sched: Fix SCHED_MC regression caused by change in sched cpu_power
[linux-2.6/mini2440.git] / drivers / edac / amd64_edac.c
blob01bc8e232456a665675b183946ef0f056cb96548
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 static struct msr *msrs;
18 /* Lookup table for all possible MC control instances */
19 struct amd64_pvt;
20 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
24 * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
25 * for DDR2 DRAM mapping.
27 u32 revf_quad_ddr2_shift[] = {
28 0, /* 0000b NULL DIMM (128mb) */
29 28, /* 0001b 256mb */
30 29, /* 0010b 512mb */
31 29, /* 0011b 512mb */
32 29, /* 0100b 512mb */
33 30, /* 0101b 1gb */
34 30, /* 0110b 1gb */
35 31, /* 0111b 2gb */
36 31, /* 1000b 2gb */
37 32, /* 1001b 4gb */
38 32, /* 1010b 4gb */
39 33, /* 1011b 8gb */
40 0, /* 1100b future */
41 0, /* 1101b future */
42 0, /* 1110b future */
43 0 /* 1111b future */
47 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
48 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
49 * or higher value'.
51 *FIXME: Produce a better mapping/linearisation.
54 struct scrubrate scrubrates[] = {
55 { 0x01, 1600000000UL},
56 { 0x02, 800000000UL},
57 { 0x03, 400000000UL},
58 { 0x04, 200000000UL},
59 { 0x05, 100000000UL},
60 { 0x06, 50000000UL},
61 { 0x07, 25000000UL},
62 { 0x08, 12284069UL},
63 { 0x09, 6274509UL},
64 { 0x0A, 3121951UL},
65 { 0x0B, 1560975UL},
66 { 0x0C, 781440UL},
67 { 0x0D, 390720UL},
68 { 0x0E, 195300UL},
69 { 0x0F, 97650UL},
70 { 0x10, 48854UL},
71 { 0x11, 24427UL},
72 { 0x12, 12213UL},
73 { 0x13, 6101UL},
74 { 0x14, 3051UL},
75 { 0x15, 1523UL},
76 { 0x16, 761UL},
77 { 0x00, 0UL}, /* scrubbing off */
81 * Memory scrubber control interface. For K8, memory scrubbing is handled by
82 * hardware and can involve L2 cache, dcache as well as the main memory. With
83 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
84 * functionality.
86 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
87 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
88 * bytes/sec for the setting.
90 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
91 * other archs, we might not have access to the caches directly.
95 * scan the scrub rate mapping table for a close or matching bandwidth value to
96 * issue. If requested is too big, then use last maximum value found.
98 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
99 u32 min_scrubrate)
101 u32 scrubval;
102 int i;
105 * map the configured rate (new_bw) to a value specific to the AMD64
106 * memory controller and apply to register. Search for the first
107 * bandwidth entry that is greater or equal than the setting requested
108 * and program that. If at last entry, turn off DRAM scrubbing.
110 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
112 * skip scrub rates which aren't recommended
113 * (see F10 BKDG, F3x58)
115 if (scrubrates[i].scrubval < min_scrubrate)
116 continue;
118 if (scrubrates[i].bandwidth <= new_bw)
119 break;
122 * if no suitable bandwidth found, turn off DRAM scrubbing
123 * entirely by falling back to the last element in the
124 * scrubrates array.
128 scrubval = scrubrates[i].scrubval;
129 if (scrubval)
130 edac_printk(KERN_DEBUG, EDAC_MC,
131 "Setting scrub rate bandwidth: %u\n",
132 scrubrates[i].bandwidth);
133 else
134 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
136 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
138 return 0;
141 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
143 struct amd64_pvt *pvt = mci->pvt_info;
144 u32 min_scrubrate = 0x0;
146 switch (boot_cpu_data.x86) {
147 case 0xf:
148 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
149 break;
150 case 0x10:
151 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
152 break;
153 case 0x11:
154 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
155 break;
157 default:
158 amd64_printk(KERN_ERR, "Unsupported family!\n");
159 break;
161 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
162 min_scrubrate);
165 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
167 struct amd64_pvt *pvt = mci->pvt_info;
168 u32 scrubval = 0;
169 int status = -1, i, ret = 0;
171 ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
172 if (ret)
173 debugf0("Reading K8_SCRCTRL failed\n");
175 scrubval = scrubval & 0x001F;
177 edac_printk(KERN_DEBUG, EDAC_MC,
178 "pci-read, sdram scrub control value: %d \n", scrubval);
180 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
181 if (scrubrates[i].scrubval == scrubval) {
182 *bw = scrubrates[i].bandwidth;
183 status = 0;
184 break;
188 return status;
191 /* Map from a CSROW entry to the mask entry that operates on it */
192 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
194 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F)
195 return csrow;
196 else
197 return csrow >> 1;
200 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
201 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
203 if (dct == 0)
204 return pvt->dcsb0[csrow];
205 else
206 return pvt->dcsb1[csrow];
210 * Return the 'mask' address the i'th CS entry. This function is needed because
211 * there number of DCSM registers on Rev E and prior vs Rev F and later is
212 * different.
214 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
216 if (dct == 0)
217 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
218 else
219 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
224 * In *base and *limit, pass back the full 40-bit base and limit physical
225 * addresses for the node given by node_id. This information is obtained from
226 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
227 * base and limit addresses are of type SysAddr, as defined at the start of
228 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
229 * in the address range they represent.
231 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
232 u64 *base, u64 *limit)
234 *base = pvt->dram_base[node_id];
235 *limit = pvt->dram_limit[node_id];
239 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
240 * with node_id
242 static int amd64_base_limit_match(struct amd64_pvt *pvt,
243 u64 sys_addr, int node_id)
245 u64 base, limit, addr;
247 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
250 * all ones if the most significant implemented address bit is 1.
251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 * Application Programming.
255 addr = sys_addr & 0x000000ffffffffffull;
257 return (addr >= base) && (addr <= limit);
261 * Attempt to map a SysAddr to a node. On success, return a pointer to the
262 * mem_ctl_info structure for the node that the SysAddr maps to.
264 * On failure, return NULL.
266 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
267 u64 sys_addr)
269 struct amd64_pvt *pvt;
270 int node_id;
271 u32 intlv_en, bits;
274 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
275 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 pvt = mci->pvt_info;
280 * The value of this field should be the same for all DRAM Base
281 * registers. Therefore we arbitrarily choose to read it from the
282 * register for node 0.
284 intlv_en = pvt->dram_IntlvEn[0];
286 if (intlv_en == 0) {
287 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
288 if (amd64_base_limit_match(pvt, sys_addr, node_id))
289 goto found;
291 goto err_no_match;
294 if (unlikely((intlv_en != 0x01) &&
295 (intlv_en != 0x03) &&
296 (intlv_en != 0x07))) {
297 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
298 "IntlvEn field of DRAM Base Register for node 0: "
299 "this probably indicates a BIOS bug.\n", intlv_en);
300 return NULL;
303 bits = (((u32) sys_addr) >> 12) & intlv_en;
305 for (node_id = 0; ; ) {
306 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
307 break; /* intlv_sel field matches */
309 if (++node_id >= DRAM_REG_COUNT)
310 goto err_no_match;
313 /* sanity test for sys_addr */
314 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
315 amd64_printk(KERN_WARNING,
316 "%s(): sys_addr 0x%llx falls outside base/limit "
317 "address range for node %d with node interleaving "
318 "enabled.\n",
319 __func__, sys_addr, node_id);
320 return NULL;
323 found:
324 return edac_mc_find(node_id);
326 err_no_match:
327 debugf2("sys_addr 0x%lx doesn't match any node\n",
328 (unsigned long)sys_addr);
330 return NULL;
334 * Extract the DRAM CS base address from selected csrow register.
336 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
338 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
339 pvt->dcs_shift;
343 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
345 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
347 u64 dcsm_bits, other_bits;
348 u64 mask;
350 /* Extract bits from DRAM CS Mask. */
351 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
353 other_bits = pvt->dcsm_mask;
354 other_bits = ~(other_bits << pvt->dcs_shift);
357 * The extracted bits from DCSM belong in the spaces represented by
358 * the cleared bits in other_bits.
360 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
362 return mask;
366 * @input_addr is an InputAddr associated with the node given by mci. Return the
367 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
369 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
371 struct amd64_pvt *pvt;
372 int csrow;
373 u64 base, mask;
375 pvt = mci->pvt_info;
378 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
379 * base/mask register pair, test the condition shown near the start of
380 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
382 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
384 /* This DRAM chip select is disabled on this node */
385 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
386 continue;
388 base = base_from_dct_base(pvt, csrow);
389 mask = ~mask_from_dct_mask(pvt, csrow);
391 if ((input_addr & mask) == (base & mask)) {
392 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
393 (unsigned long)input_addr, csrow,
394 pvt->mc_node_id);
396 return csrow;
400 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
403 return -1;
407 * Return the base value defined by the DRAM Base register for the node
408 * represented by mci. This function returns the full 40-bit value despite the
409 * fact that the register only stores bits 39-24 of the value. See section
410 * 3.4.4.1 (BKDG #26094, K8, revA-E)
412 static inline u64 get_dram_base(struct mem_ctl_info *mci)
414 struct amd64_pvt *pvt = mci->pvt_info;
416 return pvt->dram_base[pvt->mc_node_id];
420 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
421 * for the node represented by mci. Info is passed back in *hole_base,
422 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
423 * info is invalid. Info may be invalid for either of the following reasons:
425 * - The revision of the node is not E or greater. In this case, the DRAM Hole
426 * Address Register does not exist.
428 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
429 * indicating that its contents are not valid.
431 * The values passed back in *hole_base, *hole_offset, and *hole_size are
432 * complete 32-bit values despite the fact that the bitfields in the DHAR
433 * only represent bits 31-24 of the base and offset values.
