184 * a short while later returns the same number, the caller can be sure that
2185 * @p has remained unscheduled the whole time.
2187 * The caller must ensure that the task *will* unschedule sometime soon,
2188 * else this function might spin for a *long* time. This function can't
2189 * be called with interrupts off, or it may introduce deadlock with
2190 * smp_call_function() if an IPI is sent by the same process we are
2191 * waiting to become inactive.
2193 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2195 unsigned long flags;
2196 int running, on_rq;
2197 unsigned long ncsw;
2198 struct rq *rq;
2200 for (;;) {
2202 * We do the initial early heuristics without holding
2203 * any task-queue locks at all. We'll only try to get
2204 * the runqueue lock when things look like they will
2205 * work out!
2207 rq = task_rq(p);
2210 * If the task is actively running on another CPU
2211 * still, just relax and busy-wait without holding
2212 * any locks.
2214 * NOTE! Since we don't hold any locks, it's not
2215 * even sure that "rq" stays as the right runqueue!
2216 * But we don't care, since "task_running()" will
2217 * return false if the runqueue has changed and p
2218 * is actually now running somewhere else!
2220 while (task_running(rq, p)) {
2221 if (match_state && unlikely(p->state != match_state))
2222 return 0;
2223 cpu_relax();
2227 * Ok, time to look more closely! We need the rq
2228 * lock now, to be *sure*. If we're wrong, we'll
2229 * just go back and repeat.
2231 rq = task_rq_lock(p, &flags);
2232 trace_sched_wait_task(rq, p);
2233 running = task_running(rq, p);
2234 on_rq = p->se.on_rq;
2235 ncsw = 0;
2236 if (!match_state || p->state == match_state)
2237 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2238 task_rq_unlock(rq, &flags);
2241 * If it changed from the expected state, bail out now.
2243 if (unlikely(!ncsw))
2244 break;
2247 * Was it really running after all now that we
2248 * checked with the proper locks actually held?
2250 * Oops. Go back and try again..
2252 if (unlikely(running)) {
2253 cpu_relax();
2254 continue;
2258 * It's not enough that it's not actively running,
2259 * it must be off the runqueue _entirely_, and not
2260 * preempted!
2262 * So if it was still runnable (but just not actively
2263 * running right now), it's preempted, and we should
2264 * yield - it could be a while.
2266 if (unlikely(on_rq)) {
2267 schedule_timeout_uninterruptible(1);
2268 continue;
2272 * Ahh, all good. It wasn't running, and it wasn't
2273 * runnable, which means that it will never become
2274 * running in the future either. We're all done!
2276 break;
2279 return ncsw;
2282 /***
2283 * kick_process - kick a running thread to enter/exit the kernel
2284 * @p: the to-be-kicked thread
2286 * Cause a process which is running on another CPU to enter
2287 * kernel-mode, without any delay. (to get signals handled.)
2289 * NOTE: this function doesnt have to take the runqueue lock,
2290 * because all it wants to ensure is that the remote task enters
2291 * the kernel. If the IPI races and the task has been migrated
2292 * to another CPU then no harm is done and the purpose has been
2293 * achieved as well.
2295 void kick_process(struct task_struct *p)
2297 int cpu;
2299 preempt_disable();
2300 cpu = task_cpu(p);
2301 if ((cpu != smp_processor_id()) && task_curr(p))
2302 smp_send_reschedule(cpu);
2303 preempt_enable();
2305 EXPORT_SYMBOL_GPL(kick_process);
2306 #endif /* CONFIG_SMP */
2309 * task_oncpu_function_call - call a function on the cpu on which a task runs
2310 * @p: the task to evaluate
2311 * @func: the function to be called
2312 * @info: the function call argument
2314 * Calls the function @func when the task is currently running. This might
2315 * be on the current CPU, which just calls the function directly
2317 void task_oncpu_function_call(struct task_struct *p,
2318 void (*func) (void *info), void *info)
2320 int cpu;
2322 preempt_disable();
2323 cpu = task_cpu(p);
2324 if (task_curr(p))
2325 smp_call_function_single(cpu, func, info, 1);
2326 preempt_enable();
2329 /***
2330 * try_to_wake_up - wake up a thread
2331 * @p: the to-be-woken-up thread
2332 * @state: the mask of task states that can be woken
2333 * @sync: do a synchronous wakeup?
2335 * Put it on the run-queue if it's not already there. The "current"
2336 * thread is always on the run-queue (except when the actual
2337 * re-schedule is in progress), and as such you're allowed to do
2338 * the simpler "current->state = TASK_RUNNING" to mark yourself
2339 * runnable without the overhead of this.
2341 * returns failure only if the task is already active.
2343 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2344 int wake_flags)
2346 int cpu, orig_cpu, this_cpu, success = 0;
2347 unsigned long flags;
2348 struct rq *rq, *orig_rq;
2350 if (!sched_feat(SYNC_WAKEUPS))
2351 wake_flags &= ~WF_SYNC;
2353 this_cpu = get_cpu();
2355 smp_wmb();
2356 rq = orig_rq = task_rq_lock(p, &flags);
2357 update_rq_clock(rq);
2358 if (!(p->state & state))
2359 goto out;
2361 if (p->se.on_rq)
2362 goto out_running;
2364 cpu = task_cpu(p);
2365 orig_cpu = cpu;
2367 #ifdef CONFIG_SMP
2368 if (unlikely(task_running(rq, p)))
2369 goto out_activate;
2372 * In order to handle concurrent wakeups and release the rq->lock
2373 * we put the task in TASK_WAKING state.
2375 * First fix up the nr_uninterruptible count:
2377 if (task_contributes_to_load(p))
2378 rq->nr_uninterruptible--;
2379 p->state = TASK_WAKING;
2380 task_rq_unlock(rq, &flags);
2382 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2383 if (cpu != orig_cpu)
2384 set_task_cpu(p, cpu);
2386 rq = task_rq_lock(p, &flags);
2388 if (rq != orig_rq)
2389 update_rq_clock(rq);
2391 WARN_ON(p->state != TASK_WAKING);
2392 cpu = task_cpu(p);
2394 #ifdef CONFIG_SCHEDSTATS
2395 schedstat_inc(rq, ttwu_count);
2396 if (cpu == this_cpu)
2397 schedstat_inc(rq, ttwu_local);
2398 else {
2399 struct sched_domain *sd;
2400 for_each_domain(this_cpu, sd) {
2401 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2402 schedstat_inc(sd, ttwu_wake_remote);
2403 break;
2407 #endif /* CONFIG_SCHEDSTATS */
2409 out_activate:
2410 #endif /* CONFIG_SMP */
2411 schedstat_inc(p, se.nr_wakeups);
2412 if (wake_flags & WF_SYNC)
2413 schedstat_inc(p, se.nr_wakeups_sync);
2414 if (orig_cpu != cpu)
2415 schedstat_inc(p, se.nr_wakeups_migrate);
2416 if (cpu == this_cpu)
2417 schedstat_inc(p, se.nr_wakeups_local);
2418 else
2419 schedstat_inc(p, se.nr_wakeups_remote);
2420 activate_task(rq, p, 1);
2421 success = 1;
2424 * Only attribute actual wakeups done by this task.
2426 if (!in_interrupt()) {
2427 struct sched_entity *se = &current->se;
2428 u64 sample = se->sum_exec_runtime;
2430 if (se->last_wakeup)
2431 sample -= se->last_wakeup;
2432 else
2433 sample -= se->start_runtime;
2434 update_avg(&se->avg_wakeup, sample);
2436 se->last_wakeup = se->sum_exec_runtime;
2439 out_running:
2440 trace_sched_wakeup(rq, p, success);
2441 check_preempt_curr(rq, p, wake_flags);
2443 p->state = TASK_RUNNING;
2444 #ifdef CONFIG_SMP
2445 if (p->sched_class->task_wake_up)
2446 p->sched_class->task_wake_up(rq, p);
2448 if (unlikely(rq->idle_stamp)) {
2449 u64 delta = rq->clock - rq->idle_stamp;
2450 u64 max = 2*sysctl_sched_migration_cost;
2452 if (delta > max)
2453 rq->avg_idle = max;
2454 else
2455 update_avg(&rq->avg_idle, delta);
2456 rq->idle_stamp = 0;
2458 #endif
2459 out:
2460 task_rq_unlock(rq, &flags);
2461 put_cpu();
2463 return success;
2467 * wake_up_process - Wake up a specific process
2468 * @p: The process to be woken up.
2470 * Attempt to wake up the nominated process and move it to the set of runnable
2471 * processes. Returns 1 if the process was woken up, 0 if it was already
2472 * running.
2474 * It may be assumed that this function implies a write memory barrier before
2475 * changing the task state if and only if any tasks are woken up.
2477 int wake_up_process(struct task_struct *p)
2479 return try_to_wake_up(p, TASK_ALL, 0);
2481 EXPORT_SYMBOL(wake_up_process);
2483 int wake_up_state(struct task_struct *p, unsigned int state)
2485 return try_to_wake_up(p, state, 0);
2489 * Perform scheduler related setup for a newly forked process p.
2490 * p is forked by current.
2492 * __sched_fork() is basic setup used by init_idle() too:
2494 static void __sched_fork(struct task_struct *p)
2496 p->se.exec_start = 0;
2497 p->se.sum_exec_runtime = 0;
2498 p->se.prev_sum_exec_runtime = 0;
2499 p->se.nr_migrations = 0;
2500 p->se.last_wakeup = 0;
2501 p->se.avg_overlap = 0;
2502 p->se.start_runtime = 0;
2503 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2504 p->se.avg_running = 0;
2506 #ifdef CONFIG_SCHEDSTATS
2507 p->se.wait_start = 0;
2508 p->se.wait_max = 0;
2509 p->se.wait_count = 0;
2510 p->se.wait_sum = 0;
2512 p->se.sleep_start = 0;
2513 p->se.sleep_max = 0;
2514 p->se.sum_sleep_runtime = 0;
2516 p->se.block_start = 0;
2517 p->se.block_max = 0;
2518 p->se.exec_max = 0;
2519 p->se.slice_max = 0;
2521 p->se.nr_migrations_cold = 0;
2522 p->se.nr_failed_migrations_affine = 0;
2523 p->se.nr_failed_migrations_running = 0;
2524 p->se.nr_failed_migrations_hot = 0;
2525 p->se.nr_forced_migrations = 0;
2526 p->se.nr_forced2_migrations = 0;
2528 p->se.nr_wakeups = 0;
2529 p->se.nr_wakeups_sync = 0;
2530 p->se.nr_wakeups_migrate = 0;
2531 p->se.nr_wakeups_local = 0;
2532 p->se.nr_wakeups_remote = 0;
2533 p->se.nr_wakeups_affine = 0;
2534 p->se.nr_wakeups_affine_attempts = 0;
2535 p->se.nr_wakeups_passive = 0;
2536 p->se.nr_wakeups_idle = 0;
2538 #endif
2540 INIT_LIST_HEAD(&p->rt.run_list);
2541 p->se.on_rq = 0;
2542 INIT_LIST_HEAD(&p->se.group_node);
2544 #ifdef CONFIG_PREEMPT_NOTIFIERS
2545 INIT_HLIST_HEAD(&p->preempt_notifiers);
2546 #endif
2549 * We mark the process as running here, but have not actually
2550 * inserted it onto the runqueue yet. This guarantees that
2551 * nobody will actually run it, and a signal or other external
2552 * event cannot wake it up and insert it on the runqueue either.
2554 p->state = TASK_RUNNING;
2558 * fork()/clone()-time setup:
2560 void sched_fork(struct task_struct *p, int clone_flags)
2562 int cpu = get_cpu();
2564 __sched_fork(p);
2567 * Revert to default priority/policy on fork if requested.
2569 if (unlikely(p->sched_reset_on_fork)) {
2570 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2571 p->policy = SCHED_NORMAL;
2572 p->normal_prio = p->static_prio;
2575 if (PRIO_TO_NICE(p->static_prio) < 0) {
2576 p->static_prio = NICE_TO_PRIO(0);
2577 p->normal_prio = p->static_prio;
2578 set_load_weight(p);
2582 * We don't need the reset flag anymore after the fork. It has
2583 * fulfilled its duty:
2585 p->sched_reset_on_fork = 0;
2589 * Make sure we do not leak PI boosting priority to the child.
2591 p->prio = current->normal_prio;
2593 if (!rt_prio(p->prio))
2594 p->sched_class = &fair_sched_class;
2596 #ifdef CONFIG_SMP
2597 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2598 #endif
2599 set_task_cpu(p, cpu);
2601 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2602 if (likely(sched_info_on()))
2603 memset(&p->sched_info, 0, sizeof(p->sched_info));
2604 #endif
2605 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2606 p->oncpu = 0;
2607 #endif
2608 #ifdef CONFIG_PREEMPT
2609 /* Want to start with kernel preemption disabled. */
2610 task_thread_info(p)->preempt_count = 1;
2611 #endif
2612 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2614 put_cpu();
2618 * wake_up_new_task - wake up a newly created task for the first time.
2620 * This function will do some initial scheduler statistics housekeeping
2621 * that must be done for every newly created context, then puts the task
2622 * on the runqueue and wakes it.
2624 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2626 unsigned long flags;
2627 struct rq *rq;
2629 rq = task_rq_lock(p, &flags);
2630 BUG_ON(p->state != TASK_RUNNING);
2631 update_rq_clock(rq);
2633 if (!p->sched_class->task_new || !current->se.on_rq) {
2634 activate_task(rq, p, 0);
2635 } else {
2637 * Let the scheduling class do new task startup
2638 * management (if any):
2640 p->sched_class->task_new(rq, p);
2641 inc_nr_running(rq);
2643 trace_sched_wakeup_new(rq, p, 1);
2644 check_preempt_curr(rq, p, WF_FORK);
2645 #ifdef CONFIG_SMP
2646 if (p->sched_class->task_wake_up)
2647 p->sched_class->task_wake_up(rq, p);
2648 #endif
2649 task_rq_unlock(rq, &flags);
2652 #ifdef CONFIG_PREEMPT_NOTIFIERS
2655 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2656 * @notifier: notifier struct to register
2658 void preempt_notifier_register(struct preempt_notifier *notifier)
2660 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2662 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2665 * preempt_notifier_unregister - no longer interested in preemption notifications
2666 * @notifier: notifier struct to unregister
2668 * This is safe to call from within a preemption notifier.
2670 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2672 hlist_del(&notifier->link);
2674 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2676 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2678 struct preempt_notifier *notifier;
2679 struct hlist_node *node;
2681 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2682 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2685 static void
2686 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2687 struct task_struct *next)
2689 struct preempt_notifier *notifier;
2690 struct hlist_node *node;
2692 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2693 notifier->ops->sched_out(notifier, next);
2696 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2698 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2702 static void
2703 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2704 struct task_struct *next)
2708 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2711 * prepare_task_switch - prepare to switch tasks
2712 * @rq: the runqueue preparing to switch
2713 * @prev: the current task that is being switched out
2714 * @next: the task we are going to switch to.
2716 * This is called with the rq lock held and interrupts off. It must
2717 * be paired with a subsequent finish_task_switch after the context
2718 * switch.
2720 * prepare_task_switch sets up locking and calls architecture specific
2721 * hooks.
2723 static inline void
2724 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2725 struct task_struct *next)
2727 fire_sched_out_preempt_notifiers(prev, next);
2728 prepare_lock_switch(rq, next);
2729 prepare_arch_switch(next);
2733 * finish_task_switch - clean up after a task-switch
2734 * @rq: runqueue associated with task-switch
2735 * @prev: the thread we just switched away from.
2737 * finish_task_switch must be called after the context switch, paired
2738 * with a prepare_task_switch call before the context switch.
2739 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2740 * and do any other architecture-specific cleanup actions.
2742 * Note that we may have delayed dropping an mm in context_switch(). If
2743 * so, we finish that here outside of the runqueue lock. (Doing it
2744 * with the lock held can cause deadlocks; see schedule() for
2745 * details.)
2747 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2748 __releases(rq->lock)
2750 struct mm_struct *mm = rq->prev_mm;
2751 long prev_state;
2753 rq->prev_mm = NULL;
2756 * A task struct has one reference for the use as "current".
2757 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2758 * schedule one last time. The schedule call will never return, and
2759 * the scheduled task must drop that reference.
2760 * The test for TASK_DEAD must occur while the runqueue locks are
2761 * still held, otherwise prev could be scheduled on another cpu, die
2762 * there before we look at prev->state, and then the reference would
2763 * be dropped twice.
2764 * Manfred Spraul <manfred@colorfullife.com>
2766 prev_state = prev->state;
2767 finish_arch_switch(prev);
2768 perf_event_task_sched_in(current, cpu_of(rq));
2769 finish_lock_switch(rq, prev);
2771 fire_sched_in_preempt_notifiers(current);
2772 if (mm)
2773 mmdrop(mm);
2774 if (unlikely(prev_state == TASK_DEAD)) {
2776 * Remove function-return probe instances associated with this
2777 * task and put them back on the free list.
2779 kprobe_flush_task(prev);
2780 put_task_struct(prev);
2784 #ifdef CONFIG_SMP
2786 /* assumes rq->lock is held */
2787 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2789 if (prev->sched_class->pre_schedule)
2790 prev->sched_class->pre_schedule(rq, prev);
2793 /* rq->lock is NOT held, but preemption is disabled */
2794 static inline void post_schedule(struct rq *rq)
2796 if (rq->post_schedule) {
2797 unsigned long flags;
2799 spin_lock_irqsave(&rq->lock, flags);
2800 if (rq->curr->sched_class->post_schedule)
2801 rq->curr->sched_class->post_schedule(rq);
2802 spin_unlock_irqrestore(&rq->lock, flags);
2804 rq->post_schedule = 0;
2808 #else
2810 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2814 static inline void post_schedule(struct rq *rq)
2818 #endif
2821 * schedule_tail - first thing a freshly forked thread must call.
2822 * @prev: the thread we just switched away from.
2824 asmlinkage void schedule_tail(struct task_struct *prev)
2825 __releases(rq->lock)
2827 struct rq *rq = this_rq();
2829 finish_task_switch(rq, prev);
2832 * FIXME: do we need to worry about rq being invalidated by the
2833 * task_switch?
2835 post_schedule(rq);
2837 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2838 /* In this case, finish_task_switch does not reenable preemption */
2839 preempt_enable();
2840 #endif
2841 if (current->set_child_tid)
2842 put_user(task_pid_vnr(current), current->set_child_tid);
2846 * context_switch - switch to the new MM and the new
2847 * thread's register state.
2849 static inline void
2850 context_switch(struct rq *rq, struct task_struct *prev,
2851 struct task_struct *next)
2853 struct mm_struct *mm, *oldmm;
2855 prepare_task_switch(rq, prev, next);
2856 trace_sched_switch(rq, prev, next);
2857 mm = next->mm;
2858 oldmm = prev->active_mm;
2860 * For paravirt, this is coupled with an exit in switch_to to
2861 * combine the page table reload and the switch backend into
2862 * one hypercall.
2864 arch_start_context_switch(prev);
2866 if (unlikely(!mm)) {
2867 next->active_mm = oldmm;
2868 atomic_inc(&oldmm->mm_count);
2869 enter_lazy_tlb(oldmm, next);
2870 } else
2871 switch_mm(oldmm, mm, next);
2873 if (unlikely(!prev->mm)) {
2874 prev->active_mm = NULL;
2875 rq->prev_mm = oldmm;
2878 * Since the runqueue lock will be released by the next
2879 * task (which is an invalid locking op but in the case
2880 * of the scheduler it's an obvious special-case), so we
2881 * do an early lockdep release here:
2883 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2884 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2885 #endif
2887 /* Here we just switch the register state and the stack. */
2888 switch_to(prev, next, prev);
2890 barrier();
2892 * this_rq must be evaluated again because prev may have moved
2893 * CPUs since it called schedule(), thus the 'rq' on its stack
2894 * frame will be invalid.
2896 finish_task_switch(this_rq(), prev);
2900 * nr_running, nr_uninterruptible and nr_context_switches:
2902 * externally visible scheduler statistics: current number of runnable
2903 * threads, current number of uninterruptible-sleeping threads, total
2904 * number of context switches performed since bootup.
2906 unsigned long nr_running(void)
2908 unsigned long i, sum = 0;
2910 for_each_online_cpu(i)
2911 sum += cpu_rq(i)->nr_running;
2913 return sum;
2916 unsigned long nr_uninterruptible(void)
2918 unsigned long i, sum = 0;
2920 for_each_possible_cpu(i)
2921 sum += cpu_rq(i)->nr_uninterruptible;
2924 * Since we read the counters lockless, it might be slightly
2925 * inaccurate. Do not allow it to go below zero though:
2927 if (unlikely((long)sum < 0))
2928 sum = 0;
2930 return sum;
2933 unsigned long long nr_context_switches(void)
2935 int i;
2936 unsigned long long sum = 0;
2938 for_each_possible_cpu(i)
2939 sum += cpu_rq(i)->nr_switches;
2941 return sum;
2944 unsigned long nr_iowait(void)
2946 unsigned long i, sum = 0;
2948 for_each_possible_cpu(i)
2949 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2951 return sum;
2954 unsigned long nr_iowait_cpu(void)
2956 struct rq *this = this_rq();
2957 return atomic_read(&this->nr_iowait);
2960 unsigned long this_cpu_load(void)
2962 struct rq *this = this_rq();
2963 return this->cpu_load[0];
2967 /* Variables and functions for calc_load */
2968 static atomic_long_t calc_load_tasks;
2969 static unsigned long calc_load_update;
2970 unsigned long avenrun[3];
2971 EXPORT_SYMBOL(avenrun);
2974 * get_avenrun - get the load average array
2975 * @loads: pointer to dest load array
2976 * @offset: offset to add
2977 * @shift: shift count to shift the result left
2979 * These values are estimates at best, so no need for locking.
2981 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2983 loads[0] = (avenrun[0] + offset) << shift;
2984 loads[1] = (avenrun[1] + offset) << shift;
2985 loads[2] = (avenrun[2] + offset) << shift;
2988 static unsigned long
2989 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2991 load *= exp;
2992 load += active * (FIXED_1 - exp);
2993 return load >> FSHIFT;
2997 * calc_load - update the avenrun load estimates 10 ticks after the
2998 * CPUs have updated calc_load_tasks.
3000 void calc_global_load(void)
3002 unsigned long upd = calc_load_update + 10;
3003 long active;
3005 if (time_before(jiffies, upd))
3006 return;
3008 active = atomic_long_read(&calc_load_tasks);
3009 active = active > 0 ? active * FIXED_1 : 0;
3011 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3012 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3013 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3015 calc_load_update += LOAD_FREQ;
3019 * Either called from update_cpu_load() or from a cpu going idle
3021 static void calc_load_account_active(struct rq *this_rq)
3023 long nr_active, delta;
3025 nr_active = this_rq->nr_running;
3026 nr_active += (long) this_rq->nr_uninterruptible;
3028 if (nr_active != this_rq->calc_load_active) {
3029 delta = nr_active - this_rq->calc_load_active;
3030 this_rq->calc_load_active = nr_active;
3031 atomic_long_add(delta, &calc_load_tasks);
3036 * Externally visible per-cpu scheduler statistics:
3037 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3039 u64 cpu_nr_migrations(int cpu)
3041 return cpu_rq(cpu)->nr_migrations_in;
3045 * Update rq->cpu_load[] statistics. This function is usually called every
3046 * scheduler tick (TICK_NSEC).
3048 static void update_cpu_load(struct rq *this_rq)
3050 unsigned long this_load = this_rq->load.weight;
3051 int i, scale;
3053 this_rq->nr_load_updates++;
3055 /* Update our load: */
3056 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3057 unsigned long old_load, new_load;
3059 /* scale is effectively 1 << i now, and >> i divides by scale */
3061 old_load = this_rq->cpu_load[i];
3062 new_load = this_load;
3064 * Round up the averaging division if load is increasing. This
3065 * prevents us from getting stuck on 9 if the load is 10, for
3066 * example.
3068 if (new_load > old_load)
3069 new_load += scale-1;
3070 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3073 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3074 this_rq->calc_load_update += LOAD_FREQ;
3075 calc_load_account_active(this_rq);
3079 #ifdef CONFIG_SMP
3082 * double_rq_lock - safely lock two runqueues
3084 * Note this does not disable interrupts like task_rq_lock,
3085 * you need to do so manually before calling.
3087 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3088 __acquires(rq1->lock)
3089 __acquires(rq2->lock)
3091 BUG_ON(!irqs_disabled());
3092 if (rq1 == rq2) {
3093 spin_lock(&rq1->lock);
3094 __acquire(rq2->lock); /* Fake it out ;) */
3095 } else {
3096 if (rq1 < rq2) {
3097 spin_lock(&rq1->lock);
3098 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3099 } else {
3100 spin_lock(&rq2->lock);
3101 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3104 update_rq_clock(rq1);
3105 update_rq_clock(rq2);
3109 * double_rq_unlock - safely unlock two runqueues
3111 * Note this does not restore interrupts like task_rq_unlock,
3112 * you need to do so manually after calling.
3114 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3115 __releases(rq1->lock)
3116 __releases(rq2->lock)
3118 spin_unlock(&rq1->lock);
3119 if (rq1 != rq2)
3120 spin_unlock(&rq2->lock);
3121 else
3122 __release(rq2->lock);
3126 * If dest_cpu is allowed for this process, migrate the task to it.
3127 * This is accomplished by forcing the cpu_allowed mask to only
3128 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3129 * the cpu_allowed mask is restored.
3131 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3133 struct migration_req req;
3134 unsigned long flags;
3135 struct rq *rq;
3137 rq = task_rq_lock(p, &flags);
3138 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3139 || unlikely(!cpu_active(dest_cpu)))
3140 goto out;
3142 /* force the process onto the specified CPU */
3143 if (migrate_task(p, dest_cpu, &req)) {
3144 /* Need to wait for migration thread (might exit: take ref). */
3145 struct task_struct *mt = rq->migration_thread;
3147 get_task_struct(mt);
3148 task_rq_unlock(rq, &flags);
3149 wake_up_process(mt);
3150 put_task_struct(mt);
3151 wait_for_completion(&req.done);
3153 return;
3155 out:
3156 task_rq_unlock(rq, &flags);
3160 * sched_exec - execve() is a valuable balancing opportunity, because at
3161 * this point the task has the smallest effective memory and cache footprint.
3163 void sched_exec(void)
3165 int new_cpu, this_cpu = get_cpu();
3166 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3167 put_cpu();
3168 if (new_cpu != this_cpu)
3169 sched_migrate_task(current, new_cpu);
3173 * pull_task - move a task from a remote runqueue to the local runqueue.
3174 * Both runqueues must be locked.
3176 static void pull_task(struct rq *src_rq, struct task_struct *p,
3177 struct rq *this_rq, int this_cpu)
3179 deactivate_task(src_rq, p, 0);
3180 set_task_cpu(p, this_cpu);
3181 activate_task(this_rq, p, 0);
3182 check_preempt_curr(this_rq, p, 0);
3186 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3188 static
3189 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3190 struct sched_domain *sd, enum cpu_idle_type idle,
3191 int *all_pinned)
3193 int tsk_cache_hot = 0;
3195 * We do not migrate tasks that are:
3196 * 1) running (obviously), or
3197 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3198 * 3) are cache-hot on their current CPU.
3200 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3201 schedstat_inc(p, se.nr_failed_migrations_affine);
3202 return 0;
3204 *all_pinned = 0;
3206 if (task_running(rq, p)) {
3207 schedstat_inc(p, se.nr_failed_migrations_running);
3208 return 0;
3212 * Aggressive migration if:
3213 * 1) task is cache cold, or
3214 * 2) too many balance attempts have failed.
3217 tsk_cache_hot = task_hot(p, rq->clock, sd);
3218 if (!tsk_cache_hot ||
3219 sd->nr_balance_failed > sd->cache_nice_tries) {
3220 #ifdef CONFIG_SCHEDSTATS
3221 if (tsk_cache_hot) {
3222 schedstat_inc(sd, lb_hot_gained[idle]);
3223 schedstat_inc(p, se.nr_forced_migrations);
3225 #endif
3226 return 1;
3229 if (tsk_cache_hot) {
3230 schedstat_inc(p, se.nr_failed_migrations_hot);
3231 return 0;
3233 return 1;
3236 static unsigned long
3237 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3238 unsigned long max_load_move, struct sched_domain *sd,
3239 enum cpu_idle_type idle, int *all_pinned,
3240 int *this_best_prio, struct rq_iterator *iterator)
3242 int loops = 0, pulled = 0, pinned = 0;
3243 struct task_struct *p;
3244 long rem_load_move = max_load_move;
3246 if (max_load_move == 0)
3247 goto out;
3249 pinned = 1;
3252 * Start the load-balancing iterator:
3254 p = iterator->start(iterator->arg);
3255 next:
3256 if (!p || loops++ > sysctl_sched_nr_migrate)
3257 goto out;
3259 if ((p->se.load.weight >> 1) > rem_load_move ||
3260 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3261 p = iterator->next(iterator->arg);
3262 goto next;
3265 pull_task(busiest, p, this_rq, this_cpu);
3266 pulled++;
3267 rem_load_move -= p->se.load.weight;
3269 #ifdef CONFIG_PREEMPT
3271 * NEWIDLE balancing is a source of latency, so preemptible kernels
3272 * will stop after the first task is pulled to minimize the critical
3273 * section.
