sched: Fix raciness in runqueue_is_locked()
[linux-2.6/mini2440.git] / kernel / sched.c
blob575fb0139038018b6636f28c5a45c528ab0c0850
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
282 user->tg->uid = user->uid;
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock);
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
315 return list_empty(&root_task_group.children);
317 #endif
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
343 struct task_group init_task_group;
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
348 struct task_group *tg;
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
377 #else
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 static inline struct task_group *task_group(struct task_struct *p)
382 return NULL;
385 #endif /* CONFIG_GROUP_SCHED */
387 /* CFS-related fields in a runqueue */
388 struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
392 u64 exec_clock;
393 u64 min_vruntime;
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
398 struct list_head tasks;
399 struct list_head *balance_iterator;
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
405 struct sched_entity *curr, *next, *last;
407 unsigned int nr_spread_over;
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
423 #ifdef CONFIG_SMP
425 * the part of load.weight contributed by tasks
427 unsigned long task_weight;
430 * h_load = weight * f(tg)
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
435 unsigned long h_load;
438 * this cpu's part of tg->shares
440 unsigned long shares;
443 * load.weight at the time we set shares
445 unsigned long rq_weight;
446 #endif
447 #endif
450 /* Real-Time classes' related field in a runqueue: */
451 struct rt_rq {
452 struct rt_prio_array active;
453 unsigned long rt_nr_running;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457 #ifdef CONFIG_SMP
458 int next; /* next highest */
459 #endif
460 } highest_prio;
461 #endif
462 #ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
467 #endif
468 int rt_throttled;
469 u64 rt_time;
470 u64 rt_runtime;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock;
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted;
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481 #endif
484 #ifdef CONFIG_SMP
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
494 struct root_domain {
495 atomic_t refcount;
496 cpumask_var_t span;
497 cpumask_var_t online;
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
503 cpumask_var_t rto_mask;
504 atomic_t rto_count;
505 #ifdef CONFIG_SMP
506 struct cpupri cpupri;
507 #endif
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
514 static struct root_domain def_root_domain;
516 #endif
519 * This is the main, per-CPU runqueue data structure.
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
525 struct rq {
526 /* runqueue lock: */
527 spinlock_t lock;
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
533 unsigned long nr_running;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536 #ifdef CONFIG_NO_HZ
537 unsigned long last_tick_seen;
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544 u64 nr_migrations_in;
546 struct cfs_rq cfs;
547 struct rt_rq rt;
549 #ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
552 #endif
553 #ifdef CONFIG_RT_GROUP_SCHED
554 struct list_head leaf_rt_rq_list;
555 #endif
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
563 unsigned long nr_uninterruptible;
565 struct task_struct *curr, *idle;
566 unsigned long next_balance;
567 struct mm_struct *prev_mm;
569 u64 clock;
571 atomic_t nr_iowait;
573 #ifdef CONFIG_SMP
574 struct root_domain *rd;
575 struct sched_domain *sd;
577 unsigned char idle_at_tick;
578 /* For active balancing */
579 int post_schedule;
580 int active_balance;
581 int push_cpu;
582 /* cpu of this runqueue: */
583 int cpu;
584 int online;
586 unsigned long avg_load_per_task;
588 struct task_struct *migration_thread;
589 struct list_head migration_queue;
591 u64 rt_avg;
592 u64 age_stamp;
593 #endif
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
599 #ifdef CONFIG_SCHED_HRTICK
600 #ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603 #endif
604 struct hrtimer hrtick_timer;
605 #endif
607 #ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613 /* sys_sched_yield() stats */
614 unsigned int yld_count;
616 /* schedule() stats */
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
625 /* BKL stats */
626 unsigned int bkl_count;
627 #endif
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632 static inline
633 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
638 static inline int cpu_of(struct rq *rq)
640 #ifdef CONFIG_SMP
641 return rq->cpu;
642 #else
643 return 0;
644 #endif
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663 inline void update_rq_clock(struct rq *rq)
665 rq->clock = sched_clock_cpu(cpu_of(rq));
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
673 #else
674 # define const_debug static const
675 #endif
678 * runqueue_is_locked
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
684 int runqueue_is_locked(int cpu)
686 return spin_is_locked(&cpu_rq(cpu)->lock);
690 * Debugging: various feature bits
693 #define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
696 enum {
697 #include "sched_features.h"
700 #undef SCHED_FEAT
702 #define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
705 const_debug unsigned int sysctl_sched_features =
706 #include "sched_features.h"
709 #undef SCHED_FEAT
711 #ifdef CONFIG_SCHED_DEBUG
712 #define SCHED_FEAT(name, enabled) \
713 #name ,
715 static __read_mostly char *sched_feat_names[] = {
716 #include "sched_features.h"
717 NULL
720 #undef SCHED_FEAT
722 static int sched_feat_show(struct seq_file *m, void *v)
724 int i;
726 for (i = 0; sched_feat_names[i]; i++) {
727 if (!(sysctl_sched_features & (1UL << i)))
728 seq_puts(m, "NO_");
729 seq_printf(m, "%s ", sched_feat_names[i]);
731 seq_puts(m, "\n");
733 return 0;
736 static ssize_t
737 sched_feat_write(struct file *filp, const char __user *ubuf,
738 size_t cnt, loff_t *ppos)
740 char buf[64];
741 char *cmp = buf;
742 int neg = 0;
743 int i;
745 if (cnt > 63)
746 cnt = 63;
748 if (copy_from_user(&buf, ubuf, cnt))
749 return -EFAULT;
751 buf[cnt] = 0;
753 if (strncmp(buf, "NO_", 3) == 0) {
754 neg = 1;
755 cmp += 3;
758 for (i = 0; sched_feat_names[i]; i++) {
759 int len = strlen(sched_feat_names[i]);
761 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
762 if (neg)
763 sysctl_sched_features &= ~(1UL << i);
764 else
765 sysctl_sched_features |= (1UL << i);
766 break;
770 if (!sched_feat_names[i])
771 return -EINVAL;
773 filp->f_pos += cnt;
775 return cnt;
778 static int sched_feat_open(struct inode *inode, struct file *filp)
780 return single_open(filp, sched_feat_show, NULL);
783 static struct file_operations sched_feat_fops = {
784 .open = sched_feat_open,
785 .write = sched_feat_write,
786 .read = seq_read,
787 .llseek = seq_lseek,
788 .release = single_release,
791 static __init int sched_init_debug(void)
793 debugfs_create_file("sched_features", 0644, NULL, NULL,
794 &sched_feat_fops);
796 return 0;
798 late_initcall(sched_init_debug);
800 #endif
802 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
808 const_debug unsigned int sysctl_sched_nr_migrate = 32;
811 * ratelimit for updating the group shares.
812 * default: 0.25ms
814 unsigned int sysctl_sched_shares_ratelimit = 250000;
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
819 * default: 4
821 unsigned int sysctl_sched_shares_thresh = 4;
824 * period over which we average the RT time consumption, measured
825 * in ms.
827 * default: 1s
829 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
832 * period over which we measure -rt task cpu usage in us.
833 * default: 1s
835 unsigned int sysctl_sched_rt_period = 1000000;
837 static __read_mostly int scheduler_running;
840 * part of the period that we allow rt tasks to run in us.