435 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
436 u64 *hole_offset, u64 *hole_size)
438 struct amd64_pvt *pvt = mci->pvt_info;
439 u64 base;
441 /* only revE and later have the DRAM Hole Address Register */
442 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
443 debugf1(" revision %d for node %d does not support DHAR\n",
444 pvt->ext_model, pvt->mc_node_id);
445 return 1;
448 /* only valid for Fam10h */
449 if (boot_cpu_data.x86 == 0x10 &&
450 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
451 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
452 return 1;
455 if ((pvt->dhar & DHAR_VALID) == 0) {
456 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
457 pvt->mc_node_id);
458 return 1;
461 /* This node has Memory Hoisting */
463 /* +------------------+--------------------+--------------------+-----
464 * | memory | DRAM hole | relocated |
465 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
466 * | | | DRAM hole |
467 * | | | [0x100000000, |
468 * | | | (0x100000000+ |
469 * | | | (0xffffffff-x))] |
470 * +------------------+--------------------+--------------------+-----
472 * Above is a diagram of physical memory showing the DRAM hole and the
473 * relocated addresses from the DRAM hole. As shown, the DRAM hole
474 * starts at address x (the base address) and extends through address
475 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
476 * addresses in the hole so that they start at 0x100000000.
479 base = dhar_base(pvt->dhar);
481 *hole_base = base;
482 *hole_size = (0x1ull << 32) - base;
484 if (boot_cpu_data.x86 > 0xf)
485 *hole_offset = f10_dhar_offset(pvt->dhar);
486 else
487 *hole_offset = k8_dhar_offset(pvt->dhar);
489 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
490 pvt->mc_node_id, (unsigned long)*hole_base,
491 (unsigned long)*hole_offset, (unsigned long)*hole_size);
493 return 0;
495 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
498 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
499 * assumed that sys_addr maps to the node given by mci.
501 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
502 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
503 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
504 * then it is also involved in translating a SysAddr to a DramAddr. Sections
505 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
506 * These parts of the documentation are unclear. I interpret them as follows:
508 * When node n receives a SysAddr, it processes the SysAddr as follows:
510 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
511 * Limit registers for node n. If the SysAddr is not within the range
512 * specified by the base and limit values, then node n ignores the Sysaddr
513 * (since it does not map to node n). Otherwise continue to step 2 below.
515 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
516 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
517 * the range of relocated addresses (starting at 0x100000000) from the DRAM
518 * hole. If not, skip to step 3 below. Else get the value of the
519 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
520 * offset defined by this value from the SysAddr.
522 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
523 * Base register for node n. To obtain the DramAddr, subtract the base
524 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
526 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
528 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
529 int ret = 0;
531 dram_base = get_dram_base(mci);
533 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
534 &hole_size);
535 if (!ret) {
536 if ((sys_addr >= (1ull << 32)) &&
537 (sys_addr < ((1ull << 32) + hole_size))) {
538 /* use DHAR to translate SysAddr to DramAddr */
539 dram_addr = sys_addr - hole_offset;
541 debugf2("using DHAR to translate SysAddr 0x%lx to "
542 "DramAddr 0x%lx\n",
543 (unsigned long)sys_addr,
544 (unsigned long)dram_addr);
546 return dram_addr;
551 * Translate the SysAddr to a DramAddr as shown near the start of
552 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
553 * only deals with 40-bit values. Therefore we discard bits 63-40 of
554 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
555 * discard are all 1s. Otherwise the bits we discard are all 0s. See
556 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
557 * Programmer's Manual Volume 1 Application Programming.
559 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
561 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
562 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
563 (unsigned long)dram_addr);
564 return dram_addr;
568 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
569 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
570 * for node interleaving.
572 static int num_node_interleave_bits(unsigned intlv_en)
574 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
575 int n;
577 BUG_ON(intlv_en > 7);
578 n = intlv_shift_table[intlv_en];
579 return n;
582 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
583 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
585 struct amd64_pvt *pvt;
586 int intlv_shift;
587 u64 input_addr;
589 pvt = mci->pvt_info;
592 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
593 * concerning translating a DramAddr to an InputAddr.
595 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
596 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
597 (dram_addr & 0xfff);
599 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
600 intlv_shift, (unsigned long)dram_addr,
601 (unsigned long)input_addr);
603 return input_addr;
607 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
608 * assumed that @sys_addr maps to the node given by mci.
610 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
612 u64 input_addr;
614 input_addr =
615 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
617 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
618 (unsigned long)sys_addr, (unsigned long)input_addr);
620 return input_addr;
625 * @input_addr is an InputAddr associated with the node represented by mci.
626 * Translate @input_addr to a DramAddr and return the result.
628 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
630 struct amd64_pvt *pvt;
631 int node_id, intlv_shift;
632 u64 bits, dram_addr;
633 u32 intlv_sel;
636 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
637 * shows how to translate a DramAddr to an InputAddr. Here we reverse
638 * this procedure. When translating from a DramAddr to an InputAddr, the
639 * bits used for node interleaving are discarded. Here we recover these
640 * bits from the IntlvSel field of the DRAM Limit register (section
641 * 3.4.4.2) for the node that input_addr is associated with.
643 pvt = mci->pvt_info;
644 node_id = pvt->mc_node_id;
645 BUG_ON((node_id < 0) || (node_id > 7));
647 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
649 if (intlv_shift == 0) {
650 debugf1(" InputAddr 0x%lx translates to DramAddr of "
651 "same value\n", (unsigned long)input_addr);
653 return input_addr;
656 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
657 (input_addr & 0xfff);
659 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
660 dram_addr = bits + (intlv_sel << 12);
662 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
663 "(%d node interleave bits)\n", (unsigned long)input_addr,
664 (unsigned long)dram_addr, intlv_shift);
666 return dram_addr;
670 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
671 * @dram_addr to a SysAddr.
673 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
675 struct amd64_pvt *pvt = mci->pvt_info;
676 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
677 int ret = 0;
679 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
680 &hole_size);
681 if (!ret) {
682 if ((dram_addr >= hole_base) &&
683 (dram_addr < (hole_base + hole_size))) {
684 sys_addr = dram_addr + hole_offset;
686 debugf1("using DHAR to translate DramAddr 0x%lx to "
687 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
688 (unsigned long)sys_addr);
690 return sys_addr;
694 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
695 sys_addr = dram_addr + base;
698 * The sys_addr we have computed up to this point is a 40-bit value
699 * because the k8 deals with 40-bit values. However, the value we are
700 * supposed to return is a full 64-bit physical address. The AMD
701 * x86-64 architecture specifies that the most significant implemented
702 * address bit through bit 63 of a physical address must be either all
703 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
704 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
705 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
706 * Programming.
708 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
710 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
711 pvt->mc_node_id, (unsigned long)dram_addr,
712 (unsigned long)sys_addr);
714 return sys_addr;
718 * @input_addr is an InputAddr associated with the node given by mci. Translate
719 * @input_addr to a SysAddr.
721 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
722 u64 input_addr)
724 return dram_addr_to_sys_addr(mci,
725 input_addr_to_dram_addr(mci, input_addr));
729 * Find the minimum and maximum InputAddr values that map to the given @csrow.
730 * Pass back these values in *input_addr_min and *input_addr_max.
732 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
733 u64 *input_addr_min, u64 *input_addr_max)
735 struct amd64_pvt *pvt;
736 u64 base, mask;
738 pvt = mci->pvt_info;
739 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
741 base = base_from_dct_base(pvt, csrow);
742 mask = mask_from_dct_mask(pvt, csrow);
744 *input_addr_min = base & ~mask;
745 *input_addr_max = base | mask | pvt->dcs_mask_notused;
749 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
750 * Address High (section 3.6.4.6) register values and return the result. Address
751 * is located in the info structure (nbeah and nbeal), the encoding is device
752 * specific.
754 static u64 extract_error_address(struct mem_ctl_info *mci,
755 struct err_regs *info)
757 struct amd64_pvt *pvt = mci->pvt_info;
759 return pvt->ops->get_error_address(mci, info);
763 /* Map the Error address to a PAGE and PAGE OFFSET. */
764 static inline void error_address_to_page_and_offset(u64 error_address,
765 u32 *page, u32 *offset)
767 *page = (u32) (error_address >> PAGE_SHIFT);
768 *offset = ((u32) error_address) & ~PAGE_MASK;
772 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
773 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
774 * of a node that detected an ECC memory error. mci represents the node that
775 * the error address maps to (possibly different from the node that detected
776 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
777 * error.
779 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
781 int csrow;
783 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
785 if (csrow == -1)
786 amd64_mc_printk(mci, KERN_ERR,
787 "Failed to translate InputAddr to csrow for "
788 "address 0x%lx\n", (unsigned long)sys_addr);
789 return csrow;
792 static int get_channel_from_ecc_syndrome(unsigned short syndrome);
794 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
796 if (boot_cpu_data.x86 == 0x11)
797 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
798 else if (boot_cpu_data.x86 == 0x10)
799 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
800 else if (boot_cpu_data.x86 == 0xf)
801 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
802 (pvt->ext_model >= OPTERON_CPU_REV_F) ?
803 "Rev F or later" : "Rev E or earlier");
804 else
805 /* we'll hardly ever ever get here */
806 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
810 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
811 * are ECC capable.