3275 if (idle == CPU_NEWLY_IDLE)
3276 goto out;
3277 #endif
3280 * We only want to steal up to the prescribed amount of weighted load.
3282 if (rem_load_move > 0) {
3283 if (p->prio < *this_best_prio)
3284 *this_best_prio = p->prio;
3285 p = iterator->next(iterator->arg);
3286 goto next;
3288 out:
3290 * Right now, this is one of only two places pull_task() is called,
3291 * so we can safely collect pull_task() stats here rather than
3292 * inside pull_task().
3294 schedstat_add(sd, lb_gained[idle], pulled);
3296 if (all_pinned)
3297 *all_pinned = pinned;
3299 return max_load_move - rem_load_move;
3303 * move_tasks tries to move up to max_load_move weighted load from busiest to
3304 * this_rq, as part of a balancing operation within domain "sd".
3305 * Returns 1 if successful and 0 otherwise.
3307 * Called with both runqueues locked.
3309 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3310 unsigned long max_load_move,
3311 struct sched_domain *sd, enum cpu_idle_type idle,
3312 int *all_pinned)
3314 const struct sched_class *class = sched_class_highest;
3315 unsigned long total_load_moved = 0;
3316 int this_best_prio = this_rq->curr->prio;
3318 do {
3319 total_load_moved +=
3320 class->load_balance(this_rq, this_cpu, busiest,
3321 max_load_move - total_load_moved,
3322 sd, idle, all_pinned, &this_best_prio);
3323 class = class->next;
3325 #ifdef CONFIG_PREEMPT
3327 * NEWIDLE balancing is a source of latency, so preemptible
3328 * kernels will stop after the first task is pulled to minimize
3329 * the critical section.
3331 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3332 break;
3333 #endif
3334 } while (class && max_load_move > total_load_moved);
3336 return total_load_moved > 0;
3339 static int
3340 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3341 struct sched_domain *sd, enum cpu_idle_type idle,
3342 struct rq_iterator *iterator)
3344 struct task_struct *p = iterator->start(iterator->arg);
3345 int pinned = 0;
3347 while (p) {
3348 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3349 pull_task(busiest, p, this_rq, this_cpu);
3351 * Right now, this is only the second place pull_task()
3352 * is called, so we can safely collect pull_task()
3353 * stats here rather than inside pull_task().
3355 schedstat_inc(sd, lb_gained[idle]);
3357 return 1;
3359 p = iterator->next(iterator->arg);
3362 return 0;
3366 * move_one_task tries to move exactly one task from busiest to this_rq, as
3367 * part of active balancing operations within "domain".
3368 * Returns 1 if successful and 0 otherwise.
3370 * Called with both runqueues locked.
3372 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3373 struct sched_domain *sd, enum cpu_idle_type idle)
3375 const struct sched_class *class;
3377 for_each_class(class) {
3378 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3379 return 1;
3382 return 0;
3384 /********** Helpers for find_busiest_group ************************/
3386 * sd_lb_stats - Structure to store the statistics of a sched_domain
3387 * during load balancing.
3389 struct sd_lb_stats {
3390 struct sched_group *busiest; /* Busiest group in this sd */
3391 struct sched_group *this; /* Local group in this sd */
3392 unsigned long total_load; /* Total load of all groups in sd */
3393 unsigned long total_pwr; /* Total power of all groups in sd */
3394 unsigned long avg_load; /* Average load across all groups in sd */
3396 /** Statistics of this group */
3397 unsigned long this_load;
3398 unsigned long this_load_per_task;
3399 unsigned long this_nr_running;
3401 /* Statistics of the busiest group */
3402 unsigned long max_load;
3403 unsigned long busiest_load_per_task;
3404 unsigned long busiest_nr_running;
3405 unsigned long busiest_group_capacity;
3407 int group_imb; /* Is there imbalance in this sd */
3408 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3409 int power_savings_balance; /* Is powersave balance needed for this sd */
3410 struct sched_group *group_min; /* Least loaded group in sd */
3411 struct sched_group *group_leader; /* Group which relieves group_min */
3412 unsigned long min_load_per_task; /* load_per_task in group_min */
3413 unsigned long leader_nr_running; /* Nr running of group_leader */
3414 unsigned long min_nr_running; /* Nr running of group_min */
3415 #endif
3419 * sg_lb_stats - stats of a sched_group required for load_balancing
3421 struct sg_lb_stats {
3422 unsigned long avg_load; /*Avg load across the CPUs of the group */
3423 unsigned long group_load; /* Total load over the CPUs of the group */
3424 unsigned long sum_nr_running; /* Nr tasks running in the group */
3425 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3426 unsigned long group_capacity;
3427 int group_imb; /* Is there an imbalance in the group ? */
3431 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3432 * @group: The group whose first cpu is to be returned.
3434 static inline unsigned int group_first_cpu(struct sched_group *group)
3436 return cpumask_first(sched_group_cpus(group));
3440 * get_sd_load_idx - Obtain the load index for a given sched domain.
3441 * @sd: The sched_domain whose load_idx is to be obtained.
3442 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3444 static inline int get_sd_load_idx(struct sched_domain *sd,
3445 enum cpu_idle_type idle)
3447 int load_idx;
3449 switch (idle) {
3450 case CPU_NOT_IDLE:
3451 load_idx = sd->busy_idx;
3452 break;
3454 case CPU_NEWLY_IDLE:
3455 load_idx = sd->newidle_idx;
3456 break;
3457 default:
3458 load_idx = sd->idle_idx;
3459 break;
3462 return load_idx;
3466 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3468 * init_sd_power_savings_stats - Initialize power savings statistics for
3469 * the given sched_domain, during load balancing.
3471 * @sd: Sched domain whose power-savings statistics are to be initialized.
3472 * @sds: Variable containing the statistics for sd.
3473 * @idle: Idle status of the CPU at which we're performing load-balancing.
3475 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3476 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3479 * Busy processors will not participate in power savings
3480 * balance.
3482 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3483 sds->power_savings_balance = 0;
3484 else {
3485 sds->power_savings_balance = 1;
3486 sds->min_nr_running = ULONG_MAX;
3487 sds->leader_nr_running = 0;
3492 * update_sd_power_savings_stats - Update the power saving stats for a
3493 * sched_domain while performing load balancing.
3495 * @group: sched_group belonging to the sched_domain under consideration.
3496 * @sds: Variable containing the statistics of the sched_domain
3497 * @local_group: Does group contain the CPU for which we're performing
3498 * load balancing ?
3499 * @sgs: Variable containing the statistics of the group.
3501 static inline void update_sd_power_savings_stats(struct sched_group *group,
3502 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3505 if (!sds->power_savings_balance)
3506 return;
3509 * If the local group is idle or completely loaded
3510 * no need to do power savings balance at this domain
3512 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3513 !sds->this_nr_running))
3514 sds->power_savings_balance = 0;
3517 * If a group is already running at full capacity or idle,
3518 * don't include that group in power savings calculations
3520 if (!sds->power_savings_balance ||
3521 sgs->sum_nr_running >= sgs->group_capacity ||
3522 !sgs->sum_nr_running)
3523 return;
3526 * Calculate the group which has the least non-idle load.
3527 * This is the group from where we need to pick up the load
3528 * for saving power
3530 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3531 (sgs->sum_nr_running == sds->min_nr_running &&
3532 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3533 sds->group_min = group;
3534 sds->min_nr_running = sgs->sum_nr_running;
3535 sds->min_load_per_task = sgs->sum_weighted_load /
3536 sgs->sum_nr_running;
3540 * Calculate the group which is almost near its
3541 * capacity but still has some space to pick up some load
3542 * from other group and save more power
3544 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3545 return;
3547 if (sgs->sum_nr_running > sds->leader_nr_running ||
3548 (sgs->sum_nr_running == sds->leader_nr_running &&
3549 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3550 sds->group_leader = group;
3551 sds->leader_nr_running = sgs->sum_nr_running;
3556 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3557 * @sds: Variable containing the statistics of the sched_domain
3558 * under consideration.
3559 * @this_cpu: Cpu at which we're currently performing load-balancing.
3560 * @imbalance: Variable to store the imbalance.
3562 * Description:
3563 * Check if we have potential to perform some power-savings balance.
3564 * If yes, set the busiest group to be the least loaded group in the
3565 * sched_domain, so that it's CPUs can be put to idle.
3567 * Returns 1 if there is potential to perform power-savings balance.
3568 * Else returns 0.
3570 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3571 int this_cpu, unsigned long *imbalance)
3573 if (!sds->power_savings_balance)
3574 return 0;
3576 if (sds->this != sds->group_leader ||
3577 sds->group_leader == sds->group_min)
3578 return 0;
3580 *imbalance = sds->min_load_per_task;
3581 sds->busiest = sds->group_min;
3583 return 1;
3586 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3587 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3588 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3590 return;
3593 static inline void update_sd_power_savings_stats(struct sched_group *group,
3594 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3596 return;
3599 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3600 int this_cpu, unsigned long *imbalance)
3602 return 0;
3604 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3607 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3609 return SCHED_LOAD_SCALE;
3612 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3614 return default_scale_freq_power(sd, cpu);
3617 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3619 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3620 unsigned long smt_gain = sd->smt_gain;
3622 smt_gain /= weight;
3624 return smt_gain;
3627 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3629 return default_scale_smt_power(sd, cpu);
3632 unsigned long scale_rt_power(int cpu)
3634 struct rq *rq = cpu_rq(cpu);
3635 u64 total, available;
3637 sched_avg_update(rq);
3639 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3640 available = total - rq->rt_avg;
3642 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3643 total = SCHED_LOAD_SCALE;
3645 total >>= SCHED_LOAD_SHIFT;
3647 return div_u64(available, total);
3650 static void update_cpu_power(struct sched_domain *sd, int cpu)
3652 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3653 unsigned long power = SCHED_LOAD_SCALE;
3654 struct sched_group *sdg = sd->groups;
3656 if (sched_feat(ARCH_POWER))
3657 power *= arch_scale_freq_power(sd, cpu);
3658 else
3659 power *= default_scale_freq_power(sd, cpu);
3661 power >>= SCHED_LOAD_SHIFT;
3663 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3664 if (sched_feat(ARCH_POWER))
3665 power *= arch_scale_smt_power(sd, cpu);
3666 else
3667 power *= default_scale_smt_power(sd, cpu);
3669 power >>= SCHED_LOAD_SHIFT;
3672 power *= scale_rt_power(cpu);
3673 power >>= SCHED_LOAD_SHIFT;
3675 if (!power)
3676 power = 1;
3678 sdg->cpu_power = power;
3681 static void update_group_power(struct sched_domain *sd, int cpu)
3683 struct sched_domain *child = sd->child;
3684 struct sched_group *group, *sdg = sd->groups;
3685 unsigned long power;
3687 if (!child) {
3688 update_cpu_power(sd, cpu);
3689 return;
3692 power = 0;
3694 group = child->groups;
3695 do {
3696 power += group->cpu_power;
3697 group = group->next;
3698 } while (group != child->groups);
3700 sdg->cpu_power = power;
3704 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3705 * @sd: The sched_domain whose statistics are to be updated.
3706 * @group: sched_group whose statistics are to be updated.
3707 * @this_cpu: Cpu for which load balance is currently performed.
3708 * @idle: Idle status of this_cpu
3709 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3710 * @sd_idle: Idle status of the sched_domain containing group.
3711 * @local_group: Does group contain this_cpu.
3712 * @cpus: Set of cpus considered for load balancing.
3713 * @balance: Should we balance.
3714 * @sgs: variable to hold the statistics for this group.
3716 static inline void update_sg_lb_stats(struct sched_domain *sd,
3717 struct sched_group *group, int this_cpu,
3718 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3719 int local_group, const struct cpumask *cpus,
3720 int *balance, struct sg_lb_stats *sgs)
3722 unsigned long load, max_cpu_load, min_cpu_load;
3723 int i;
3724 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3725 unsigned long avg_load_per_task = 0;
3727 if (local_group) {
3728 balance_cpu = group_first_cpu(group);
3729 if (balance_cpu == this_cpu)
3730 update_group_power(sd, this_cpu);
3733 /* Tally up the load of all CPUs in the group */
3734 max_cpu_load = 0;
3735 min_cpu_load = ~0UL;
3737 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3738 struct rq *rq = cpu_rq(i);
3740 if (*sd_idle && rq->nr_running)
3741 *sd_idle = 0;
3743 /* Bias balancing toward cpus of our domain */
3744 if (local_group) {
3745 if (idle_cpu(i) && !first_idle_cpu) {
3746 first_idle_cpu = 1;
3747 balance_cpu = i;
3750 load = target_load(i, load_idx);
3751 } else {
3752 load = source_load(i, load_idx);
3753 if (load > max_cpu_load)
3754 max_cpu_load = load;
3755 if (min_cpu_load > load)
3756 min_cpu_load = load;
3759 sgs->group_load += load;
3760 sgs->sum_nr_running += rq->nr_running;
3761 sgs->sum_weighted_load += weighted_cpuload(i);
3766 * First idle cpu or the first cpu(busiest) in this sched group
3767 * is eligible for doing load balancing at this and above
3768 * domains. In the newly idle case, we will allow all the cpu's
3769 * to do the newly idle load balance.
3771 if (idle != CPU_NEWLY_IDLE && local_group &&
3772 balance_cpu != this_cpu && balance) {
3773 *balance = 0;
3774 return;
3777 /* Adjust by relative CPU power of the group */
3778 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3781 * Consider the group unbalanced when the imbalance is larger
3782 * than the average weight of two tasks.
3784 * APZ: with cgroup the avg task weight can vary wildly and
3785 * might not be a suitable number - should we keep a
3786 * normalized nr_running number somewhere that negates
3787 * the hierarchy?
3789 if (sgs->sum_nr_running)
3790 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3792 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3793 sgs->group_imb = 1;
3795 sgs->group_capacity =
3796 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3800 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3801 * @sd: sched_domain whose statistics are to be updated.
3802 * @this_cpu: Cpu for which load balance is currently performed.
3803 * @idle: Idle status of this_cpu
3804 * @sd_idle: Idle status of the sched_domain containing group.
3805 * @cpus: Set of cpus considered for load balancing.
3806 * @balance: Should we balance.
3807 * @sds: variable to hold the statistics for this sched_domain.
3809 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3810 enum cpu_idle_type idle, int *sd_idle,
3811 const struct cpumask *cpus, int *balance,
3812 struct sd_lb_stats *sds)
3814 struct sched_domain *child = sd->child;
3815 struct sched_group *group = sd->groups;
3816 struct sg_lb_stats sgs;
3817 int load_idx, prefer_sibling = 0;
3819 if (child && child->flags & SD_PREFER_SIBLING)
3820 prefer_sibling = 1;
3822 init_sd_power_savings_stats(sd, sds, idle);
3823 load_idx = get_sd_load_idx(sd, idle);
3825 do {
3826 int local_group;
3828 local_group = cpumask_test_cpu(this_cpu,
3829 sched_group_cpus(group));
3830 memset(&sgs, 0, sizeof(sgs));
3831 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3832 local_group, cpus, balance, &sgs);
3834 if (local_group && balance && !(*balance))
3835 return;
3837 sds->total_load += sgs.group_load;
3838 sds->total_pwr += group->cpu_power;
3841 * In case the child domain prefers tasks go to siblings
3842 * first, lower the group capacity to one so that we'll try
3843 * and move all the excess tasks away.
3845 if (prefer_sibling)
3846 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3848 if (local_group) {
3849 sds->this_load = sgs.avg_load;
3850 sds->this = group;
3851 sds->this_nr_running = sgs.sum_nr_running;
3852 sds->this_load_per_task = sgs.sum_weighted_load;
3853 } else if (sgs.avg_load > sds->max_load &&
3854 (sgs.sum_nr_running > sgs.group_capacity ||
3855 sgs.group_imb)) {
3856 sds->max_load = sgs.avg_load;
3857 sds->busiest = group;
3858 sds->busiest_nr_running = sgs.sum_nr_running;
3859 sds->busiest_group_capacity = sgs.group_capacity;
3860 sds->busiest_load_per_task = sgs.sum_weighted_load;
3861 sds->group_imb = sgs.group_imb;
3864 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3865 group = group->next;
3866 } while (group != sd->groups);
3870 * fix_small_imbalance - Calculate the minor imbalance that exists
3871 * amongst the groups of a sched_domain, during
3872 * load balancing.
3873 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3874 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3875 * @imbalance: Variable to store the imbalance.
3877 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3878 int this_cpu, unsigned long *imbalance)
3880 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3881 unsigned int imbn = 2;
3882 unsigned long scaled_busy_load_per_task;
3884 if (sds->this_nr_running) {
3885 sds->this_load_per_task /= sds->this_nr_running;
3886 if (sds->busiest_load_per_task >
3887 sds->this_load_per_task)
3888 imbn = 1;
3889 } else
3890 sds->this_load_per_task =
3891 cpu_avg_load_per_task(this_cpu);
3893 scaled_busy_load_per_task = sds->busiest_load_per_task
3894 * SCHED_LOAD_SCALE;
3895 scaled_busy_load_per_task /= sds->busiest->cpu_power;
3897 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3898 (scaled_busy_load_per_task * imbn)) {
3899 *imbalance = sds->busiest_load_per_task;
3900 return;
3904 * OK, we don't have enough imbalance to justify moving tasks,
3905 * however we may be able to increase total CPU power used by
3906 * moving them.
3909 pwr_now += sds->busiest->cpu_power *
3910 min(sds->busiest_load_per_task, sds->max_load);
3911 pwr_now += sds->this->cpu_power *
3912 min(sds->this_load_per_task, sds->this_load);
3913 pwr_now /= SCHED_LOAD_SCALE;
3915 /* Amount of load we'd subtract */
3916 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3917 sds->busiest->cpu_power;
3918 if (sds->max_load > tmp)
3919 pwr_move += sds->busiest->cpu_power *
3920 min(sds->busiest_load_per_task, sds->max_load - tmp);
3922 /* Amount of load we'd add */
3923 if (sds->max_load * sds->busiest->cpu_power <
3924 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3925 tmp = (sds->max_load * sds->busiest->cpu_power) /
3926 sds->this->cpu_power;
3927 else
3928 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3929 sds->this->cpu_power;
3930 pwr_move += sds->this->cpu_power *
3931 min(sds->this_load_per_task, sds->this_load + tmp);
3932 pwr_move /= SCHED_LOAD_SCALE;
3934 /* Move if we gain throughput */
3935 if (pwr_move > pwr_now)
3936 *imbalance = sds->busiest_load_per_task;
3940 * calculate_imbalance - Calculate the amount of imbalance present within the
3941 * groups of a given sched_domain during load balance.
3942 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3943 * @this_cpu: Cpu for which currently load balance is being performed.
3944 * @imbalance: The variable to store the imbalance.
3946 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3947 unsigned long *imbalance)
3949 unsigned long max_pull, load_above_capacity = ~0UL;
3951 sds->busiest_load_per_task /= sds->busiest_nr_running;
3952 if (sds->group_imb) {
3953 sds->busiest_load_per_task =
3954 min(sds->busiest_load_per_task, sds->avg_load);
3958 * In the presence of smp nice balancing, certain scenarios can have
3959 * max load less than avg load(as we skip the groups at or below
3960 * its cpu_power, while calculating max_load..)
3962 if (sds->max_load < sds->avg_load) {
3963 *imbalance = 0;
3964 return fix_small_imbalance(sds, this_cpu, imbalance);
3967 if (!sds->group_imb) {
3969 * Don't want to pull so many tasks that a group would go idle.
3971 load_above_capacity = (sds->busiest_nr_running -
3972 sds->busiest_group_capacity);
3974 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
3976 load_above_capacity /= sds->busiest->cpu_power;
3980 * We're trying to get all the cpus to the average_load, so we don't
3981 * want to push ourselves above the average load, nor do we wish to
3982 * reduce the max loaded cpu below the average load. At the same time,
3983 * we also don't want to reduce the group load below the group capacity
3984 * (so that we can implement power-savings policies etc). Thus we look
3985 * for the minimum possible imbalance.
3986 * Be careful of negative numbers as they'll appear as very large values
3987 * with unsigned longs.
3989 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3991 /* How much load to actually move to equalise the imbalance */
3992 *imbalance = min(max_pull * sds->busiest->cpu_power,
3993 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3994 / SCHED_LOAD_SCALE;
3997 * if *imbalance is less than the average load per runnable task
3998 * there is no gaurantee that any tasks will be moved so we'll have
3999 * a think about bumping its value to force at least one task to be
4000 * moved
4002 if (*imbalance < sds->busiest_load_per_task)
4003 return fix_small_imbalance(sds, this_cpu, imbalance);
4006 /******* find_busiest_group() helpers end here *********************/
4009 * find_busiest_group - Returns the busiest group within the sched_domain
4010 * if there is an imbalance. If there isn't an imbalance, and
4011 * the user has opted for power-savings, it returns a group whose
4012 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4013 * such a group exists.
4015 * Also calculates the amount of weighted load which should be moved
4016 * to restore balance.
4018 * @sd: The sched_domain whose busiest group is to be returned.
4019 * @this_cpu: The cpu for which load balancing is currently being performed.
4020 * @imbalance: Variable which stores amount of weighted load which should
4021 * be moved to restore balance/put a group to idle.
4022 * @idle: The idle status of this_cpu.
4023 * @sd_idle: The idleness of sd
4024 * @cpus: The set of CPUs under consideration for load-balancing.
4025 * @balance: Pointer to a variable indicating if this_cpu
4026 * is the appropriate cpu to perform load balancing at this_level.
4028 * Returns: - the busiest group if imbalance exists.
4029 * - If no imbalance and user has opted for power-savings balance,
4030 * return the least loaded group whose CPUs can be
4031 * put to idle by rebalancing its tasks onto our group.
4033 static struct sched_group *
4034 find_busiest_group(struct sched_domain *sd, int this_cpu,
4035 unsigned long *imbalance, enum cpu_idle_type idle,
4036 int *sd_idle, const struct cpumask *cpus, int *balance)
4038 struct sd_lb_stats sds;
4040 memset(&sds, 0, sizeof(sds));
4043 * Compute the various statistics relavent for load balancing at
4044 * this level.
4046 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4047 balance, &sds);
4049 /* Cases where imbalance does not exist from POV of this_cpu */
4050 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4051 * at this level.
4052 * 2) There is no busy sibling group to pull from.
4053 * 3) This group is the busiest group.
4054 * 4) This group is more busy than the avg busieness at this
4055 * sched_domain.
4056 * 5) The imbalance is within the specified limit.
4058 if (balance && !(*balance))
4059 goto ret;
4061 if (!sds.busiest || sds.busiest_nr_running == 0)
4062 goto out_balanced;
4064 if (sds.this_load >= sds.max_load)
4065 goto out_balanced;
4067 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4069 if (sds.this_load >= sds.avg_load)
4070 goto out_balanced;
4072 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4073 goto out_balanced;
4075 /* Looks like there is an imbalance. Compute it */
4076 calculate_imbalance(&sds, this_cpu, imbalance);
4077 return sds.busiest;
4079 out_balanced:
4081 * There is no obvious imbalance. But check if we can do some balancing
4082 * to save power.
4084 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4085 return sds.busiest;
4086 ret:
4087 *imbalance = 0;
4088 return NULL;
4092 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4094 static struct rq *
4095 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4096 unsigned long imbalance, const struct cpumask *cpus)
4098 struct rq *busiest = NULL, *rq;
4099 unsigned long max_load = 0;
4100 int i;
4102 for_each_cpu(i, sched_group_cpus(group)) {
4103 unsigned long power = power_of(i);
4104 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4105 unsigned long wl;
4107 if (!cpumask_test_cpu(i, cpus))
4108 continue;
4110 rq = cpu_rq(i);
4111 wl = weighted_cpuload(i);
4114 * When comparing with imbalance, use weighted_cpuload()
4115 * which is not scaled with the cpu power.
4117 if (capacity && rq->nr_running == 1 && wl > imbalance)
4118 continue;
4121 * For the load comparisons with the other cpu's, consider
4122 * the weighted_cpuload() scaled with the cpu power, so that
4123 * the load can be moved away from the cpu that is potentially
4124 * running at a lower capacity.
4126 wl = (wl * SCHED_LOAD_SCALE) / power;
4128 if (wl > max_load) {
4129 max_load = wl;
4130 busiest = rq;
4134 return busiest;
4138 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4139 * so long as it is large enough.
4141 #define MAX_PINNED_INTERVAL 512
4143 /* Working cpumask for load_balance and load_balance_newidle. */
4144 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4147 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4148 * tasks if there is an imbalance.
4150 static int load_balance(int this_cpu, struct rq *this_rq,
4151 struct sched_domain *sd, enum cpu_idle_type idle,
4152 int *balance)
4154 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4155 struct sched_group *group;
4156 unsigned long imbalance;
4157 struct rq *busiest;
4158 unsigned long flags;
4159 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4161 cpumask_copy(cpus, cpu_active_mask);
4164 * When power savings policy is enabled for the parent domain, idle
4165 * sibling can pick up load irrespective of busy siblings. In this case,
4166 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4167 * portraying it as CPU_NOT_IDLE.
4169 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4170 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4171 sd_idle = 1;
4173 schedstat_inc(sd, lb_count[idle]);
4175 redo:
4176 update_shares(sd);
4177 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4178 cpus, balance);
4180 if (*balance == 0)
4181 goto out_balanced;
4183 if (!group) {
4184 schedstat_inc(sd, lb_nobusyg[idle]);
4185 goto out_balanced;
4188 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4189 if (!busiest) {
4190 schedstat_inc(sd, lb_nobusyq[idle]);
4191 goto out_balanced;
4194 BUG_ON(busiest == this_rq);
4196 schedstat_add(sd, lb_imbalance[idle], imbalance);
4198 ld_moved = 0;
4199 if (busiest->nr_running > 1) {
4201 * Attempt to move tasks. If find_busiest_group has found
4202 * an imbalance but busiest->nr_running <= 1, the group is
4203 * still unbalanced. ld_moved simply stays zero, so it is
4204 * correctly treated as an imbalance.
4206 local_irq_save(flags);
4207 double_rq_lock(this_rq, busiest);
4208 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4209 imbalance, sd, idle, &all_pinned);
4210 double_rq_unlock(this_rq, busiest);
4211 local_irq_restore(flags);
4214 * some other cpu did the load balance for us.
4216 if (ld_moved && this_cpu != smp_processor_id())
4217 resched_cpu(this_cpu);
4219 /* All tasks on this runqueue were pinned by CPU affinity */
4220 if (unlikely(all_pinned)) {
4221 cpumask_clear_cpu(cpu_of(busiest), cpus);
4222 if (!cpumask_empty(cpus))
4223 goto redo;
4224 goto out_balanced;
4228 if (!ld_moved) {
4229 schedstat_inc(sd, lb_failed[idle]);
4230 sd->nr_balance_failed++;
4232 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4234 spin_lock_irqsave(&busiest->lock, flags);
4236 /* don't kick the migration_thread, if the curr
4237 * task on busiest cpu can't be moved to this_cpu
4239 if (!cpumask_test_cpu(this_cpu,
4240 &busiest->curr->cpus_allowed)) {
4241 spin_unlock_irqrestore(&busiest->lock, flags);
4242 all_pinned = 1;
4243 goto out_one_pinned;
4246 if (!busiest->active_balance) {
4247 busiest->active_balance = 1;
4248 busiest->push_cpu = this_cpu;
4249 active_balance = 1;
4251 spin_unlock_irqrestore(&busiest->lock, flags);
4252 if (active_balance)
4253 wake_up_process(busiest->migration_thread);
4256 * We've kicked active balancing, reset the failure
4257 * counter.
4259 sd->nr_balance_failed = sd->cache_nice_tries+1;
4261 } else
4262 sd->nr_balance_failed = 0;
4264 if (likely(!active_balance)) {
4265 /* We were unbalanced, so reset the balancing interval */
4266 sd->balance_interval = sd->min_interval;
4267 } else {
4269 * If we've begun active balancing, start to back off. This
4270 * case may not be covered by the all_pinned logic if there
4271 * is only 1 task on the busy runqueue (because we don't call
4272 * move_tasks).