841 * default: 0.95s
843 int sysctl_sched_rt_runtime = 950000;
845 static inline u64 global_rt_period(void)
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850 static inline u64 global_rt_runtime(void)
852 if (sysctl_sched_rt_runtime < 0)
853 return RUNTIME_INF;
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858 #ifndef prepare_arch_switch
859 # define prepare_arch_switch(next) do { } while (0)
860 #endif
861 #ifndef finish_arch_switch
862 # define finish_arch_switch(prev) do { } while (0)
863 #endif
865 static inline int task_current(struct rq *rq, struct task_struct *p)
867 return rq->curr == p;
870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
871 static inline int task_running(struct rq *rq, struct task_struct *p)
873 return task_current(rq, p);
876 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
882 #ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885 #endif
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
893 spin_unlock_irq(&rq->lock);
896 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
897 static inline int task_running(struct rq *rq, struct task_struct *p)
899 #ifdef CONFIG_SMP
900 return p->oncpu;
901 #else
902 return task_current(rq, p);
903 #endif
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 #ifdef CONFIG_SMP
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
914 next->oncpu = 1;
915 #endif
916 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock);
918 #else
919 spin_unlock(&rq->lock);
920 #endif
923 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
925 #ifdef CONFIG_SMP
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
931 smp_wmb();
932 prev->oncpu = 0;
933 #endif
934 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
936 #endif
938 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
944 static inline struct rq *__task_rq_lock(struct task_struct *p)
945 __acquires(rq->lock)
947 for (;;) {
948 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
952 spin_unlock(&rq->lock);
957 * task_rq_lock - lock the runqueue a given task resides on and disable
958 * interrupts. Note the ordering: we can safely lookup the task_rq without
959 * explicitly disabling preemption.
961 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
962 __acquires(rq->lock)
964 struct rq *rq;
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
972 spin_unlock_irqrestore(&rq->lock, *flags);
976 void task_rq_unlock_wait(struct task_struct *p)
978 struct rq *rq = task_rq(p);
980 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
981 spin_unlock_wait(&rq->lock);
984 static void __task_rq_unlock(struct rq *rq)
985 __releases(rq->lock)
987 spin_unlock(&rq->lock);
990 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
991 __releases(rq->lock)
993 spin_unlock_irqrestore(&rq->lock, *flags);
997 * this_rq_lock - lock this runqueue and disable interrupts.
999 static struct rq *this_rq_lock(void)
1000 __acquires(rq->lock)
1002 struct rq *rq;
1004 local_irq_disable();
1005 rq = this_rq();
1006 spin_lock(&rq->lock);
1008 return rq;
1011 #ifdef CONFIG_SCHED_HRTICK
1013 * Use HR-timers to deliver accurate preemption points.
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1028 static inline int hrtick_enabled(struct rq *rq)
1030 if (!sched_feat(HRTICK))
1031 return 0;
1032 if (!cpu_active(cpu_of(rq)))
1033 return 0;
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037 static void hrtick_clear(struct rq *rq)
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1047 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1053 spin_lock(&rq->lock);
1054 update_rq_clock(rq);
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 spin_unlock(&rq->lock);
1058 return HRTIMER_NORESTART;
1061 #ifdef CONFIG_SMP
1063 * called from hardirq (IPI) context
1065 static void __hrtick_start(void *arg)
1067 struct rq *rq = arg;
1069 spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
1072 spin_unlock(&rq->lock);
1076 * Called to set the hrtick timer state.
1078 * called with rq->lock held and irqs disabled
1080 static void hrtick_start(struct rq *rq, u64 delay)
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1085 hrtimer_set_expires(timer, time);
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1091 rq->hrtick_csd_pending = 1;
1095 static int
1096 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1098 int cpu = (int)(long)hcpu;
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
1107 hrtick_clear(cpu_rq(cpu));
1108 return NOTIFY_OK;
1111 return NOTIFY_DONE;
1114 static __init void init_hrtick(void)
1116 hotcpu_notifier(hotplug_hrtick, 0);
1118 #else
1120 * Called to set the hrtick timer state.
1122 * called with rq->lock held and irqs disabled
1124 static void hrtick_start(struct rq *rq, u64 delay)
1126 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1127 HRTIMER_MODE_REL_PINNED, 0);
1130 static inline void init_hrtick(void)
1133 #endif /* CONFIG_SMP */
1135 static void init_rq_hrtick(struct rq *rq)
1137 #ifdef CONFIG_SMP
1138 rq->hrtick_csd_pending = 0;
1140 rq->hrtick_csd.flags = 0;
1141 rq->hrtick_csd.func = __hrtick_start;
1142 rq->hrtick_csd.info = rq;
1143 #endif
1145 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1146 rq->hrtick_timer.function = hrtick;
1148 #else /* CONFIG_SCHED_HRTICK */
1149 static inline void hrtick_clear(struct rq *rq)
1153 static inline void init_rq_hrtick(struct rq *rq)
1157 static inline void init_hrtick(void)
1160 #endif /* CONFIG_SCHED_HRTICK */
1163 * resched_task - mark a task 'to be rescheduled now'.
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1169 #ifdef CONFIG_SMP
1171 #ifndef tsk_is_polling
1172 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173 #endif
1175 static void resched_task(struct task_struct *p)
1177 int cpu;
1179 assert_spin_locked(&task_rq(p)->lock);
1181 if (test_tsk_need_resched(p))
1182 return;
1184 set_tsk_need_resched(p);
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1196 static void resched_cpu(int cpu)
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1201 if (!spin_trylock_irqsave(&rq->lock, flags))
1202 return;
1203 resched_task(cpu_curr(cpu));
1204 spin_unlock_irqrestore(&rq->lock, flags);
1207 #ifdef CONFIG_NO_HZ
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1218 void wake_up_idle_cpu(int cpu)
1220 struct rq *rq = cpu_rq(cpu);
1222 if (cpu == smp_processor_id())
1223 return;
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1232 if (rq->curr != rq->idle)
1233 return;
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1240 set_tsk_need_resched(rq->idle);
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1247 #endif /* CONFIG_NO_HZ */
1249 static u64 sched_avg_period(void)
1251 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254 static void sched_avg_update(struct rq *rq)
1256 s64 period = sched_avg_period();
1258 while ((s64)(rq->clock - rq->age_stamp) > period) {
1259 rq->age_stamp += period;
1260 rq->rt_avg /= 2;
1264 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1266 rq->rt_avg += rt_delta;
1267 sched_avg_update(rq);
1270 #else /* !CONFIG_SMP */
1271 static void resched_task(struct task_struct *p)
1273 assert_spin_locked(&task_rq(p)->lock);
1274 set_tsk_need_resched(p);
1277 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280 #endif /* CONFIG_SMP */
1282 #if BITS_PER_LONG == 32
1283 # define WMULT_CONST (~0UL)
1284 #else
1285 # define WMULT_CONST (1UL << 32)
1286 #endif
1288 #define WMULT_SHIFT 32
1291 * Shift right and round:
1293 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1296 * delta *= weight / lw
1298 static unsigned long
1299 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1302 u64 tmp;
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1312 tmp = (u64)delta_exec * weight;
1314 * Check whether we'd overflow the 64-bit multiplication:
1316 if (unlikely(tmp > WMULT_CONST))
1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1318 WMULT_SHIFT/2);
1319 else
1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1325 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 lw->weight += inc;
1328 lw->inv_weight = 0;
1331 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 lw->weight -= dec;
1334 lw->inv_weight = 0;
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1346 #define WEIGHT_IDLEPRIO 3
1347 #define WMULT_IDLEPRIO 1431655765
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
1361 static const int prio_to_weight[40] = {
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1379 static const u32 prio_to_wmult[40] = {
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1390 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1397 struct rq_iterator {
1398 void *arg;
1399 struct task_struct *(*start)(void *);
1400 struct task_struct *(*next)(void *);
1403 #ifdef CONFIG_SMP
1404 static unsigned long
1405 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1406 unsigned long max_load_move, struct sched_domain *sd,
1407 enum cpu_idle_type idle, int *all_pinned,
1408 int *this_best_prio, struct rq_iterator *iterator);
1410 static int
1411 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 struct sched_domain *sd, enum cpu_idle_type idle,
1413 struct rq_iterator *iterator);
1414 #endif
1416 /* Time spent by the tasks of the cpu accounting group executing in ... */
1417 enum cpuacct_stat_index {
1418 CPUACCT_STAT_USER, /* ... user mode */
1419 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1421 CPUACCT_STAT_NSTATS,
1424 #ifdef CONFIG_CGROUP_CPUACCT
1425 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1426 static void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val);
1428 #else
1429 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1430 static inline void cpuacct_update_stats(struct task_struct *tsk,
1431 enum cpuacct_stat_index idx, cputime_t val) {}
1432 #endif
1434 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436 update_load_add(&rq->load, load);
1439 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441 update_load_sub(&rq->load, load);
1444 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1445 typedef int (*tg_visitor)(struct task_group *, void *);
1448 * Iterate the full tree, calling @down when first entering a node and @up when
1449 * leaving it for the final time.