813 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
815 int bit;
816 enum dev_type edac_cap = EDAC_FLAG_NONE;
818 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
819 ? 19
820 : 17;
822 if (pvt->dclr0 & BIT(bit))
823 edac_cap = EDAC_FLAG_SECDED;
825 return edac_cap;
829 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
830 int ganged);
832 /* Display and decode various NB registers for debug purposes. */
833 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
835 int ganged;
837 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
838 pvt->nbcap,
839 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
840 (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
841 (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
842 debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
843 (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
844 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
845 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
846 pvt->dclr0,
847 (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
848 (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
849 (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
850 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
851 (pvt->dclr0 & BIT(12)) ? "Y" : "N",
852 (pvt->dclr0 & BIT(13)) ? "Y" : "N",
853 (pvt->dclr0 & BIT(14)) ? "Y" : "N",
854 (pvt->dclr0 & BIT(15)) ? "Y" : "N",
855 (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
858 debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
860 if (boot_cpu_data.x86 == 0xf) {
861 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
862 pvt->dhar, dhar_base(pvt->dhar),
863 k8_dhar_offset(pvt->dhar));
864 debugf1(" DramHoleValid=%s\n",
865 (pvt->dhar & DHAR_VALID) ? "True" : "False");
867 debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
869 /* everything below this point is Fam10h and above */
870 return;
872 } else {
873 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
874 pvt->dhar, dhar_base(pvt->dhar),
875 f10_dhar_offset(pvt->dhar));
876 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
877 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
878 "True" : "False",
879 (pvt->dhar & DHAR_VALID) ?
880 "True" : "False");
883 /* Only if NOT ganged does dcl1 have valid info */
884 if (!dct_ganging_enabled(pvt)) {
885 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
886 "Width=%s\n", pvt->dclr1,
887 (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
888 (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
889 (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
890 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
891 "DIMM Type=%s\n",
892 (pvt->dclr1 & BIT(12)) ? "Y" : "N",
893 (pvt->dclr1 & BIT(13)) ? "Y" : "N",
894 (pvt->dclr1 & BIT(14)) ? "Y" : "N",
895 (pvt->dclr1 & BIT(15)) ? "Y" : "N",
896 (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
900 * Determine if ganged and then dump memory sizes for first controller,
901 * and if NOT ganged dump info for 2nd controller.
903 ganged = dct_ganging_enabled(pvt);
905 f10_debug_display_dimm_sizes(0, pvt, ganged);
907 if (!ganged)
908 f10_debug_display_dimm_sizes(1, pvt, ganged);
911 /* Read in both of DBAM registers */
912 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
914 int err = 0;
915 unsigned int reg;
917 reg = DBAM0;
918 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
919 if (err)
920 goto err_reg;
922 if (boot_cpu_data.x86 >= 0x10) {
923 reg = DBAM1;
924 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
926 if (err)
927 goto err_reg;
930 return;
932 err_reg:
933 debugf0("Error reading F2x%03x.\n", reg);
937 * NOTE: CPU Revision Dependent code: Rev E and Rev F
939 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
940 * set the shift factor for the DCSB and DCSM values.
942 * ->dcs_mask_notused, RevE:
944 * To find the max InputAddr for the csrow, start with the base address and set
945 * all bits that are "don't care" bits in the test at the start of section
946 * 3.5.4 (p. 84).
948 * The "don't care" bits are all set bits in the mask and all bits in the gaps
949 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
950 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
951 * gaps.
953 * ->dcs_mask_notused, RevF and later:
955 * To find the max InputAddr for the csrow, start with the base address and set
956 * all bits that are "don't care" bits in the test at the start of NPT section
957 * 4.5.4 (p. 87).
959 * The "don't care" bits are all set bits in the mask and all bits in the gaps
960 * between bit ranges [36:27] and [21:13].
962 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
963 * which are all bits in the above-mentioned gaps.
965 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
968 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F) {
969 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
970 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
971 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
972 pvt->dcs_shift = REV_E_DCS_SHIFT;
973 pvt->cs_count = 8;
974 pvt->num_dcsm = 8;
975 } else {
976 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
977 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
978 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
979 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
981 if (boot_cpu_data.x86 == 0x11) {
982 pvt->cs_count = 4;
983 pvt->num_dcsm = 2;
984 } else {
985 pvt->cs_count = 8;
986 pvt->num_dcsm = 4;
992 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
994 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
996 int cs, reg, err = 0;
998 amd64_set_dct_base_and_mask(pvt);
1000 for (cs = 0; cs < pvt->cs_count; cs++) {
1001 reg = K8_DCSB0 + (cs * 4);
1002 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1003 &pvt->dcsb0[cs]);
1004 if (unlikely(err))
1005 debugf0("Reading K8_DCSB0[%d] failed\n", cs);
1006 else
1007 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
1008 cs, pvt->dcsb0[cs], reg);
1010 /* If DCT are NOT ganged, then read in DCT1's base */
1011 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1012 reg = F10_DCSB1 + (cs * 4);
1013 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1014 &pvt->dcsb1[cs]);
1015 if (unlikely(err))
1016 debugf0("Reading F10_DCSB1[%d] failed\n", cs);
1017 else
1018 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
1019 cs, pvt->dcsb1[cs], reg);
1020 } else {
1021 pvt->dcsb1[cs] = 0;
1025 for (cs = 0; cs < pvt->num_dcsm; cs++) {
1026 reg = K8_DCSM0 + (cs * 4);
1027 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1028 &pvt->dcsm0[cs]);
1029 if (unlikely(err))
1030 debugf0("Reading K8_DCSM0 failed\n");
1031 else
1032 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1033 cs, pvt->dcsm0[cs], reg);
1035 /* If DCT are NOT ganged, then read in DCT1's mask */
1036 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1037 reg = F10_DCSM1 + (cs * 4);
1038 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1039 &pvt->dcsm1[cs]);
1040 if (unlikely(err))
1041 debugf0("Reading F10_DCSM1[%d] failed\n", cs);
1042 else
1043 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1044 cs, pvt->dcsm1[cs], reg);
1045 } else
1046 pvt->dcsm1[cs] = 0;
1050 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1052 enum mem_type type;
1054 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1055 /* Rev F and later */
1056 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1057 } else {
1058 /* Rev E and earlier */
1059 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1062 debugf1(" Memory type is: %s\n",
1063 (type == MEM_DDR2) ? "MEM_DDR2" :
1064 (type == MEM_RDDR2) ? "MEM_RDDR2" :
1065 (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1067 return type;
1071 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1072 * and the later RevF memory controllers (DDR vs DDR2)
1074 * Return:
1075 * number of memory channels in operation
1076 * Pass back:
1077 * contents of the DCL0_LOW register
1079 static int k8_early_channel_count(struct amd64_pvt *pvt)
1081 int flag, err = 0;
1083 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1084 if (err)
1085 return err;
1087 if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
1088 /* RevF (NPT) and later */
1089 flag = pvt->dclr0 & F10_WIDTH_128;
1090 } else {
1091 /* RevE and earlier */
1092 flag = pvt->dclr0 & REVE_WIDTH_128;
1095 /* not used */
1096 pvt->dclr1 = 0;
1098 return (flag) ? 2 : 1;
1101 /* extract the ERROR ADDRESS for the K8 CPUs */
1102 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1103 struct err_regs *info)
1105 return (((u64) (info->nbeah & 0xff)) << 32) +
1106 (info->nbeal & ~0x03);
1110 * Read the Base and Limit registers for K8 based Memory controllers; extract
1111 * fields from the 'raw' reg into separate data fields
1113 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1115 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1117 u32 low;
1118 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1119 int err;
1121 err = pci_read_config_dword(pvt->addr_f1_ctl,
1122 K8_DRAM_BASE_LOW + off, &low);
1123 if (err)
1124 debugf0("Reading K8_DRAM_BASE_LOW failed\n");
1126 /* Extract parts into separate data entries */
1127 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1128 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1129 pvt->dram_rw_en[dram] = (low & 0x3);
1131 err = pci_read_config_dword(pvt->addr_f1_ctl,
1132 K8_DRAM_LIMIT_LOW + off, &low);
1133 if (err)
1134 debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
1137 * Extract parts into separate data entries. Limit is the HIGHEST memory
1138 * location of the region, so lower 24 bits need to be all ones
1140 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1141 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1142 pvt->dram_DstNode[dram] = (low & 0x7);
1145 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1146 struct err_regs *info,
1147 u64 SystemAddress)
1149 struct mem_ctl_info *src_mci;
1150 unsigned short syndrome;
1151 int channel, csrow;
1152 u32 page, offset;
1154 /* Extract the syndrome parts and form a 16-bit syndrome */
1155 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1156 syndrome |= LOW_SYNDROME(info->nbsh);
1158 /* CHIPKILL enabled */
1159 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1160 channel = get_channel_from_ecc_syndrome(syndrome);
1161 if (channel < 0) {
1163 * Syndrome didn't map, so we don't know which of the
1164 * 2 DIMMs is in error. So we need to ID 'both' of them
1165 * as suspect.
1167 amd64_mc_printk(mci, KERN_WARNING,
1168 "unknown syndrome 0x%x - possible error "
1169 "reporting race\n", syndrome);
1170 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1171 return;
1173 } else {
1175 * non-chipkill ecc mode
1177 * The k8 documentation is unclear about how to determine the
1178 * channel number when using non-chipkill memory. This method
1179 * was obtained from email communication with someone at AMD.
1180 * (Wish the email was placed in this comment - norsk)
1182 channel = ((SystemAddress & BIT(3)) != 0);
1186 * Find out which node the error address belongs to. This may be
1187 * different from the node that detected the error.
1189 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
1190 if (!src_mci) {
1191 amd64_mc_printk(mci, KERN_ERR,
1192 "failed to map error address 0x%lx to a node\n",
1193 (unsigned long)SystemAddress);
1194 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1195 return;
1198 /* Now map the SystemAddress to a CSROW */
1199 csrow = sys_addr_to_csrow(src_mci, SystemAddress);
1200 if (csrow < 0) {
1201 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1202 } else {
1203 error_address_to_page_and_offset(SystemAddress, &page, &offset);
1205 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1206 channel, EDAC_MOD_STR);
1211 * determrine the number of PAGES in for this DIMM's size based on its DRAM
1212 * Address Mapping.
1214 * First step is to calc the number of bits to shift a value of 1 left to
1215 * indicate show many pages. Start with the DBAM value as the starting bits,
1216 * then proceed to adjust those shift bits, based on CPU rev and the table.