4274 if (sd->balance_interval < sd->max_interval)
4275 sd->balance_interval *= 2;
4278 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4279 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4280 ld_moved = -1;
4282 goto out;
4284 out_balanced:
4285 schedstat_inc(sd, lb_balanced[idle]);
4287 sd->nr_balance_failed = 0;
4289 out_one_pinned:
4290 /* tune up the balancing interval */
4291 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4292 (sd->balance_interval < sd->max_interval))
4293 sd->balance_interval *= 2;
4295 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4296 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4297 ld_moved = -1;
4298 else
4299 ld_moved = 0;
4300 out:
4301 if (ld_moved)
4302 update_shares(sd);
4303 return ld_moved;
4307 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4308 * tasks if there is an imbalance.
4310 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4311 * this_rq is locked.
4313 static int
4314 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4316 struct sched_group *group;
4317 struct rq *busiest = NULL;
4318 unsigned long imbalance;
4319 int ld_moved = 0;
4320 int sd_idle = 0;
4321 int all_pinned = 0;
4322 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4324 cpumask_copy(cpus, cpu_active_mask);
4327 * When power savings policy is enabled for the parent domain, idle
4328 * sibling can pick up load irrespective of busy siblings. In this case,
4329 * let the state of idle sibling percolate up as IDLE, instead of
4330 * portraying it as CPU_NOT_IDLE.
4332 if (sd->flags & SD_SHARE_CPUPOWER &&
4333 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4334 sd_idle = 1;
4336 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4337 redo:
4338 update_shares_locked(this_rq, sd);
4339 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4340 &sd_idle, cpus, NULL);
4341 if (!group) {
4342 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4343 goto out_balanced;
4346 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4347 if (!busiest) {
4348 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4349 goto out_balanced;
4352 BUG_ON(busiest == this_rq);
4354 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4356 ld_moved = 0;
4357 if (busiest->nr_running > 1) {
4358 /* Attempt to move tasks */
4359 double_lock_balance(this_rq, busiest);
4360 /* this_rq->clock is already updated */
4361 update_rq_clock(busiest);
4362 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4363 imbalance, sd, CPU_NEWLY_IDLE,
4364 &all_pinned);
4365 double_unlock_balance(this_rq, busiest);
4367 if (unlikely(all_pinned)) {
4368 cpumask_clear_cpu(cpu_of(busiest), cpus);
4369 if (!cpumask_empty(cpus))
4370 goto redo;
4374 if (!ld_moved) {
4375 int active_balance = 0;
4377 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4378 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4379 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4380 return -1;
4382 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4383 return -1;
4385 if (sd->nr_balance_failed++ < 2)
4386 return -1;
4389 * The only task running in a non-idle cpu can be moved to this
4390 * cpu in an attempt to completely freeup the other CPU
4391 * package. The same method used to move task in load_balance()
4392 * have been extended for load_balance_newidle() to speedup
4393 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4395 * The package power saving logic comes from
4396 * find_busiest_group(). If there are no imbalance, then
4397 * f_b_g() will return NULL. However when sched_mc={1,2} then
4398 * f_b_g() will select a group from which a running task may be
4399 * pulled to this cpu in order to make the other package idle.
4400 * If there is no opportunity to make a package idle and if
4401 * there are no imbalance, then f_b_g() will return NULL and no
4402 * action will be taken in load_balance_newidle().
4404 * Under normal task pull operation due to imbalance, there
4405 * will be more than one task in the source run queue and
4406 * move_tasks() will succeed. ld_moved will be true and this
4407 * active balance code will not be triggered.
4410 /* Lock busiest in correct order while this_rq is held */
4411 double_lock_balance(this_rq, busiest);
4414 * don't kick the migration_thread, if the curr
4415 * task on busiest cpu can't be moved to this_cpu
4417 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4418 double_unlock_balance(this_rq, busiest);
4419 all_pinned = 1;
4420 return ld_moved;
4423 if (!busiest->active_balance) {
4424 busiest->active_balance = 1;
4425 busiest->push_cpu = this_cpu;
4426 active_balance = 1;
4429 double_unlock_balance(this_rq, busiest);
4431 * Should not call ttwu while holding a rq->lock
4433 spin_unlock(&this_rq->lock);
4434 if (active_balance)
4435 wake_up_process(busiest->migration_thread);
4436 spin_lock(&this_rq->lock);
4438 } else
4439 sd->nr_balance_failed = 0;
4441 update_shares_locked(this_rq, sd);
4442 return ld_moved;
4444 out_balanced:
4445 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4446 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4447 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4448 return -1;
4449 sd->nr_balance_failed = 0;
4451 return 0;
4455 * idle_balance is called by schedule() if this_cpu is about to become
4456 * idle. Attempts to pull tasks from other CPUs.
4458 static void idle_balance(int this_cpu, struct rq *this_rq)
4460 struct sched_domain *sd;
4461 int pulled_task = 0;
4462 unsigned long next_balance = jiffies + HZ;
4464 this_rq->idle_stamp = this_rq->clock;
4466 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4467 return;
4469 for_each_domain(this_cpu, sd) {
4470 unsigned long interval;
4472 if (!(sd->flags & SD_LOAD_BALANCE))
4473 continue;
4475 if (sd->flags & SD_BALANCE_NEWIDLE)
4476 /* If we've pulled tasks over stop searching: */
4477 pulled_task = load_balance_newidle(this_cpu, this_rq,
4478 sd);
4480 interval = msecs_to_jiffies(sd->balance_interval);
4481 if (time_after(next_balance, sd->last_balance + interval))
4482 next_balance = sd->last_balance + interval;
4483 if (pulled_task) {
4484 this_rq->idle_stamp = 0;
4485 break;
4488 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4490 * We are going idle. next_balance may be set based on
4491 * a busy processor. So reset next_balance.
4493 this_rq->next_balance = next_balance;
4498 * active_load_balance is run by migration threads. It pushes running tasks
4499 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4500 * running on each physical CPU where possible, and avoids physical /
4501 * logical imbalances.
4503 * Called with busiest_rq locked.
4505 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4507 int target_cpu = busiest_rq->push_cpu;
4508 struct sched_domain *sd;
4509 struct rq *target_rq;
4511 /* Is there any task to move? */
4512 if (busiest_rq->nr_running <= 1)
4513 return;
4515 target_rq = cpu_rq(target_cpu);
4518 * This condition is "impossible", if it occurs
4519 * we need to fix it. Originally reported by
4520 * Bjorn Helgaas on a 128-cpu setup.
4522 BUG_ON(busiest_rq == target_rq);
4524 /* move a task from busiest_rq to target_rq */
4525 double_lock_balance(busiest_rq, target_rq);
4526 update_rq_clock(busiest_rq);
4527 update_rq_clock(target_rq);
4529 /* Search for an sd spanning us and the target CPU. */
4530 for_each_domain(target_cpu, sd) {
4531 if ((sd->flags & SD_LOAD_BALANCE) &&
4532 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4533 break;
4536 if (likely(sd)) {
4537 schedstat_inc(sd, alb_count);
4539 if (move_one_task(target_rq, target_cpu, busiest_rq,
4540 sd, CPU_IDLE))
4541 schedstat_inc(sd, alb_pushed);
4542 else
4543 schedstat_inc(sd, alb_failed);
4545 double_unlock_balance(busiest_rq, target_rq);
4548 #ifdef CONFIG_NO_HZ
4549 static struct {
4550 atomic_t load_balancer;
4551 cpumask_var_t cpu_mask;
4552 cpumask_var_t ilb_grp_nohz_mask;
4553 } nohz ____cacheline_aligned = {
4554 .load_balancer = ATOMIC_INIT(-1),
4557 int get_nohz_load_balancer(void)
4559 return atomic_read(&nohz.load_balancer);
4562 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4564 * lowest_flag_domain - Return lowest sched_domain containing flag.
4565 * @cpu: The cpu whose lowest level of sched domain is to
4566 * be returned.
4567 * @flag: The flag to check for the lowest sched_domain
4568 * for the given cpu.
4570 * Returns the lowest sched_domain of a cpu which contains the given flag.
4572 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4574 struct sched_domain *sd;
4576 for_each_domain(cpu, sd)
4577 if (sd && (sd->flags & flag))
4578 break;
4580 return sd;
4584 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4585 * @cpu: The cpu whose domains we're iterating over.
4586 * @sd: variable holding the value of the power_savings_sd
4587 * for cpu.
4588 * @flag: The flag to filter the sched_domains to be iterated.
4590 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4591 * set, starting from the lowest sched_domain to the highest.
4593 #define for_each_flag_domain(cpu, sd, flag) \
4594 for (sd = lowest_flag_domain(cpu, flag); \
4595 (sd && (sd->flags & flag)); sd = sd->parent)
4598 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4599 * @ilb_group: group to be checked for semi-idleness
4601 * Returns: 1 if the group is semi-idle. 0 otherwise.
4603 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4604 * and atleast one non-idle CPU. This helper function checks if the given
4605 * sched_group is semi-idle or not.
4607 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4609 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4610 sched_group_cpus(ilb_group));
4613 * A sched_group is semi-idle when it has atleast one busy cpu
4614 * and atleast one idle cpu.
4616 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4617 return 0;
4619 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4620 return 0;
4622 return 1;
4625 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4626 * @cpu: The cpu which is nominating a new idle_load_balancer.
4628 * Returns: Returns the id of the idle load balancer if it exists,
4629 * Else, returns >= nr_cpu_ids.
4631 * This algorithm picks the idle load balancer such that it belongs to a
4632 * semi-idle powersavings sched_domain. The idea is to try and avoid
4633 * completely idle packages/cores just for the purpose of idle load balancing
4634 * when there are other idle cpu's which are better suited for that job.
4636 static int find_new_ilb(int cpu)
4638 struct sched_domain *sd;
4639 struct sched_group *ilb_group;
4642 * Have idle load balancer selection from semi-idle packages only
4643 * when power-aware load balancing is enabled
4645 if (!(sched_smt_power_savings || sched_mc_power_savings))
4646 goto out_done;
4649 * Optimize for the case when we have no idle CPUs or only one
4650 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4652 if (cpumask_weight(nohz.cpu_mask) < 2)
4653 goto out_done;
4655 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4656 ilb_group = sd->groups;
4658 do {
4659 if (is_semi_idle_group(ilb_group))
4660 return cpumask_first(nohz.ilb_grp_nohz_mask);
4662 ilb_group = ilb_group->next;
4664 } while (ilb_group != sd->groups);
4667 out_done:
4668 return cpumask_first(nohz.cpu_mask);
4670 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4671 static inline int find_new_ilb(int call_cpu)
4673 return cpumask_first(nohz.cpu_mask);
4675 #endif
4678 * This routine will try to nominate the ilb (idle load balancing)
4679 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4680 * load balancing on behalf of all those cpus. If all the cpus in the system
4681 * go into this tickless mode, then there will be no ilb owner (as there is
4682 * no need for one) and all the cpus will sleep till the next wakeup event
4683 * arrives...
4685 * For the ilb owner, tick is not stopped. And this tick will be used
4686 * for idle load balancing. ilb owner will still be part of
4687 * nohz.cpu_mask..
4689 * While stopping the tick, this cpu will become the ilb owner if there
4690 * is no other owner. And will be the owner till that cpu becomes busy
4691 * or if all cpus in the system stop their ticks at which point
4692 * there is no need for ilb owner.
4694 * When the ilb owner becomes busy, it nominates another owner, during the
4695 * next busy scheduler_tick()
4697 int select_nohz_load_balancer(int stop_tick)
4699 int cpu = smp_processor_id();
4701 if (stop_tick) {
4702 cpu_rq(cpu)->in_nohz_recently = 1;
4704 if (!cpu_active(cpu)) {
4705 if (atomic_read(&nohz.load_balancer) != cpu)
4706 return 0;
4709 * If we are going offline and still the leader,
4710 * give up!
4712 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4713 BUG();
4715 return 0;
4718 cpumask_set_cpu(cpu, nohz.cpu_mask);
4720 /* time for ilb owner also to sleep */
4721 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4722 if (atomic_read(&nohz.load_balancer) == cpu)
4723 atomic_set(&nohz.load_balancer, -1);
4724 return 0;
4727 if (atomic_read(&nohz.load_balancer) == -1) {
4728 /* make me the ilb owner */
4729 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4730 return 1;
4731 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4732 int new_ilb;
4734 if (!(sched_smt_power_savings ||
4735 sched_mc_power_savings))
4736 return 1;
4738 * Check to see if there is a more power-efficient
4739 * ilb.
4741 new_ilb = find_new_ilb(cpu);
4742 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4743 atomic_set(&nohz.load_balancer, -1);
4744 resched_cpu(new_ilb);
4745 return 0;
4747 return 1;
4749 } else {
4750 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4751 return 0;
4753 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4755 if (atomic_read(&nohz.load_balancer) == cpu)
4756 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4757 BUG();
4759 return 0;
4761 #endif
4763 static DEFINE_SPINLOCK(balancing);
4766 * It checks each scheduling domain to see if it is due to be balanced,
4767 * and initiates a balancing operation if so.
4769 * Balancing parameters are set up in arch_init_sched_domains.
4771 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4773 int balance = 1;
4774 struct rq *rq = cpu_rq(cpu);
4775 unsigned long interval;
4776 struct sched_domain *sd;
4777 /* Earliest time when we have to do rebalance again */
4778 unsigned long next_balance = jiffies + 60*HZ;
4779 int update_next_balance = 0;
4780 int need_serialize;
4782 for_each_domain(cpu, sd) {
4783 if (!(sd->flags & SD_LOAD_BALANCE))
4784 continue;
4786 interval = sd->balance_interval;
4787 if (idle != CPU_IDLE)
4788 interval *= sd->busy_factor;
4790 /* scale ms to jiffies */
4791 interval = msecs_to_jiffies(interval);
4792 if (unlikely(!interval))
4793 interval = 1;
4794 if (interval > HZ*NR_CPUS/10)
4795 interval = HZ*NR_CPUS/10;
4797 need_serialize = sd->flags & SD_SERIALIZE;
4799 if (need_serialize) {
4800 if (!spin_trylock(&balancing))
4801 goto out;
4804 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4805 if (load_balance(cpu, rq, sd, idle, &balance)) {
4807 * We've pulled tasks over so either we're no
4808 * longer idle, or one of our SMT siblings is
4809 * not idle.
4811 idle = CPU_NOT_IDLE;
4813 sd->last_balance = jiffies;
4815 if (need_serialize)
4816 spin_unlock(&balancing);
4817 out:
4818 if (time_after(next_balance, sd->last_balance + interval)) {
4819 next_balance = sd->last_balance + interval;
4820 update_next_balance = 1;
4824 * Stop the load balance at this level. There is another
4825 * CPU in our sched group which is doing load balancing more
4826 * actively.
4828 if (!balance)
4829 break;
4833 * next_balance will be updated only when there is a need.
4834 * When the cpu is attached to null domain for ex, it will not be
4835 * updated.
4837 if (likely(update_next_balance))
4838 rq->next_balance = next_balance;
4842 * run_rebalance_domains is triggered when needed from the scheduler tick.
4843 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4844 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4846 static void run_rebalance_domains(struct softirq_action *h)
4848 int this_cpu = smp_processor_id();
4849 struct rq *this_rq = cpu_rq(this_cpu);
4850 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4851 CPU_IDLE : CPU_NOT_IDLE;
4853 rebalance_domains(this_cpu, idle);
4855 #ifdef CONFIG_NO_HZ
4857 * If this cpu is the owner for idle load balancing, then do the
4858 * balancing on behalf of the other idle cpus whose ticks are
4859 * stopped.
4861 if (this_rq->idle_at_tick &&
4862 atomic_read(&nohz.load_balancer) == this_cpu) {
4863 struct rq *rq;
4864 int balance_cpu;
4866 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4867 if (balance_cpu == this_cpu)
4868 continue;
4871 * If this cpu gets work to do, stop the load balancing
4872 * work being done for other cpus. Next load
4873 * balancing owner will pick it up.
4875 if (need_resched())
4876 break;
4878 rebalance_domains(balance_cpu, CPU_IDLE);
4880 rq = cpu_rq(balance_cpu);
4881 if (time_after(this_rq->next_balance, rq->next_balance))
4882 this_rq->next_balance = rq->next_balance;
4885 #endif
4888 static inline int on_null_domain(int cpu)
4890 return !rcu_dereference(cpu_rq(cpu)->sd);
4894 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4896 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4897 * idle load balancing owner or decide to stop the periodic load balancing,
4898 * if the whole system is idle.
4900 static inline void trigger_load_balance(struct rq *rq, int cpu)
4902 #ifdef CONFIG_NO_HZ
4904 * If we were in the nohz mode recently and busy at the current
4905 * scheduler tick, then check if we need to nominate new idle
4906 * load balancer.
4908 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4909 rq->in_nohz_recently = 0;
4911 if (atomic_read(&nohz.load_balancer) == cpu) {
4912 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4913 atomic_set(&nohz.load_balancer, -1);
4916 if (atomic_read(&nohz.load_balancer) == -1) {
4917 int ilb = find_new_ilb(cpu);
4919 if (ilb < nr_cpu_ids)
4920 resched_cpu(ilb);
4925 * If this cpu is idle and doing idle load balancing for all the
4926 * cpus with ticks stopped, is it time for that to stop?
4928 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4929 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4930 resched_cpu(cpu);
4931 return;
4935 * If this cpu is idle and the idle load balancing is done by
4936 * someone else, then no need raise the SCHED_SOFTIRQ
4938 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4939 cpumask_test_cpu(cpu, nohz.cpu_mask))
4940 return;
4941 #endif
4942 /* Don't need to rebalance while attached to NULL domain */
4943 if (time_after_eq(jiffies, rq->next_balance) &&
4944 likely(!on_null_domain(cpu)))
4945 raise_softirq(SCHED_SOFTIRQ);
4948 #else /* CONFIG_SMP */
4951 * on UP we do not need to balance between CPUs:
4953 static inline void idle_balance(int cpu, struct rq *rq)
4957 #endif
4959 DEFINE_PER_CPU(struct kernel_stat, kstat);
4961 EXPORT_PER_CPU_SYMBOL(kstat);
4964 * Return any ns on the sched_clock that have not yet been accounted in
4965 * @p in case that task is currently running.
4967 * Called with task_rq_lock() held on @rq.
4969 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4971 u64 ns = 0;
4973 if (task_current(rq, p)) {
4974 update_rq_clock(rq);
4975 ns = rq->clock - p->se.exec_start;
4976 if ((s64)ns < 0)
4977 ns = 0;
4980 return ns;
4983 unsigned long long task_delta_exec(struct task_struct *p)
4985 unsigned long flags;
4986 struct rq *rq;
4987 u64 ns = 0;
4989 rq = task_rq_lock(p, &flags);
4990 ns = do_task_delta_exec(p, rq);
4991 task_rq_unlock(rq, &flags);
4993 return ns;
4997 * Return accounted runtime for the task.
4998 * In case the task is currently running, return the runtime plus current's
4999 * pending runtime that have not been accounted yet.
5001 unsigned long long task_sched_runtime(struct task_struct *p)
5003 unsigned long flags;
5004 struct rq *rq;
5005 u64 ns = 0;
5007 rq = task_rq_lock(p, &flags);
5008 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5009 task_rq_unlock(rq, &flags);
5011 return ns;
5015 * Return sum_exec_runtime for the thread group.
5016 * In case the task is currently running, return the sum plus current's
5017 * pending runtime that have not been accounted yet.
5019 * Note that the thread group might have other running tasks as well,
5020 * so the return value not includes other pending runtime that other
5021 * running tasks might have.
5023 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5025 struct task_cputime totals;
5026 unsigned long flags;
5027 struct rq *rq;
5028 u64 ns;
5030 rq = task_rq_lock(p, &flags);
5031 thread_group_cputime(p, &totals);
5032 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5033 task_rq_unlock(rq, &flags);
5035 return ns;
5039 * Account user cpu time to a process.
5040 * @p: the process that the cpu time gets accounted to
5041 * @cputime: the cpu time spent in user space since the last update
5042 * @cputime_scaled: cputime scaled by cpu frequency
5044 void account_user_time(struct task_struct *p, cputime_t cputime,
5045 cputime_t cputime_scaled)
5047 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5048 cputime64_t tmp;
5050 /* Add user time to process. */
5051 p->utime = cputime_add(p->utime, cputime);
5052 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5053 account_group_user_time(p, cputime);
5055 /* Add user time to cpustat. */
5056 tmp = cputime_to_cputime64(cputime);
5057 if (TASK_NICE(p) > 0)
5058 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5059 else
5060 cpustat->user = cputime64_add(cpustat->user, tmp);
5062 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5063 /* Account for user time used */
5064 acct_update_integrals(p);
5068 * Account guest cpu time to a process.
5069 * @p: the process that the cpu time gets accounted to
5070 * @cputime: the cpu time spent in virtual machine since the last update
5071 * @cputime_scaled: cputime scaled by cpu frequency
5073 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5074 cputime_t cputime_scaled)
5076 cputime64_t tmp;
5077 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5079 tmp = cputime_to_cputime64(cputime);
5081 /* Add guest time to process. */
5082 p->utime = cputime_add(p->utime, cputime);
5083 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5084 account_group_user_time(p, cputime);
5085 p->gtime = cputime_add(p->gtime, cputime);
5087 /* Add guest time to cpustat. */
5088 cpustat->user = cputime64_add(cpustat->user, tmp);
5089 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5093 * Account system cpu time to a process.
5094 * @p: the process that the cpu time gets accounted to
5095 * @hardirq_offset: the offset to subtract from hardirq_count()
5096 * @cputime: the cpu time spent in kernel space since the last update
5097 * @cputime_scaled: cputime scaled by cpu frequency
5099 void account_system_time(struct task_struct *p, int hardirq_offset,
5100 cputime_t cputime, cputime_t cputime_scaled)
5102 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5103 cputime64_t tmp;
5105 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5106 account_guest_time(p, cputime, cputime_scaled);
5107 return;
5110 /* Add system time to process. */
5111 p->stime = cputime_add(p->stime, cputime);
5112 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5113 account_group_system_time(p, cputime);
5115 /* Add system time to cpustat. */
5116 tmp = cputime_to_cputime64(cputime);
5117 if (hardirq_count() - hardirq_offset)
5118 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5119 else if (softirq_count())
5120 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5121 else
5122 cpustat->system = cputime64_add(cpustat->system, tmp);
5124 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5126 /* Account for system time used */
5127 acct_update_integrals(p);
5131 * Account for involuntary wait time.
5132 * @steal: the cpu time spent in involuntary wait
5134 void account_steal_time(cputime_t cputime)
5136 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5137 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5139 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5143 * Account for idle time.
5144 * @cputime: the cpu time spent in idle wait
5146 void account_idle_time(cputime_t cputime)
5148 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5149 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5150 struct rq *rq = this_rq();
5152 if (atomic_read(&rq->nr_iowait) > 0)
5153 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5154 else
5155 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5158 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5161 * Account a single tick of cpu time.
5162 * @p: the process that the cpu time gets accounted to
5163 * @user_tick: indicates if the tick is a user or a system tick
5165 void account_process_tick(struct task_struct *p, int user_tick)
5167 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5168 struct rq *rq = this_rq();
5170 if (user_tick)
5171 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5172 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5173 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5174 one_jiffy_scaled);
5175 else
5176 account_idle_time(cputime_one_jiffy);
5180 * Account multiple ticks of steal time.
5181 * @p: the process from which the cpu time has been stolen
5182 * @ticks: number of stolen ticks
5184 void account_steal_ticks(unsigned long ticks)
5186 account_steal_time(jiffies_to_cputime(ticks));
5190 * Account multiple ticks of idle time.
5191 * @ticks: number of stolen ticks
5193 void account_idle_ticks(unsigned long ticks)
5195 account_idle_time(jiffies_to_cputime(ticks));
5198 #endif
5201 * Use precise platform statistics if available:
5203 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5204 cputime_t task_utime(struct task_struct *p)
5206 return p->utime;
5209 cputime_t task_stime(struct task_struct *p)
5211 return p->stime;
5213 #else
5214 cputime_t task_utime(struct task_struct *p)
5216 clock_t utime = cputime_to_clock_t(p->utime),
5217 total = utime + cputime_to_clock_t(p->stime);
5218 u64 temp;
5221 * Use CFS's precise accounting:
5223 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5225 if (total) {
5226 temp *= utime;
5227 do_div(temp, total);
5229 utime = (clock_t)temp;
5231 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5232 return p->prev_utime;
5235 cputime_t task_stime(struct task_struct *p)
5237 clock_t stime;
5240 * Use CFS's precise accounting. (we subtract utime from
5241 * the total, to make sure the total observed by userspace
5242 * grows monotonically - apps rely on that):
5244 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5245 cputime_to_clock_t(task_utime(p));
5247 if (stime >= 0)
5248 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5250 return p->prev_stime;
5252 #endif
5254 inline cputime_t task_gtime(struct task_struct *p)
5256 return p->gtime;
5260 * This function gets called by the timer code, with HZ frequency.
5261 * We call it with interrupts disabled.
5263 * It also gets called by the fork code, when changing the parent's
5264 * timeslices.
5266 void scheduler_tick(void)
5268 int cpu = smp_processor_id();
5269 struct rq *rq = cpu_rq(cpu);
5270 struct task_struct *curr = rq->curr;
5272 sched_clock_tick();
5274 spin_lock(&rq->lock);
5275 update_rq_clock(rq);
5276 update_cpu_load(rq);
5277 curr->sched_class->task_tick(rq, curr, 0);
5278 spin_unlock(&rq->lock);
5280 perf_event_task_tick(curr, cpu);
5282 #ifdef CONFIG_SMP
5283 rq->idle_at_tick = idle_cpu(cpu);
5284 trigger_load_balance(rq, cpu);
5285 #endif
5288 notrace unsigned long get_parent_ip(unsigned long addr)
5290 if (in_lock_functions(addr)) {
5291 addr = CALLER_ADDR2;
5292 if (in_lock_functions(addr))
5293 addr = CALLER_ADDR3;
5295 return addr;
5298 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5299 defined(CONFIG_PREEMPT_TRACER))
5301 void __kprobes add_preempt_count(int val)
5303 #ifdef CONFIG_DEBUG_PREEMPT
5305 * Underflow?
5307 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5308 return;
5309 #endif
5310 preempt_count() += val;
5311 #ifdef CONFIG_DEBUG_PREEMPT
5313 * Spinlock count overflowing soon?
5315 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5316 PREEMPT_MASK - 10);
5317 #endif
5318 if (preempt_count() == val)
5319 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5321 EXPORT_SYMBOL(add_preempt_count);
5323 void __kprobes sub_preempt_count(int val)
5325 #ifdef CONFIG_DEBUG_PREEMPT
5327 * Underflow?
5329 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5330 return;
5332 * Is the spinlock portion underflowing?
5334 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5335 !(preempt_count() & PREEMPT_MASK)))
5336 return;
5337 #endif
5339 if (preempt_count() == val)
5340 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5341 preempt_count() -= val;
5343 EXPORT_SYMBOL(sub_preempt_count);
5345 #endif
5348 * Print scheduling while atomic bug:
5350 static noinline void __schedule_bug(struct task_struct *prev)
5352 struct pt_regs *regs = get_irq_regs();
5354 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5355 prev->comm, prev->pid, preempt_count());
5357 debug_show_held_locks(prev);
5358 print_modules();
5359 if (irqs_disabled())
5360 print_irqtrace_events(prev);
5362 if (regs)
5363 show_regs(regs);
5364 else
5365 dump_stack();
5369 * Various schedule()-time debugging checks and statistics:
5371 static inline void schedule_debug(struct task_struct *prev)
5374 * Test if we are atomic. Since do_exit() needs to call into
5375 * schedule() atomically, we ignore that path for now.
5376 * Otherwise, whine if we are scheduling when we should not be.
5378 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5379 __schedule_bug(prev);
5381 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5383 schedstat_inc(this_rq(), sched_count);
5384 #ifdef CONFIG_SCHEDSTATS
5385 if (unlikely(prev->lock_depth >= 0)) {
5386 schedstat_inc(this_rq(), bkl_count);
5387 schedstat_inc(prev, sched_info.bkl_count);
5389 #endif
5392 static void put_prev_task(struct rq *rq, struct task_struct *p)
5394 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5396 update_avg(&p->se.avg_running, runtime);
5398 if (p->state == TASK_RUNNING) {
5400 * In order to avoid avg_overlap growing stale when we are
5401 * indeed overlapping and hence not getting put to sleep, grow
5402 * the avg_overlap on preemption.
5404 * We use the average preemption runtime because that
5405 * correlates to the amount of cache footprint a task can
5406 * build up.