1451 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1453 struct task_group *parent, *child;
1454 int ret;
1456 rcu_read_lock();
1457 parent = &root_task_group;
1458 down:
1459 ret = (*down)(parent, data);
1460 if (ret)
1461 goto out_unlock;
1462 list_for_each_entry_rcu(child, &parent->children, siblings) {
1463 parent = child;
1464 goto down;
1467 continue;
1469 ret = (*up)(parent, data);
1470 if (ret)
1471 goto out_unlock;
1473 child = parent;
1474 parent = parent->parent;
1475 if (parent)
1476 goto up;
1477 out_unlock:
1478 rcu_read_unlock();
1480 return ret;
1483 static int tg_nop(struct task_group *tg, void *data)
1485 return 0;
1487 #endif
1489 #ifdef CONFIG_SMP
1490 /* Used instead of source_load when we know the type == 0 */
1491 static unsigned long weighted_cpuload(const int cpu)
1493 return cpu_rq(cpu)->load.weight;
1497 * Return a low guess at the load of a migration-source cpu weighted
1498 * according to the scheduling class and "nice" value.
1500 * We want to under-estimate the load of migration sources, to
1501 * balance conservatively.
1503 static unsigned long source_load(int cpu, int type)
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long total = weighted_cpuload(cpu);
1508 if (type == 0 || !sched_feat(LB_BIAS))
1509 return total;
1511 return min(rq->cpu_load[type-1], total);
1515 * Return a high guess at the load of a migration-target cpu weighted
1516 * according to the scheduling class and "nice" value.
1518 static unsigned long target_load(int cpu, int type)
1520 struct rq *rq = cpu_rq(cpu);
1521 unsigned long total = weighted_cpuload(cpu);
1523 if (type == 0 || !sched_feat(LB_BIAS))
1524 return total;
1526 return max(rq->cpu_load[type-1], total);
1529 static struct sched_group *group_of(int cpu)
1531 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1533 if (!sd)
1534 return NULL;
1536 return sd->groups;
1539 static unsigned long power_of(int cpu)
1541 struct sched_group *group = group_of(cpu);
1543 if (!group)
1544 return SCHED_LOAD_SCALE;
1546 return group->cpu_power;
1549 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1551 static unsigned long cpu_avg_load_per_task(int cpu)
1553 struct rq *rq = cpu_rq(cpu);
1554 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1556 if (nr_running)
1557 rq->avg_load_per_task = rq->load.weight / nr_running;
1558 else
1559 rq->avg_load_per_task = 0;
1561 return rq->avg_load_per_task;
1564 #ifdef CONFIG_FAIR_GROUP_SCHED
1566 struct update_shares_data {
1567 unsigned long rq_weight[NR_CPUS];
1570 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1572 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1575 * Calculate and set the cpu's group shares.
1577 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares,
1579 unsigned long sd_rq_weight,
1580 struct update_shares_data *usd)
1582 unsigned long shares, rq_weight;
1583 int boost = 0;
1585 rq_weight = usd->rq_weight[cpu];
1586 if (!rq_weight) {
1587 boost = 1;
1588 rq_weight = NICE_0_LOAD;
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
1596 shares = (sd_shares * rq_weight) / sd_rq_weight;
1597 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599 if (abs(shares - tg->se[cpu]->load.weight) >
1600 sysctl_sched_shares_thresh) {
1601 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags;
1604 spin_lock_irqsave(&rq->lock, flags);
1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1607 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags);
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
1617 static int tg_shares_up(struct task_group *tg, void *data)
1619 unsigned long weight, rq_weight = 0, shares = 0;
1620 struct update_shares_data *usd;
1621 struct sched_domain *sd = data;
1622 unsigned long flags;
1623 int i;
1625 if (!tg->se[0])
1626 return 0;
1628 local_irq_save(flags);
1629 usd = &__get_cpu_var(update_shares_data);
1631 for_each_cpu(i, sched_domain_span(sd)) {
1632 weight = tg->cfs_rq[i]->load.weight;
1633 usd->rq_weight[i] = weight;
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1643 rq_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1647 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares;
1650 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1651 shares = tg->shares;
1653 for_each_cpu(i, sched_domain_span(sd))
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1656 local_irq_restore(flags);
1658 return 0;
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
1666 static int tg_load_down(struct task_group *tg, void *data)
1668 unsigned long load;
1669 long cpu = (long)data;
1671 if (!tg->parent) {
1672 load = cpu_rq(cpu)->load.weight;
1673 } else {
1674 load = tg->parent->cfs_rq[cpu]->h_load;
1675 load *= tg->cfs_rq[cpu]->shares;
1676 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1679 tg->cfs_rq[cpu]->h_load = load;
1681 return 0;
1684 static void update_shares(struct sched_domain *sd)
1686 s64 elapsed;
1687 u64 now;
1689 if (root_task_group_empty())
1690 return;
1692 now = cpu_clock(raw_smp_processor_id());
1693 elapsed = now - sd->last_update;
1695 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1696 sd->last_update = now;
1697 walk_tg_tree(tg_nop, tg_shares_up, sd);
1701 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1703 if (root_task_group_empty())
1704 return;
1706 spin_unlock(&rq->lock);
1707 update_shares(sd);
1708 spin_lock(&rq->lock);
1711 static void update_h_load(long cpu)
1713 if (root_task_group_empty())
1714 return;
1716 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1719 #else
1721 static inline void update_shares(struct sched_domain *sd)
1725 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729 #endif
1731 #ifdef CONFIG_PREEMPT
1733 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
1743 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(this_rq->lock)
1745 __acquires(busiest->lock)
1746 __acquires(this_rq->lock)
1748 spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest);
1751 return 1;
1754 #else
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1762 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1763 __releases(this_rq->lock)
1764 __acquires(busiest->lock)
1765 __acquires(this_rq->lock)
1767 int ret = 0;
1769 if (unlikely(!spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1774 ret = 1;
1775 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1778 return ret;
1781 #endif /* CONFIG_PREEMPT */
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1786 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock);
1791 BUG_ON(1);
1794 return _double_lock_balance(this_rq, busiest);
1797 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock)
1800 spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1803 #endif
1805 #ifdef CONFIG_FAIR_GROUP_SCHED
1806 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1808 #ifdef CONFIG_SMP
1809 cfs_rq->shares = shares;
1810 #endif
1812 #endif
1814 static void calc_load_account_active(struct rq *this_rq);
1816 #include "sched_stats.h"
1817 #include "sched_idletask.c"
1818 #include "sched_fair.c"
1819 #include "sched_rt.c"
1820 #ifdef CONFIG_SCHED_DEBUG
1821 # include "sched_debug.c"
1822 #endif
1824 #define sched_class_highest (&rt_sched_class)
1825 #define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
1828 static void inc_nr_running(struct rq *rq)
1830 rq->nr_running++;
1833 static void dec_nr_running(struct rq *rq)
1835 rq->nr_running--;
1838 static void set_load_weight(struct task_struct *p)
1840 if (task_has_rt_policy(p)) {
1841 p->se.load.weight = prio_to_weight[0] * 2;