1217 * See BKDG on the DBAM
1219 static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1221 int nr_pages;
1223 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
1224 nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1225 } else {
1227 * RevE and less section; this line is tricky. It collapses the
1228 * table used by RevD and later to one that matches revisions CG
1229 * and earlier.
1231 dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
1232 (dram_map > 8 ? 4 : (dram_map > 5 ?
1233 3 : (dram_map > 2 ? 1 : 0))) : 0;
1235 /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1236 nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
1239 return nr_pages;
1243 * Get the number of DCT channels in use.
1245 * Return:
1246 * number of Memory Channels in operation
1247 * Pass back:
1248 * contents of the DCL0_LOW register
1250 static int f10_early_channel_count(struct amd64_pvt *pvt)
1252 int dbams[] = { DBAM0, DBAM1 };
1253 int err = 0, channels = 0;
1254 int i, j;
1255 u32 dbam;
1257 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1258 if (err)
1259 goto err_reg;
1261 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
1262 if (err)
1263 goto err_reg;
1265 /* If we are in 128 bit mode, then we are using 2 channels */
1266 if (pvt->dclr0 & F10_WIDTH_128) {
1267 debugf0("Data WIDTH is 128 bits - 2 channels\n");
1268 channels = 2;
1269 return channels;
1273 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1274 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1275 * will be OFF.
1277 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1278 * their CSEnable bit on. If so, then SINGLE DIMM case.
1280 debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1283 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1284 * is more than just one DIMM present in unganged mode. Need to check
1285 * both controllers since DIMMs can be placed in either one.
1287 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1288 err = pci_read_config_dword(pvt->dram_f2_ctl, dbams[i], &dbam);
1289 if (err)
1290 goto err_reg;
1292 for (j = 0; j < 4; j++) {
1293 if (DBAM_DIMM(j, dbam) > 0) {
1294 channels++;
1295 break;
1300 debugf0("MCT channel count: %d\n", channels);
1302 return channels;
1304 err_reg:
1305 return -1;
1309 static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1311 return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1314 /* Enable extended configuration access via 0xCF8 feature */
1315 static void amd64_setup(struct amd64_pvt *pvt)
1317 u32 reg;
1319 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1321 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1322 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1323 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1326 /* Restore the extended configuration access via 0xCF8 feature */
1327 static void amd64_teardown(struct amd64_pvt *pvt)
1329 u32 reg;
1331 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1333 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1334 if (pvt->flags.cf8_extcfg)
1335 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1336 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1339 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1340 struct err_regs *info)
1342 return (((u64) (info->nbeah & 0xffff)) << 32) +
1343 (info->nbeal & ~0x01);
1347 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1348 * fields from the 'raw' reg into separate data fields.
1350 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1352 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1354 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1356 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1357 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1359 /* read the 'raw' DRAM BASE Address register */
1360 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
1362 /* Read from the ECS data register */
1363 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
1365 /* Extract parts into separate data entries */
1366 pvt->dram_rw_en[dram] = (low_base & 0x3);
1368 if (pvt->dram_rw_en[dram] == 0)
1369 return;
1371 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1373 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1374 (((u64)low_base & 0xFFFF0000) << 8);
1376 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1377 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1379 /* read the 'raw' LIMIT registers */
1380 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
1382 /* Read from the ECS data register for the HIGH portion */
1383 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
1385 debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
1386 high_base, low_base, high_limit, low_limit);
1388 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1389 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1392 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1393 * memory location of the region, so low 24 bits need to be all ones.
1395 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1396 (((u64) low_limit & 0xFFFF0000) << 8) |
1397 0x00FFFFFF;
1400 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1402 int err = 0;
1404 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1405 &pvt->dram_ctl_select_low);
1406 if (err) {
1407 debugf0("Reading F10_DCTL_SEL_LOW failed\n");
1408 } else {
1409 debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
1410 pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
1412 debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
1413 "sel-hi-range=%s\n",
1414 (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
1415 (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
1416 (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
1418 debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
1419 (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
1420 (dct_memory_cleared(pvt) ? "True " : "False "),
1421 dct_sel_interleave_addr(pvt));
1424 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1425 &pvt->dram_ctl_select_high);
1426 if (err)
1427 debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
1431 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1432 * Interleaving Modes.
1434 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1435 int hi_range_sel, u32 intlv_en)
1437 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1439 if (dct_ganging_enabled(pvt))
1440 cs = 0;
1441 else if (hi_range_sel)
1442 cs = dct_sel_high;
1443 else if (dct_interleave_enabled(pvt)) {
1445 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1447 if (dct_sel_interleave_addr(pvt) == 0)
1448 cs = sys_addr >> 6 & 1;
1449 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1450 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1452 if (dct_sel_interleave_addr(pvt) & 1)
1453 cs = (sys_addr >> 9 & 1) ^ temp;
1454 else
1455 cs = (sys_addr >> 6 & 1) ^ temp;
1456 } else if (intlv_en & 4)
1457 cs = sys_addr >> 15 & 1;
1458 else if (intlv_en & 2)
1459 cs = sys_addr >> 14 & 1;
1460 else if (intlv_en & 1)
1461 cs = sys_addr >> 13 & 1;
1462 else
1463 cs = sys_addr >> 12 & 1;
1464 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1465 cs = ~dct_sel_high & 1;
1466 else
1467 cs = 0;
1469 return cs;
1472 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1474 if (intlv_en == 1)
1475 return 1;
1476 else if (intlv_en == 3)
1477 return 2;
1478 else if (intlv_en == 7)
1479 return 3;
1481 return 0;
1484 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1485 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1486 u32 dct_sel_base_addr,
1487 u64 dct_sel_base_off,
1488 u32 hole_valid, u32 hole_off,
1489 u64 dram_base)
1491 u64 chan_off;
1493 if (hi_range_sel) {
1494 if (!(dct_sel_base_addr & 0xFFFFF800) &&
1495 hole_valid && (sys_addr >= 0x100000000ULL))
1496 chan_off = hole_off << 16;
1497 else
1498 chan_off = dct_sel_base_off;
1499 } else {
1500 if (hole_valid && (sys_addr >= 0x100000000ULL))
1501 chan_off = hole_off << 16;
1502 else
1503 chan_off = dram_base & 0xFFFFF8000000ULL;
1506 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1507 (chan_off & 0x0000FFFFFF800000ULL);
1510 /* Hack for the time being - Can we get this from BIOS?? */
1511 #define CH0SPARE_RANK 0
1512 #define CH1SPARE_RANK 1
1515 * checks if the csrow passed in is marked as SPARED, if so returns the new
1516 * spare row
1518 static inline int f10_process_possible_spare(int csrow,
1519 u32 cs, struct amd64_pvt *pvt)
1521 u32 swap_done;
1522 u32 bad_dram_cs;
1524 /* Depending on channel, isolate respective SPARING info */
1525 if (cs) {
1526 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1527 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1528 if (swap_done && (csrow == bad_dram_cs))
1529 csrow = CH1SPARE_RANK;
1530 } else {
1531 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1532 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1533 if (swap_done && (csrow == bad_dram_cs))
1534 csrow = CH0SPARE_RANK;
1536 return csrow;
1540 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1541 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1543 * Return:
1544 * -EINVAL: NOT FOUND
1545 * 0..csrow = Chip-Select Row
1547 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1549 struct mem_ctl_info *mci;
1550 struct amd64_pvt *pvt;
1551 u32 cs_base, cs_mask;
1552 int cs_found = -EINVAL;
1553 int csrow;
1555 mci = mci_lookup[nid];
1556 if (!mci)
1557 return cs_found;
1559 pvt = mci->pvt_info;
1561 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1563 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1565 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1566 if (!(cs_base & K8_DCSB_CS_ENABLE))
1567 continue;
1570 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1571 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1572 * of the actual address.
1574 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1577 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1578 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1580 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1582 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1583 csrow, cs_base, cs_mask);
1585 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1587 debugf1(" Final CSMask=0x%x\n", cs_mask);
1588 debugf1(" (InputAddr & ~CSMask)=0x%x "
1589 "(CSBase & ~CSMask)=0x%x\n",
1590 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1592 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1593 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1595 debugf1(" MATCH csrow=%d\n", cs_found);
1596 break;
1599 return cs_found;
1602 /* For a given @dram_range, check if @sys_addr falls within it. */
1603 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1604 u64 sys_addr, int *nid, int *chan_sel)
1606 int node_id, cs_found = -EINVAL, high_range = 0;
1607 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1608 u32 hole_valid, tmp, dct_sel_base, channel;
1609 u64 dram_base, chan_addr, dct_sel_base_off;
1611 dram_base = pvt->dram_base[dram_range];
1612 intlv_en = pvt->dram_IntlvEn[dram_range];
1614 node_id = pvt->dram_DstNode[dram_range];
1615 intlv_sel = pvt->dram_IntlvSel[dram_range];
1617 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1618 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1621 * This assumes that one node's DHAR is the same as all the other
1622 * nodes' DHAR.
1624 hole_off = (pvt->dhar & 0x0000FF80);
1625 hole_valid = (pvt->dhar & 0x1);
1626 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1628 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1629 hole_off, hole_valid, intlv_sel);
1631 if (intlv_en ||
1632 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1633 return -EINVAL;
1635 dct_sel_base = dct_sel_baseaddr(pvt);
1638 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1639 * select between DCT0 and DCT1.