5408 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5409 update_avg(&p->se.avg_overlap, runtime);
5410 } else {
5411 update_avg(&p->se.avg_running, 0);
5413 p->sched_class->put_prev_task(rq, p);
5417 * Pick up the highest-prio task:
5419 static inline struct task_struct *
5420 pick_next_task(struct rq *rq)
5422 const struct sched_class *class;
5423 struct task_struct *p;
5426 * Optimization: we know that if all tasks are in
5427 * the fair class we can call that function directly:
5429 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5430 p = fair_sched_class.pick_next_task(rq);
5431 if (likely(p))
5432 return p;
5435 class = sched_class_highest;
5436 for ( ; ; ) {
5437 p = class->pick_next_task(rq);
5438 if (p)
5439 return p;
5441 * Will never be NULL as the idle class always
5442 * returns a non-NULL p:
5444 class = class->next;
5449 * schedule() is the main scheduler function.
5451 asmlinkage void __sched schedule(void)
5453 struct task_struct *prev, *next;
5454 unsigned long *switch_count;
5455 struct rq *rq;
5456 int cpu;
5458 need_resched:
5459 preempt_disable();
5460 cpu = smp_processor_id();
5461 rq = cpu_rq(cpu);
5462 rcu_sched_qs(cpu);
5463 prev = rq->curr;
5464 switch_count = &prev->nivcsw;
5466 release_kernel_lock(prev);
5467 need_resched_nonpreemptible:
5469 schedule_debug(prev);
5471 if (sched_feat(HRTICK))
5472 hrtick_clear(rq);
5474 spin_lock_irq(&rq->lock);
5475 update_rq_clock(rq);
5476 clear_tsk_need_resched(prev);
5478 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5479 if (unlikely(signal_pending_state(prev->state, prev)))
5480 prev->state = TASK_RUNNING;
5481 else
5482 deactivate_task(rq, prev, 1);
5483 switch_count = &prev->nvcsw;
5486 pre_schedule(rq, prev);
5488 if (unlikely(!rq->nr_running))
5489 idle_balance(cpu, rq);
5491 put_prev_task(rq, prev);
5492 next = pick_next_task(rq);
5494 if (likely(prev != next)) {
5495 sched_info_switch(prev, next);
5496 perf_event_task_sched_out(prev, next, cpu);
5498 rq->nr_switches++;
5499 rq->curr = next;
5500 ++*switch_count;
5502 context_switch(rq, prev, next); /* unlocks the rq */
5504 * the context switch might have flipped the stack from under
5505 * us, hence refresh the local variables.
5507 cpu = smp_processor_id();
5508 rq = cpu_rq(cpu);
5509 } else
5510 spin_unlock_irq(&rq->lock);
5512 post_schedule(rq);
5514 if (unlikely(reacquire_kernel_lock(current) < 0))
5515 goto need_resched_nonpreemptible;
5517 preempt_enable_no_resched();
5518 if (need_resched())
5519 goto need_resched;
5521 EXPORT_SYMBOL(schedule);
5523 #ifdef CONFIG_SMP
5525 * Look out! "owner" is an entirely speculative pointer
5526 * access and not reliable.
5528 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5530 unsigned int cpu;
5531 struct rq *rq;
5533 if (!sched_feat(OWNER_SPIN))
5534 return 0;
5536 #ifdef CONFIG_DEBUG_PAGEALLOC
5538 * Need to access the cpu field knowing that
5539 * DEBUG_PAGEALLOC could have unmapped it if
5540 * the mutex owner just released it and exited.
5542 if (probe_kernel_address(&owner->cpu, cpu))
5543 goto out;
5544 #else
5545 cpu = owner->cpu;
5546 #endif
5549 * Even if the access succeeded (likely case),
5550 * the cpu field may no longer be valid.
5552 if (cpu >= nr_cpumask_bits)
5553 goto out;
5556 * We need to validate that we can do a
5557 * get_cpu() and that we have the percpu area.
5559 if (!cpu_online(cpu))
5560 goto out;
5562 rq = cpu_rq(cpu);
5564 for (;;) {
5566 * Owner changed, break to re-assess state.
5568 if (lock->owner != owner)
5569 break;
5572 * Is that owner really running on that cpu?
5574 if (task_thread_info(rq->curr) != owner || need_resched())
5575 return 0;
5577 cpu_relax();
5579 out:
5580 return 1;
5582 #endif
5584 #ifdef CONFIG_PREEMPT
5586 * this is the entry point to schedule() from in-kernel preemption
5587 * off of preempt_enable. Kernel preemptions off return from interrupt
5588 * occur there and call schedule directly.
5590 asmlinkage void __sched preempt_schedule(void)
5592 struct thread_info *ti = current_thread_info();
5595 * If there is a non-zero preempt_count or interrupts are disabled,
5596 * we do not want to preempt the current task. Just return..
5598 if (likely(ti->preempt_count || irqs_disabled()))
5599 return;
5601 do {
5602 add_preempt_count(PREEMPT_ACTIVE);
5603 schedule();
5604 sub_preempt_count(PREEMPT_ACTIVE);
5607 * Check again in case we missed a preemption opportunity
5608 * between schedule and now.
5610 barrier();
5611 } while (need_resched());
5613 EXPORT_SYMBOL(preempt_schedule);
5616 * this is the entry point to schedule() from kernel preemption
5617 * off of irq context.
5618 * Note, that this is called and return with irqs disabled. This will
5619 * protect us against recursive calling from irq.
5621 asmlinkage void __sched preempt_schedule_irq(void)
5623 struct thread_info *ti = current_thread_info();
5625 /* Catch callers which need to be fixed */
5626 BUG_ON(ti->preempt_count || !irqs_disabled());
5628 do {
5629 add_preempt_count(PREEMPT_ACTIVE);
5630 local_irq_enable();
5631 schedule();
5632 local_irq_disable();
5633 sub_preempt_count(PREEMPT_ACTIVE);
5636 * Check again in case we missed a preemption opportunity
5637 * between schedule and now.
5639 barrier();
5640 } while (need_resched());
5643 #endif /* CONFIG_PREEMPT */
5645 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5646 void *key)
5648 return try_to_wake_up(curr->private, mode, wake_flags);
5650 EXPORT_SYMBOL(default_wake_function);
5653 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5654 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5655 * number) then we wake all the non-exclusive tasks and one exclusive task.
5657 * There are circumstances in which we can try to wake a task which has already
5658 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5659 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5661 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5662 int nr_exclusive, int wake_flags, void *key)
5664 wait_queue_t *curr, *next;
5666 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5667 unsigned flags = curr->flags;
5669 if (curr->func(curr, mode, wake_flags, key) &&
5670 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5671 break;
5676 * __wake_up - wake up threads blocked on a waitqueue.
5677 * @q: the waitqueue
5678 * @mode: which threads
5679 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5680 * @key: is directly passed to the wakeup function
5682 * It may be assumed that this function implies a write memory barrier before
5683 * changing the task state if and only if any tasks are woken up.
5685 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5686 int nr_exclusive, void *key)
5688 unsigned long flags;
5690 spin_lock_irqsave(&q->lock, flags);
5691 __wake_up_common(q, mode, nr_exclusive, 0, key);
5692 spin_unlock_irqrestore(&q->lock, flags);
5694 EXPORT_SYMBOL(__wake_up);
5697 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5699 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5701 __wake_up_common(q, mode, 1, 0, NULL);
5704 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5706 __wake_up_common(q, mode, 1, 0, key);
5710 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5711 * @q: the waitqueue
5712 * @mode: which threads
5713 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5714 * @key: opaque value to be passed to wakeup targets
5716 * The sync wakeup differs that the waker knows that it will schedule
5717 * away soon, so while the target thread will be woken up, it will not
5718 * be migrated to another CPU - ie. the two threads are 'synchronized'
5719 * with each other. This can prevent needless bouncing between CPUs.
5721 * On UP it can prevent extra preemption.
5723 * It may be assumed that this function implies a write memory barrier before
5724 * changing the task state if and only if any tasks are woken up.
5726 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5727 int nr_exclusive, void *key)
5729 unsigned long flags;
5730 int wake_flags = WF_SYNC;
5732 if (unlikely(!q))
5733 return;
5735 if (unlikely(!nr_exclusive))
5736 wake_flags = 0;
5738 spin_lock_irqsave(&q->lock, flags);
5739 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5740 spin_unlock_irqrestore(&q->lock, flags);
5742 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5745 * __wake_up_sync - see __wake_up_sync_key()
5747 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5749 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5751 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5754 * complete: - signals a single thread waiting on this completion
5755 * @x: holds the state of this particular completion
5757 * This will wake up a single thread waiting on this completion. Threads will be
5758 * awakened in the same order in which they were queued.
5760 * See also complete_all(), wait_for_completion() and related routines.
5762 * It may be assumed that this function implies a write memory barrier before
5763 * changing the task state if and only if any tasks are woken up.
5765 void complete(struct completion *x)
5767 unsigned long flags;
5769 spin_lock_irqsave(&x->wait.lock, flags);
5770 x->done++;
5771 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5772 spin_unlock_irqrestore(&x->wait.lock, flags);
5774 EXPORT_SYMBOL(complete);
5777 * complete_all: - signals all threads waiting on this completion
5778 * @x: holds the state of this particular completion
5780 * This will wake up all threads waiting on this particular completion event.
5782 * It may be assumed that this function implies a write memory barrier before
5783 * changing the task state if and only if any tasks are woken up.
5785 void complete_all(struct completion *x)
5787 unsigned long flags;
5789 spin_lock_irqsave(&x->wait.lock, flags);
5790 x->done += UINT_MAX/2;
5791 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5792 spin_unlock_irqrestore(&x->wait.lock, flags);
5794 EXPORT_SYMBOL(complete_all);
5796 static inline long __sched
5797 do_wait_for_common(struct completion *x, long timeout, int state)
5799 if (!x->done) {
5800 DECLARE_WAITQUEUE(wait, current);
5802 wait.flags |= WQ_FLAG_EXCLUSIVE;
5803 __add_wait_queue_tail(&x->wait, &wait);
5804 do {
5805 if (signal_pending_state(state, current)) {
5806 timeout = -ERESTARTSYS;
5807 break;
5809 __set_current_state(state);
5810 spin_unlock_irq(&x->wait.lock);
5811 timeout = schedule_timeout(timeout);
5812 spin_lock_irq(&x->wait.lock);
5813 } while (!x->done && timeout);
5814 __remove_wait_queue(&x->wait, &wait);
5815 if (!x->done)
5816 return timeout;
5818 x->done--;
5819 return timeout ?: 1;
5822 static long __sched
5823 wait_for_common(struct completion *x, long timeout, int state)
5825 might_sleep();
5827 spin_lock_irq(&x->wait.lock);
5828 timeout = do_wait_for_common(x, timeout, state);
5829 spin_unlock_irq(&x->wait.lock);
5830 return timeout;
5834 * wait_for_completion: - waits for completion of a task
5835 * @x: holds the state of this particular completion
5837 * This waits to be signaled for completion of a specific task. It is NOT
5838 * interruptible and there is no timeout.
5840 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5841 * and interrupt capability. Also see complete().
5843 void __sched wait_for_completion(struct completion *x)
5845 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5847 EXPORT_SYMBOL(wait_for_completion);
5850 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5851 * @x: holds the state of this particular completion
5852 * @timeout: timeout value in jiffies
5854 * This waits for either a completion of a specific task to be signaled or for a
5855 * specified timeout to expire. The timeout is in jiffies. It is not
5856 * interruptible.
5858 unsigned long __sched
5859 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5861 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5863 EXPORT_SYMBOL(wait_for_completion_timeout);
5866 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5867 * @x: holds the state of this particular completion
5869 * This waits for completion of a specific task to be signaled. It is
5870 * interruptible.
5872 int __sched wait_for_completion_interruptible(struct completion *x)
5874 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5875 if (t == -ERESTARTSYS)
5876 return t;
5877 return 0;
5879 EXPORT_SYMBOL(wait_for_completion_interruptible);
5882 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5883 * @x: holds the state of this particular completion
5884 * @timeout: timeout value in jiffies
5886 * This waits for either a completion of a specific task to be signaled or for a
5887 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5889 unsigned long __sched
5890 wait_for_completion_interruptible_timeout(struct completion *x,
5891 unsigned long timeout)
5893 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5895 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5898 * wait_for_completion_killable: - waits for completion of a task (killable)
5899 * @x: holds the state of this particular completion
5901 * This waits to be signaled for completion of a specific task. It can be
5902 * interrupted by a kill signal.
5904 int __sched wait_for_completion_killable(struct completion *x)
5906 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5907 if (t == -ERESTARTSYS)
5908 return t;
5909 return 0;
5911 EXPORT_SYMBOL(wait_for_completion_killable);
5914 * try_wait_for_completion - try to decrement a completion without blocking
5915 * @x: completion structure
5917 * Returns: 0 if a decrement cannot be done without blocking
5918 * 1 if a decrement succeeded.
5920 * If a completion is being used as a counting completion,
5921 * attempt to decrement the counter without blocking. This
5922 * enables us to avoid waiting if the resource the completion
5923 * is protecting is not available.
5925 bool try_wait_for_completion(struct completion *x)
5927 int ret = 1;
5929 spin_lock_irq(&x->wait.lock);
5930 if (!x->done)
5931 ret = 0;
5932 else
5933 x->done--;
5934 spin_unlock_irq(&x->wait.lock);
5935 return ret;
5937 EXPORT_SYMBOL(try_wait_for_completion);
5940 * completion_done - Test to see if a completion has any waiters
5941 * @x: completion structure
5943 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5944 * 1 if there are no waiters.
5947 bool completion_done(struct completion *x)
5949 int ret = 1;
5951 spin_lock_irq(&x->wait.lock);
5952 if (!x->done)
5953 ret = 0;
5954 spin_unlock_irq(&x->wait.lock);
5955 return ret;
5957 EXPORT_SYMBOL(completion_done);
5959 static long __sched
5960 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5962 unsigned long flags;
5963 wait_queue_t wait;
5965 init_waitqueue_entry(&wait, current);
5967 __set_current_state(state);
5969 spin_lock_irqsave(&q->lock, flags);
5970 __add_wait_queue(q, &wait);
5971 spin_unlock(&q->lock);
5972 timeout = schedule_timeout(timeout);
5973 spin_lock_irq(&q->lock);
5974 __remove_wait_queue(q, &wait);
5975 spin_unlock_irqrestore(&q->lock, flags);
5977 return timeout;
5980 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5982 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5984 EXPORT_SYMBOL(interruptible_sleep_on);
5986 long __sched
5987 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5989 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5991 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5993 void __sched sleep_on(wait_queue_head_t *q)
5995 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5997 EXPORT_SYMBOL(sleep_on);
5999 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6001 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6003 EXPORT_SYMBOL(sleep_on_timeout);
6005 #ifdef CONFIG_RT_MUTEXES
6008 * rt_mutex_setprio - set the current priority of a task
6009 * @p: task
6010 * @prio: prio value (kernel-internal form)
6012 * This function changes the 'effective' priority of a task. It does
6013 * not touch ->normal_prio like __setscheduler().
6015 * Used by the rt_mutex code to implement priority inheritance logic.
6017 void rt_mutex_setprio(struct task_struct *p, int prio)
6019 unsigned long flags;
6020 int oldprio, on_rq, running;
6021 struct rq *rq;
6022 const struct sched_class *prev_class;
6024 BUG_ON(prio < 0 || prio > MAX_PRIO);
6026 rq = task_rq_lock(p, &flags);
6027 update_rq_clock(rq);
6029 oldprio = p->prio;
6030 prev_class = p->sched_class;
6031 on_rq = p->se.on_rq;
6032 running = task_current(rq, p);
6033 if (on_rq)
6034 dequeue_task(rq, p, 0);
6035 if (running)
6036 p->sched_class->put_prev_task(rq, p);
6038 if (rt_prio(prio))
6039 p->sched_class = &rt_sched_class;
6040 else
6041 p->sched_class = &fair_sched_class;
6043 p->prio = prio;
6045 if (running)
6046 p->sched_class->set_curr_task(rq);
6047 if (on_rq) {
6048 enqueue_task(rq, p, 0);
6050 check_class_changed(rq, p, prev_class, oldprio, running);
6052 task_rq_unlock(rq, &flags);
6055 #endif
6057 void set_user_nice(struct task_struct *p, long nice)
6059 int old_prio, delta, on_rq;
6060 unsigned long flags;
6061 struct rq *rq;
6063 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6064 return;
6066 * We have to be careful, if called from sys_setpriority(),
6067 * the task might be in the middle of scheduling on another CPU.
6069 rq = task_rq_lock(p, &flags);
6070 update_rq_clock(rq);
6072 * The RT priorities are set via sched_setscheduler(), but we still
6073 * allow the 'normal' nice value to be set - but as expected
6074 * it wont have any effect on scheduling until the task is
6075 * SCHED_FIFO/SCHED_RR:
6077 if (task_has_rt_policy(p)) {
6078 p->static_prio = NICE_TO_PRIO(nice);
6079 goto out_unlock;
6081 on_rq = p->se.on_rq;
6082 if (on_rq)
6083 dequeue_task(rq, p, 0);
6085 p->static_prio = NICE_TO_PRIO(nice);
6086 set_load_weight(p);
6087 old_prio = p->prio;
6088 p->prio = effective_prio(p);
6089 delta = p->prio - old_prio;
6091 if (on_rq) {
6092 enqueue_task(rq, p, 0);
6094 * If the task increased its priority or is running and
6095 * lowered its priority, then reschedule its CPU:
6097 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6098 resched_task(rq->curr);
6100 out_unlock:
6101 task_rq_unlock(rq, &flags);
6103 EXPORT_SYMBOL(set_user_nice);
6106 * can_nice - check if a task can reduce its nice value
6107 * @p: task
6108 * @nice: nice value
6110 int can_nice(const struct task_struct *p, const int nice)
6112 /* convert nice value [19,-20] to rlimit style value [1,40] */
6113 int nice_rlim = 20 - nice;
6115 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6116 capable(CAP_SYS_NICE));
6119 #ifdef __ARCH_WANT_SYS_NICE
6122 * sys_nice - change the priority of the current process.
6123 * @increment: priority increment
6125 * sys_setpriority is a more generic, but much slower function that
6126 * does similar things.
6128 SYSCALL_DEFINE1(nice, int, increment)
6130 long nice, retval;
6133 * Setpriority might change our priority at the same moment.
6134 * We don't have to worry. Conceptually one call occurs first
6135 * and we have a single winner.
6137 if (increment < -40)
6138 increment = -40;
6139 if (increment > 40)
6140 increment = 40;
6142 nice = TASK_NICE(current) + increment;
6143 if (nice < -20)
6144 nice = -20;
6145 if (nice > 19)
6146 nice = 19;
6148 if (increment < 0 && !can_nice(current, nice))
6149 return -EPERM;
6151 retval = security_task_setnice(current, nice);
6152 if (retval)
6153 return retval;
6155 set_user_nice(current, nice);
6156 return 0;
6159 #endif
6162 * task_prio - return the priority value of a given task.
6163 * @p: the task in question.
6165 * This is the priority value as seen by users in /proc.
6166 * RT tasks are offset by -200. Normal tasks are centered
6167 * around 0, value goes from -16 to +15.
6169 int task_prio(const struct task_struct *p)
6171 return p->prio - MAX_RT_PRIO;
6175 * task_nice - return the nice value of a given task.
6176 * @p: the task in question.
6178 int task_nice(const struct task_struct *p)
6180 return TASK_NICE(p);
6182 EXPORT_SYMBOL(task_nice);
6185 * idle_cpu - is a given cpu idle currently?
6186 * @cpu: the processor in question.
6188 int idle_cpu(int cpu)
6190 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6194 * idle_task - return the idle task for a given cpu.
6195 * @cpu: the processor in question.
6197 struct task_struct *idle_task(int cpu)
6199 return cpu_rq(cpu)->idle;
6203 * find_process_by_pid - find a process with a matching PID value.
6204 * @pid: the pid in question.
6206 static struct task_struct *find_process_by_pid(pid_t pid)
6208 return pid ? find_task_by_vpid(pid) : current;
6211 /* Actually do priority change: must hold rq lock. */
6212 static void
6213 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6215 BUG_ON(p->se.on_rq);
6217 p->policy = policy;
6218 switch (p->policy) {
6219 case SCHED_NORMAL:
6220 case SCHED_BATCH:
6221 case SCHED_IDLE:
6222 p->sched_class = &fair_sched_class;
6223 break;
6224 case SCHED_FIFO:
6225 case SCHED_RR:
6226 p->sched_class = &rt_sched_class;
6227 break;
6230 p->rt_priority = prio;
6231 p->normal_prio = normal_prio(p);
6232 /* we are holding p->pi_lock already */
6233 p->prio = rt_mutex_getprio(p);
6234 set_load_weight(p);
6238 * check the target process has a UID that matches the current process's
6240 static bool check_same_owner(struct task_struct *p)
6242 const struct cred *cred = current_cred(), *pcred;
6243 bool match;
6245 rcu_read_lock();
6246 pcred = __task_cred(p);
6247 match = (cred->euid == pcred->euid ||
6248 cred->euid == pcred->uid);
6249 rcu_read_unlock();
6250 return match;
6253 static int __sched_setscheduler(struct task_struct *p, int policy,
6254 struct sched_param *param, bool user)
6256 int retval, oldprio, oldpolicy = -1, on_rq, running;
6257 unsigned long flags;
6258 const struct sched_class *prev_class;
6259 struct rq *rq;
6260 int reset_on_fork;
6262 /* may grab non-irq protected spin_locks */
6263 BUG_ON(in_interrupt());
6264 recheck:
6265 /* double check policy once rq lock held */
6266 if (policy < 0) {
6267 reset_on_fork = p->sched_reset_on_fork;
6268 policy = oldpolicy = p->policy;
6269 } else {
6270 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6271 policy &= ~SCHED_RESET_ON_FORK;
6273 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6274 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6275 policy != SCHED_IDLE)
6276 return -EINVAL;
6280 * Valid priorities for SCHED_FIFO and SCHED_RR are
6281 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6282 * SCHED_BATCH and SCHED_IDLE is 0.
6284 if (param->sched_priority < 0 ||
6285 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6286 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6287 return -EINVAL;
6288 if (rt_policy(policy) != (param->sched_priority != 0))
6289 return -EINVAL;
6292 * Allow unprivileged RT tasks to decrease priority:
6294 if (user && !capable(CAP_SYS_NICE)) {
6295 if (rt_policy(policy)) {
6296 unsigned long rlim_rtprio;
6298 if (!lock_task_sighand(p, &flags))
6299 return -ESRCH;
6300 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6301 unlock_task_sighand(p, &flags);
6303 /* can't set/change the rt policy */
6304 if (policy != p->policy && !rlim_rtprio)
6305 return -EPERM;
6307 /* can't increase priority */
6308 if (param->sched_priority > p->rt_priority &&
6309 param->sched_priority > rlim_rtprio)
6310 return -EPERM;
6313 * Like positive nice levels, dont allow tasks to
6314 * move out of SCHED_IDLE either:
6316 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6317 return -EPERM;
6319 /* can't change other user's priorities */
6320 if (!check_same_owner(p))
6321 return -EPERM;
6323 /* Normal users shall not reset the sched_reset_on_fork flag */
6324 if (p->sched_reset_on_fork && !reset_on_fork)
6325 return -EPERM;
6328 if (user) {
6329 #ifdef CONFIG_RT_GROUP_SCHED
6331 * Do not allow realtime tasks into groups that have no runtime
6332 * assigned.
6334 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6335 task_group(p)->rt_bandwidth.rt_runtime == 0)
6336 return -EPERM;
6337 #endif
6339 retval = security_task_setscheduler(p, policy, param);
6340 if (retval)
6341 return retval;
6345 * make sure no PI-waiters arrive (or leave) while we are
6346 * changing the priority of the task:
6348 spin_lock_irqsave(&p->pi_lock, flags);
6350 * To be able to change p->policy safely, the apropriate
6351 * runqueue lock must be held.
6353 rq = __task_rq_lock(p);
6354 /* recheck policy now with rq lock held */
6355 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6356 policy = oldpolicy = -1;
6357 __task_rq_unlock(rq);
6358 spin_unlock_irqrestore(&p->pi_lock, flags);
6359 goto recheck;
6361 update_rq_clock(rq);
6362 on_rq = p->se.on_rq;
6363 running = task_current(rq, p);
6364 if (on_rq)
6365 deactivate_task(rq, p, 0);
6366 if (running)
6367 p->sched_class->put_prev_task(rq, p);
6369 p->sched_reset_on_fork = reset_on_fork;
6371 oldprio = p->prio;
6372 prev_class = p->sched_class;
6373 __setscheduler(rq, p, policy, param->sched_priority);
6375 if (running)
6376 p->sched_class->set_curr_task(rq);
6377 if (on_rq) {
6378 activate_task(rq, p, 0);
6380 check_class_changed(rq, p, prev_class, oldprio, running);
6382 __task_rq_unlock(rq);
6383 spin_unlock_irqrestore(&p->pi_lock, flags);
6385 rt_mutex_adjust_pi(p);
6387 return 0;
6391 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6392 * @p: the task in question.
6393 * @policy: new policy.
6394 * @param: structure containing the new RT priority.
6396 * NOTE that the task may be already dead.
6398 int sched_setscheduler(struct task_struct *p, int policy,
6399 struct sched_param *param)
6401 return __sched_setscheduler(p, policy, param, true);
6403 EXPORT_SYMBOL_GPL(sched_setscheduler);
6406 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6407 * @p: the task in question.
6408 * @policy: new policy.
6409 * @param: structure containing the new RT priority.
6411 * Just like sched_setscheduler, only don't bother checking if the
6412 * current context has permission. For example, this is needed in
6413 * stop_machine(): we create temporary high priority worker threads,
6414 * but our caller might not have that capability.
6416 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6417 struct sched_param *param)
6419 return __sched_setscheduler(p, policy, param, false);
6422 static int
6423 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6425 struct sched_param lparam;
6426 struct task_struct *p;
6427 int retval;
6429 if (!param || pid < 0)
6430 return -EINVAL;
6431 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6432 return -EFAULT;
6434 rcu_read_lock();
6435 retval = -ESRCH;
6436 p = find_process_by_pid(pid);
6437 if (p != NULL)
6438 retval = sched_setscheduler(p, policy, &lparam);
6439 rcu_read_unlock();
6441 return retval;
6445 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6446 * @pid: the pid in question.
6447 * @policy: new policy.
6448 * @param: structure containing the new RT priority.
6450 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6451 struct sched_param __user *, param)
6453 /* negative values for policy are not valid */
6454 if (policy < 0)
6455 return -EINVAL;
6457 return do_sched_setscheduler(pid, policy, param);
6461 * sys_sched_setparam - set/change the RT priority of a thread
6462 * @pid: the pid in question.
6463 * @param: structure containing the new RT priority.
6465 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6467 return do_sched_setscheduler(pid, -1, param);
6471 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6472 * @pid: the pid in question.
6474 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6476 struct task_struct *p;
6477 int retval;
6479 if (pid < 0)
6480 return -EINVAL;
6482 retval = -ESRCH;
6483 read_lock(&tasklist_lock);
6484 p = find_process_by_pid(pid);
6485 if (p) {
6486 retval = security_task_getscheduler(p);
6487 if (!retval)
6488 retval = p->policy
6489 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6491 read_unlock(&tasklist_lock);
6492 return retval;
6496 * sys_sched_getparam - get the RT priority of a thread
6497 * @pid: the pid in question.
6498 * @param: structure containing the RT priority.
6500 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6502 struct sched_param lp;
6503 struct task_struct *p;
6504 int retval;
6506 if (!param || pid < 0)
6507 return -EINVAL;
6509 read_lock(&tasklist_lock);
6510 p = find_process_by_pid(pid);
6511 retval = -ESRCH;
6512 if (!p)
6513 goto out_unlock;
6515 retval = security_task_getscheduler(p);
6516 if (retval)
6517 goto out_unlock;
6519 lp.sched_priority = p->rt_priority;
6520 read_unlock(&tasklist_lock);
6523 * This one might sleep, we cannot do it with a spinlock held ...
6525 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6527 return retval;
6529 out_unlock:
6530 read_unlock(&tasklist_lock);
6531 return retval;
6534 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6536 cpumask_var_t cpus_allowed, new_mask;
6537 struct task_struct *p;
6538 int retval;
6540 get_online_cpus();
6541 read_lock(&tasklist_lock);
6543 p = find_process_by_pid(pid);
6544 if (!p) {
6545 read_unlock(&tasklist_lock);
6546 put_online_cpus();
6547 return -ESRCH;
6551 * It is not safe to call set_cpus_allowed with the
6552 * tasklist_lock held. We will bump the task_struct's
6553 * usage count and then drop tasklist_lock.