1842 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1843 return;
1847 * SCHED_IDLE tasks get minimal weight:
1849 if (p->policy == SCHED_IDLE) {
1850 p->se.load.weight = WEIGHT_IDLEPRIO;
1851 p->se.load.inv_weight = WMULT_IDLEPRIO;
1852 return;
1855 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1856 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1859 static void update_avg(u64 *avg, u64 sample)
1861 s64 diff = sample - *avg;
1862 *avg += diff >> 3;
1865 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1867 if (wakeup)
1868 p->se.start_runtime = p->se.sum_exec_runtime;
1870 sched_info_queued(p);
1871 p->sched_class->enqueue_task(rq, p, wakeup);
1872 p->se.on_rq = 1;
1875 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1877 if (sleep) {
1878 if (p->se.last_wakeup) {
1879 update_avg(&p->se.avg_overlap,
1880 p->se.sum_exec_runtime - p->se.last_wakeup);
1881 p->se.last_wakeup = 0;
1882 } else {
1883 update_avg(&p->se.avg_wakeup,
1884 sysctl_sched_wakeup_granularity);
1888 sched_info_dequeued(p);
1889 p->sched_class->dequeue_task(rq, p, sleep);
1890 p->se.on_rq = 0;
1894 * __normal_prio - return the priority that is based on the static prio
1896 static inline int __normal_prio(struct task_struct *p)
1898 return p->static_prio;
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1908 static inline int normal_prio(struct task_struct *p)
1910 int prio;
1912 if (task_has_rt_policy(p))
1913 prio = MAX_RT_PRIO-1 - p->rt_priority;
1914 else
1915 prio = __normal_prio(p);
1916 return prio;
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1926 static int effective_prio(struct task_struct *p)
1928 p->normal_prio = normal_prio(p);
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1934 if (!rt_prio(p->prio))
1935 return p->normal_prio;
1936 return p->prio;
1940 * activate_task - move a task to the runqueue.
1942 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1944 if (task_contributes_to_load(p))
1945 rq->nr_uninterruptible--;
1947 enqueue_task(rq, p, wakeup);
1948 inc_nr_running(rq);
1952 * deactivate_task - remove a task from the runqueue.
1954 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1956 if (task_contributes_to_load(p))
1957 rq->nr_uninterruptible++;
1959 dequeue_task(rq, p, sleep);
1960 dec_nr_running(rq);
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1967 inline int task_curr(const struct task_struct *p)
1969 return cpu_curr(task_cpu(p)) == p;
1972 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1974 set_task_rq(p, cpu);
1975 #ifdef CONFIG_SMP
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1981 smp_wmb();
1982 task_thread_info(p)->cpu = cpu;
1983 #endif
1986 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class,
1988 int oldprio, int running)
1990 if (prev_class != p->sched_class) {
1991 if (prev_class->switched_from)
1992 prev_class->switched_from(rq, p, running);
1993 p->sched_class->switched_to(rq, p, running);
1994 } else
1995 p->sched_class->prio_changed(rq, p, oldprio, running);
1998 #ifdef CONFIG_SMP
2000 * Is this task likely cache-hot:
2002 static int
2003 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2005 s64 delta;
2008 * Buddy candidates are cache hot:
2010 if (sched_feat(CACHE_HOT_BUDDY) &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
2013 return 1;
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2018 if (sysctl_sched_migration_cost == -1)
2019 return 1;
2020 if (sysctl_sched_migration_cost == 0)
2021 return 0;
2023 delta = now - p->se.exec_start;
2025 return delta < (s64)sysctl_sched_migration_cost;
2029 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2031 int old_cpu = task_cpu(p);
2032 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2033 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2034 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2035 u64 clock_offset;
2037 clock_offset = old_rq->clock - new_rq->clock;
2039 trace_sched_migrate_task(p, new_cpu);
2041 #ifdef CONFIG_SCHEDSTATS
2042 if (p->se.wait_start)
2043 p->se.wait_start -= clock_offset;
2044 if (p->se.sleep_start)
2045 p->se.sleep_start -= clock_offset;
2046 if (p->se.block_start)
2047 p->se.block_start -= clock_offset;
2048 #endif
2049 if (old_cpu != new_cpu) {
2050 p->se.nr_migrations++;
2051 new_rq->nr_migrations_in++;
2052 #ifdef CONFIG_SCHEDSTATS
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
2055 #endif
2056 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057 1, 1, NULL, 0);
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
2062 __set_task_cpu(p, new_cpu);
2065 struct migration_req {
2066 struct list_head list;
2068 struct task_struct *task;
2069 int dest_cpu;
2071 struct completion done;
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2078 static int
2079 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2081 struct rq *rq = task_rq(p);
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2087 if (!p->se.on_rq && !task_running(rq, p)) {
2088 set_task_cpu(p, dest_cpu);
2089 return 0;
2092 init_completion(&req->done);
2093 req->task = p;
2094 req->dest_cpu = dest_cpu;
2095 list_add(&req->list, &rq->migration_queue);
2097 return 1;
2101 * wait_task_context_switch - wait for a thread to complete at least one
2102 * context switch.
2104 * @p must not be current.
2106 void wait_task_context_switch(struct task_struct *p)
2108 unsigned long nvcsw, nivcsw, flags;
2109 int running;
2110 struct rq *rq;
2112 nvcsw = p->nvcsw;
2113 nivcsw = p->nivcsw;
2114 for (;;) {
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2121 * iteration.
2123 rq = task_rq_lock(p, &flags);
2124 running = task_running(rq, p);
2125 task_rq_unlock(rq, &flags);
2127 if (likely(!running))
2128 break;
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2134 if ((p->nvcsw - nvcsw) > 1)
2135 break;
2136 if ((p->nivcsw - nivcsw) > 1)
2137 break;
2139 cpu_relax();
2144 * wait_task_inactive - wait for a thread to unschedule.
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2159 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2161 unsigned long flags;
2162 int running, on_rq;
2163 unsigned long ncsw;
2164 struct rq *rq;
2166 for (;;) {
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2171 * work out!
2173 rq = task_rq(p);
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2178 * any locks.
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2186 while (task_running(rq, p)) {
2187 if (match_state && unlikely(p->state != match_state))
2188 return 0;
2189 cpu_relax();
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2197 rq = task_rq_lock(p, &flags);
2198 trace_sched_wait_task(rq, p);
2199 running = task_running(rq, p);
2200 on_rq = p->se.on_rq;
2201 ncsw = 0;
2202 if (!match_state || p->state == match_state)
2203 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2204 task_rq_unlock(rq, &flags);
2207 * If it changed from the expected state, bail out now.
2209 if (unlikely(!ncsw))
2210 break;
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2216 * Oops. Go back and try again..
2218 if (unlikely(running)) {
2219 cpu_relax();
2220 continue;
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2226 * preempted!
2228 * So if it was still runnable (but just not actively
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2232 if (unlikely(on_rq)) {
2233 schedule_timeout_uninterruptible(1);
2234 continue;
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2242 break;
2245 return ncsw;
2248 /***
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2259 * achieved as well.