1641 if (dct_high_range_enabled(pvt) &&
1642 !dct_ganging_enabled(pvt) &&
1643 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1644 high_range = 1;
1646 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1648 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1649 dct_sel_base_off, hole_valid,
1650 hole_off, dram_base);
1652 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1654 /* remove Node ID (in case of memory interleaving) */
1655 tmp = chan_addr & 0xFC0;
1657 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1659 /* remove channel interleave and hash */
1660 if (dct_interleave_enabled(pvt) &&
1661 !dct_high_range_enabled(pvt) &&
1662 !dct_ganging_enabled(pvt)) {
1663 if (dct_sel_interleave_addr(pvt) != 1)
1664 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1665 else {
1666 tmp = chan_addr & 0xFC0;
1667 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1668 | tmp;
1672 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1673 chan_addr, (u32)(chan_addr >> 8));
1675 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1677 if (cs_found >= 0) {
1678 *nid = node_id;
1679 *chan_sel = channel;
1681 return cs_found;
1684 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1685 int *node, int *chan_sel)
1687 int dram_range, cs_found = -EINVAL;
1688 u64 dram_base, dram_limit;
1690 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1692 if (!pvt->dram_rw_en[dram_range])
1693 continue;
1695 dram_base = pvt->dram_base[dram_range];
1696 dram_limit = pvt->dram_limit[dram_range];
1698 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1700 cs_found = f10_match_to_this_node(pvt, dram_range,
1701 sys_addr, node,
1702 chan_sel);
1703 if (cs_found >= 0)
1704 break;
1707 return cs_found;
1711 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1712 * CSROW, Channel.
1714 * The @sys_addr is usually an error address received from the hardware.
1716 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1717 struct err_regs *info,
1718 u64 sys_addr)
1720 struct amd64_pvt *pvt = mci->pvt_info;
1721 u32 page, offset;
1722 unsigned short syndrome;
1723 int nid, csrow, chan = 0;
1725 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1727 if (csrow >= 0) {
1728 error_address_to_page_and_offset(sys_addr, &page, &offset);
1730 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1731 syndrome |= LOW_SYNDROME(info->nbsh);
1734 * Is CHIPKILL on? If so, then we can attempt to use the
1735 * syndrome to isolate which channel the error was on.
1737 if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1738 chan = get_channel_from_ecc_syndrome(syndrome);
1740 if (chan >= 0) {
1741 edac_mc_handle_ce(mci, page, offset, syndrome,
1742 csrow, chan, EDAC_MOD_STR);
1743 } else {
1745 * Channel unknown, report all channels on this
1746 * CSROW as failed.
1748 for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1749 chan++) {
1750 edac_mc_handle_ce(mci, page, offset,
1751 syndrome,
1752 csrow, chan,
1753 EDAC_MOD_STR);
1757 } else {
1758 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1763 * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
1764 * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
1765 * indicates an empty DIMM slot, as reported by Hardware on empty slots.
1767 * Normalize to 128MB by subracting 27 bit shift.
1769 static int map_dbam_to_csrow_size(int index)
1771 int mega_bytes = 0;
1773 if (index > 0 && index <= DBAM_MAX_VALUE)
1774 mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
1776 return mega_bytes;
1780 * debug routine to display the memory sizes of a DIMM (ganged or not) and it
1781 * CSROWs as well
1783 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
1784 int ganged)
1786 int dimm, size0, size1;
1787 u32 dbam;
1788 u32 *dcsb;
1790 debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
1791 ctrl ? pvt->dbam1 : pvt->dbam0,
1792 ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
1794 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1795 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1797 /* Dump memory sizes for DIMM and its CSROWs */
1798 for (dimm = 0; dimm < 4; dimm++) {
1800 size0 = 0;
1801 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1802 size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1804 size1 = 0;
1805 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1806 size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1808 debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
1809 "CSROW-%d=%5dMB\n",
1810 ctrl,
1811 dimm,
1812 size0 + size1,
1813 dimm * 2,
1814 size0,
1815 dimm * 2 + 1,
1816 size1);
1821 * Very early hardware probe on pci_probe thread to determine if this module
1822 * supports the hardware.
1824 * Return:
1825 * 0 for OK
1826 * 1 for error
1828 static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
1830 int ret = 0;
1833 * If we are on a DDR3 machine, we don't know yet if
1834 * we support that properly at this time
1836 if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
1837 (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
1839 amd64_printk(KERN_WARNING,
1840 "%s() This machine is running with DDR3 memory. "
1841 "This is not currently supported. "
1842 "DCHR0=0x%x DCHR1=0x%x\n",
1843 __func__, pvt->dchr0, pvt->dchr1);
1845 amd64_printk(KERN_WARNING,
1846 " Contact '%s' module MAINTAINER to help add"
1847 " support.\n",
1848 EDAC_MOD_STR);
1850 ret = 1;
1853 return ret;
1857 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1858 * (as per PCI DEVICE_IDs):
1860 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1861 * DEVICE ID, even though there is differences between the different Revisions
1862 * (CG,D,E,F).
1864 * Family F10h and F11h.
1867 static struct amd64_family_type amd64_family_types[] = {
1868 [K8_CPUS] = {
1869 .ctl_name = "RevF",
1870 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1871 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1872 .ops = {
1873 .early_channel_count = k8_early_channel_count,
1874 .get_error_address = k8_get_error_address,
1875 .read_dram_base_limit = k8_read_dram_base_limit,
1876 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1877 .dbam_map_to_pages = k8_dbam_map_to_pages,
1880 [F10_CPUS] = {
1881 .ctl_name = "Family 10h",
1882 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1883 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1884 .ops = {
1885 .probe_valid_hardware = f10_probe_valid_hardware,
1886 .early_channel_count = f10_early_channel_count,
1887 .get_error_address = f10_get_error_address,
1888 .read_dram_base_limit = f10_read_dram_base_limit,
1889 .read_dram_ctl_register = f10_read_dram_ctl_register,
1890 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1891 .dbam_map_to_pages = f10_dbam_map_to_pages,
1894 [F11_CPUS] = {
1895 .ctl_name = "Family 11h",
1896 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1897 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1898 .ops = {
1899 .probe_valid_hardware = f10_probe_valid_hardware,
1900 .early_channel_count = f10_early_channel_count,
1901 .get_error_address = f10_get_error_address,
1902 .read_dram_base_limit = f10_read_dram_base_limit,
1903 .read_dram_ctl_register = f10_read_dram_ctl_register,
1904 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1905 .dbam_map_to_pages = f10_dbam_map_to_pages,
1910 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1911 unsigned int device,
1912 struct pci_dev *related)
1914 struct pci_dev *dev = NULL;
1916 dev = pci_get_device(vendor, device, dev);
1917 while (dev) {
1918 if ((dev->bus->number == related->bus->number) &&
1919 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1920 break;
1921 dev = pci_get_device(vendor, device, dev);
1924 return dev;
1928 * syndrome mapping table for ECC ChipKill devices
1930 * The comment in each row is the token (nibble) number that is in error.
1931 * The least significant nibble of the syndrome is the mask for the bits
1932 * that are in error (need to be toggled) for the particular nibble.
1934 * Each row contains 16 entries.
1935 * The first entry (0th) is the channel number for that row of syndromes.
1936 * The remaining 15 entries are the syndromes for the respective Error
1937 * bit mask index.
1939 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1940 * bit in error.
1941 * The 2nd index entry is 0x0010 that the second bit is damaged.
1942 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1943 * are damaged.
1944 * Thus so on until index 15, 0x1111, whose entry has the syndrome
1945 * indicating that all 4 bits are damaged.
1947 * A search is performed on this table looking for a given syndrome.
1949 * See the AMD documentation for ECC syndromes. This ECC table is valid
1950 * across all the versions of the AMD64 processors.
1952 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1953 * COLUMN index, then search all ROWS of that column, looking for a match
1954 * with the input syndrome. The ROW value will be the token number.
1956 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1957 * error.
1959 #define NUMBER_ECC_ROWS 36
1960 static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
1961 /* Channel 0 syndromes */
1962 {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1963 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1964 {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1965 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1966 {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1967 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1968 {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
1969 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
1970 {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
1971 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
1972 {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
1973 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
1974 {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
1975 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
1976 {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
1977 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
1978 {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
1979 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
1980 {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
1981 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
1982 {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
1983 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
1984 {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
1985 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
1986 {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
1987 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
1988 {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
1989 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
1990 {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
1991 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
1992 {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
1993 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
1995 /* Channel 1 syndromes */
1996 {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
1997 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
1998 {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
1999 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
2000 {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
2001 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
2002 {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
2003 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
2004 {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
2005 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
2006 {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
2007 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
2008 {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
2009 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
2010 {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
2011 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
2012 {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
2013 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
2014 {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
2015 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
2016 {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
2017 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
2018 {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
2019 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
2020 {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
2021 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
2022 {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
2023 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
2024 {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
2025 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
2026 {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
2027 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
2029 /* ECC bits are also in the set of tokens and they too can go bad
2030 * first 2 cover channel 0, while the second 2 cover channel 1
2032 {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
2033 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
2034 {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
2035 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
2036 {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
2037 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
2038 {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
2039 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
2043 * Given the syndrome argument, scan each of the channel tables for a syndrome
2044 * match. Depending on which table it is found, return the channel number.
2046 static int get_channel_from_ecc_syndrome(unsigned short syndrome)
2048 int row;
2049 int column;
2051 /* Determine column to scan */
2052 column = syndrome & 0xF;
2054 /* Scan all rows, looking for syndrome, or end of table */
2055 for (row = 0; row < NUMBER_ECC_ROWS; row++) {
2056 if (ecc_chipkill_syndromes[row][column] == syndrome)
2057 return ecc_chipkill_syndromes[row][0];
2060 debugf0("syndrome(%x) not found\n", syndrome);
2061 return -1;
2065 * Check for valid error in the NB Status High register. If so, proceed to read
2066 * NB Status Low, NB Address Low and NB Address High registers and store data
2067 * into error structure.