6555 get_task_struct(p);
6556 read_unlock(&tasklist_lock);
6558 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6559 retval = -ENOMEM;
6560 goto out_put_task;
6562 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6563 retval = -ENOMEM;
6564 goto out_free_cpus_allowed;
6566 retval = -EPERM;
6567 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6568 goto out_unlock;
6570 retval = security_task_setscheduler(p, 0, NULL);
6571 if (retval)
6572 goto out_unlock;
6574 cpuset_cpus_allowed(p, cpus_allowed);
6575 cpumask_and(new_mask, in_mask, cpus_allowed);
6576 again:
6577 retval = set_cpus_allowed_ptr(p, new_mask);
6579 if (!retval) {
6580 cpuset_cpus_allowed(p, cpus_allowed);
6581 if (!cpumask_subset(new_mask, cpus_allowed)) {
6583 * We must have raced with a concurrent cpuset
6584 * update. Just reset the cpus_allowed to the
6585 * cpuset's cpus_allowed
6587 cpumask_copy(new_mask, cpus_allowed);
6588 goto again;
6591 out_unlock:
6592 free_cpumask_var(new_mask);
6593 out_free_cpus_allowed:
6594 free_cpumask_var(cpus_allowed);
6595 out_put_task:
6596 put_task_struct(p);
6597 put_online_cpus();
6598 return retval;
6601 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6602 struct cpumask *new_mask)
6604 if (len < cpumask_size())
6605 cpumask_clear(new_mask);
6606 else if (len > cpumask_size())
6607 len = cpumask_size();
6609 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6613 * sys_sched_setaffinity - set the cpu affinity of a process
6614 * @pid: pid of the process
6615 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6616 * @user_mask_ptr: user-space pointer to the new cpu mask
6618 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6619 unsigned long __user *, user_mask_ptr)
6621 cpumask_var_t new_mask;
6622 int retval;
6624 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6625 return -ENOMEM;
6627 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6628 if (retval == 0)
6629 retval = sched_setaffinity(pid, new_mask);
6630 free_cpumask_var(new_mask);
6631 return retval;
6634 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6636 struct task_struct *p;
6637 int retval;
6639 get_online_cpus();
6640 read_lock(&tasklist_lock);
6642 retval = -ESRCH;
6643 p = find_process_by_pid(pid);
6644 if (!p)
6645 goto out_unlock;
6647 retval = security_task_getscheduler(p);
6648 if (retval)
6649 goto out_unlock;
6651 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6653 out_unlock:
6654 read_unlock(&tasklist_lock);
6655 put_online_cpus();
6657 return retval;
6661 * sys_sched_getaffinity - get the cpu affinity of a process
6662 * @pid: pid of the process
6663 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6664 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6666 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6667 unsigned long __user *, user_mask_ptr)
6669 int ret;
6670 cpumask_var_t mask;
6672 if (len < cpumask_size())
6673 return -EINVAL;
6675 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6676 return -ENOMEM;
6678 ret = sched_getaffinity(pid, mask);
6679 if (ret == 0) {
6680 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6681 ret = -EFAULT;
6682 else
6683 ret = cpumask_size();
6685 free_cpumask_var(mask);
6687 return ret;
6691 * sys_sched_yield - yield the current processor to other threads.
6693 * This function yields the current CPU to other tasks. If there are no
6694 * other threads running on this CPU then this function will return.
6696 SYSCALL_DEFINE0(sched_yield)
6698 struct rq *rq = this_rq_lock();
6700 schedstat_inc(rq, yld_count);
6701 current->sched_class->yield_task(rq);
6704 * Since we are going to call schedule() anyway, there's
6705 * no need to preempt or enable interrupts:
6707 __release(rq->lock);
6708 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6709 _raw_spin_unlock(&rq->lock);
6710 preempt_enable_no_resched();
6712 schedule();
6714 return 0;
6717 static inline int should_resched(void)
6719 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6722 static void __cond_resched(void)
6724 add_preempt_count(PREEMPT_ACTIVE);
6725 schedule();
6726 sub_preempt_count(PREEMPT_ACTIVE);
6729 int __sched _cond_resched(void)
6731 if (should_resched()) {
6732 __cond_resched();
6733 return 1;
6735 return 0;
6737 EXPORT_SYMBOL(_cond_resched);
6740 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6741 * call schedule, and on return reacquire the lock.
6743 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6744 * operations here to prevent schedule() from being called twice (once via
6745 * spin_unlock(), once by hand).
6747 int __cond_resched_lock(spinlock_t *lock)
6749 int resched = should_resched();
6750 int ret = 0;
6752 lockdep_assert_held(lock);
6754 if (spin_needbreak(lock) || resched) {
6755 spin_unlock(lock);
6756 if (resched)
6757 __cond_resched();
6758 else
6759 cpu_relax();
6760 ret = 1;
6761 spin_lock(lock);
6763 return ret;
6765 EXPORT_SYMBOL(__cond_resched_lock);
6767 int __sched __cond_resched_softirq(void)
6769 BUG_ON(!in_softirq());
6771 if (should_resched()) {
6772 local_bh_enable();
6773 __cond_resched();
6774 local_bh_disable();
6775 return 1;
6777 return 0;
6779 EXPORT_SYMBOL(__cond_resched_softirq);
6782 * yield - yield the current processor to other threads.
6784 * This is a shortcut for kernel-space yielding - it marks the
6785 * thread runnable and calls sys_sched_yield().
6787 void __sched yield(void)
6789 set_current_state(TASK_RUNNING);
6790 sys_sched_yield();
6792 EXPORT_SYMBOL(yield);
6795 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6796 * that process accounting knows that this is a task in IO wait state.
6798 void __sched io_schedule(void)
6800 struct rq *rq = raw_rq();
6802 delayacct_blkio_start();
6803 atomic_inc(&rq->nr_iowait);
6804 current->in_iowait = 1;
6805 schedule();
6806 current->in_iowait = 0;
6807 atomic_dec(&rq->nr_iowait);
6808 delayacct_blkio_end();
6810 EXPORT_SYMBOL(io_schedule);
6812 long __sched io_schedule_timeout(long timeout)
6814 struct rq *rq = raw_rq();
6815 long ret;
6817 delayacct_blkio_start();
6818 atomic_inc(&rq->nr_iowait);
6819 current->in_iowait = 1;
6820 ret = schedule_timeout(timeout);
6821 current->in_iowait = 0;
6822 atomic_dec(&rq->nr_iowait);
6823 delayacct_blkio_end();
6824 return ret;
6828 * sys_sched_get_priority_max - return maximum RT priority.
6829 * @policy: scheduling class.
6831 * this syscall returns the maximum rt_priority that can be used
6832 * by a given scheduling class.
6834 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6836 int ret = -EINVAL;
6838 switch (policy) {
6839 case SCHED_FIFO:
6840 case SCHED_RR:
6841 ret = MAX_USER_RT_PRIO-1;
6842 break;
6843 case SCHED_NORMAL:
6844 case SCHED_BATCH:
6845 case SCHED_IDLE:
6846 ret = 0;
6847 break;
6849 return ret;
6853 * sys_sched_get_priority_min - return minimum RT priority.
6854 * @policy: scheduling class.
6856 * this syscall returns the minimum rt_priority that can be used
6857 * by a given scheduling class.
6859 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6861 int ret = -EINVAL;
6863 switch (policy) {
6864 case SCHED_FIFO:
6865 case SCHED_RR:
6866 ret = 1;
6867 break;
6868 case SCHED_NORMAL:
6869 case SCHED_BATCH:
6870 case SCHED_IDLE:
6871 ret = 0;
6873 return ret;
6877 * sys_sched_rr_get_interval - return the default timeslice of a process.
6878 * @pid: pid of the process.
6879 * @interval: userspace pointer to the timeslice value.
6881 * this syscall writes the default timeslice value of a given process
6882 * into the user-space timespec buffer. A value of '0' means infinity.
6884 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6885 struct timespec __user *, interval)
6887 struct task_struct *p;
6888 unsigned int time_slice;
6889 int retval;
6890 struct timespec t;
6892 if (pid < 0)
6893 return -EINVAL;
6895 retval = -ESRCH;
6896 read_lock(&tasklist_lock);
6897 p = find_process_by_pid(pid);
6898 if (!p)
6899 goto out_unlock;
6901 retval = security_task_getscheduler(p);
6902 if (retval)
6903 goto out_unlock;
6905 time_slice = p->sched_class->get_rr_interval(p);
6907 read_unlock(&tasklist_lock);
6908 jiffies_to_timespec(time_slice, &t);
6909 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6910 return retval;
6912 out_unlock:
6913 read_unlock(&tasklist_lock);
6914 return retval;
6917 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6919 void sched_show_task(struct task_struct *p)
6921 unsigned long free = 0;
6922 unsigned state;
6924 state = p->state ? __ffs(p->state) + 1 : 0;
6925 printk(KERN_INFO "%-13.13s %c", p->comm,
6926 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6927 #if BITS_PER_LONG == 32
6928 if (state == TASK_RUNNING)
6929 printk(KERN_CONT " running ");
6930 else
6931 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6932 #else
6933 if (state == TASK_RUNNING)
6934 printk(KERN_CONT " running task ");
6935 else
6936 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6937 #endif
6938 #ifdef CONFIG_DEBUG_STACK_USAGE
6939 free = stack_not_used(p);
6940 #endif
6941 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6942 task_pid_nr(p), task_pid_nr(p->real_parent),
6943 (unsigned long)task_thread_info(p)->flags);
6945 show_stack(p, NULL);
6948 void show_state_filter(unsigned long state_filter)
6950 struct task_struct *g, *p;
6952 #if BITS_PER_LONG == 32
6953 printk(KERN_INFO
6954 " task PC stack pid father\n");
6955 #else
6956 printk(KERN_INFO
6957 " task PC stack pid father\n");
6958 #endif
6959 read_lock(&tasklist_lock);
6960 do_each_thread(g, p) {
6962 * reset the NMI-timeout, listing all files on a slow
6963 * console might take alot of time:
6965 touch_nmi_watchdog();
6966 if (!state_filter || (p->state & state_filter))
6967 sched_show_task(p);
6968 } while_each_thread(g, p);
6970 touch_all_softlockup_watchdogs();
6972 #ifdef CONFIG_SCHED_DEBUG
6973 sysrq_sched_debug_show();
6974 #endif
6975 read_unlock(&tasklist_lock);
6977 * Only show locks if all tasks are dumped:
6979 if (state_filter == -1)
6980 debug_show_all_locks();
6983 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6985 idle->sched_class = &idle_sched_class;
6989 * init_idle - set up an idle thread for a given CPU
6990 * @idle: task in question
6991 * @cpu: cpu the idle task belongs to
6993 * NOTE: this function does not set the idle thread's NEED_RESCHED
6994 * flag, to make booting more robust.
6996 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6998 struct rq *rq = cpu_rq(cpu);
6999 unsigned long flags;
7001 spin_lock_irqsave(&rq->lock, flags);
7003 __sched_fork(idle);
7004 idle->se.exec_start = sched_clock();
7006 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7007 __set_task_cpu(idle, cpu);
7009 rq->curr = rq->idle = idle;
7010 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7011 idle->oncpu = 1;
7012 #endif
7013 spin_unlock_irqrestore(&rq->lock, flags);
7015 /* Set the preempt count _outside_ the spinlocks! */
7016 #if defined(CONFIG_PREEMPT)
7017 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7018 #else
7019 task_thread_info(idle)->preempt_count = 0;
7020 #endif
7022 * The idle tasks have their own, simple scheduling class:
7024 idle->sched_class = &idle_sched_class;
7025 ftrace_graph_init_task(idle);
7029 * In a system that switches off the HZ timer nohz_cpu_mask
7030 * indicates which cpus entered this state. This is used
7031 * in the rcu update to wait only for active cpus. For system
7032 * which do not switch off the HZ timer nohz_cpu_mask should
7033 * always be CPU_BITS_NONE.
7035 cpumask_var_t nohz_cpu_mask;
7038 * Increase the granularity value when there are more CPUs,
7039 * because with more CPUs the 'effective latency' as visible
7040 * to users decreases. But the relationship is not linear,
7041 * so pick a second-best guess by going with the log2 of the
7042 * number of CPUs.
7044 * This idea comes from the SD scheduler of Con Kolivas:
7046 static void update_sysctl(void)
7048 unsigned int cpus = min(num_online_cpus(), 8U);
7049 unsigned int factor = 1 + ilog2(cpus);
7051 #define SET_SYSCTL(name) \
7052 (sysctl_##name = (factor) * normalized_sysctl_##name)
7053 SET_SYSCTL(sched_min_granularity);
7054 SET_SYSCTL(sched_latency);
7055 SET_SYSCTL(sched_wakeup_granularity);
7056 SET_SYSCTL(sched_shares_ratelimit);
7057 #undef SET_SYSCTL
7060 static inline void sched_init_granularity(void)
7062 update_sysctl();
7065 #ifdef CONFIG_SMP
7067 * This is how migration works:
7069 * 1) we queue a struct migration_req structure in the source CPU's
7070 * runqueue and wake up that CPU's migration thread.
7071 * 2) we down() the locked semaphore => thread blocks.
7072 * 3) migration thread wakes up (implicitly it forces the migrated
7073 * thread off the CPU)
7074 * 4) it gets the migration request and checks whether the migrated
7075 * task is still in the wrong runqueue.
7076 * 5) if it's in the wrong runqueue then the migration thread removes
7077 * it and puts it into the right queue.
7078 * 6) migration thread up()s the semaphore.
7079 * 7) we wake up and the migration is done.
7083 * Change a given task's CPU affinity. Migrate the thread to a
7084 * proper CPU and schedule it away if the CPU it's executing on
7085 * is removed from the allowed bitmask.
7087 * NOTE: the caller must have a valid reference to the task, the
7088 * task must not exit() & deallocate itself prematurely. The
7089 * call is not atomic; no spinlocks may be held.
7091 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7093 struct migration_req req;
7094 unsigned long flags;
7095 struct rq *rq;
7096 int ret = 0;
7098 rq = task_rq_lock(p, &flags);
7099 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7100 ret = -EINVAL;
7101 goto out;
7104 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7105 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7106 ret = -EINVAL;
7107 goto out;
7110 if (p->sched_class->set_cpus_allowed)
7111 p->sched_class->set_cpus_allowed(p, new_mask);
7112 else {
7113 cpumask_copy(&p->cpus_allowed, new_mask);
7114 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7117 /* Can the task run on the task's current CPU? If so, we're done */
7118 if (cpumask_test_cpu(task_cpu(p), new_mask))
7119 goto out;
7121 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7122 /* Need help from migration thread: drop lock and wait. */
7123 struct task_struct *mt = rq->migration_thread;
7125 get_task_struct(mt);
7126 task_rq_unlock(rq, &flags);
7127 wake_up_process(rq->migration_thread);
7128 put_task_struct(mt);
7129 wait_for_completion(&req.done);
7130 tlb_migrate_finish(p->mm);
7131 return 0;
7133 out:
7134 task_rq_unlock(rq, &flags);
7136 return ret;
7138 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7141 * Move (not current) task off this cpu, onto dest cpu. We're doing
7142 * this because either it can't run here any more (set_cpus_allowed()
7143 * away from this CPU, or CPU going down), or because we're
7144 * attempting to rebalance this task on exec (sched_exec).
7146 * So we race with normal scheduler movements, but that's OK, as long
7147 * as the task is no longer on this CPU.
7149 * Returns non-zero if task was successfully migrated.
7151 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7153 struct rq *rq_dest, *rq_src;
7154 int ret = 0, on_rq;
7156 if (unlikely(!cpu_active(dest_cpu)))
7157 return ret;
7159 rq_src = cpu_rq(src_cpu);
7160 rq_dest = cpu_rq(dest_cpu);
7162 double_rq_lock(rq_src, rq_dest);
7163 /* Already moved. */
7164 if (task_cpu(p) != src_cpu)
7165 goto done;
7166 /* Affinity changed (again). */
7167 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7168 goto fail;
7170 on_rq = p->se.on_rq;
7171 if (on_rq)
7172 deactivate_task(rq_src, p, 0);
7174 set_task_cpu(p, dest_cpu);
7175 if (on_rq) {
7176 activate_task(rq_dest, p, 0);
7177 check_preempt_curr(rq_dest, p, 0);
7179 done:
7180 ret = 1;
7181 fail:
7182 double_rq_unlock(rq_src, rq_dest);
7183 return ret;
7186 #define RCU_MIGRATION_IDLE 0
7187 #define RCU_MIGRATION_NEED_QS 1
7188 #define RCU_MIGRATION_GOT_QS 2
7189 #define RCU_MIGRATION_MUST_SYNC 3
7192 * migration_thread - this is a highprio system thread that performs
7193 * thread migration by bumping thread off CPU then 'pushing' onto
7194 * another runqueue.
7196 static int migration_thread(void *data)
7198 int badcpu;
7199 int cpu = (long)data;
7200 struct rq *rq;
7202 rq = cpu_rq(cpu);
7203 BUG_ON(rq->migration_thread != current);
7205 set_current_state(TASK_INTERRUPTIBLE);
7206 while (!kthread_should_stop()) {
7207 struct migration_req *req;
7208 struct list_head *head;
7210 spin_lock_irq(&rq->lock);
7212 if (cpu_is_offline(cpu)) {
7213 spin_unlock_irq(&rq->lock);
7214 break;
7217 if (rq->active_balance) {
7218 active_load_balance(rq, cpu);
7219 rq->active_balance = 0;
7222 head = &rq->migration_queue;
7224 if (list_empty(head)) {
7225 spin_unlock_irq(&rq->lock);
7226 schedule();
7227 set_current_state(TASK_INTERRUPTIBLE);
7228 continue;
7230 req = list_entry(head->next, struct migration_req, list);
7231 list_del_init(head->next);
7233 if (req->task != NULL) {
7234 spin_unlock(&rq->lock);
7235 __migrate_task(req->task, cpu, req->dest_cpu);
7236 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7237 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7238 spin_unlock(&rq->lock);
7239 } else {
7240 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7241 spin_unlock(&rq->lock);
7242 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7244 local_irq_enable();
7246 complete(&req->done);
7248 __set_current_state(TASK_RUNNING);
7250 return 0;
7253 #ifdef CONFIG_HOTPLUG_CPU
7255 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7257 int ret;
7259 local_irq_disable();
7260 ret = __migrate_task(p, src_cpu, dest_cpu);
7261 local_irq_enable();
7262 return ret;
7266 * Figure out where task on dead CPU should go, use force if necessary.
7268 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7270 int dest_cpu;
7271 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7273 again:
7274 /* Look for allowed, online CPU in same node. */
7275 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7276 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7277 goto move;
7279 /* Any allowed, online CPU? */
7280 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7281 if (dest_cpu < nr_cpu_ids)
7282 goto move;
7284 /* No more Mr. Nice Guy. */
7285 if (dest_cpu >= nr_cpu_ids) {
7286 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7287 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7290 * Don't tell them about moving exiting tasks or
7291 * kernel threads (both mm NULL), since they never
7292 * leave kernel.
7294 if (p->mm && printk_ratelimit()) {
7295 printk(KERN_INFO "process %d (%s) no "
7296 "longer affine to cpu%d\n",
7297 task_pid_nr(p), p->comm, dead_cpu);
7301 move:
7302 /* It can have affinity changed while we were choosing. */
7303 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7304 goto again;
7308 * While a dead CPU has no uninterruptible tasks queued at this point,
7309 * it might still have a nonzero ->nr_uninterruptible counter, because
7310 * for performance reasons the counter is not stricly tracking tasks to
7311 * their home CPUs. So we just add the counter to another CPU's counter,
7312 * to keep the global sum constant after CPU-down:
7314 static void migrate_nr_uninterruptible(struct rq *rq_src)
7316 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7317 unsigned long flags;
7319 local_irq_save(flags);
7320 double_rq_lock(rq_src, rq_dest);
7321 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7322 rq_src->nr_uninterruptible = 0;
7323 double_rq_unlock(rq_src, rq_dest);
7324 local_irq_restore(flags);
7327 /* Run through task list and migrate tasks from the dead cpu. */
7328 static void migrate_live_tasks(int src_cpu)
7330 struct task_struct *p, *t;
7332 read_lock(&tasklist_lock);
7334 do_each_thread(t, p) {
7335 if (p == current)
7336 continue;
7338 if (task_cpu(p) == src_cpu)
7339 move_task_off_dead_cpu(src_cpu, p);
7340 } while_each_thread(t, p);
7342 read_unlock(&tasklist_lock);
7346 * Schedules idle task to be the next runnable task on current CPU.
7347 * It does so by boosting its priority to highest possible.
7348 * Used by CPU offline code.
7350 void sched_idle_next(void)
7352 int this_cpu = smp_processor_id();
7353 struct rq *rq = cpu_rq(this_cpu);
7354 struct task_struct *p = rq->idle;
7355 unsigned long flags;
7357 /* cpu has to be offline */
7358 BUG_ON(cpu_online(this_cpu));
7361 * Strictly not necessary since rest of the CPUs are stopped by now
7362 * and interrupts disabled on the current cpu.
7364 spin_lock_irqsave(&rq->lock, flags);
7366 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7368 update_rq_clock(rq);
7369 activate_task(rq, p, 0);
7371 spin_unlock_irqrestore(&rq->lock, flags);
7375 * Ensures that the idle task is using init_mm right before its cpu goes
7376 * offline.
7378 void idle_task_exit(void)
7380 struct mm_struct *mm = current->active_mm;
7382 BUG_ON(cpu_online(smp_processor_id()));
7384 if (mm != &init_mm)
7385 switch_mm(mm, &init_mm, current);
7386 mmdrop(mm);
7389 /* called under rq->lock with disabled interrupts */
7390 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7392 struct rq *rq = cpu_rq(dead_cpu);
7394 /* Must be exiting, otherwise would be on tasklist. */
7395 BUG_ON(!p->exit_state);
7397 /* Cannot have done final schedule yet: would have vanished. */
7398 BUG_ON(p->state == TASK_DEAD);
7400 get_task_struct(p);
7403 * Drop lock around migration; if someone else moves it,
7404 * that's OK. No task can be added to this CPU, so iteration is
7405 * fine.
7407 spin_unlock_irq(&rq->lock);
7408 move_task_off_dead_cpu(dead_cpu, p);
7409 spin_lock_irq(&rq->lock);
7411 put_task_struct(p);
7414 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7415 static void migrate_dead_tasks(unsigned int dead_cpu)
7417 struct rq *rq = cpu_rq(dead_cpu);
7418 struct task_struct *next;
7420 for ( ; ; ) {
7421 if (!rq->nr_running)
7422 break;
7423 update_rq_clock(rq);
7424 next = pick_next_task(rq);
7425 if (!next)
7426 break;
7427 next->sched_class->put_prev_task(rq, next);
7428 migrate_dead(dead_cpu, next);
7434 * remove the tasks which were accounted by rq from calc_load_tasks.
7436 static void calc_global_load_remove(struct rq *rq)
7438 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7439 rq->calc_load_active = 0;
7441 #endif /* CONFIG_HOTPLUG_CPU */
7443 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7445 static struct ctl_table sd_ctl_dir[] = {
7447 .procname = "sched_domain",
7448 .mode = 0555,
7450 {0, },
7453 static struct ctl_table sd_ctl_root[] = {
7455 .ctl_name = CTL_KERN,
7456 .procname = "kernel",
7457 .mode = 0555,
7458 .child = sd_ctl_dir,
7460 {0, },
7463 static struct ctl_table *sd_alloc_ctl_entry(int n)
7465 struct ctl_table *entry =
7466 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7468 return entry;
7471 static void sd_free_ctl_entry(struct ctl_table **tablep)
7473 struct ctl_table *entry;
7476 * In the intermediate directories, both the child directory and
7477 * procname are dynamically allocated and could fail but the mode
7478 * will always be set. In the lowest directory the names are
7479 * static strings and all have proc handlers.
7481 for (entry = *tablep; entry->mode; entry++) {
7482 if (entry->child)
7483 sd_free_ctl_entry(&entry->child);
7484 if (entry->proc_handler == NULL)
7485 kfree(entry->procname);
7488 kfree(*tablep);
7489 *tablep = NULL;
7492 static void
7493 set_table_entry(struct ctl_table *entry,
7494 const char *procname, void *data, int maxlen,
7495 mode_t mode, proc_handler *proc_handler)
7497 entry->procname = procname;
7498 entry->data = data;
7499 entry->maxlen = maxlen;
7500 entry->mode = mode;
7501 entry->proc_handler = proc_handler;
7504 static struct ctl_table *
7505 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7507 struct ctl_table *table = sd_alloc_ctl_entry(13);
7509 if (table == NULL)
7510 return NULL;
7512 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7513 sizeof(long), 0644, proc_doulongvec_minmax);
7514 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7515 sizeof(long), 0644, proc_doulongvec_minmax);
7516 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7517 sizeof(int), 0644, proc_dointvec_minmax);
7518 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7519 sizeof(int), 0644, proc_dointvec_minmax);
7520 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7521 sizeof(int), 0644, proc_dointvec_minmax);
7522 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7523 sizeof(int), 0644, proc_dointvec_minmax);
7524 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7525 sizeof(int), 0644, proc_dointvec_minmax);
7526 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7527 sizeof(int), 0644, proc_dointvec_minmax);
7528 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7529 sizeof(int), 0644, proc_dointvec_minmax);
7530 set_table_entry(&table[9], "cache_nice_tries",
7531 &sd->cache_nice_tries,
7532 sizeof(int), 0644, proc_dointvec_minmax);
7533 set_table_entry(&table[10], "flags", &sd->flags,
7534 sizeof(int), 0644, proc_dointvec_minmax);
7535 set_table_entry(&table[11], "name", sd->name,
7536 CORENAME_MAX_SIZE, 0444, proc_dostring);
7537 /* &table[12] is terminator */
7539 return table;
7542 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7544 struct ctl_table *entry, *table;
7545 struct sched_domain *sd;
7546 int domain_num = 0, i;
7547 char buf[32];
7549 for_each_domain(cpu, sd)
7550 domain_num++;
7551 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7552 if (table == NULL)
7553 return NULL;
7555 i = 0;
7556 for_each_domain(cpu, sd) {
7557 snprintf(buf, 32, "domain%d", i);
7558 entry->procname = kstrdup(buf, GFP_KERNEL);
7559 entry->mode = 0555;
7560 entry->child = sd_alloc_ctl_domain_table(sd);
7561 entry++;
7562 i++;
7564 return table;
7567 static struct ctl_table_header *sd_sysctl_header;
7568 static void register_sched_domain_sysctl(void)
7570 int i, cpu_num = num_possible_cpus();
7571 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7572 char buf[32];
7574 WARN_ON(sd_ctl_dir[0].child);
7575 sd_ctl_dir[0].child = entry;
7577 if (entry == NULL)
7578 return;
7580 for_each_possible_cpu(i) {
7581 snprintf(buf, 32, "cpu%d", i);
7582 entry->procname = kstrdup(buf, GFP_KERNEL);
7583 entry->mode = 0555;
7584 entry->child = sd_alloc_ctl_cpu_table(i);
7585 entry++;
7588 WARN_ON(sd_sysctl_header);
7589 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7592 /* may be called multiple times per register */
7593 static void unregister_sched_domain_sysctl(void)
7595 if (sd_sysctl_header)
7596 unregister_sysctl_table(sd_sysctl_header);
7597 sd_sysctl_header = NULL;
7598 if (sd_ctl_dir[0].child)
7599 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7601 #else
7602 static void register_sched_domain_sysctl(void)
7605 static void unregister_sched_domain_sysctl(void)
7608 #endif
7610 static void set_rq_online(struct rq *rq)
7612 if (!rq->online) {
7613 const struct sched_class *class;
7615 cpumask_set_cpu(rq->cpu, rq->rd->online);
7616 rq->online = 1;
7618 for_each_class(class) {
7619 if (class->rq_online)
7620 class->rq_online(rq);
7625 static void set_rq_offline(struct rq *rq)
7627 if (rq->online) {
7628 const struct sched_class *class;
7630 for_each_class(class) {
7631 if (class->rq_offline)
7632 class->rq_offline(rq);
7635 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7636 rq->online = 0;
7641 * migration_call - callback that gets triggered when a CPU is added.
7642 * Here we can start up the necessary migration thread for the new CPU.