2261 void kick_process(struct task_struct *p)
2263 int cpu;
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if ((cpu != smp_processor_id()) && task_curr(p))
2268 smp_send_reschedule(cpu);
2269 preempt_enable();
2271 EXPORT_SYMBOL_GPL(kick_process);
2272 #endif /* CONFIG_SMP */
2275 * task_oncpu_function_call - call a function on the cpu on which a task runs
2276 * @p: the task to evaluate
2277 * @func: the function to be called
2278 * @info: the function call argument
2280 * Calls the function @func when the task is currently running. This might
2281 * be on the current CPU, which just calls the function directly
2283 void task_oncpu_function_call(struct task_struct *p,
2284 void (*func) (void *info), void *info)
2286 int cpu;
2288 preempt_disable();
2289 cpu = task_cpu(p);
2290 if (task_curr(p))
2291 smp_call_function_single(cpu, func, info, 1);
2292 preempt_enable();
2295 /***
2296 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread
2298 * @state: the mask of task states that can be woken
2299 * @sync: do a synchronous wakeup?
2301 * Put it on the run-queue if it's not already there. The "current"
2302 * thread is always on the run-queue (except when the actual
2303 * re-schedule is in progress), and as such you're allowed to do
2304 * the simpler "current->state = TASK_RUNNING" to mark yourself
2305 * runnable without the overhead of this.
2307 * returns failure only if the task is already active.
2309 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2310 int wake_flags)
2312 int cpu, orig_cpu, this_cpu, success = 0;
2313 unsigned long flags;
2314 struct rq *rq;
2316 if (!sched_feat(SYNC_WAKEUPS))
2317 wake_flags &= ~WF_SYNC;
2319 this_cpu = get_cpu();
2321 smp_wmb();
2322 rq = task_rq_lock(p, &flags);
2323 update_rq_clock(rq);
2324 if (!(p->state & state))
2325 goto out;
2327 if (p->se.on_rq)
2328 goto out_running;
2330 cpu = task_cpu(p);
2331 orig_cpu = cpu;
2333 #ifdef CONFIG_SMP
2334 if (unlikely(task_running(rq, p)))
2335 goto out_activate;
2338 * In order to handle concurrent wakeups and release the rq->lock
2339 * we put the task in TASK_WAKING state.
2341 * First fix up the nr_uninterruptible count:
2343 if (task_contributes_to_load(p))
2344 rq->nr_uninterruptible--;
2345 p->state = TASK_WAKING;
2346 task_rq_unlock(rq, &flags);
2348 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2349 if (cpu != orig_cpu)
2350 set_task_cpu(p, cpu);
2352 rq = task_rq_lock(p, &flags);
2353 WARN_ON(p->state != TASK_WAKING);
2354 cpu = task_cpu(p);
2356 #ifdef CONFIG_SCHEDSTATS
2357 schedstat_inc(rq, ttwu_count);
2358 if (cpu == this_cpu)
2359 schedstat_inc(rq, ttwu_local);
2360 else {
2361 struct sched_domain *sd;
2362 for_each_domain(this_cpu, sd) {
2363 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2364 schedstat_inc(sd, ttwu_wake_remote);
2365 break;
2369 #endif /* CONFIG_SCHEDSTATS */
2371 out_activate:
2372 #endif /* CONFIG_SMP */
2373 schedstat_inc(p, se.nr_wakeups);
2374 if (wake_flags & WF_SYNC)
2375 schedstat_inc(p, se.nr_wakeups_sync);
2376 if (orig_cpu != cpu)
2377 schedstat_inc(p, se.nr_wakeups_migrate);
2378 if (cpu == this_cpu)
2379 schedstat_inc(p, se.nr_wakeups_local);
2380 else
2381 schedstat_inc(p, se.nr_wakeups_remote);
2382 activate_task(rq, p, 1);
2383 success = 1;
2386 * Only attribute actual wakeups done by this task.
2388 if (!in_interrupt()) {
2389 struct sched_entity *se = &current->se;
2390 u64 sample = se->sum_exec_runtime;
2392 if (se->last_wakeup)
2393 sample -= se->last_wakeup;
2394 else
2395 sample -= se->start_runtime;
2396 update_avg(&se->avg_wakeup, sample);
2398 se->last_wakeup = se->sum_exec_runtime;
2401 out_running:
2402 trace_sched_wakeup(rq, p, success);
2403 check_preempt_curr(rq, p, wake_flags);
2405 p->state = TASK_RUNNING;
2406 #ifdef CONFIG_SMP
2407 if (p->sched_class->task_wake_up)
2408 p->sched_class->task_wake_up(rq, p);
2409 #endif
2410 out:
2411 task_rq_unlock(rq, &flags);
2412 put_cpu();
2414 return success;
2418 * wake_up_process - Wake up a specific process
2419 * @p: The process to be woken up.
2421 * Attempt to wake up the nominated process and move it to the set of runnable
2422 * processes. Returns 1 if the process was woken up, 0 if it was already
2423 * running.
2425 * It may be assumed that this function implies a write memory barrier before
2426 * changing the task state if and only if any tasks are woken up.
2428 int wake_up_process(struct task_struct *p)
2430 return try_to_wake_up(p, TASK_ALL, 0);
2432 EXPORT_SYMBOL(wake_up_process);
2434 int wake_up_state(struct task_struct *p, unsigned int state)
2436 return try_to_wake_up(p, state, 0);
2440 * Perform scheduler related setup for a newly forked process p.
2441 * p is forked by current.
2443 * __sched_fork() is basic setup used by init_idle() too:
2445 static void __sched_fork(struct task_struct *p)
2447 p->se.exec_start = 0;
2448 p->se.sum_exec_runtime = 0;
2449 p->se.prev_sum_exec_runtime = 0;
2450 p->se.nr_migrations = 0;
2451 p->se.last_wakeup = 0;
2452 p->se.avg_overlap = 0;
2453 p->se.start_runtime = 0;
2454 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2455 p->se.avg_running = 0;
2457 #ifdef CONFIG_SCHEDSTATS
2458 p->se.wait_start = 0;
2459 p->se.wait_max = 0;
2460 p->se.wait_count = 0;
2461 p->se.wait_sum = 0;
2463 p->se.sleep_start = 0;
2464 p->se.sleep_max = 0;
2465 p->se.sum_sleep_runtime = 0;
2467 p->se.block_start = 0;
2468 p->se.block_max = 0;
2469 p->se.exec_max = 0;
2470 p->se.slice_max = 0;
2472 p->se.nr_migrations_cold = 0;
2473 p->se.nr_failed_migrations_affine = 0;
2474 p->se.nr_failed_migrations_running = 0;
2475 p->se.nr_failed_migrations_hot = 0;
2476 p->se.nr_forced_migrations = 0;
2477 p->se.nr_forced2_migrations = 0;
2479 p->se.nr_wakeups = 0;
2480 p->se.nr_wakeups_sync = 0;
2481 p->se.nr_wakeups_migrate = 0;
2482 p->se.nr_wakeups_local = 0;
2483 p->se.nr_wakeups_remote = 0;
2484 p->se.nr_wakeups_affine = 0;
2485 p->se.nr_wakeups_affine_attempts = 0;
2486 p->se.nr_wakeups_passive = 0;
2487 p->se.nr_wakeups_idle = 0;
2489 #endif
2491 INIT_LIST_HEAD(&p->rt.run_list);
2492 p->se.on_rq = 0;
2493 INIT_LIST_HEAD(&p->se.group_node);
2495 #ifdef CONFIG_PREEMPT_NOTIFIERS
2496 INIT_HLIST_HEAD(&p->preempt_notifiers);
2497 #endif
2500 * We mark the process as running here, but have not actually
2501 * inserted it onto the runqueue yet. This guarantees that
2502 * nobody will actually run it, and a signal or other external
2503 * event cannot wake it up and insert it on the runqueue either.