2069 * Returns:
2070 * - 1: if hardware regs contains valid error info
2071 * - 0: if no valid error is indicated
2073 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
2074 struct err_regs *regs)
2076 struct amd64_pvt *pvt;
2077 struct pci_dev *misc_f3_ctl;
2078 int err = 0;
2080 pvt = mci->pvt_info;
2081 misc_f3_ctl = pvt->misc_f3_ctl;
2083 err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
2084 if (err)
2085 goto err_reg;
2087 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
2088 return 0;
2090 /* valid error, read remaining error information registers */
2091 err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
2092 if (err)
2093 goto err_reg;
2095 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
2096 if (err)
2097 goto err_reg;
2099 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
2100 if (err)
2101 goto err_reg;
2103 err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
2104 if (err)
2105 goto err_reg;
2107 return 1;
2109 err_reg:
2110 debugf0("Reading error info register failed\n");
2111 return 0;
2115 * This function is called to retrieve the error data from hardware and store it
2116 * in the info structure.
2118 * Returns:
2119 * - 1: if a valid error is found
2120 * - 0: if no error is found
2122 static int amd64_get_error_info(struct mem_ctl_info *mci,
2123 struct err_regs *info)
2125 struct amd64_pvt *pvt;
2126 struct err_regs regs;
2128 pvt = mci->pvt_info;
2130 if (!amd64_get_error_info_regs(mci, info))
2131 return 0;
2134 * Here's the problem with the K8's EDAC reporting: There are four
2135 * registers which report pieces of error information. They are shared
2136 * between CEs and UEs. Furthermore, contrary to what is stated in the
2137 * BKDG, the overflow bit is never used! Every error always updates the
2138 * reporting registers.
2140 * Can you see the race condition? All four error reporting registers
2141 * must be read before a new error updates them! There is no way to read
2142 * all four registers atomically. The best than can be done is to detect
2143 * that a race has occured and then report the error without any kind of
2144 * precision.
2146 * What is still positive is that errors are still reported and thus
2147 * problems can still be detected - just not localized because the
2148 * syndrome and address are spread out across registers.
2150 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2151 * UEs and CEs should have separate register sets with proper overflow
2152 * bits that are used! At very least the problem can be fixed by
2153 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2154 * set the overflow bit - unless the current error is CE and the new
2155 * error is UE which would be the only situation for overwriting the
2156 * current values.
2159 regs = *info;
2161 /* Use info from the second read - most current */
2162 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2163 return 0;
2165 /* clear the error bits in hardware */
2166 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2168 /* Check for the possible race condition */
2169 if ((regs.nbsh != info->nbsh) ||
2170 (regs.nbsl != info->nbsl) ||
2171 (regs.nbeah != info->nbeah) ||
2172 (regs.nbeal != info->nbeal)) {
2173 amd64_mc_printk(mci, KERN_WARNING,
2174 "hardware STATUS read access race condition "
2175 "detected!\n");
2176 return 0;
2178 return 1;
2182 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2183 * ADDRESS and process.
2185 static void amd64_handle_ce(struct mem_ctl_info *mci,
2186 struct err_regs *info)
2188 struct amd64_pvt *pvt = mci->pvt_info;
2189 u64 SystemAddress;
2191 /* Ensure that the Error Address is VALID */
2192 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2193 amd64_mc_printk(mci, KERN_ERR,
2194 "HW has no ERROR_ADDRESS available\n");
2195 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2196 return;
2199 SystemAddress = extract_error_address(mci, info);
2201 amd64_mc_printk(mci, KERN_ERR,
2202 "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
2204 pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
2207 /* Handle any Un-correctable Errors (UEs) */
2208 static void amd64_handle_ue(struct mem_ctl_info *mci,
2209 struct err_regs *info)
2211 int csrow;
2212 u64 SystemAddress;
2213 u32 page, offset;
2214 struct mem_ctl_info *log_mci, *src_mci = NULL;
2216 log_mci = mci;
2218 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2219 amd64_mc_printk(mci, KERN_CRIT,
2220 "HW has no ERROR_ADDRESS available\n");
2221 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2222 return;
2225 SystemAddress = extract_error_address(mci, info);
2228 * Find out which node the error address belongs to. This may be
2229 * different from the node that detected the error.
2231 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
2232 if (!src_mci) {
2233 amd64_mc_printk(mci, KERN_CRIT,
2234 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2235 (unsigned long)SystemAddress);
2236 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2237 return;
2240 log_mci = src_mci;
2242 csrow = sys_addr_to_csrow(log_mci, SystemAddress);
2243 if (csrow < 0) {
2244 amd64_mc_printk(mci, KERN_CRIT,
2245 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2246 (unsigned long)SystemAddress);
2247 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2248 } else {
2249 error_address_to_page_and_offset(SystemAddress, &page, &offset);
2250 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2254 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2255 struct err_regs *info)
2257 u32 ec = ERROR_CODE(info->nbsl);
2258 u32 xec = EXT_ERROR_CODE(info->nbsl);
2259 int ecc_type = (info->nbsh >> 13) & 0x3;
2261 /* Bail early out if this was an 'observed' error */
2262 if (PP(ec) == K8_NBSL_PP_OBS)
2263 return;
2265 /* Do only ECC errors */
2266 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2267 return;
2269 if (ecc_type == 2)
2270 amd64_handle_ce(mci, info);
2271 else if (ecc_type == 1)
2272 amd64_handle_ue(mci, info);
2275 * If main error is CE then overflow must be CE. If main error is UE
2276 * then overflow is unknown. We'll call the overflow a CE - if
2277 * panic_on_ue is set then we're already panic'ed and won't arrive
2278 * here. Else, then apparently someone doesn't think that UE's are
2279 * catastrophic.
2281 if (info->nbsh & K8_NBSH_OVERFLOW)
2282 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
2285 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2287 struct mem_ctl_info *mci = mci_lookup[node_id];
2289 __amd64_decode_bus_error(mci, regs);
2292 * Check the UE bit of the NB status high register, if set generate some
2293 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2294 * If it was a GART error, skip that process.
2296 * FIXME: this should go somewhere else, if at all.
2298 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2299 edac_mc_handle_ue_no_info(mci, "UE bit is set");
2304 * The main polling 'check' function, called FROM the edac core to perform the
2305 * error checking and if an error is encountered, error processing.
2307 static void amd64_check(struct mem_ctl_info *mci)
2309 struct err_regs regs;
2311 if (amd64_get_error_info(mci, &regs)) {
2312 struct amd64_pvt *pvt = mci->pvt_info;
2313 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2318 * Input:
2319 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2320 * 2) AMD Family index value
2322 * Ouput:
2323 * Upon return of 0, the following filled in:
2325 * struct pvt->addr_f1_ctl
2326 * struct pvt->misc_f3_ctl
2328 * Filled in with related device funcitions of 'dram_f2_ctl'
2329 * These devices are "reserved" via the pci_get_device()
2331 * Upon return of 1 (error status):
2333 * Nothing reserved
2335 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2337 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2339 /* Reserve the ADDRESS MAP Device */
2340 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2341 amd64_dev->addr_f1_ctl,
2342 pvt->dram_f2_ctl);
2344 if (!pvt->addr_f1_ctl) {
2345 amd64_printk(KERN_ERR, "error address map device not found: "
2346 "vendor %x device 0x%x (broken BIOS?)\n",
2347 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2348 return 1;
2351 /* Reserve the MISC Device */
2352 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2353 amd64_dev->misc_f3_ctl,
2354 pvt->dram_f2_ctl);
2356 if (!pvt->misc_f3_ctl) {
2357 pci_dev_put(pvt->addr_f1_ctl);
2358 pvt->addr_f1_ctl = NULL;
2360 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2361 "vendor %x device 0x%x (broken BIOS?)\n",
2362 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2363 return 1;
2366 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2367 pci_name(pvt->addr_f1_ctl));
2368 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2369 pci_name(pvt->dram_f2_ctl));
2370 debugf1(" Misc device PCI Bus ID:\t%s\n",
2371 pci_name(pvt->misc_f3_ctl));
2373 return 0;
2376 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2378 pci_dev_put(pvt->addr_f1_ctl);
2379 pci_dev_put(pvt->misc_f3_ctl);
2383 * Retrieve the hardware registers of the memory controller (this includes the
2384 * 'Address Map' and 'Misc' device regs)
2386 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2388 u64 msr_val;
2389 int dram, err = 0;
2392 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2393 * those are Read-As-Zero
2395 rdmsrl(MSR_K8_TOP_MEM1, msr_val);
2396 pvt->top_mem = msr_val >> 23;
2397 debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
2399 /* check first whether TOP_MEM2 is enabled */
2400 rdmsrl(MSR_K8_SYSCFG, msr_val);
2401 if (msr_val & (1U << 21)) {
2402 rdmsrl(MSR_K8_TOP_MEM2, msr_val);
2403 pvt->top_mem2 = msr_val >> 23;
2404 debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
2405 } else
2406 debugf0(" TOP_MEM2 disabled.\n");
2408 amd64_cpu_display_info(pvt);
2410 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2411 if (err)
2412 goto err_reg;
2414 if (pvt->ops->read_dram_ctl_register)
2415 pvt->ops->read_dram_ctl_register(pvt);
2417 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2419 * Call CPU specific READ function to get the DRAM Base and
2420 * Limit values from the DCT.
2422 pvt->ops->read_dram_base_limit(pvt, dram);
2425 * Only print out debug info on rows with both R and W Enabled.
2426 * Normal processing, compiler should optimize this whole 'if'
2427 * debug output block away.
2429 if (pvt->dram_rw_en[dram] != 0) {
2430 debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
2431 "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
2432 dram,
2433 (u32)(pvt->dram_base[dram] >> 32),
2434 (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
2435 (u32)(pvt->dram_limit[dram] >> 32),
2436 (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
2437 debugf1(" IntlvEn=%s %s %s "
2438 "IntlvSel=%d DstNode=%d\n",
2439 pvt->dram_IntlvEn[dram] ?