7644 static int __cpuinit
7645 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7647 struct task_struct *p;
7648 int cpu = (long)hcpu;
7649 unsigned long flags;
7650 struct rq *rq;
7652 switch (action) {
7654 case CPU_UP_PREPARE:
7655 case CPU_UP_PREPARE_FROZEN:
7656 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7657 if (IS_ERR(p))
7658 return NOTIFY_BAD;
7659 kthread_bind(p, cpu);
7660 /* Must be high prio: stop_machine expects to yield to it. */
7661 rq = task_rq_lock(p, &flags);
7662 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7663 task_rq_unlock(rq, &flags);
7664 get_task_struct(p);
7665 cpu_rq(cpu)->migration_thread = p;
7666 rq->calc_load_update = calc_load_update;
7667 break;
7669 case CPU_ONLINE:
7670 case CPU_ONLINE_FROZEN:
7671 /* Strictly unnecessary, as first user will wake it. */
7672 wake_up_process(cpu_rq(cpu)->migration_thread);
7674 /* Update our root-domain */
7675 rq = cpu_rq(cpu);
7676 spin_lock_irqsave(&rq->lock, flags);
7677 if (rq->rd) {
7678 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7680 set_rq_online(rq);
7682 spin_unlock_irqrestore(&rq->lock, flags);
7683 break;
7685 #ifdef CONFIG_HOTPLUG_CPU
7686 case CPU_UP_CANCELED:
7687 case CPU_UP_CANCELED_FROZEN:
7688 if (!cpu_rq(cpu)->migration_thread)
7689 break;
7690 /* Unbind it from offline cpu so it can run. Fall thru. */
7691 kthread_bind(cpu_rq(cpu)->migration_thread,
7692 cpumask_any(cpu_online_mask));
7693 kthread_stop(cpu_rq(cpu)->migration_thread);
7694 put_task_struct(cpu_rq(cpu)->migration_thread);
7695 cpu_rq(cpu)->migration_thread = NULL;
7696 break;
7698 case CPU_DEAD:
7699 case CPU_DEAD_FROZEN:
7700 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7701 migrate_live_tasks(cpu);
7702 rq = cpu_rq(cpu);
7703 kthread_stop(rq->migration_thread);
7704 put_task_struct(rq->migration_thread);
7705 rq->migration_thread = NULL;
7706 /* Idle task back to normal (off runqueue, low prio) */
7707 spin_lock_irq(&rq->lock);
7708 update_rq_clock(rq);
7709 deactivate_task(rq, rq->idle, 0);
7710 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7711 rq->idle->sched_class = &idle_sched_class;
7712 migrate_dead_tasks(cpu);
7713 spin_unlock_irq(&rq->lock);
7714 cpuset_unlock();
7715 migrate_nr_uninterruptible(rq);
7716 BUG_ON(rq->nr_running != 0);
7717 calc_global_load_remove(rq);
7719 * No need to migrate the tasks: it was best-effort if
7720 * they didn't take sched_hotcpu_mutex. Just wake up
7721 * the requestors.
7723 spin_lock_irq(&rq->lock);
7724 while (!list_empty(&rq->migration_queue)) {
7725 struct migration_req *req;
7727 req = list_entry(rq->migration_queue.next,
7728 struct migration_req, list);
7729 list_del_init(&req->list);
7730 spin_unlock_irq(&rq->lock);
7731 complete(&req->done);
7732 spin_lock_irq(&rq->lock);
7734 spin_unlock_irq(&rq->lock);
7735 break;
7737 case CPU_DYING:
7738 case CPU_DYING_FROZEN:
7739 /* Update our root-domain */
7740 rq = cpu_rq(cpu);
7741 spin_lock_irqsave(&rq->lock, flags);
7742 if (rq->rd) {
7743 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7744 set_rq_offline(rq);
7746 spin_unlock_irqrestore(&rq->lock, flags);
7747 break;
7748 #endif
7750 return NOTIFY_OK;
7754 * Register at high priority so that task migration (migrate_all_tasks)
7755 * happens before everything else. This has to be lower priority than
7756 * the notifier in the perf_event subsystem, though.
7758 static struct notifier_block __cpuinitdata migration_notifier = {
7759 .notifier_call = migration_call,
7760 .priority = 10
7763 static int __init migration_init(void)
7765 void *cpu = (void *)(long)smp_processor_id();
7766 int err;
7768 /* Start one for the boot CPU: */
7769 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7770 BUG_ON(err == NOTIFY_BAD);
7771 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7772 register_cpu_notifier(&migration_notifier);
7774 return 0;
7776 early_initcall(migration_init);
7777 #endif
7779 #ifdef CONFIG_SMP
7781 #ifdef CONFIG_SCHED_DEBUG
7783 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7784 struct cpumask *groupmask)
7786 struct sched_group *group = sd->groups;
7787 char str[256];
7789 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7790 cpumask_clear(groupmask);
7792 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7794 if (!(sd->flags & SD_LOAD_BALANCE)) {
7795 printk("does not load-balance\n");
7796 if (sd->parent)
7797 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7798 " has parent");
7799 return -1;
7802 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7804 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7805 printk(KERN_ERR "ERROR: domain->span does not contain "
7806 "CPU%d\n", cpu);
7808 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7809 printk(KERN_ERR "ERROR: domain->groups does not contain"
7810 " CPU%d\n", cpu);
7813 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7814 do {
7815 if (!group) {
7816 printk("\n");
7817 printk(KERN_ERR "ERROR: group is NULL\n");
7818 break;
7821 if (!group->cpu_power) {
7822 printk(KERN_CONT "\n");
7823 printk(KERN_ERR "ERROR: domain->cpu_power not "
7824 "set\n");
7825 break;
7828 if (!cpumask_weight(sched_group_cpus(group))) {
7829 printk(KERN_CONT "\n");
7830 printk(KERN_ERR "ERROR: empty group\n");
7831 break;
7834 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7835 printk(KERN_CONT "\n");
7836 printk(KERN_ERR "ERROR: repeated CPUs\n");
7837 break;
7840 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7842 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7844 printk(KERN_CONT " %s", str);
7845 if (group->cpu_power != SCHED_LOAD_SCALE) {
7846 printk(KERN_CONT " (cpu_power = %d)",
7847 group->cpu_power);
7850 group = group->next;
7851 } while (group != sd->groups);
7852 printk(KERN_CONT "\n");
7854 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7855 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7857 if (sd->parent &&
7858 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7859 printk(KERN_ERR "ERROR: parent span is not a superset "
7860 "of domain->span\n");
7861 return 0;
7864 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7866 cpumask_var_t groupmask;
7867 int level = 0;
7869 if (!sd) {
7870 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7871 return;
7874 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7876 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7877 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7878 return;
7881 for (;;) {
7882 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7883 break;
7884 level++;
7885 sd = sd->parent;
7886 if (!sd)
7887 break;
7889 free_cpumask_var(groupmask);
7891 #else /* !CONFIG_SCHED_DEBUG */
7892 # define sched_domain_debug(sd, cpu) do { } while (0)
7893 #endif /* CONFIG_SCHED_DEBUG */
7895 static int sd_degenerate(struct sched_domain *sd)
7897 if (cpumask_weight(sched_domain_span(sd)) == 1)
7898 return 1;
7900 /* Following flags need at least 2 groups */
7901 if (sd->flags & (SD_LOAD_BALANCE |
7902 SD_BALANCE_NEWIDLE |
7903 SD_BALANCE_FORK |
7904 SD_BALANCE_EXEC |
7905 SD_SHARE_CPUPOWER |
7906 SD_SHARE_PKG_RESOURCES)) {
7907 if (sd->groups != sd->groups->next)
7908 return 0;
7911 /* Following flags don't use groups */
7912 if (sd->flags & (SD_WAKE_AFFINE))
7913 return 0;
7915 return 1;
7918 static int
7919 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7921 unsigned long cflags = sd->flags, pflags = parent->flags;
7923 if (sd_degenerate(parent))
7924 return 1;
7926 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7927 return 0;
7929 /* Flags needing groups don't count if only 1 group in parent */
7930 if (parent->groups == parent->groups->next) {
7931 pflags &= ~(SD_LOAD_BALANCE |
7932 SD_BALANCE_NEWIDLE |
7933 SD_BALANCE_FORK |
7934 SD_BALANCE_EXEC |
7935 SD_SHARE_CPUPOWER |
7936 SD_SHARE_PKG_RESOURCES);
7937 if (nr_node_ids == 1)
7938 pflags &= ~SD_SERIALIZE;
7940 if (~cflags & pflags)
7941 return 0;
7943 return 1;
7946 static void free_rootdomain(struct root_domain *rd)
7948 synchronize_sched();
7950 cpupri_cleanup(&rd->cpupri);
7952 free_cpumask_var(rd->rto_mask);
7953 free_cpumask_var(rd->online);
7954 free_cpumask_var(rd->span);
7955 kfree(rd);
7958 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7960 struct root_domain *old_rd = NULL;
7961 unsigned long flags;
7963 spin_lock_irqsave(&rq->lock, flags);
7965 if (rq->rd) {
7966 old_rd = rq->rd;
7968 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7969 set_rq_offline(rq);
7971 cpumask_clear_cpu(rq->cpu, old_rd->span);
7974 * If we dont want to free the old_rt yet then
7975 * set old_rd to NULL to skip the freeing later
7976 * in this function:
7978 if (!atomic_dec_and_test(&old_rd->refcount))
7979 old_rd = NULL;
7982 atomic_inc(&rd->refcount);
7983 rq->rd = rd;
7985 cpumask_set_cpu(rq->cpu, rd->span);
7986 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7987 set_rq_online(rq);
7989 spin_unlock_irqrestore(&rq->lock, flags);
7991 if (old_rd)
7992 free_rootdomain(old_rd);
7995 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7997 gfp_t gfp = GFP_KERNEL;
7999 memset(rd, 0, sizeof(*rd));
8001 if (bootmem)
8002 gfp = GFP_NOWAIT;
8004 if (!alloc_cpumask_var(&rd->span, gfp))
8005 goto out;
8006 if (!alloc_cpumask_var(&rd->online, gfp))
8007 goto free_span;
8008 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8009 goto free_online;
8011 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8012 goto free_rto_mask;
8013 return 0;
8015 free_rto_mask:
8016 free_cpumask_var(rd->rto_mask);
8017 free_online:
8018 free_cpumask_var(rd->online);
8019 free_span:
8020 free_cpumask_var(rd->span);
8021 out:
8022 return -ENOMEM;
8025 static void init_defrootdomain(void)
8027 init_rootdomain(&def_root_domain, true);
8029 atomic_set(&def_root_domain.refcount, 1);
8032 static struct root_domain *alloc_rootdomain(void)
8034 struct root_domain *rd;
8036 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8037 if (!rd)
8038 return NULL;
8040 if (init_rootdomain(rd, false) != 0) {
8041 kfree(rd);
8042 return NULL;
8045 return rd;
8049 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8050 * hold the hotplug lock.
8052 static void
8053 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8055 struct rq *rq = cpu_rq(cpu);
8056 struct sched_domain *tmp;
8058 /* Remove the sched domains which do not contribute to scheduling. */
8059 for (tmp = sd; tmp; ) {
8060 struct sched_domain *parent = tmp->parent;
8061 if (!parent)
8062 break;
8064 if (sd_parent_degenerate(tmp, parent)) {
8065 tmp->parent = parent->parent;
8066 if (parent->parent)
8067 parent->parent->child = tmp;
8068 } else
8069 tmp = tmp->parent;
8072 if (sd && sd_degenerate(sd)) {
8073 sd = sd->parent;
8074 if (sd)
8075 sd->child = NULL;
8078 sched_domain_debug(sd, cpu);
8080 rq_attach_root(rq, rd);
8081 rcu_assign_pointer(rq->sd, sd);
8084 /* cpus with isolated domains */
8085 static cpumask_var_t cpu_isolated_map;
8087 /* Setup the mask of cpus configured for isolated domains */
8088 static int __init isolated_cpu_setup(char *str)
8090 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8091 cpulist_parse(str, cpu_isolated_map);
8092 return 1;
8095 __setup("isolcpus=", isolated_cpu_setup);
8098 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8099 * to a function which identifies what group(along with sched group) a CPU
8100 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8101 * (due to the fact that we keep track of groups covered with a struct cpumask).
8103 * init_sched_build_groups will build a circular linked list of the groups
8104 * covered by the given span, and will set each group's ->cpumask correctly,
8105 * and ->cpu_power to 0.
8107 static void
8108 init_sched_build_groups(const struct cpumask *span,
8109 const struct cpumask *cpu_map,
8110 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8111 struct sched_group **sg,
8112 struct cpumask *tmpmask),
8113 struct cpumask *covered, struct cpumask *tmpmask)
8115 struct sched_group *first = NULL, *last = NULL;
8116 int i;
8118 cpumask_clear(covered);
8120 for_each_cpu(i, span) {
8121 struct sched_group *sg;
8122 int group = group_fn(i, cpu_map, &sg, tmpmask);
8123 int j;
8125 if (cpumask_test_cpu(i, covered))
8126 continue;
8128 cpumask_clear(sched_group_cpus(sg));
8129 sg->cpu_power = 0;
8131 for_each_cpu(j, span) {
8132 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8133 continue;
8135 cpumask_set_cpu(j, covered);
8136 cpumask_set_cpu(j, sched_group_cpus(sg));
8138 if (!first)
8139 first = sg;
8140 if (last)
8141 last->next = sg;
8142 last = sg;
8144 last->next = first;
8147 #define SD_NODES_PER_DOMAIN 16
8149 #ifdef CONFIG_NUMA
8152 * find_next_best_node - find the next node to include in a sched_domain
8153 * @node: node whose sched_domain we're building
8154 * @used_nodes: nodes already in the sched_domain
8156 * Find the next node to include in a given scheduling domain. Simply
8157 * finds the closest node not already in the @used_nodes map.
8159 * Should use nodemask_t.
8161 static int find_next_best_node(int node, nodemask_t *used_nodes)
8163 int i, n, val, min_val, best_node = 0;
8165 min_val = INT_MAX;
8167 for (i = 0; i < nr_node_ids; i++) {
8168 /* Start at @node */
8169 n = (node + i) % nr_node_ids;
8171 if (!nr_cpus_node(n))
8172 continue;
8174 /* Skip already used nodes */
8175 if (node_isset(n, *used_nodes))
8176 continue;
8178 /* Simple min distance search */
8179 val = node_distance(node, n);
8181 if (val < min_val) {
8182 min_val = val;
8183 best_node = n;
8187 node_set(best_node, *used_nodes);
8188 return best_node;
8192 * sched_domain_node_span - get a cpumask for a node's sched_domain
8193 * @node: node whose cpumask we're constructing
8194 * @span: resulting cpumask
8196 * Given a node, construct a good cpumask for its sched_domain to span. It
8197 * should be one that prevents unnecessary balancing, but also spreads tasks
8198 * out optimally.
8200 static void sched_domain_node_span(int node, struct cpumask *span)
8202 nodemask_t used_nodes;
8203 int i;
8205 cpumask_clear(span);
8206 nodes_clear(used_nodes);
8208 cpumask_or(span, span, cpumask_of_node(node));
8209 node_set(node, used_nodes);
8211 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8212 int next_node = find_next_best_node(node, &used_nodes);
8214 cpumask_or(span, span, cpumask_of_node(next_node));
8217 #endif /* CONFIG_NUMA */
8219 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8222 * The cpus mask in sched_group and sched_domain hangs off the end.
8224 * ( See the the comments in include/linux/sched.h:struct sched_group
8225 * and struct sched_domain. )
8227 struct static_sched_group {
8228 struct sched_group sg;
8229 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8232 struct static_sched_domain {
8233 struct sched_domain sd;
8234 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8237 struct s_data {
8238 #ifdef CONFIG_NUMA
8239 int sd_allnodes;
8240 cpumask_var_t domainspan;
8241 cpumask_var_t covered;
8242 cpumask_var_t notcovered;
8243 #endif
8244 cpumask_var_t nodemask;
8245 cpumask_var_t this_sibling_map;
8246 cpumask_var_t this_core_map;
8247 cpumask_var_t send_covered;
8248 cpumask_var_t tmpmask;
8249 struct sched_group **sched_group_nodes;
8250 struct root_domain *rd;
8253 enum s_alloc {
8254 sa_sched_groups = 0,
8255 sa_rootdomain,
8256 sa_tmpmask,
8257 sa_send_covered,
8258 sa_this_core_map,
8259 sa_this_sibling_map,
8260 sa_nodemask,
8261 sa_sched_group_nodes,
8262 #ifdef CONFIG_NUMA
8263 sa_notcovered,
8264 sa_covered,
8265 sa_domainspan,
8266 #endif
8267 sa_none,
8271 * SMT sched-domains:
8273 #ifdef CONFIG_SCHED_SMT
8274 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8275 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8277 static int
8278 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8279 struct sched_group **sg, struct cpumask *unused)
8281 if (sg)
8282 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8283 return cpu;
8285 #endif /* CONFIG_SCHED_SMT */
8288 * multi-core sched-domains:
8290 #ifdef CONFIG_SCHED_MC
8291 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8292 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8293 #endif /* CONFIG_SCHED_MC */
8295 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8296 static int
8297 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8298 struct sched_group **sg, struct cpumask *mask)
8300 int group;
8302 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8303 group = cpumask_first(mask);
8304 if (sg)
8305 *sg = &per_cpu(sched_group_core, group).sg;
8306 return group;
8308 #elif defined(CONFIG_SCHED_MC)
8309 static int
8310 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8311 struct sched_group **sg, struct cpumask *unused)
8313 if (sg)
8314 *sg = &per_cpu(sched_group_core, cpu).sg;
8315 return cpu;
8317 #endif
8319 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8320 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8322 static int
8323 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8324 struct sched_group **sg, struct cpumask *mask)
8326 int group;
8327 #ifdef CONFIG_SCHED_MC
8328 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8329 group = cpumask_first(mask);
8330 #elif defined(CONFIG_SCHED_SMT)
8331 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8332 group = cpumask_first(mask);
8333 #else
8334 group = cpu;
8335 #endif
8336 if (sg)
8337 *sg = &per_cpu(sched_group_phys, group).sg;
8338 return group;
8341 #ifdef CONFIG_NUMA
8343 * The init_sched_build_groups can't handle what we want to do with node
8344 * groups, so roll our own. Now each node has its own list of groups which
8345 * gets dynamically allocated.
8347 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8348 static struct sched_group ***sched_group_nodes_bycpu;
8350 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8351 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8353 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8354 struct sched_group **sg,
8355 struct cpumask *nodemask)
8357 int group;
8359 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8360 group = cpumask_first(nodemask);
8362 if (sg)
8363 *sg = &per_cpu(sched_group_allnodes, group).sg;
8364 return group;
8367 static void init_numa_sched_groups_power(struct sched_group *group_head)
8369 struct sched_group *sg = group_head;
8370 int j;
8372 if (!sg)
8373 return;
8374 do {
8375 for_each_cpu(j, sched_group_cpus(sg)) {
8376 struct sched_domain *sd;
8378 sd = &per_cpu(phys_domains, j).sd;
8379 if (j != group_first_cpu(sd->groups)) {
8381 * Only add "power" once for each
8382 * physical package.
8384 continue;
8387 sg->cpu_power += sd->groups->cpu_power;
8389 sg = sg->next;
8390 } while (sg != group_head);
8393 static int build_numa_sched_groups(struct s_data *d,
8394 const struct cpumask *cpu_map, int num)
8396 struct sched_domain *sd;
8397 struct sched_group *sg, *prev;
8398 int n, j;
8400 cpumask_clear(d->covered);
8401 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8402 if (cpumask_empty(d->nodemask)) {
8403 d->sched_group_nodes[num] = NULL;
8404 goto out;
8407 sched_domain_node_span(num, d->domainspan);
8408 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8410 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8411 GFP_KERNEL, num);
8412 if (!sg) {
8413 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8414 num);
8415 return -ENOMEM;
8417 d->sched_group_nodes[num] = sg;
8419 for_each_cpu(j, d->nodemask) {
8420 sd = &per_cpu(node_domains, j).sd;
8421 sd->groups = sg;
8424 sg->cpu_power = 0;
8425 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8426 sg->next = sg;
8427 cpumask_or(d->covered, d->covered, d->nodemask);
8429 prev = sg;
8430 for (j = 0; j < nr_node_ids; j++) {
8431 n = (num + j) % nr_node_ids;
8432 cpumask_complement(d->notcovered, d->covered);
8433 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8434 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8435 if (cpumask_empty(d->tmpmask))
8436 break;
8437 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8438 if (cpumask_empty(d->tmpmask))
8439 continue;
8440 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8441 GFP_KERNEL, num);
8442 if (!sg) {
8443 printk(KERN_WARNING
8444 "Can not alloc domain group for node %d\n", j);
8445 return -ENOMEM;
8447 sg->cpu_power = 0;
8448 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8449 sg->next = prev->next;
8450 cpumask_or(d->covered, d->covered, d->tmpmask);
8451 prev->next = sg;
8452 prev = sg;
8454 out:
8455 return 0;
8457 #endif /* CONFIG_NUMA */
8459 #ifdef CONFIG_NUMA
8460 /* Free memory allocated for various sched_group structures */
8461 static void free_sched_groups(const struct cpumask *cpu_map,
8462 struct cpumask *nodemask)
8464 int cpu, i;
8466 for_each_cpu(cpu, cpu_map) {
8467 struct sched_group **sched_group_nodes
8468 = sched_group_nodes_bycpu[cpu];
8470 if (!sched_group_nodes)
8471 continue;
8473 for (i = 0; i < nr_node_ids; i++) {
8474 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8476 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8477 if (cpumask_empty(nodemask))
8478 continue;
8480 if (sg == NULL)
8481 continue;
8482 sg = sg->next;
8483 next_sg:
8484 oldsg = sg;
8485 sg = sg->next;
8486 kfree(oldsg);
8487 if (oldsg != sched_group_nodes[i])
8488 goto next_sg;
8490 kfree(sched_group_nodes);
8491 sched_group_nodes_bycpu[cpu] = NULL;
8494 #else /* !CONFIG_NUMA */
8495 static void free_sched_groups(const struct cpumask *cpu_map,
8496 struct cpumask *nodemask)
8499 #endif /* CONFIG_NUMA */
8502 * Initialize sched groups cpu_power.
8504 * cpu_power indicates the capacity of sched group, which is used while
8505 * distributing the load between different sched groups in a sched domain.
8506 * Typically cpu_power for all the groups in a sched domain will be same unless
8507 * there are asymmetries in the topology. If there are asymmetries, group
8508 * having more cpu_power will pickup more load compared to the group having
8509 * less cpu_power.
8511 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8513 struct sched_domain *child;
8514 struct sched_group *group;
8515 long power;
8516 int weight;
8518 WARN_ON(!sd || !sd->groups);
8520 if (cpu != group_first_cpu(sd->groups))
8521 return;
8523 child = sd->child;
8525 sd->groups->cpu_power = 0;
8527 if (!child) {
8528 power = SCHED_LOAD_SCALE;
8529 weight = cpumask_weight(sched_domain_span(sd));
8531 * SMT siblings share the power of a single core.
8532 * Usually multiple threads get a better yield out of
8533 * that one core than a single thread would have,
8534 * reflect that in sd->smt_gain.
8536 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8537 power *= sd->smt_gain;
8538 power /= weight;
8539 power >>= SCHED_LOAD_SHIFT;
8541 sd->groups->cpu_power += power;
8542 return;
8546 * Add cpu_power of each child group to this groups cpu_power.
8548 group = child->groups;
8549 do {
8550 sd->groups->cpu_power += group->cpu_power;
8551 group = group->next;
8552 } while (group != child->groups);
8556 * Initializers for schedule domains
8557 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8560 #ifdef CONFIG_SCHED_DEBUG
8561 # define SD_INIT_NAME(sd, type) sd->name = #type
8562 #else
8563 # define SD_INIT_NAME(sd, type) do { } while (0)
8564 #endif
8566 #define SD_INIT(sd, type) sd_init_##type(sd)
8568 #define SD_INIT_FUNC(type) \
8569 static noinline void sd_init_##type(struct sched_domain *sd) \
8571 memset(sd, 0, sizeof(*sd)); \
8572 *sd = SD_##type##_INIT; \
8573 sd->level = SD_LV_##type; \
8574 SD_INIT_NAME(sd, type); \
8577 SD_INIT_FUNC(CPU)
8578 #ifdef CONFIG_NUMA
8579 SD_INIT_FUNC(ALLNODES)
8580 SD_INIT_FUNC(NODE)
8581 #endif
8582 #ifdef CONFIG_SCHED_SMT
8583 SD_INIT_FUNC(SIBLING)
8584 #endif
8585 #ifdef CONFIG_SCHED_MC
8586 SD_INIT_FUNC(MC)
8587 #endif
8589 static int default_relax_domain_level = -1;
8591 static int __init setup_relax_domain_level(char *str)
8593 unsigned long val;
8595 val = simple_strtoul(str, NULL, 0);
8596 if (val < SD_LV_MAX)
8597 default_relax_domain_level = val;
8599 return 1;
8601 __setup("relax_domain_level=", setup_relax_domain_level);
8603 static void set_domain_attribute(struct sched_domain *sd,
8604 struct sched_domain_attr *attr)
8606 int request;
8608 if (!attr || attr->relax_domain_level < 0) {
8609 if (default_relax_domain_level < 0)
8610 return;
8611 else
8612 request = default_relax_domain_level;
8613 } else
8614 request = attr->relax_domain_level;
8615 if (request < sd->level) {
8616 /* turn off idle balance on this domain */
8617 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8618 } else {
8619 /* turn on idle balance on this domain */
8620 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8624 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8625 const struct cpumask *cpu_map)
8627 switch (what) {
8628 case sa_sched_groups:
8629 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8630 d->sched_group_nodes = NULL;
8631 case sa_rootdomain:
8632 free_rootdomain(d->rd); /* fall through */
8633 case sa_tmpmask:
8634 free_cpumask_var(d->tmpmask); /* fall through */
8635 case sa_send_covered:
8636 free_cpumask_var(d->send_covered); /* fall through */
8637 case sa_this_core_map:
8638 free_cpumask_var(d->this_core_map); /* fall through */
8639 case sa_this_sibling_map:
8640 free_cpumask_var(d->this_sibling_map); /* fall through */
8641 case sa_nodemask:
8642 free_cpumask_var(d->nodemask); /* fall through */
8643 case sa_sched_group_nodes:
8644 #ifdef CONFIG_NUMA
8645 kfree(d->sched_group_nodes); /* fall through */
8646 case sa_notcovered:
8647 free_cpumask_var(d->notcovered); /* fall through */
8648 case sa_covered:
8649 free_cpumask_var(d->covered); /* fall through */
8650 case sa_domainspan:
8651 free_cpumask_var(d->domainspan); /* fall through */
8652 #endif
8653 case sa_none:
8654 break;
8658 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8659 const struct cpumask *cpu_map)
8661 #ifdef CONFIG_NUMA
8662 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8663 return sa_none;
8664 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8665 return sa_domainspan;
8666 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8667 return sa_covered;
8668 /* Allocate the per-node list of sched groups */
8669 d->sched_group_nodes = kcalloc(nr_node_ids,
8670 sizeof(struct sched_group *), GFP_KERNEL);
8671 if (!d->sched_group_nodes) {
8672 printk(KERN_WARNING "Can not alloc sched group node list\n");
8673 return sa_notcovered;
8675 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8676 #endif
8677 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8678 return sa_sched_group_nodes;
8679 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8680 return sa_nodemask;
8681 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8682 return sa_this_sibling_map;
8683 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8684 return sa_this_core_map;
8685 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8686 return sa_send_covered;
8687 d->rd = alloc_rootdomain();
8688 if (!d->rd) {
8689 printk(KERN_WARNING "Cannot alloc root domain\n");
8690 return sa_tmpmask;
8692 return sa_rootdomain;
8695 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8696 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8698 struct sched_domain *sd = NULL;
8699 #ifdef CONFIG_NUMA
8700 struct sched_domain *parent;
8702 d->sd_allnodes = 0;
8703 if (cpumask_weight(cpu_map) >
8704 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8705 sd = &per_cpu(allnodes_domains, i).sd;
8706 SD_INIT(sd, ALLNODES);
8707 set_domain_attribute(sd, attr);
8708 cpumask_copy(sched_domain_span(sd), cpu_map);
8709 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8710 d->sd_allnodes = 1;
8712 parent = sd;
8714 sd = &per_cpu(node_domains, i).sd;
8715 SD_INIT(sd, NODE);
8716 set_domain_attribute(sd, attr);
8717 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8718 sd->parent = parent;
8719 if (parent)
8720 parent->child = sd;
8721 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8722 #endif
8723 return sd;
8726 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8727 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8728 struct sched_domain *parent, int i)
8730 struct sched_domain *sd;
8731 sd = &per_cpu(phys_domains, i).sd;
8732 SD_INIT(sd, CPU);
8733 set_domain_attribute(sd, attr);
8734 cpumask_copy(sched_domain_span(sd), d->nodemask);
8735 sd->parent = parent;
8736 if (parent)
8737 parent->child = sd;
8738 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8739 return sd;
8742 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8743 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8744 struct sched_domain *parent, int i)
8746 struct sched_domain *sd = parent;
8747 #ifdef CONFIG_SCHED_MC
8748 sd = &per_cpu(core_domains, i).sd;
8749 SD_INIT(sd, MC);
8750 set_domain_attribute(sd, attr);
8751 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8752 sd->parent = parent;
8753 parent->child = sd;
8754 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8755 #endif
8756 return sd;
8759 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8760 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8761 struct sched_domain *parent, int i)
8763 struct sched_domain *sd = parent;
8764 #ifdef CONFIG_SCHED_SMT
8765 sd = &per_cpu(cpu_domains, i).sd;
8766 SD_INIT(sd, SIBLING);
8767 set_domain_attribute(sd, attr);
8768 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8769 sd->parent = parent;
8770 parent->child = sd;
8771 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8772 #endif
8773 return sd;
8776 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8777 const struct cpumask *cpu_map, int cpu)
8779 switch (l) {
8780 #ifdef CONFIG_SCHED_SMT
8781 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8782 cpumask_and(d->this_sibling_map, cpu_map,
8783 topology_thread_cpumask(cpu));
8784 if (cpu == cpumask_first(d->this_sibling_map))
8785 init_sched_build_groups(d->this_sibling_map, cpu_map,
8786 &cpu_to_cpu_group,
8787 d->send_covered, d->tmpmask);
8788 break;
8789 #endif
8790 #ifdef CONFIG_SCHED_MC
8791 case SD_LV_MC: /* set up multi-core groups */
8792 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8793 if (cpu == cpumask_first(d->this_core_map))
8794 init_sched_build_groups(d->this_core_map, cpu_map,
8795 &cpu_to_core_group,
8796 d->send_covered, d->tmpmask);
8797 break;
8798 #endif
8799 case SD_LV_CPU: /* set up physical groups */
8800 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8801 if (!cpumask_empty(d->nodemask))
8802 init_sched_build_groups(d->nodemask, cpu_map,
8803 &cpu_to_phys_group,
8804 d->send_covered, d->tmpmask);
8805 break;
8806 #ifdef CONFIG_NUMA
8807 case SD_LV_ALLNODES:
8808 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8809 d->send_covered, d->tmpmask);
8810 break;
8811 #endif
8812 default:
8813 break;
8818 * Build sched domains for a given set of cpus and attach the sched domains
8819 * to the individual cpus
8821 static int __build_sched_domains(const struct cpumask *cpu_map,
8822 struct sched_domain_attr *attr)
8824 enum s_alloc alloc_state = sa_none;
8825 struct s_data d;
8826 struct sched_domain *sd;
8827 int i;
8828 #ifdef CONFIG_NUMA
8829 d.sd_allnodes = 0;
8830 #endif
8832 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8833 if (alloc_state != sa_rootdomain)
8834 goto error;
8835 alloc_state = sa_sched_groups;
8838 * Set up domains for cpus specified by the cpu_map.