2505 p->state = TASK_RUNNING;
2509 * fork()/clone()-time setup:
2511 void sched_fork(struct task_struct *p, int clone_flags)
2513 int cpu = get_cpu();
2515 __sched_fork(p);
2518 * Make sure we do not leak PI boosting priority to the child.
2520 p->prio = current->normal_prio;
2523 * Revert to default priority/policy on fork if requested.
2525 if (unlikely(p->sched_reset_on_fork)) {
2526 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2527 p->policy = SCHED_NORMAL;
2529 if (p->normal_prio < DEFAULT_PRIO)
2530 p->prio = DEFAULT_PRIO;
2532 if (PRIO_TO_NICE(p->static_prio) < 0) {
2533 p->static_prio = NICE_TO_PRIO(0);
2534 set_load_weight(p);
2538 * We don't need the reset flag anymore after the fork. It has
2539 * fulfilled its duty:
2541 p->sched_reset_on_fork = 0;
2544 if (!rt_prio(p->prio))
2545 p->sched_class = &fair_sched_class;
2547 #ifdef CONFIG_SMP
2548 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2549 #endif
2550 set_task_cpu(p, cpu);
2552 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2553 if (likely(sched_info_on()))
2554 memset(&p->sched_info, 0, sizeof(p->sched_info));
2555 #endif
2556 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2557 p->oncpu = 0;
2558 #endif
2559 #ifdef CONFIG_PREEMPT
2560 /* Want to start with kernel preemption disabled. */
2561 task_thread_info(p)->preempt_count = 1;
2562 #endif
2563 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2565 put_cpu();
2569 * wake_up_new_task - wake up a newly created task for the first time.
2571 * This function will do some initial scheduler statistics housekeeping
2572 * that must be done for every newly created context, then puts the task
2573 * on the runqueue and wakes it.
2575 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2577 unsigned long flags;
2578 struct rq *rq;
2580 rq = task_rq_lock(p, &flags);
2581 BUG_ON(p->state != TASK_RUNNING);
2582 update_rq_clock(rq);
2584 p->prio = effective_prio(p);
2586 if (!p->sched_class->task_new || !current->se.on_rq) {
2587 activate_task(rq, p, 0);
2588 } else {
2590 * Let the scheduling class do new task startup
2591 * management (if any):
2593 p->sched_class->task_new(rq, p);
2594 inc_nr_running(rq);
2596 trace_sched_wakeup_new(rq, p, 1);
2597 check_preempt_curr(rq, p, WF_FORK);
2598 #ifdef CONFIG_SMP
2599 if (p->sched_class->task_wake_up)
2600 p->sched_class->task_wake_up(rq, p);
2601 #endif
2602 task_rq_unlock(rq, &flags);
2605 #ifdef CONFIG_PREEMPT_NOTIFIERS
2608 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2609 * @notifier: notifier struct to register
2611 void preempt_notifier_register(struct preempt_notifier *notifier)
2613 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2615 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2618 * preempt_notifier_unregister - no longer interested in preemption notifications
2619 * @notifier: notifier struct to unregister
2621 * This is safe to call from within a preemption notifier.
2623 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2625 hlist_del(&notifier->link);
2627 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2629 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2631 struct preempt_notifier *notifier;
2632 struct hlist_node *node;
2634 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2635 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2638 static void
2639 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2640 struct task_struct *next)
2642 struct preempt_notifier *notifier;
2643 struct hlist_node *node;
2645 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2646 notifier->ops->sched_out(notifier, next);
2649 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2651 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2655 static void
2656 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2657 struct task_struct *next)
2661 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2664 * prepare_task_switch - prepare to switch tasks
2665 * @rq: the runqueue preparing to switch
2666 * @prev: the current task that is being switched out
2667 * @next: the task we are going to switch to.
2669 * This is called with the rq lock held and interrupts off. It must
2670 * be paired with a subsequent finish_task_switch after the context
2671 * switch.
2673 * prepare_task_switch sets up locking and calls architecture specific
2674 * hooks.
2676 static inline void
2677 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2678 struct task_struct *next)
2680 fire_sched_out_preempt_notifiers(prev, next);
2681 prepare_lock_switch(rq, next);
2682 prepare_arch_switch(next);
2686 * finish_task_switch - clean up after a task-switch
2687 * @rq: runqueue associated with task-switch
2688 * @prev: the thread we just switched away from.
2690 * finish_task_switch must be called after the context switch, paired
2691 * with a prepare_task_switch call before the context switch.
2692 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2693 * and do any other architecture-specific cleanup actions.
2695 * Note that we may have delayed dropping an mm in context_switch(). If
2696 * so, we finish that here outside of the runqueue lock. (Doing it
2697 * with the lock held can cause deadlocks; see schedule() for
2698 * details.)
2700 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2701 __releases(rq->lock)
2703 struct mm_struct *mm = rq->prev_mm;
2704 long prev_state;
2706 rq->prev_mm = NULL;
2709 * A task struct has one reference for the use as "current".
2710 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2711 * schedule one last time. The schedule call will never return, and
2712 * the scheduled task must drop that reference.
2713 * The test for TASK_DEAD must occur while the runqueue locks are
2714 * still held, otherwise prev could be scheduled on another cpu, die
2715 * there before we look at prev->state, and then the reference would
2716 * be dropped twice.
2717 * Manfred Spraul <manfred@colorfullife.com>
2719 prev_state = prev->state;
2720 finish_arch_switch(prev);
2721 perf_counter_task_sched_in(current, cpu_of(rq));
2722 finish_lock_switch(rq, prev);
2724 fire_sched_in_preempt_notifiers(current);
2725 if (mm)
2726 mmdrop(mm);
2727 if (unlikely(prev_state == TASK_DEAD)) {
2729 * Remove function-return probe instances associated with this
2730 * task and put them back on the free list.
2732 kprobe_flush_task(prev);
2733 put_task_struct(prev);
2737 #ifdef CONFIG_SMP
2739 /* assumes rq->lock is held */
2740 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2742 if (prev->sched_class->pre_schedule)
2743 prev->sched_class->pre_schedule(rq, prev);
2746 /* rq->lock is NOT held, but preemption is disabled */
2747 static inline void post_schedule(struct rq *rq)
2749 if (rq->post_schedule) {
2750 unsigned long flags;
2752 spin_lock_irqsave(&rq->lock, flags);
2753 if (rq->curr->sched_class->post_schedule)
2754 rq->curr->sched_class->post_schedule(rq);
2755 spin_unlock_irqrestore(&rq->lock, flags);
2757 rq->post_schedule = 0;
2761 #else
2763 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2767 static inline void post_schedule(struct rq *rq)
2771 #endif
2774 * schedule_tail - first thing a freshly forked thread must call.
2775 * @prev: the thread we just switched away from.
2777 asmlinkage void schedule_tail(struct task_struct *prev)
2778 __releases(rq->lock)
2780 struct rq *rq = this_rq();
2782 finish_task_switch(rq, prev);
2785 * FIXME: do we need to worry about rq being invalidated by the
2786 * task_switch?
2788 post_schedule(rq);
2790 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2791 /* In this case, finish_task_switch does not reenable preemption */
2792 preempt_enable();
2793 #endif
2794 if (current->set_child_tid)
2795 put_user(task_pid_vnr(current), current->set_child_tid);
2799 * context_switch - switch to the new MM and the new
2800 * thread's register state.