2440 "Enabled" : "Disabled",
2441 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2442 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2443 pvt->dram_IntlvSel[dram],
2444 pvt->dram_DstNode[dram]);
2448 amd64_read_dct_base_mask(pvt);
2450 err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2451 if (err)
2452 goto err_reg;
2454 amd64_read_dbam_reg(pvt);
2456 err = pci_read_config_dword(pvt->misc_f3_ctl,
2457 F10_ONLINE_SPARE, &pvt->online_spare);
2458 if (err)
2459 goto err_reg;
2461 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2462 if (err)
2463 goto err_reg;
2465 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2466 if (err)
2467 goto err_reg;
2469 if (!dct_ganging_enabled(pvt)) {
2470 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
2471 &pvt->dclr1);
2472 if (err)
2473 goto err_reg;
2475 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
2476 &pvt->dchr1);
2477 if (err)
2478 goto err_reg;
2481 amd64_dump_misc_regs(pvt);
2483 return;
2485 err_reg:
2486 debugf0("Reading an MC register failed\n");
2491 * NOTE: CPU Revision Dependent code
2493 * Input:
2494 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2495 * k8 private pointer to -->
2496 * DRAM Bank Address mapping register
2497 * node_id
2498 * DCL register where dual_channel_active is
2500 * The DBAM register consists of 4 sets of 4 bits each definitions:
2502 * Bits: CSROWs
2503 * 0-3 CSROWs 0 and 1
2504 * 4-7 CSROWs 2 and 3
2505 * 8-11 CSROWs 4 and 5
2506 * 12-15 CSROWs 6 and 7
2508 * Values range from: 0 to 15
2509 * The meaning of the values depends on CPU revision and dual-channel state,
2510 * see relevant BKDG more info.
2512 * The memory controller provides for total of only 8 CSROWs in its current
2513 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2514 * single channel or two (2) DIMMs in dual channel mode.
2516 * The following code logic collapses the various tables for CSROW based on CPU
2517 * revision.
2519 * Returns:
2520 * The number of PAGE_SIZE pages on the specified CSROW number it
2521 * encompasses
2524 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2526 u32 dram_map, nr_pages;
2529 * The math on this doesn't look right on the surface because x/2*4 can
2530 * be simplified to x*2 but this expression makes use of the fact that
2531 * it is integral math where 1/2=0. This intermediate value becomes the
2532 * number of bits to shift the DBAM register to extract the proper CSROW
2533 * field.
2535 dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2537 nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
2540 * If dual channel then double the memory size of single channel.
2541 * Channel count is 1 or 2
2543 nr_pages <<= (pvt->channel_count - 1);
2545 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
2546 debugf0(" nr_pages= %u channel-count = %d\n",
2547 nr_pages, pvt->channel_count);
2549 return nr_pages;
2553 * Initialize the array of csrow attribute instances, based on the values
2554 * from pci config hardware registers.
2556 static int amd64_init_csrows(struct mem_ctl_info *mci)
2558 struct csrow_info *csrow;
2559 struct amd64_pvt *pvt;
2560 u64 input_addr_min, input_addr_max, sys_addr;
2561 int i, err = 0, empty = 1;
2563 pvt = mci->pvt_info;
2565 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2566 if (err)
2567 debugf0("Reading K8_NBCFG failed\n");
2569 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2570 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2571 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2574 for (i = 0; i < pvt->cs_count; i++) {
2575 csrow = &mci->csrows[i];
2577 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2578 debugf1("----CSROW %d EMPTY for node %d\n", i,
2579 pvt->mc_node_id);
2580 continue;
2583 debugf1("----CSROW %d VALID for MC node %d\n",
2584 i, pvt->mc_node_id);
2586 empty = 0;
2587 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2588 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2589 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2590 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2591 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2592 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2593 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2594 /* 8 bytes of resolution */
2596 csrow->mtype = amd64_determine_memory_type(pvt);
2598 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2599 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2600 (unsigned long)input_addr_min,
2601 (unsigned long)input_addr_max);
2602 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2603 (unsigned long)sys_addr, csrow->page_mask);
2604 debugf1(" nr_pages: %u first_page: 0x%lx "
2605 "last_page: 0x%lx\n",
2606 (unsigned)csrow->nr_pages,
2607 csrow->first_page, csrow->last_page);
2610 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2612 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2613 csrow->edac_mode =
2614 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2615 EDAC_S4ECD4ED : EDAC_SECDED;
2616 else
2617 csrow->edac_mode = EDAC_NONE;
2620 return empty;
2623 /* get all cores on this DCT */
2624 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2626 int cpu;
2628 for_each_online_cpu(cpu)
2629 if (amd_get_nb_id(cpu) == nid)
2630 cpumask_set_cpu(cpu, mask);
2633 /* check MCG_CTL on all the cpus on this node */
2634 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2636 cpumask_var_t mask;
2637 int cpu, nbe;
2638 bool ret = false;
2640 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2641 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2642 __func__);
2643 return false;
2646 get_cpus_on_this_dct_cpumask(mask, nid);
2648 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2650 for_each_cpu(cpu, mask) {
2651 struct msr *reg = per_cpu_ptr(msrs, cpu);
2652 nbe = reg->l & K8_MSR_MCGCTL_NBE;
2654 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2655 cpu, reg->q,
2656 (nbe ? "enabled" : "disabled"));
2658 if (!nbe)
2659 goto out;
2661 ret = true;
2663 out:
2664 free_cpumask_var(mask);
2665 return ret;
2668 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2670 cpumask_var_t cmask;
2671 int cpu;
2673 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2674 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2675 __func__);
2676 return false;
2679 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2681 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2683 for_each_cpu(cpu, cmask) {
2685 struct msr *reg = per_cpu_ptr(msrs, cpu);
2687 if (on) {
2688 if (reg->l & K8_MSR_MCGCTL_NBE)
2689 pvt->flags.ecc_report = 1;
2691 reg->l |= K8_MSR_MCGCTL_NBE;
2692 } else {
2694 * Turn off ECC reporting only when it was off before
2696 if (!pvt->flags.ecc_report)
2697 reg->l &= ~K8_MSR_MCGCTL_NBE;
2700 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2702 free_cpumask_var(cmask);
2704 return 0;
2708 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2709 * enable it.
2711 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2713 struct amd64_pvt *pvt = mci->pvt_info;
2714 int err = 0;
2715 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2717 if (!ecc_enable_override)
2718 return;
2720 amd64_printk(KERN_WARNING,
2721 "'ecc_enable_override' parameter is active, "
2722 "Enabling AMD ECC hardware now: CAUTION\n");
2724 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2725 if (err)
2726 debugf0("Reading K8_NBCTL failed\n");
2728 /* turn on UECCn and CECCEn bits */
2729 pvt->old_nbctl = value & mask;
2730 pvt->nbctl_mcgctl_saved = 1;
2732 value |= mask;
2733 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2735 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2736 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2737 "MCGCTL!\n");
2739 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2740 if (err)
2741 debugf0("Reading K8_NBCFG failed\n");
2743 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2744 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2745 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2747 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2748 amd64_printk(KERN_WARNING,
2749 "This node reports that DRAM ECC is "
2750 "currently Disabled; ENABLING now\n");
2752 /* Attempt to turn on DRAM ECC Enable */
2753 value |= K8_NBCFG_ECC_ENABLE;
2754 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2756 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2757 if (err)
2758 debugf0("Reading K8_NBCFG failed\n");
2760 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2761 amd64_printk(KERN_WARNING,
2762 "Hardware rejects Enabling DRAM ECC checking\n"
2763 "Check memory DIMM configuration\n");
2764 } else {
2765 amd64_printk(KERN_DEBUG,
2766 "Hardware accepted DRAM ECC Enable\n");
2769 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2770 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2771 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2773 pvt->ctl_error_info.nbcfg = value;
2776 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2778 int err = 0;
2779 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2781 if (!pvt->nbctl_mcgctl_saved)
2782 return;
2784 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2785 if (err)
2786 debugf0("Reading K8_NBCTL failed\n");
2787 value &= ~mask;
2788 value |= pvt->old_nbctl;
2790 /* restore the NB Enable MCGCTL bit */
2791 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2793 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2794 amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
2795 "MCGCTL!\n");
2799 * EDAC requires that the BIOS have ECC enabled before taking over the
2800 * processing of ECC errors. This is because the BIOS can properly initialize
2801 * the memory system completely. A command line option allows to force-enable
2802 * hardware ECC later in amd64_enable_ecc_error_reporting().
2804 static const char *ecc_msg =
2805 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2806 " Either enable ECC checking or force module loading by setting "
2807 "'ecc_enable_override'.\n"
2808 " (Note that use of the override may cause unknown side effects.)\n";
2810 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2812 u32 value;
2813 int err = 0;
2814 u8 ecc_enabled = 0;
2815 bool nb_mce_en = false;
2817 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2818 if (err)
2819 debugf0("Reading K8_NBCTL failed\n");
2821 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2822 if (!ecc_enabled)
2823 amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
2824 "is currently disabled, set F3x%x[22] (%s).\n",
2825 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2826 else
2827 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2829 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2830 if (!nb_mce_en)
2831 amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
2832 "0x%08x[4] on node %d to enable.\n",
2833 MSR_IA32_MCG_CTL, pvt->mc_node_id);
2835 if (!ecc_enabled || !nb_mce_en) {
2836 if (!ecc_enable_override) {
2837 amd64_printk(KERN_NOTICE, "%s", ecc_msg);
2838 return -ENODEV;
2840 ecc_enable_override = 0;
2843 return 0;
2846 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2847 ARRAY_SIZE(amd64_inj_attrs) +
2850 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2852 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2854 unsigned int i = 0, j = 0;
2856 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2857 sysfs_attrs[i] = amd64_dbg_attrs[i];
2859 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2860 sysfs_attrs[i] = amd64_inj_attrs[j];
2862 sysfs_attrs[i] = terminator;
2864 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2867 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2869 struct amd64_pvt *pvt = mci->pvt_info;
2871 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2872 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2874 if (pvt->nbcap & K8_NBCAP_SECDED)
2875 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2877 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2878 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2880 mci->edac_cap = amd64_determine_edac_cap(pvt);
2881 mci->mod_name = EDAC_MOD_STR;
2882 mci->mod_ver = EDAC_AMD64_VERSION;
2883 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2884 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2885 mci->ctl_page_to_phys = NULL;
2887 /* IMPORTANT: Set the polling 'check' function in this module */
2888 mci->edac_check = amd64_check;
2890 /* memory scrubber interface */
2891 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2892 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2896 * Init stuff for this DRAM Controller device.