8840 for_each_cpu(i, cpu_map) {
8841 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8842 cpu_map);
8844 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8845 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8846 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8847 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8850 for_each_cpu(i, cpu_map) {
8851 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8852 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8855 /* Set up physical groups */
8856 for (i = 0; i < nr_node_ids; i++)
8857 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8859 #ifdef CONFIG_NUMA
8860 /* Set up node groups */
8861 if (d.sd_allnodes)
8862 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8864 for (i = 0; i < nr_node_ids; i++)
8865 if (build_numa_sched_groups(&d, cpu_map, i))
8866 goto error;
8867 #endif
8869 /* Calculate CPU power for physical packages and nodes */
8870 #ifdef CONFIG_SCHED_SMT
8871 for_each_cpu(i, cpu_map) {
8872 sd = &per_cpu(cpu_domains, i).sd;
8873 init_sched_groups_power(i, sd);
8875 #endif
8876 #ifdef CONFIG_SCHED_MC
8877 for_each_cpu(i, cpu_map) {
8878 sd = &per_cpu(core_domains, i).sd;
8879 init_sched_groups_power(i, sd);
8881 #endif
8883 for_each_cpu(i, cpu_map) {
8884 sd = &per_cpu(phys_domains, i).sd;
8885 init_sched_groups_power(i, sd);
8888 #ifdef CONFIG_NUMA
8889 for (i = 0; i < nr_node_ids; i++)
8890 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8892 if (d.sd_allnodes) {
8893 struct sched_group *sg;
8895 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8896 d.tmpmask);
8897 init_numa_sched_groups_power(sg);
8899 #endif
8901 /* Attach the domains */
8902 for_each_cpu(i, cpu_map) {
8903 #ifdef CONFIG_SCHED_SMT
8904 sd = &per_cpu(cpu_domains, i).sd;
8905 #elif defined(CONFIG_SCHED_MC)
8906 sd = &per_cpu(core_domains, i).sd;
8907 #else
8908 sd = &per_cpu(phys_domains, i).sd;
8909 #endif
8910 cpu_attach_domain(sd, d.rd, i);
8913 d.sched_group_nodes = NULL; /* don't free this we still need it */
8914 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8915 return 0;
8917 error:
8918 __free_domain_allocs(&d, alloc_state, cpu_map);
8919 return -ENOMEM;
8922 static int build_sched_domains(const struct cpumask *cpu_map)
8924 return __build_sched_domains(cpu_map, NULL);
8927 static struct cpumask *doms_cur; /* current sched domains */
8928 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8929 static struct sched_domain_attr *dattr_cur;
8930 /* attribues of custom domains in 'doms_cur' */
8933 * Special case: If a kmalloc of a doms_cur partition (array of
8934 * cpumask) fails, then fallback to a single sched domain,
8935 * as determined by the single cpumask fallback_doms.
8937 static cpumask_var_t fallback_doms;
8940 * arch_update_cpu_topology lets virtualized architectures update the
8941 * cpu core maps. It is supposed to return 1 if the topology changed
8942 * or 0 if it stayed the same.
8944 int __attribute__((weak)) arch_update_cpu_topology(void)
8946 return 0;
8950 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8951 * For now this just excludes isolated cpus, but could be used to
8952 * exclude other special cases in the future.
8954 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8956 int err;
8958 arch_update_cpu_topology();
8959 ndoms_cur = 1;
8960 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8961 if (!doms_cur)
8962 doms_cur = fallback_doms;
8963 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8964 dattr_cur = NULL;
8965 err = build_sched_domains(doms_cur);
8966 register_sched_domain_sysctl();
8968 return err;
8971 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8972 struct cpumask *tmpmask)
8974 free_sched_groups(cpu_map, tmpmask);
8978 * Detach sched domains from a group of cpus specified in cpu_map
8979 * These cpus will now be attached to the NULL domain
8981 static void detach_destroy_domains(const struct cpumask *cpu_map)
8983 /* Save because hotplug lock held. */
8984 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8985 int i;
8987 for_each_cpu(i, cpu_map)
8988 cpu_attach_domain(NULL, &def_root_domain, i);
8989 synchronize_sched();
8990 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8993 /* handle null as "default" */
8994 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8995 struct sched_domain_attr *new, int idx_new)
8997 struct sched_domain_attr tmp;
8999 /* fast path */
9000 if (!new && !cur)
9001 return 1;
9003 tmp = SD_ATTR_INIT;
9004 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9005 new ? (new + idx_new) : &tmp,
9006 sizeof(struct sched_domain_attr));
9010 * Partition sched domains as specified by the 'ndoms_new'
9011 * cpumasks in the array doms_new[] of cpumasks. This compares
9012 * doms_new[] to the current sched domain partitioning, doms_cur[].
9013 * It destroys each deleted domain and builds each new domain.
9015 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
9016 * The masks don't intersect (don't overlap.) We should setup one
9017 * sched domain for each mask. CPUs not in any of the cpumasks will
9018 * not be load balanced. If the same cpumask appears both in the
9019 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9020 * it as it is.
9022 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9023 * ownership of it and will kfree it when done with it. If the caller
9024 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9025 * ndoms_new == 1, and partition_sched_domains() will fallback to
9026 * the single partition 'fallback_doms', it also forces the domains
9027 * to be rebuilt.
9029 * If doms_new == NULL it will be replaced with cpu_online_mask.
9030 * ndoms_new == 0 is a special case for destroying existing domains,
9031 * and it will not create the default domain.
9033 * Call with hotplug lock held
9035 /* FIXME: Change to struct cpumask *doms_new[] */
9036 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9037 struct sched_domain_attr *dattr_new)
9039 int i, j, n;
9040 int new_topology;
9042 mutex_lock(&sched_domains_mutex);
9044 /* always unregister in case we don't destroy any domains */
9045 unregister_sched_domain_sysctl();
9047 /* Let architecture update cpu core mappings. */
9048 new_topology = arch_update_cpu_topology();
9050 n = doms_new ? ndoms_new : 0;
9052 /* Destroy deleted domains */
9053 for (i = 0; i < ndoms_cur; i++) {
9054 for (j = 0; j < n && !new_topology; j++) {
9055 if (cpumask_equal(&doms_cur[i], &doms_new[j])
9056 && dattrs_equal(dattr_cur, i, dattr_new, j))
9057 goto match1;
9059 /* no match - a current sched domain not in new doms_new[] */
9060 detach_destroy_domains(doms_cur + i);
9061 match1:
9065 if (doms_new == NULL) {
9066 ndoms_cur = 0;
9067 doms_new = fallback_doms;
9068 cpumask_andnot(&doms_new[0], cpu_active_mask, cpu_isolated_map);
9069 WARN_ON_ONCE(dattr_new);
9072 /* Build new domains */
9073 for (i = 0; i < ndoms_new; i++) {
9074 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9075 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9076 && dattrs_equal(dattr_new, i, dattr_cur, j))
9077 goto match2;
9079 /* no match - add a new doms_new */
9080 __build_sched_domains(doms_new + i,
9081 dattr_new ? dattr_new + i : NULL);
9082 match2:
9086 /* Remember the new sched domains */
9087 if (doms_cur != fallback_doms)
9088 kfree(doms_cur);
9089 kfree(dattr_cur); /* kfree(NULL) is safe */
9090 doms_cur = doms_new;
9091 dattr_cur = dattr_new;
9092 ndoms_cur = ndoms_new;
9094 register_sched_domain_sysctl();
9096 mutex_unlock(&sched_domains_mutex);
9099 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9100 static void arch_reinit_sched_domains(void)
9102 get_online_cpus();
9104 /* Destroy domains first to force the rebuild */
9105 partition_sched_domains(0, NULL, NULL);
9107 rebuild_sched_domains();
9108 put_online_cpus();
9111 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9113 unsigned int level = 0;
9115 if (sscanf(buf, "%u", &level) != 1)
9116 return -EINVAL;
9119 * level is always be positive so don't check for
9120 * level < POWERSAVINGS_BALANCE_NONE which is 0
9121 * What happens on 0 or 1 byte write,
9122 * need to check for count as well?
9125 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9126 return -EINVAL;
9128 if (smt)
9129 sched_smt_power_savings = level;
9130 else
9131 sched_mc_power_savings = level;
9133 arch_reinit_sched_domains();
9135 return count;
9138 #ifdef CONFIG_SCHED_MC
9139 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9140 char *page)
9142 return sprintf(page, "%u\n", sched_mc_power_savings);
9144 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9145 const char *buf, size_t count)
9147 return sched_power_savings_store(buf, count, 0);
9149 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9150 sched_mc_power_savings_show,
9151 sched_mc_power_savings_store);
9152 #endif
9154 #ifdef CONFIG_SCHED_SMT
9155 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9156 char *page)
9158 return sprintf(page, "%u\n", sched_smt_power_savings);
9160 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9161 const char *buf, size_t count)
9163 return sched_power_savings_store(buf, count, 1);
9165 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9166 sched_smt_power_savings_show,
9167 sched_smt_power_savings_store);
9168 #endif
9170 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9172 int err = 0;
9174 #ifdef CONFIG_SCHED_SMT
9175 if (smt_capable())
9176 err = sysfs_create_file(&cls->kset.kobj,
9177 &attr_sched_smt_power_savings.attr);
9178 #endif
9179 #ifdef CONFIG_SCHED_MC
9180 if (!err && mc_capable())
9181 err = sysfs_create_file(&cls->kset.kobj,
9182 &attr_sched_mc_power_savings.attr);
9183 #endif
9184 return err;
9186 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9188 #ifndef CONFIG_CPUSETS
9190 * Add online and remove offline CPUs from the scheduler domains.
9191 * When cpusets are enabled they take over this function.
9193 static int update_sched_domains(struct notifier_block *nfb,
9194 unsigned long action, void *hcpu)
9196 switch (action) {
9197 case CPU_ONLINE:
9198 case CPU_ONLINE_FROZEN:
9199 case CPU_DOWN_PREPARE:
9200 case CPU_DOWN_PREPARE_FROZEN:
9201 case CPU_DOWN_FAILED:
9202 case CPU_DOWN_FAILED_FROZEN:
9203 partition_sched_domains(1, NULL, NULL);
9204 return NOTIFY_OK;
9206 default:
9207 return NOTIFY_DONE;
9210 #endif
9212 static int update_runtime(struct notifier_block *nfb,
9213 unsigned long action, void *hcpu)
9215 int cpu = (int)(long)hcpu;
9217 switch (action) {
9218 case CPU_DOWN_PREPARE:
9219 case CPU_DOWN_PREPARE_FROZEN:
9220 disable_runtime(cpu_rq(cpu));
9221 return NOTIFY_OK;
9223 case CPU_DOWN_FAILED:
9224 case CPU_DOWN_FAILED_FROZEN:
9225 case CPU_ONLINE:
9226 case CPU_ONLINE_FROZEN:
9227 enable_runtime(cpu_rq(cpu));
9228 return NOTIFY_OK;
9230 default:
9231 return NOTIFY_DONE;
9235 void __init sched_init_smp(void)
9237 cpumask_var_t non_isolated_cpus;
9239 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9240 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9242 #if defined(CONFIG_NUMA)
9243 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9244 GFP_KERNEL);
9245 BUG_ON(sched_group_nodes_bycpu == NULL);
9246 #endif
9247 get_online_cpus();
9248 mutex_lock(&sched_domains_mutex);
9249 arch_init_sched_domains(cpu_active_mask);
9250 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9251 if (cpumask_empty(non_isolated_cpus))
9252 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9253 mutex_unlock(&sched_domains_mutex);
9254 put_online_cpus();
9256 #ifndef CONFIG_CPUSETS
9257 /* XXX: Theoretical race here - CPU may be hotplugged now */
9258 hotcpu_notifier(update_sched_domains, 0);
9259 #endif
9261 /* RT runtime code needs to handle some hotplug events */
9262 hotcpu_notifier(update_runtime, 0);
9264 init_hrtick();
9266 /* Move init over to a non-isolated CPU */
9267 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9268 BUG();
9269 sched_init_granularity();
9270 free_cpumask_var(non_isolated_cpus);
9272 init_sched_rt_class();
9274 #else
9275 void __init sched_init_smp(void)
9277 sched_init_granularity();
9279 #endif /* CONFIG_SMP */
9281 const_debug unsigned int sysctl_timer_migration = 1;
9283 int in_sched_functions(unsigned long addr)
9285 return in_lock_functions(addr) ||
9286 (addr >= (unsigned long)__sched_text_start
9287 && addr < (unsigned long)__sched_text_end);
9290 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9292 cfs_rq->tasks_timeline = RB_ROOT;
9293 INIT_LIST_HEAD(&cfs_rq->tasks);
9294 #ifdef CONFIG_FAIR_GROUP_SCHED
9295 cfs_rq->rq = rq;
9296 #endif
9297 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9300 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9302 struct rt_prio_array *array;
9303 int i;
9305 array = &rt_rq->active;
9306 for (i = 0; i < MAX_RT_PRIO; i++) {
9307 INIT_LIST_HEAD(array->queue + i);
9308 __clear_bit(i, array->bitmap);
9310 /* delimiter for bitsearch: */
9311 __set_bit(MAX_RT_PRIO, array->bitmap);
9313 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9314 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9315 #ifdef CONFIG_SMP
9316 rt_rq->highest_prio.next = MAX_RT_PRIO;
9317 #endif
9318 #endif
9319 #ifdef CONFIG_SMP
9320 rt_rq->rt_nr_migratory = 0;
9321 rt_rq->overloaded = 0;
9322 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9323 #endif
9325 rt_rq->rt_time = 0;
9326 rt_rq->rt_throttled = 0;
9327 rt_rq->rt_runtime = 0;
9328 spin_lock_init(&rt_rq->rt_runtime_lock);
9330 #ifdef CONFIG_RT_GROUP_SCHED
9331 rt_rq->rt_nr_boosted = 0;
9332 rt_rq->rq = rq;
9333 #endif
9336 #ifdef CONFIG_FAIR_GROUP_SCHED
9337 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9338 struct sched_entity *se, int cpu, int add,
9339 struct sched_entity *parent)
9341 struct rq *rq = cpu_rq(cpu);
9342 tg->cfs_rq[cpu] = cfs_rq;
9343 init_cfs_rq(cfs_rq, rq);
9344 cfs_rq->tg = tg;
9345 if (add)
9346 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9348 tg->se[cpu] = se;
9349 /* se could be NULL for init_task_group */
9350 if (!se)
9351 return;
9353 if (!parent)
9354 se->cfs_rq = &rq->cfs;
9355 else
9356 se->cfs_rq = parent->my_q;
9358 se->my_q = cfs_rq;
9359 se->load.weight = tg->shares;
9360 se->load.inv_weight = 0;
9361 se->parent = parent;
9363 #endif
9365 #ifdef CONFIG_RT_GROUP_SCHED
9366 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9367 struct sched_rt_entity *rt_se, int cpu, int add,
9368 struct sched_rt_entity *parent)
9370 struct rq *rq = cpu_rq(cpu);
9372 tg->rt_rq[cpu] = rt_rq;
9373 init_rt_rq(rt_rq, rq);
9374 rt_rq->tg = tg;
9375 rt_rq->rt_se = rt_se;
9376 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9377 if (add)
9378 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9380 tg->rt_se[cpu] = rt_se;
9381 if (!rt_se)
9382 return;
9384 if (!parent)
9385 rt_se->rt_rq = &rq->rt;
9386 else
9387 rt_se->rt_rq = parent->my_q;
9389 rt_se->my_q = rt_rq;
9390 rt_se->parent = parent;
9391 INIT_LIST_HEAD(&rt_se->run_list);
9393 #endif
9395 void __init sched_init(void)
9397 int i, j;
9398 unsigned long alloc_size = 0, ptr;
9400 #ifdef CONFIG_FAIR_GROUP_SCHED
9401 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9402 #endif
9403 #ifdef CONFIG_RT_GROUP_SCHED
9404 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9405 #endif
9406 #ifdef CONFIG_USER_SCHED
9407 alloc_size *= 2;
9408 #endif
9409 #ifdef CONFIG_CPUMASK_OFFSTACK
9410 alloc_size += num_possible_cpus() * cpumask_size();
9411 #endif
9413 * As sched_init() is called before page_alloc is setup,
9414 * we use alloc_bootmem().
9416 if (alloc_size) {
9417 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9419 #ifdef CONFIG_FAIR_GROUP_SCHED
9420 init_task_group.se = (struct sched_entity **)ptr;
9421 ptr += nr_cpu_ids * sizeof(void **);
9423 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9424 ptr += nr_cpu_ids * sizeof(void **);
9426 #ifdef CONFIG_USER_SCHED
9427 root_task_group.se = (struct sched_entity **)ptr;
9428 ptr += nr_cpu_ids * sizeof(void **);
9430 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9431 ptr += nr_cpu_ids * sizeof(void **);
9432 #endif /* CONFIG_USER_SCHED */
9433 #endif /* CONFIG_FAIR_GROUP_SCHED */
9434 #ifdef CONFIG_RT_GROUP_SCHED
9435 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9436 ptr += nr_cpu_ids * sizeof(void **);
9438 init_task_group.rt_rq = (struct rt_rq **)ptr;
9439 ptr += nr_cpu_ids * sizeof(void **);
9441 #ifdef CONFIG_USER_SCHED
9442 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9443 ptr += nr_cpu_ids * sizeof(void **);
9445 root_task_group.rt_rq = (struct rt_rq **)ptr;
9446 ptr += nr_cpu_ids * sizeof(void **);
9447 #endif /* CONFIG_USER_SCHED */
9448 #endif /* CONFIG_RT_GROUP_SCHED */
9449 #ifdef CONFIG_CPUMASK_OFFSTACK
9450 for_each_possible_cpu(i) {
9451 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9452 ptr += cpumask_size();
9454 #endif /* CONFIG_CPUMASK_OFFSTACK */
9457 #ifdef CONFIG_SMP
9458 init_defrootdomain();
9459 #endif
9461 init_rt_bandwidth(&def_rt_bandwidth,
9462 global_rt_period(), global_rt_runtime());
9464 #ifdef CONFIG_RT_GROUP_SCHED
9465 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9466 global_rt_period(), global_rt_runtime());
9467 #ifdef CONFIG_USER_SCHED
9468 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9469 global_rt_period(), RUNTIME_INF);
9470 #endif /* CONFIG_USER_SCHED */
9471 #endif /* CONFIG_RT_GROUP_SCHED */
9473 #ifdef CONFIG_GROUP_SCHED
9474 list_add(&init_task_group.list, &task_groups);
9475 INIT_LIST_HEAD(&init_task_group.children);
9477 #ifdef CONFIG_USER_SCHED
9478 INIT_LIST_HEAD(&root_task_group.children);
9479 init_task_group.parent = &root_task_group;
9480 list_add(&init_task_group.siblings, &root_task_group.children);
9481 #endif /* CONFIG_USER_SCHED */
9482 #endif /* CONFIG_GROUP_SCHED */
9484 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9485 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9486 __alignof__(unsigned long));
9487 #endif
9488 for_each_possible_cpu(i) {
9489 struct rq *rq;
9491 rq = cpu_rq(i);
9492 spin_lock_init(&rq->lock);
9493 rq->nr_running = 0;
9494 rq->calc_load_active = 0;
9495 rq->calc_load_update = jiffies + LOAD_FREQ;
9496 init_cfs_rq(&rq->cfs, rq);
9497 init_rt_rq(&rq->rt, rq);
9498 #ifdef CONFIG_FAIR_GROUP_SCHED
9499 init_task_group.shares = init_task_group_load;
9500 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9501 #ifdef CONFIG_CGROUP_SCHED
9503 * How much cpu bandwidth does init_task_group get?
9505 * In case of task-groups formed thr' the cgroup filesystem, it
9506 * gets 100% of the cpu resources in the system. This overall
9507 * system cpu resource is divided among the tasks of
9508 * init_task_group and its child task-groups in a fair manner,
9509 * based on each entity's (task or task-group's) weight
9510 * (se->load.weight).
9512 * In other words, if init_task_group has 10 tasks of weight
9513 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9514 * then A0's share of the cpu resource is:
9516 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9518 * We achieve this by letting init_task_group's tasks sit
9519 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9521 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9522 #elif defined CONFIG_USER_SCHED
9523 root_task_group.shares = NICE_0_LOAD;
9524 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9526 * In case of task-groups formed thr' the user id of tasks,
9527 * init_task_group represents tasks belonging to root user.
9528 * Hence it forms a sibling of all subsequent groups formed.
9529 * In this case, init_task_group gets only a fraction of overall
9530 * system cpu resource, based on the weight assigned to root
9531 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9532 * by letting tasks of init_task_group sit in a separate cfs_rq
9533 * (init_tg_cfs_rq) and having one entity represent this group of
9534 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9536 init_tg_cfs_entry(&init_task_group,
9537 &per_cpu(init_tg_cfs_rq, i),
9538 &per_cpu(init_sched_entity, i), i, 1,
9539 root_task_group.se[i]);
9541 #endif
9542 #endif /* CONFIG_FAIR_GROUP_SCHED */
9544 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9545 #ifdef CONFIG_RT_GROUP_SCHED
9546 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9547 #ifdef CONFIG_CGROUP_SCHED
9548 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9549 #elif defined CONFIG_USER_SCHED
9550 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9551 init_tg_rt_entry(&init_task_group,
9552 &per_cpu(init_rt_rq, i),
9553 &per_cpu(init_sched_rt_entity, i), i, 1,
9554 root_task_group.rt_se[i]);
9555 #endif
9556 #endif
9558 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9559 rq->cpu_load[j] = 0;
9560 #ifdef CONFIG_SMP
9561 rq->sd = NULL;
9562 rq->rd = NULL;
9563 rq->post_schedule = 0;
9564 rq->active_balance = 0;
9565 rq->next_balance = jiffies;
9566 rq->push_cpu = 0;
9567 rq->cpu = i;
9568 rq->online = 0;
9569 rq->migration_thread = NULL;
9570 rq->idle_stamp = 0;
9571 rq->avg_idle = 2*sysctl_sched_migration_cost;
9572 INIT_LIST_HEAD(&rq->migration_queue);
9573 rq_attach_root(rq, &def_root_domain);
9574 #endif
9575 init_rq_hrtick(rq);
9576 atomic_set(&rq->nr_iowait, 0);
9579 set_load_weight(&init_task);
9581 #ifdef CONFIG_PREEMPT_NOTIFIERS
9582 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9583 #endif
9585 #ifdef CONFIG_SMP
9586 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9587 #endif
9589 #ifdef CONFIG_RT_MUTEXES
9590 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9591 #endif
9594 * The boot idle thread does lazy MMU switching as well:
9596 atomic_inc(&init_mm.mm_count);
9597 enter_lazy_tlb(&init_mm, current);
9600 * Make us the idle thread. Technically, schedule() should not be
9601 * called from this thread, however somewhere below it might be,
9602 * but because we are the idle thread, we just pick up running again
9603 * when this runqueue becomes "idle".
9605 init_idle(current, smp_processor_id());
9607 calc_load_update = jiffies + LOAD_FREQ;
9610 * During early bootup we pretend to be a normal task:
9612 current->sched_class = &fair_sched_class;
9614 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9615 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9616 #ifdef CONFIG_SMP
9617 #ifdef CONFIG_NO_HZ
9618 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9619 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9620 #endif
9621 /* May be allocated at isolcpus cmdline parse time */
9622 if (cpu_isolated_map == NULL)
9623 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9624 #endif /* SMP */
9626 perf_event_init();
9628 scheduler_running = 1;
9631 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9632 static inline int preempt_count_equals(int preempt_offset)
9634 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9636 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9639 void __might_sleep(char *file, int line, int preempt_offset)
9641 #ifdef in_atomic
9642 static unsigned long prev_jiffy; /* ratelimiting */
9644 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9645 system_state != SYSTEM_RUNNING || oops_in_progress)
9646 return;
9647 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9648 return;
9649 prev_jiffy = jiffies;
9651 printk(KERN_ERR
9652 "BUG: sleeping function called from invalid context at %s:%d\n",
9653 file, line);
9654 printk(KERN_ERR
9655 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9656 in_atomic(), irqs_disabled(),
9657 current->pid, current->comm);
9659 debug_show_held_locks(current);
9660 if (irqs_disabled())
9661 print_irqtrace_events(current);
9662 dump_stack();
9663 #endif
9665 EXPORT_SYMBOL(__might_sleep);
9666 #endif
9668 #ifdef CONFIG_MAGIC_SYSRQ
9669 static void normalize_task(struct rq *rq, struct task_struct *p)
9671 int on_rq;
9673 update_rq_clock(rq);
9674 on_rq = p->se.on_rq;
9675 if (on_rq)
9676 deactivate_task(rq, p, 0);
9677 __setscheduler(rq, p, SCHED_NORMAL, 0);
9678 if (on_rq) {
9679 activate_task(rq, p, 0);
9680 resched_task(rq->curr);
9684 void normalize_rt_tasks(void)
9686 struct task_struct *g, *p;
9687 unsigned long flags;
9688 struct rq *rq;
9690 read_lock_irqsave(&tasklist_lock, flags);
9691 do_each_thread(g, p) {
9693 * Only normalize user tasks:
9695 if (!p->mm)
9696 continue;
9698 p->se.exec_start = 0;
9699 #ifdef CONFIG_SCHEDSTATS
9700 p->se.wait_start = 0;
9701 p->se.sleep_start = 0;
9702 p->se.block_start = 0;
9703 #endif
9705 if (!rt_task(p)) {
9707 * Renice negative nice level userspace
9708 * tasks back to 0:
9710 if (TASK_NICE(p) < 0 && p->mm)
9711 set_user_nice(p, 0);
9712 continue;
9715 spin_lock(&p->pi_lock);
9716 rq = __task_rq_lock(p);
9718 normalize_task(rq, p);
9720 __task_rq_unlock(rq);
9721 spin_unlock(&p->pi_lock);
9722 } while_each_thread(g, p);
9724 read_unlock_irqrestore(&tasklist_lock, flags);
9727 #endif /* CONFIG_MAGIC_SYSRQ */
9729 #ifdef CONFIG_IA64
9731 * These functions are only useful for the IA64 MCA handling.
9733 * They can only be called when the whole system has been
9734 * stopped - every CPU needs to be quiescent, and no scheduling
9735 * activity can take place. Using them for anything else would
9736 * be a serious bug, and as a result, they aren't even visible
9737 * under any other configuration.
9741 * curr_task - return the current task for a given cpu.
9742 * @cpu: the processor in question.