2802 static inline void
2803 context_switch(struct rq *rq, struct task_struct *prev,
2804 struct task_struct *next)
2806 struct mm_struct *mm, *oldmm;
2808 prepare_task_switch(rq, prev, next);
2809 trace_sched_switch(rq, prev, next);
2810 mm = next->mm;
2811 oldmm = prev->active_mm;
2813 * For paravirt, this is coupled with an exit in switch_to to
2814 * combine the page table reload and the switch backend into
2815 * one hypercall.
2817 arch_start_context_switch(prev);
2819 if (unlikely(!mm)) {
2820 next->active_mm = oldmm;
2821 atomic_inc(&oldmm->mm_count);
2822 enter_lazy_tlb(oldmm, next);
2823 } else
2824 switch_mm(oldmm, mm, next);
2826 if (unlikely(!prev->mm)) {
2827 prev->active_mm = NULL;
2828 rq->prev_mm = oldmm;
2831 * Since the runqueue lock will be released by the next
2832 * task (which is an invalid locking op but in the case
2833 * of the scheduler it's an obvious special-case), so we
2834 * do an early lockdep release here:
2836 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2837 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2838 #endif
2840 /* Here we just switch the register state and the stack. */
2841 switch_to(prev, next, prev);
2843 barrier();
2845 * this_rq must be evaluated again because prev may have moved
2846 * CPUs since it called schedule(), thus the 'rq' on its stack
2847 * frame will be invalid.
2849 finish_task_switch(this_rq(), prev);
2853 * nr_running, nr_uninterruptible and nr_context_switches:
2855 * externally visible scheduler statistics: current number of runnable
2856 * threads, current number of uninterruptible-sleeping threads, total
2857 * number of context switches performed since bootup.
2859 unsigned long nr_running(void)
2861 unsigned long i, sum = 0;
2863 for_each_online_cpu(i)
2864 sum += cpu_rq(i)->nr_running;
2866 return sum;
2869 unsigned long nr_uninterruptible(void)
2871 unsigned long i, sum = 0;
2873 for_each_possible_cpu(i)
2874 sum += cpu_rq(i)->nr_uninterruptible;
2877 * Since we read the counters lockless, it might be slightly
2878 * inaccurate. Do not allow it to go below zero though:
2880 if (unlikely((long)sum < 0))
2881 sum = 0;
2883 return sum;
2886 unsigned long long nr_context_switches(void)
2888 int i;
2889 unsigned long long sum = 0;
2891 for_each_possible_cpu(i)
2892 sum += cpu_rq(i)->nr_switches;
2894 return sum;
2897 unsigned long nr_iowait(void)
2899 unsigned long i, sum = 0;
2901 for_each_possible_cpu(i)
2902 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2904 return sum;
2907 /* Variables and functions for calc_load */
2908 static atomic_long_t calc_load_tasks;
2909 static unsigned long calc_load_update;
2910 unsigned long avenrun[3];
2911 EXPORT_SYMBOL(avenrun);
2914 * get_avenrun - get the load average array
2915 * @loads: pointer to dest load array
2916 * @offset: offset to add
2917 * @shift: shift count to shift the result left
2919 * These values are estimates at best, so no need for locking.
2921 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2923 loads[0] = (avenrun[0] + offset) << shift;
2924 loads[1] = (avenrun[1] + offset) << shift;
2925 loads[2] = (avenrun[2] + offset) << shift;
2928 static unsigned long
2929 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2931 load *= exp;
2932 load += active * (FIXED_1 - exp);
2933 return load >> FSHIFT;
2937 * calc_load - update the avenrun load estimates 10 ticks after the
2938 * CPUs have updated calc_load_tasks.
2940 void calc_global_load(void)
2942 unsigned long upd = calc_load_update + 10;
2943 long active;
2945 if (time_before(jiffies, upd))
2946 return;
2948 active = atomic_long_read(&calc_load_tasks);
2949 active = active > 0 ? active * FIXED_1 : 0;
2951 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2952 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2953 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2955 calc_load_update += LOAD_FREQ;
2959 * Either called from update_cpu_load() or from a cpu going idle
2961 static void calc_load_account_active(struct rq *this_rq)
2963 long nr_active, delta;
2965 nr_active = this_rq->nr_running;
2966 nr_active += (long) this_rq->nr_uninterruptible;
2968 if (nr_active != this_rq->calc_load_active) {
2969 delta = nr_active - this_rq->calc_load_active;
2970 this_rq->calc_load_active = nr_active;
2971 atomic_long_add(delta, &calc_load_tasks);
2976 * Externally visible per-cpu scheduler statistics:
2977 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2979 u64 cpu_nr_migrations(int cpu)
2981 return cpu_rq(cpu)->nr_migrations_in;
2985 * Update rq->cpu_load[] statistics. This function is usually called every
2986 * scheduler tick (TICK_NSEC).
2988 static void update_cpu_load(struct rq *this_rq)
2990 unsigned long this_load = this_rq->load.weight;
2991 int i, scale;
2993 this_rq->nr_load_updates++;
2995 /* Update our load: */
2996 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2997 unsigned long old_load, new_load;
2999 /* scale is effectively 1 << i now, and >> i divides by scale */
3001 old_load = this_rq->cpu_load[i];
3002 new_load = this_load;
3004 * Round up the averaging division if load is increasing. This
3005 * prevents us from getting stuck on 9 if the load is 10, for
3006 * example.
3008 if (new_load > old_load)
3009 new_load += scale-1;
3010 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3013 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3014 this_rq->calc_load_update += LOAD_FREQ;
3015 calc_load_account_active(this_rq);
3019 #ifdef CONFIG_SMP
3022 * double_rq_lock - safely lock two runqueues
3024 * Note this does not disable interrupts like task_rq_lock,
3025 * you need to do so manually before calling.
3027 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3028 __acquires(rq1->lock)
3029 __acquires(rq2->lock)
3031 BUG_ON(!irqs_disabled());
3032 if (rq1 == rq2) {
3033 spin_lock(&rq1->lock);
3034 __acquire(rq2->lock); /* Fake it out ;) */
3035 } else {
3036 if (rq1 < rq2) {
3037 spin_lock(&rq1->lock);
3038 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3039 } else {
3040 spin_lock(&rq2->lock);
3041 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3044 update_rq_clock(rq1);
3045 update_rq_clock(rq2);
3049 * double_rq_unlock - safely unlock two runqueues
3051 * Note this does not restore interrupts like task_rq_unlock,
3052 * you need to do so manually after calling.
3054 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3055 __releases(rq1->lock)
3056 __releases(rq2->lock)
3058 spin_unlock(&rq1->lock);
3059 if (rq1 != rq2)
3060 spin_unlock(&rq2->lock);
3061 else
3062 __release(rq2->lock);
3066 * If dest_cpu is allowed for this process, migrate the task to it.
3067 * This is accomplished by forcing the cpu_allowed mask to only
3068 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3069 * the cpu_allowed mask is restored.
3071 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3073 struct migration_req req;
3074 unsigned long flags;
3075 struct rq *rq;
3077 rq = task_rq_lock(p, &flags);
3078 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3079 || unlikely(!cpu_active(dest_cpu)))
3080 goto out;
3082 /* force the process onto the specified CPU */
3083 if (migrate_task(p, dest_cpu, &req)) {
3084 /* Need to wait for migration thread (might exit: take ref). */
3085 struct task_struct *mt = rq->migration_thread;
3087 get_task_struct(mt);
3088 task_rq_unlock(rq, &flags);
3089 wake_up_process(mt);
3090 put_task_struct(mt);
3091 wait_for_completion(&req.done);
3093 return;
3095 out:
3096 task_rq_unlock(rq, &flags);
3100 * sched_exec - execve() is a valuable balancing opportunity, because at
3101 * this point the task has the smallest effective memory and cache footprint.