2898 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2899 * Space feature MUST be enabled on ALL Processors prior to actually reading
2900 * from the ECS registers. Since the loading of the module can occur on any
2901 * 'core', and cores don't 'see' all the other processors ECS data when the
2902 * others are NOT enabled. Our solution is to first enable ECS access in this
2903 * routine on all processors, gather some data in a amd64_pvt structure and
2904 * later come back in a finish-setup function to perform that final
2905 * initialization. See also amd64_init_2nd_stage() for that.
2907 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2908 int mc_type_index)
2910 struct amd64_pvt *pvt = NULL;
2911 int err = 0, ret;
2913 ret = -ENOMEM;
2914 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2915 if (!pvt)
2916 goto err_exit;
2918 pvt->mc_node_id = get_node_id(dram_f2_ctl);
2920 pvt->dram_f2_ctl = dram_f2_ctl;
2921 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2922 pvt->mc_type_index = mc_type_index;
2923 pvt->ops = family_ops(mc_type_index);
2926 * We have the dram_f2_ctl device as an argument, now go reserve its
2927 * sibling devices from the PCI system.
2929 ret = -ENODEV;
2930 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2931 if (err)
2932 goto err_free;
2934 ret = -EINVAL;
2935 err = amd64_check_ecc_enabled(pvt);
2936 if (err)
2937 goto err_put;
2940 * Key operation here: setup of HW prior to performing ops on it. Some
2941 * setup is required to access ECS data. After this is performed, the
2942 * 'teardown' function must be called upon error and normal exit paths.
2944 if (boot_cpu_data.x86 >= 0x10)
2945 amd64_setup(pvt);
2948 * Save the pointer to the private data for use in 2nd initialization
2949 * stage
2951 pvt_lookup[pvt->mc_node_id] = pvt;
2953 return 0;
2955 err_put:
2956 amd64_free_mc_sibling_devices(pvt);
2958 err_free:
2959 kfree(pvt);
2961 err_exit:
2962 return ret;
2966 * This is the finishing stage of the init code. Needs to be performed after all
2967 * MCs' hardware have been prepped for accessing extended config space.
2969 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2971 int node_id = pvt->mc_node_id;
2972 struct mem_ctl_info *mci;
2973 int ret, err = 0;
2975 amd64_read_mc_registers(pvt);
2977 ret = -ENODEV;
2978 if (pvt->ops->probe_valid_hardware) {
2979 err = pvt->ops->probe_valid_hardware(pvt);
2980 if (err)
2981 goto err_exit;
2985 * We need to determine how many memory channels there are. Then use
2986 * that information for calculating the size of the dynamic instance
2987 * tables in the 'mci' structure
2989 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2990 if (pvt->channel_count < 0)
2991 goto err_exit;
2993 ret = -ENOMEM;
2994 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2995 if (!mci)
2996 goto err_exit;
2998 mci->pvt_info = pvt;
3000 mci->dev = &pvt->dram_f2_ctl->dev;
3001 amd64_setup_mci_misc_attributes(mci);
3003 if (amd64_init_csrows(mci))
3004 mci->edac_cap = EDAC_FLAG_NONE;
3006 amd64_enable_ecc_error_reporting(mci);
3007 amd64_set_mc_sysfs_attributes(mci);
3009 ret = -ENODEV;
3010 if (edac_mc_add_mc(mci)) {
3011 debugf1("failed edac_mc_add_mc()\n");
3012 goto err_add_mc;
3015 mci_lookup[node_id] = mci;
3016 pvt_lookup[node_id] = NULL;
3018 /* register stuff with EDAC MCE */
3019 if (report_gart_errors)
3020 amd_report_gart_errors(true);
3022 amd_register_ecc_decoder(amd64_decode_bus_error);
3024 return 0;
3026 err_add_mc:
3027 edac_mc_free(mci);
3029 err_exit:
3030 debugf0("failure to init 2nd stage: ret=%d\n", ret);
3032 amd64_restore_ecc_error_reporting(pvt);
3034 if (boot_cpu_data.x86 > 0xf)
3035 amd64_teardown(pvt);
3037 amd64_free_mc_sibling_devices(pvt);
3039 kfree(pvt_lookup[pvt->mc_node_id]);
3040 pvt_lookup[node_id] = NULL;
3042 return ret;
3046 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
3047 const struct pci_device_id *mc_type)
3049 int ret = 0;
3051 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
3052 get_amd_family_name(mc_type->driver_data));
3054 ret = pci_enable_device(pdev);
3055 if (ret < 0)
3056 ret = -EIO;
3057 else
3058 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
3060 if (ret < 0)
3061 debugf0("ret=%d\n", ret);
3063 return ret;
3066 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
3068 struct mem_ctl_info *mci;
3069 struct amd64_pvt *pvt;
3071 /* Remove from EDAC CORE tracking list */
3072 mci = edac_mc_del_mc(&pdev->dev);
3073 if (!mci)
3074 return;
3076 pvt = mci->pvt_info;
3078 amd64_restore_ecc_error_reporting(pvt);
3080 if (boot_cpu_data.x86 > 0xf)
3081 amd64_teardown(pvt);
3083 amd64_free_mc_sibling_devices(pvt);
3085 /* unregister from EDAC MCE */
3086 amd_report_gart_errors(false);
3087 amd_unregister_ecc_decoder(amd64_decode_bus_error);
3089 /* Free the EDAC CORE resources */
3090 mci->pvt_info = NULL;
3091 mci_lookup[pvt->mc_node_id] = NULL;
3093 kfree(pvt);
3094 edac_mc_free(mci);
3098 * This table is part of the interface for loading drivers for PCI devices. The
3099 * PCI core identifies what devices are on a system during boot, and then
3100 * inquiry this table to see if this driver is for a given device found.
3102 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
3104 .vendor = PCI_VENDOR_ID_AMD,
3105 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
3106 .subvendor = PCI_ANY_ID,
3107 .subdevice = PCI_ANY_ID,
3108 .class = 0,
3109 .class_mask = 0,
3110 .driver_data = K8_CPUS
3113 .vendor = PCI_VENDOR_ID_AMD,
3114 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
3115 .subvendor = PCI_ANY_ID,
3116 .subdevice = PCI_ANY_ID,
3117 .class = 0,
3118 .class_mask = 0,
3119 .driver_data = F10_CPUS
3122 .vendor = PCI_VENDOR_ID_AMD,
3123 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
3124 .subvendor = PCI_ANY_ID,
3125 .subdevice = PCI_ANY_ID,
3126 .class = 0,
3127 .class_mask = 0,
3128 .driver_data = F11_CPUS
3130 {0, }
3132 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
3134 static struct pci_driver amd64_pci_driver = {
3135 .name = EDAC_MOD_STR,
3136 .probe = amd64_init_one_instance,
3137 .remove = __devexit_p(amd64_remove_one_instance),
3138 .id_table = amd64_pci_table,
3141 static void amd64_setup_pci_device(void)
3143 struct mem_ctl_info *mci;
3144 struct amd64_pvt *pvt;
3146 if (amd64_ctl_pci)
3147 return;
3149 mci = mci_lookup[0];
3150 if (mci) {
3152 pvt = mci->pvt_info;
3153 amd64_ctl_pci =
3154 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3155 EDAC_MOD_STR);
3157 if (!amd64_ctl_pci) {
3158 pr_warning("%s(): Unable to create PCI control\n",
3159 __func__);
3161 pr_warning("%s(): PCI error report via EDAC not set\n",
3162 __func__);
3167 static int __init amd64_edac_init(void)
3169 int nb, err = -ENODEV;
3170 bool load_ok = false;
3172 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3174 opstate_init();
3176 if (cache_k8_northbridges() < 0)
3177 goto err_ret;
3179 msrs = msrs_alloc();
3180 if (!msrs)
3181 goto err_ret;
3183 err = pci_register_driver(&amd64_pci_driver);
3184 if (err)
3185 goto err_pci;
3188 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3189 * amd64_pvt structs. These will be used in the 2nd stage init function
3190 * to finish initialization of the MC instances.
3192 err = -ENODEV;
3193 for (nb = 0; nb < num_k8_northbridges; nb++) {
3194 if (!pvt_lookup[nb])
3195 continue;
3197 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3198 if (err)
3199 goto err_2nd_stage;
3201 load_ok = true;
3204 if (load_ok) {
3205 amd64_setup_pci_device();
3206 return 0;
3209 err_2nd_stage:
3210 pci_unregister_driver(&amd64_pci_driver);
3211 err_pci:
3212 msrs_free(msrs);
3213 msrs = NULL;
3214 err_ret:
3215 return err;
3218 static void __exit amd64_edac_exit(void)
3220 if (amd64_ctl_pci)
3221 edac_pci_release_generic_ctl(amd64_ctl_pci);
3223 pci_unregister_driver(&amd64_pci_driver);
3225 msrs_free(msrs);
3226 msrs = NULL;
3229 module_init(amd64_edac_init);
3230 module_exit(amd64_edac_exit);
3232 MODULE_LICENSE("GPL");
3233 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3234 "Dave Peterson, Thayne Harbaugh");
3235 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3236 EDAC_AMD64_VERSION);
3238 module_param(edac_op_state, int, 0444);
3239 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");