9744 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9746 struct task_struct *curr_task(int cpu)
9748 return cpu_curr(cpu);
9752 * set_curr_task - set the current task for a given cpu.
9753 * @cpu: the processor in question.
9754 * @p: the task pointer to set.
9756 * Description: This function must only be used when non-maskable interrupts
9757 * are serviced on a separate stack. It allows the architecture to switch the
9758 * notion of the current task on a cpu in a non-blocking manner. This function
9759 * must be called with all CPU's synchronized, and interrupts disabled, the
9760 * and caller must save the original value of the current task (see
9761 * curr_task() above) and restore that value before reenabling interrupts and
9762 * re-starting the system.
9764 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9766 void set_curr_task(int cpu, struct task_struct *p)
9768 cpu_curr(cpu) = p;
9771 #endif
9773 #ifdef CONFIG_FAIR_GROUP_SCHED
9774 static void free_fair_sched_group(struct task_group *tg)
9776 int i;
9778 for_each_possible_cpu(i) {
9779 if (tg->cfs_rq)
9780 kfree(tg->cfs_rq[i]);
9781 if (tg->se)
9782 kfree(tg->se[i]);
9785 kfree(tg->cfs_rq);
9786 kfree(tg->se);
9789 static
9790 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9792 struct cfs_rq *cfs_rq;
9793 struct sched_entity *se;
9794 struct rq *rq;
9795 int i;
9797 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9798 if (!tg->cfs_rq)
9799 goto err;
9800 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9801 if (!tg->se)
9802 goto err;
9804 tg->shares = NICE_0_LOAD;
9806 for_each_possible_cpu(i) {
9807 rq = cpu_rq(i);
9809 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9810 GFP_KERNEL, cpu_to_node(i));
9811 if (!cfs_rq)
9812 goto err;
9814 se = kzalloc_node(sizeof(struct sched_entity),
9815 GFP_KERNEL, cpu_to_node(i));
9816 if (!se)
9817 goto err;
9819 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9822 return 1;
9824 err:
9825 return 0;
9828 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9830 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9831 &cpu_rq(cpu)->leaf_cfs_rq_list);
9834 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9836 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9838 #else /* !CONFG_FAIR_GROUP_SCHED */
9839 static inline void free_fair_sched_group(struct task_group *tg)
9843 static inline
9844 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9846 return 1;
9849 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9853 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9856 #endif /* CONFIG_FAIR_GROUP_SCHED */
9858 #ifdef CONFIG_RT_GROUP_SCHED
9859 static void free_rt_sched_group(struct task_group *tg)
9861 int i;
9863 destroy_rt_bandwidth(&tg->rt_bandwidth);
9865 for_each_possible_cpu(i) {
9866 if (tg->rt_rq)
9867 kfree(tg->rt_rq[i]);
9868 if (tg->rt_se)
9869 kfree(tg->rt_se[i]);
9872 kfree(tg->rt_rq);
9873 kfree(tg->rt_se);
9876 static
9877 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9879 struct rt_rq *rt_rq;
9880 struct sched_rt_entity *rt_se;
9881 struct rq *rq;
9882 int i;
9884 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9885 if (!tg->rt_rq)
9886 goto err;
9887 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9888 if (!tg->rt_se)
9889 goto err;
9891 init_rt_bandwidth(&tg->rt_bandwidth,
9892 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9894 for_each_possible_cpu(i) {
9895 rq = cpu_rq(i);
9897 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9898 GFP_KERNEL, cpu_to_node(i));
9899 if (!rt_rq)
9900 goto err;
9902 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9903 GFP_KERNEL, cpu_to_node(i));
9904 if (!rt_se)
9905 goto err;
9907 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9910 return 1;
9912 err:
9913 return 0;
9916 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9918 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9919 &cpu_rq(cpu)->leaf_rt_rq_list);
9922 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9924 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9926 #else /* !CONFIG_RT_GROUP_SCHED */
9927 static inline void free_rt_sched_group(struct task_group *tg)
9931 static inline
9932 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9934 return 1;
9937 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9941 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9944 #endif /* CONFIG_RT_GROUP_SCHED */
9946 #ifdef CONFIG_GROUP_SCHED
9947 static void free_sched_group(struct task_group *tg)
9949 free_fair_sched_group(tg);
9950 free_rt_sched_group(tg);
9951 kfree(tg);
9954 /* allocate runqueue etc for a new task group */
9955 struct task_group *sched_create_group(struct task_group *parent)
9957 struct task_group *tg;
9958 unsigned long flags;
9959 int i;
9961 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9962 if (!tg)
9963 return ERR_PTR(-ENOMEM);
9965 if (!alloc_fair_sched_group(tg, parent))
9966 goto err;
9968 if (!alloc_rt_sched_group(tg, parent))
9969 goto err;
9971 spin_lock_irqsave(&task_group_lock, flags);
9972 for_each_possible_cpu(i) {
9973 register_fair_sched_group(tg, i);
9974 register_rt_sched_group(tg, i);
9976 list_add_rcu(&tg->list, &task_groups);
9978 WARN_ON(!parent); /* root should already exist */
9980 tg->parent = parent;
9981 INIT_LIST_HEAD(&tg->children);
9982 list_add_rcu(&tg->siblings, &parent->children);
9983 spin_unlock_irqrestore(&task_group_lock, flags);
9985 return tg;
9987 err:
9988 free_sched_group(tg);
9989 return ERR_PTR(-ENOMEM);
9992 /* rcu callback to free various structures associated with a task group */
9993 static void free_sched_group_rcu(struct rcu_head *rhp)
9995 /* now it should be safe to free those cfs_rqs */
9996 free_sched_group(container_of(rhp, struct task_group, rcu));
9999 /* Destroy runqueue etc associated with a task group */
10000 void sched_destroy_group(struct task_group *tg)
10002 unsigned long flags;
10003 int i;
10005 spin_lock_irqsave(&task_group_lock, flags);
10006 for_each_possible_cpu(i) {
10007 unregister_fair_sched_group(tg, i);
10008 unregister_rt_sched_group(tg, i);
10010 list_del_rcu(&tg->list);
10011 list_del_rcu(&tg->siblings);
10012 spin_unlock_irqrestore(&task_group_lock, flags);
10014 /* wait for possible concurrent references to cfs_rqs complete */
10015 call_rcu(&tg->rcu, free_sched_group_rcu);
10018 /* change task's runqueue when it moves between groups.
10019 * The caller of this function should have put the task in its new group
10020 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10021 * reflect its new group.
10023 void sched_move_task(struct task_struct *tsk)
10025 int on_rq, running;
10026 unsigned long flags;
10027 struct rq *rq;
10029 rq = task_rq_lock(tsk, &flags);
10031 update_rq_clock(rq);
10033 running = task_current(rq, tsk);
10034 on_rq = tsk->se.on_rq;
10036 if (on_rq)
10037 dequeue_task(rq, tsk, 0);
10038 if (unlikely(running))
10039 tsk->sched_class->put_prev_task(rq, tsk);
10041 set_task_rq(tsk, task_cpu(tsk));
10043 #ifdef CONFIG_FAIR_GROUP_SCHED
10044 if (tsk->sched_class->moved_group)
10045 tsk->sched_class->moved_group(tsk);
10046 #endif
10048 if (unlikely(running))
10049 tsk->sched_class->set_curr_task(rq);
10050 if (on_rq)
10051 enqueue_task(rq, tsk, 0);
10053 task_rq_unlock(rq, &flags);
10055 #endif /* CONFIG_GROUP_SCHED */
10057 #ifdef CONFIG_FAIR_GROUP_SCHED
10058 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10060 struct cfs_rq *cfs_rq = se->cfs_rq;
10061 int on_rq;
10063 on_rq = se->on_rq;
10064 if (on_rq)
10065 dequeue_entity(cfs_rq, se, 0);
10067 se->load.weight = shares;
10068 se->load.inv_weight = 0;
10070 if (on_rq)
10071 enqueue_entity(cfs_rq, se, 0);
10074 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10076 struct cfs_rq *cfs_rq = se->cfs_rq;
10077 struct rq *rq = cfs_rq->rq;
10078 unsigned long flags;
10080 spin_lock_irqsave(&rq->lock, flags);
10081 __set_se_shares(se, shares);
10082 spin_unlock_irqrestore(&rq->lock, flags);
10085 static DEFINE_MUTEX(shares_mutex);
10087 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10089 int i;
10090 unsigned long flags;
10093 * We can't change the weight of the root cgroup.
10095 if (!tg->se[0])
10096 return -EINVAL;
10098 if (shares < MIN_SHARES)
10099 shares = MIN_SHARES;
10100 else if (shares > MAX_SHARES)
10101 shares = MAX_SHARES;
10103 mutex_lock(&shares_mutex);
10104 if (tg->shares == shares)
10105 goto done;
10107 spin_lock_irqsave(&task_group_lock, flags);
10108 for_each_possible_cpu(i)
10109 unregister_fair_sched_group(tg, i);
10110 list_del_rcu(&tg->siblings);
10111 spin_unlock_irqrestore(&task_group_lock, flags);
10113 /* wait for any ongoing reference to this group to finish */
10114 synchronize_sched();
10117 * Now we are free to modify the group's share on each cpu
10118 * w/o tripping rebalance_share or load_balance_fair.
10120 tg->shares = shares;
10121 for_each_possible_cpu(i) {
10123 * force a rebalance
10125 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10126 set_se_shares(tg->se[i], shares);
10130 * Enable load balance activity on this group, by inserting it back on
10131 * each cpu's rq->leaf_cfs_rq_list.
10133 spin_lock_irqsave(&task_group_lock, flags);
10134 for_each_possible_cpu(i)
10135 register_fair_sched_group(tg, i);
10136 list_add_rcu(&tg->siblings, &tg->parent->children);
10137 spin_unlock_irqrestore(&task_group_lock, flags);
10138 done:
10139 mutex_unlock(&shares_mutex);
10140 return 0;
10143 unsigned long sched_group_shares(struct task_group *tg)
10145 return tg->shares;
10147 #endif
10149 #ifdef CONFIG_RT_GROUP_SCHED
10151 * Ensure that the real time constraints are schedulable.
10153 static DEFINE_MUTEX(rt_constraints_mutex);
10155 static unsigned long to_ratio(u64 period, u64 runtime)
10157 if (runtime == RUNTIME_INF)
10158 return 1ULL << 20;
10160 return div64_u64(runtime << 20, period);
10163 /* Must be called with tasklist_lock held */
10164 static inline int tg_has_rt_tasks(struct task_group *tg)
10166 struct task_struct *g, *p;
10168 do_each_thread(g, p) {
10169 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10170 return 1;
10171 } while_each_thread(g, p);
10173 return 0;
10176 struct rt_schedulable_data {
10177 struct task_group *tg;
10178 u64 rt_period;
10179 u64 rt_runtime;
10182 static int tg_schedulable(struct task_group *tg, void *data)
10184 struct rt_schedulable_data *d = data;
10185 struct task_group *child;
10186 unsigned long total, sum = 0;
10187 u64 period, runtime;
10189 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10190 runtime = tg->rt_bandwidth.rt_runtime;
10192 if (tg == d->tg) {
10193 period = d->rt_period;
10194 runtime = d->rt_runtime;
10197 #ifdef CONFIG_USER_SCHED
10198 if (tg == &root_task_group) {
10199 period = global_rt_period();
10200 runtime = global_rt_runtime();
10202 #endif
10205 * Cannot have more runtime than the period.
10207 if (runtime > period && runtime != RUNTIME_INF)
10208 return -EINVAL;
10211 * Ensure we don't starve existing RT tasks.
10213 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10214 return -EBUSY;
10216 total = to_ratio(period, runtime);
10219 * Nobody can have more than the global setting allows.
10221 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10222 return -EINVAL;
10225 * The sum of our children's runtime should not exceed our own.
10227 list_for_each_entry_rcu(child, &tg->children, siblings) {
10228 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10229 runtime = child->rt_bandwidth.rt_runtime;
10231 if (child == d->tg) {
10232 period = d->rt_period;
10233 runtime = d->rt_runtime;
10236 sum += to_ratio(period, runtime);
10239 if (sum > total)
10240 return -EINVAL;
10242 return 0;
10245 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10247 struct rt_schedulable_data data = {
10248 .tg = tg,
10249 .rt_period = period,
10250 .rt_runtime = runtime,
10253 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10256 static int tg_set_bandwidth(struct task_group *tg,
10257 u64 rt_period, u64 rt_runtime)
10259 int i, err = 0;
10261 mutex_lock(&rt_constraints_mutex);
10262 read_lock(&tasklist_lock);
10263 err = __rt_schedulable(tg, rt_period, rt_runtime);
10264 if (err)
10265 goto unlock;
10267 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10268 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10269 tg->rt_bandwidth.rt_runtime = rt_runtime;
10271 for_each_possible_cpu(i) {
10272 struct rt_rq *rt_rq = tg->rt_rq[i];
10274 spin_lock(&rt_rq->rt_runtime_lock);
10275 rt_rq->rt_runtime = rt_runtime;
10276 spin_unlock(&rt_rq->rt_runtime_lock);
10278 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10279 unlock:
10280 read_unlock(&tasklist_lock);
10281 mutex_unlock(&rt_constraints_mutex);
10283 return err;
10286 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10288 u64 rt_runtime, rt_period;
10290 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10291 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10292 if (rt_runtime_us < 0)
10293 rt_runtime = RUNTIME_INF;
10295 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10298 long sched_group_rt_runtime(struct task_group *tg)
10300 u64 rt_runtime_us;
10302 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10303 return -1;
10305 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10306 do_div(rt_runtime_us, NSEC_PER_USEC);
10307 return rt_runtime_us;
10310 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10312 u64 rt_runtime, rt_period;
10314 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10315 rt_runtime = tg->rt_bandwidth.rt_runtime;
10317 if (rt_period == 0)
10318 return -EINVAL;
10320 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10323 long sched_group_rt_period(struct task_group *tg)
10325 u64 rt_period_us;
10327 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10328 do_div(rt_period_us, NSEC_PER_USEC);
10329 return rt_period_us;
10332 static int sched_rt_global_constraints(void)
10334 u64 runtime, period;
10335 int ret = 0;
10337 if (sysctl_sched_rt_period <= 0)
10338 return -EINVAL;
10340 runtime = global_rt_runtime();
10341 period = global_rt_period();
10344 * Sanity check on the sysctl variables.
10346 if (runtime > period && runtime != RUNTIME_INF)
10347 return -EINVAL;
10349 mutex_lock(&rt_constraints_mutex);
10350 read_lock(&tasklist_lock);
10351 ret = __rt_schedulable(NULL, 0, 0);
10352 read_unlock(&tasklist_lock);
10353 mutex_unlock(&rt_constraints_mutex);
10355 return ret;
10358 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10360 /* Don't accept realtime tasks when there is no way for them to run */
10361 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10362 return 0;
10364 return 1;
10367 #else /* !CONFIG_RT_GROUP_SCHED */
10368 static int sched_rt_global_constraints(void)
10370 unsigned long flags;
10371 int i;
10373 if (sysctl_sched_rt_period <= 0)
10374 return -EINVAL;
10377 * There's always some RT tasks in the root group
10378 * -- migration, kstopmachine etc..
10380 if (sysctl_sched_rt_runtime == 0)
10381 return -EBUSY;
10383 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10384 for_each_possible_cpu(i) {
10385 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10387 spin_lock(&rt_rq->rt_runtime_lock);
10388 rt_rq->rt_runtime = global_rt_runtime();
10389 spin_unlock(&rt_rq->rt_runtime_lock);
10391 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10393 return 0;
10395 #endif /* CONFIG_RT_GROUP_SCHED */
10397 int sched_rt_handler(struct ctl_table *table, int write,
10398 void __user *buffer, size_t *lenp,
10399 loff_t *ppos)
10401 int ret;
10402 int old_period, old_runtime;
10403 static DEFINE_MUTEX(mutex);
10405 mutex_lock(&mutex);
10406 old_period = sysctl_sched_rt_period;
10407 old_runtime = sysctl_sched_rt_runtime;
10409 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10411 if (!ret && write) {
10412 ret = sched_rt_global_constraints();
10413 if (ret) {
10414 sysctl_sched_rt_period = old_period;
10415 sysctl_sched_rt_runtime = old_runtime;
10416 } else {
10417 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10418 def_rt_bandwidth.rt_period =
10419 ns_to_ktime(global_rt_period());
10422 mutex_unlock(&mutex);
10424 return ret;
10427 #ifdef CONFIG_CGROUP_SCHED
10429 /* return corresponding task_group object of a cgroup */
10430 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10432 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10433 struct task_group, css);
10436 static struct cgroup_subsys_state *
10437 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10439 struct task_group *tg, *parent;
10441 if (!cgrp->parent) {
10442 /* This is early initialization for the top cgroup */
10443 return &init_task_group.css;
10446 parent = cgroup_tg(cgrp->parent);
10447 tg = sched_create_group(parent);
10448 if (IS_ERR(tg))
10449 return ERR_PTR(-ENOMEM);
10451 return &tg->css;
10454 static void
10455 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10457 struct task_group *tg = cgroup_tg(cgrp);
10459 sched_destroy_group(tg);
10462 static int
10463 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10465 #ifdef CONFIG_RT_GROUP_SCHED
10466 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10467 return -EINVAL;
10468 #else
10469 /* We don't support RT-tasks being in separate groups */
10470 if (tsk->sched_class != &fair_sched_class)
10471 return -EINVAL;
10472 #endif
10473 return 0;
10476 static int
10477 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10478 struct task_struct *tsk, bool threadgroup)
10480 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10481 if (retval)
10482 return retval;
10483 if (threadgroup) {
10484 struct task_struct *c;
10485 rcu_read_lock();
10486 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10487 retval = cpu_cgroup_can_attach_task(cgrp, c);
10488 if (retval) {
10489 rcu_read_unlock();
10490 return retval;
10493 rcu_read_unlock();
10495 return 0;
10498 static void
10499 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10500 struct cgroup *old_cont, struct task_struct *tsk,
10501 bool threadgroup)
10503 sched_move_task(tsk);
10504 if (threadgroup) {
10505 struct task_struct *c;
10506 rcu_read_lock();
10507 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10508 sched_move_task(c);
10510 rcu_read_unlock();
10514 #ifdef CONFIG_FAIR_GROUP_SCHED
10515 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10516 u64 shareval)
10518 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10521 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10523 struct task_group *tg = cgroup_tg(cgrp);
10525 return (u64) tg->shares;
10527 #endif /* CONFIG_FAIR_GROUP_SCHED */
10529 #ifdef CONFIG_RT_GROUP_SCHED
10530 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10531 s64 val)
10533 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10536 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10538 return sched_group_rt_runtime(cgroup_tg(cgrp));
10541 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10542 u64 rt_period_us)
10544 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10547 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10549 return sched_group_rt_period(cgroup_tg(cgrp));
10551 #endif /* CONFIG_RT_GROUP_SCHED */
10553 static struct cftype cpu_files[] = {
10554 #ifdef CONFIG_FAIR_GROUP_SCHED
10556 .name = "shares",
10557 .read_u64 = cpu_shares_read_u64,
10558 .write_u64 = cpu_shares_write_u64,
10560 #endif
10561 #ifdef CONFIG_RT_GROUP_SCHED
10563 .name = "rt_runtime_us",
10564 .read_s64 = cpu_rt_runtime_read,
10565 .write_s64 = cpu_rt_runtime_write,
10568 .name = "rt_period_us",
10569 .read_u64 = cpu_rt_period_read_uint,
10570 .write_u64 = cpu_rt_period_write_uint,
10572 #endif
10575 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10577 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10580 struct cgroup_subsys cpu_cgroup_subsys = {
10581 .name = "cpu",
10582 .create = cpu_cgroup_create,
10583 .destroy = cpu_cgroup_destroy,
10584 .can_attach = cpu_cgroup_can_attach,
10585 .attach = cpu_cgroup_attach,
10586 .populate = cpu_cgroup_populate,
10587 .subsys_id = cpu_cgroup_subsys_id,
10588 .early_init = 1,
10591 #endif /* CONFIG_CGROUP_SCHED */
10593 #ifdef CONFIG_CGROUP_CPUACCT
10596 * CPU accounting code for task groups.
10598 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10599 * (balbir@in.ibm.com).
10602 /* track cpu usage of a group of tasks and its child groups */
10603 struct cpuacct {
10604 struct cgroup_subsys_state css;
10605 /* cpuusage holds pointer to a u64-type object on every cpu */
10606 u64 *cpuusage;
10607 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10608 struct cpuacct *parent;
10611 struct cgroup_subsys cpuacct_subsys;
10613 /* return cpu accounting group corresponding to this container */
10614 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10616 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10617 struct cpuacct, css);
10620 /* return cpu accounting group to which this task belongs */
10621 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10623 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10624 struct cpuacct, css);
10627 /* create a new cpu accounting group */
10628 static struct cgroup_subsys_state *cpuacct_create(
10629 struct cgroup_subsys *ss, struct cgroup *cgrp)
10631 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10632 int i;
10634 if (!ca)
10635 goto out;
10637 ca->cpuusage = alloc_percpu(u64);
10638 if (!ca->cpuusage)
10639 goto out_free_ca;
10641 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10642 if (percpu_counter_init(&ca->cpustat[i], 0))
10643 goto out_free_counters;
10645 if (cgrp->parent)
10646 ca->parent = cgroup_ca(cgrp->parent);
10648 return &ca->css;
10650 out_free_counters:
10651 while (--i >= 0)
10652 percpu_counter_destroy(&ca->cpustat[i]);
10653 free_percpu(ca->cpuusage);
10654 out_free_ca:
10655 kfree(ca);
10656 out:
10657 return ERR_PTR(-ENOMEM);
10660 /* destroy an existing cpu accounting group */
10661 static void
10662 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10664 struct cpuacct *ca = cgroup_ca(cgrp);
10665 int i;
10667 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10668 percpu_counter_destroy(&ca->cpustat[i]);
10669 free_percpu(ca->cpuusage);
10670 kfree(ca);
10673 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10675 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10676 u64 data;
10678 #ifndef CONFIG_64BIT
10680 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10682 spin_lock_irq(&cpu_rq(cpu)->lock);
10683 data = *cpuusage;
10684 spin_unlock_irq(&cpu_rq(cpu)->lock);
10685 #else
10686 data = *cpuusage;
10687 #endif
10689 return data;
10692 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10694 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10696 #ifndef CONFIG_64BIT
10698 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10700 spin_lock_irq(&cpu_rq(cpu)->lock);
10701 *cpuusage = val;
10702 spin_unlock_irq(&cpu_rq(cpu)->lock);
10703 #else
10704 *cpuusage = val;
10705 #endif
10708 /* return total cpu usage (in nanoseconds) of a group */
10709 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10711 struct cpuacct *ca = cgroup_ca(cgrp);
10712 u64 totalcpuusage = 0;
10713 int i;
10715 for_each_present_cpu(i)
10716 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10718 return totalcpuusage;
10721 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10722 u64 reset)
10724 struct cpuacct *ca = cgroup_ca(cgrp);
10725 int err = 0;
10726 int i;
10728 if (reset) {
10729 err = -EINVAL;
10730 goto out;
10733 for_each_present_cpu(i)
10734 cpuacct_cpuusage_write(ca, i, 0);
10736 out:
10737 return err;
10740 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10741 struct seq_file *m)
10743 struct cpuacct *ca = cgroup_ca(cgroup);
10744 u64 percpu;
10745 int i;
10747 for_each_present_cpu(i) {
10748 percpu = cpuacct_cpuusage_read(ca, i);
10749 seq_printf(m, "%llu ", (unsigned long long) percpu);
10751 seq_printf(m, "\n");
10752 return 0;
10755 static const char *cpuacct_stat_desc[] = {
10756 [CPUACCT_STAT_USER] = "user",
10757 [CPUACCT_STAT_SYSTEM] = "system",
10760 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10761 struct cgroup_map_cb *cb)
10763 struct cpuacct *ca = cgroup_ca(cgrp);
10764 int i;
10766 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10767 s64 val = percpu_counter_read(&ca->cpustat[i]);
10768 val = cputime64_to_clock_t(val);
10769 cb->fill(cb, cpuacct_stat_desc[i], val);
10771 return 0;
10774 static struct cftype files[] = {
10776 .name = "usage",
10777 .read_u64 = cpuusage_read,
10778 .write_u64 = cpuusage_write,
10781 .name = "usage_percpu",
10782 .read_seq_string = cpuacct_percpu_seq_read,
10785 .name = "stat",
10786 .read_map = cpuacct_stats_show,
10790 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10792 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10796 * charge this task's execution time to its accounting group.
10798 * called with rq->lock held.
10800 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10802 struct cpuacct *ca;
10803 int cpu;
10805 if (unlikely(!cpuacct_subsys.active))
10806 return;
10808 cpu = task_cpu(tsk);
10810 rcu_read_lock();
10812 ca = task_ca(tsk);
10814 for (; ca; ca = ca->parent) {
10815 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10816 *cpuusage += cputime;
10819 rcu_read_unlock();
10823 * Charge the system/user time to the task's accounting group.
10825 static void cpuacct_update_stats(struct task_struct *tsk,
10826 enum cpuacct_stat_index idx, cputime_t val)
10828 struct cpuacct *ca;
10830 if (unlikely(!cpuacct_subsys.active))
10831 return;
10833 rcu_read_lock();
10834 ca = task_ca(tsk);
10836 do {
10837 percpu_counter_add(&ca->cpustat[idx], val);
10838 ca = ca->parent;
10839 } while (ca);
10840 rcu_read_unlock();
10843 struct cgroup_subsys cpuacct_subsys = {
10844 .name = "cpuacct",
10845 .create = cpuacct_create,
10846 .destroy = cpuacct_destroy,
10847 .populate = cpuacct_populate,
10848 .subsys_id = cpuacct_subsys_id,
10850 #endif /* CONFIG_CGROUP_CPUACCT */
10852 #ifndef CONFIG_SMP
10854 int rcu_expedited_torture_stats(char *page)
10856 return 0;
10858 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10860 void synchronize_sched_expedited(void)
10863 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10865 #else /* #ifndef CONFIG_SMP */
10867 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10868 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10870 #define RCU_EXPEDITED_STATE_POST -2
10871 #define RCU_EXPEDITED_STATE_IDLE -1
10873 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10875 int rcu_expedited_torture_stats(char *page)
10877 int cnt = 0;
10878 int cpu;
10880 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10881 for_each_online_cpu(cpu) {
10882 cnt += sprintf(&page[cnt], " %d:%d",
10883 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10885 cnt += sprintf(&page[cnt], "\n");
10886 return cnt;
10888 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10890 static long synchronize_sched_expedited_count;
10893 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10894 * approach to force grace period to end quickly. This consumes
10895 * significant time on all CPUs, and is thus not recommended for
10896 * any sort of common-case code.
10898 * Note that it is illegal to call this function while holding any
10899 * lock that is acquired by a CPU-hotplug notifier. Failing to
10900 * observe this restriction will result in deadlock.
10902 void synchronize_sched_expedited(void)
10904 int cpu;
10905 unsigned long flags;
10906 bool need_full_sync = 0;
10907 struct rq *rq;
10908 struct migration_req *req;
10909 long snap;
10910 int trycount = 0;
10912 smp_mb(); /* ensure prior mod happens before capturing snap. */
10913 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10914 get_online_cpus();
10915 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10916 put_online_cpus();
10917 if (trycount++ < 10)
10918 udelay(trycount * num_online_cpus());
10919 else {
10920 synchronize_sched();
10921 return;
10923 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10924 smp_mb(); /* ensure test happens before caller kfree */
10925 return;
10927 get_online_cpus();
10929 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10930 for_each_online_cpu(cpu) {
10931 rq = cpu_rq(cpu);
10932 req = &per_cpu(rcu_migration_req, cpu);
10933 init_completion(&req->done);
10934 req->task = NULL;
10935 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10936 spin_lock_irqsave(&rq->lock, flags);
10937 list_add(&req->list, &rq->migration_queue);
10938 spin_unlock_irqrestore(&rq->lock, flags);
10939 wake_up_process(rq->migration_thread);
10941 for_each_online_cpu(cpu) {
10942 rcu_expedited_state = cpu;
10943 req = &per_cpu(rcu_migration_req, cpu);
10944 rq = cpu_rq(cpu);
10945 wait_for_completion(&req->done);
10946 spin_lock_irqsave(&rq->lock, flags);
10947 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10948 need_full_sync = 1;
10949 req->dest_cpu = RCU_MIGRATION_IDLE;
10950 spin_unlock_irqrestore(&rq->lock, flags);
10952 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10953 mutex_unlock(&rcu_sched_expedited_mutex);
10954 put_online_cpus();
10955 if (need_full_sync)
10956 synchronize_sched();
10958 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10960 #endif /* #else #ifndef CONFIG_SMP */