3103 void sched_exec(void)
3105 int new_cpu, this_cpu = get_cpu();
3106 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3107 put_cpu();
3108 if (new_cpu != this_cpu)
3109 sched_migrate_task(current, new_cpu);
3113 * pull_task - move a task from a remote runqueue to the local runqueue.
3114 * Both runqueues must be locked.
3116 static void pull_task(struct rq *src_rq, struct task_struct *p,
3117 struct rq *this_rq, int this_cpu)
3119 deactivate_task(src_rq, p, 0);
3120 set_task_cpu(p, this_cpu);
3121 activate_task(this_rq, p, 0);
3123 * Note that idle threads have a prio of MAX_PRIO, for this test
3124 * to be always true for them.
3126 check_preempt_curr(this_rq, p, 0);
3130 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3132 static
3133 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3134 struct sched_domain *sd, enum cpu_idle_type idle,
3135 int *all_pinned)
3137 int tsk_cache_hot = 0;
3139 * We do not migrate tasks that are:
3140 * 1) running (obviously), or
3141 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3142 * 3) are cache-hot on their current CPU.
3144 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3145 schedstat_inc(p, se.nr_failed_migrations_affine);
3146 return 0;
3148 *all_pinned = 0;
3150 if (task_running(rq, p)) {
3151 schedstat_inc(p, se.nr_failed_migrations_running);
3152 return 0;
3156 * Aggressive migration if:
3157 * 1) task is cache cold, or
3158 * 2) too many balance attempts have failed.
3161 tsk_cache_hot = task_hot(p, rq->clock, sd);
3162 if (!tsk_cache_hot ||
3163 sd->nr_balance_failed > sd->cache_nice_tries) {
3164 #ifdef CONFIG_SCHEDSTATS
3165 if (tsk_cache_hot) {
3166 schedstat_inc(sd, lb_hot_gained[idle]);
3167 schedstat_inc(p, se.nr_forced_migrations);
3169 #endif
3170 return 1;
3173 if (tsk_cache_hot) {
3174 schedstat_inc(p, se.nr_failed_migrations_hot);
3175 return 0;
3177 return 1;
3180 static unsigned long
3181 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 unsigned long max_load_move, struct sched_domain *sd,
3183 enum cpu_idle_type idle, int *all_pinned,
3184 int *this_best_prio, struct rq_iterator *iterator)
3186 int loops = 0, pulled = 0, pinned = 0;
3187 struct task_struct *p;
3188 long rem_load_move = max_load_move;
3190 if (max_load_move == 0)
3191 goto out;
3193 pinned = 1;
3196 * Start the load-balancing iterator:
3198 p = iterator->start(iterator->arg);
3199 next:
3200 if (!p || loops++ > sysctl_sched_nr_migrate)
3201 goto out;
3203 if ((p->se.load.weight >> 1) > rem_load_move ||
3204 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3205 p = iterator->next(iterator->arg);
3206 goto next;
3209 pull_task(busiest, p, this_rq, this_cpu);
3210 pulled++;
3211 rem_load_move -= p->se.load.weight;
3213 #ifdef CONFIG_PREEMPT
3215 * NEWIDLE balancing is a source of latency, so preemptible kernels
3216 * will stop after the first task is pulled to minimize the critical
3217 * section.
3219 if (idle == CPU_NEWLY_IDLE)
3220 goto out;
3221 #endif
3224 * We only want to steal up to the prescribed amount of weighted load.
3226 if (rem_load_move > 0) {
3227 if (p->prio < *this_best_prio)
3228 *this_best_prio = p->prio;
3229 p = iterator->next(iterator->arg);
3230 goto next;
3232 out:
3234 * Right now, this is one of only two places pull_task() is called,
3235 * so we can safely collect pull_task() stats here rather than
3236 * inside pull_task().
3238 schedstat_add(sd, lb_gained[idle], pulled);
3240 if (all_pinned)
3241 *all_pinned = pinned;
3243 return max_load_move - rem_load_move;
3247 * move_tasks tries to move up to max_load_move weighted load from busiest to
3248 * this_rq, as part of a balancing operation within domain "sd".
3249 * Returns 1 if successful and 0 otherwise.
3251 * Called with both runqueues locked.
3253 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3254 unsigned long max_load_move,
3255 struct sched_domain *sd, enum cpu_idle_type idle,
3256 int *all_pinned)
3258 const struct sched_class *class = sched_class_highest;
3259 unsigned long total_load_moved = 0;
3260 int this_best_prio = this_rq->curr->prio;
3262 do {
3263 total_load_moved +=
3264 class->load_balance(this_rq, this_cpu, busiest,
3265 max_load_move - total_load_moved,
3266 sd, idle, all_pinned, &this_best_prio);
3267 class = class->next;
3269 #ifdef CONFIG_PREEMPT
3271 * NEWIDLE balancing is a source of latency, so preemptible
3272 * kernels will stop after the first task is pulled to minimize
3273 * the critical section.
3275 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3276 break;
3277 #endif
3278 } while (class && max_load_move > total_load_moved);
3280 return total_load_moved > 0;
3283 static int
3284 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3285 struct sched_domain *sd, enum cpu_idle_type idle,
3286 struct rq_iterator *iterator)
3288 struct task_struct *p = iterator->start(iterator->arg);
3289 int pinned = 0;
3291 while (p) {
3292 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3293 pull_task(busiest, p, this_rq, this_cpu);
3295 * Right now, this is only the second place pull_task()
3296 * is called, so we can safely collect pull_task()
3297 * stats here rather than inside pull_task().
3299 schedstat_inc(sd, lb_gained[idle]);
3301 return 1;
3303 p = iterator->next(iterator->arg);
3306 return 0;
3310 * move_one_task tries to move exactly one task from busiest to this_rq, as
3311 * part of active balancing operations within "domain".
3312 * Returns 1 if successful and 0 otherwise.
3314 * Called with both runqueues locked.
3316 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3317 struct sched_domain *sd, enum cpu_idle_type idle)
3319 const struct sched_class *class;
3321 for_each_class(class) {
3322 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3323 return 1;
3326 return 0;
3328 /********** Helpers for find_busiest_group ************************/
3330 * sd_lb_stats - Structure to store the statistics of a sched_domain
3331 * during load balancing.
3333 struct sd_lb_stats {
3334 struct sched_group *busiest; /* Busiest group in this sd */
3335 struct sched_group *this; /* Local group in this sd */
3336 unsigned long total_load; /* Total load of all groups in sd */
3337 unsigned long total_pwr; /* Total power of all groups in sd */
3338 unsigned long avg_load; /* Average load across all groups in sd */
3340 /** Statistics of this group */
3341 unsigned long this_load;
3342 unsigned long this_load_per_task;
3343 unsigned long this_nr_running;
3345 /* Statistics of the busiest group */
3346 unsigned long max_load;
3347 unsigned long busiest_load_per_task;
3348 unsigned long busiest_nr_running;
3350 int group_imb; /* Is there imbalance in this sd */
3351 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3352 int power_savings_balance; /* Is powersave balance needed for this sd */
3353 struct sched_group *group_min; /* Least loaded group in sd */
3354 struct sched_group *group_leader; /* Group which relieves group_min */
3355 unsigned long min_load_per_task; /* load_per_task in group_min */
3356 unsigned long leader_nr_running; /* Nr running of group_leader */
3357 unsigned long min_nr_running; /* Nr running of group_min */
3358 #endif
3362 * sg_lb_stats - stats of a sched_group required for load_balancing
3364 struct sg_lb_stats {
3365 unsigned long avg_load; /*Avg load across the CPUs of the group */
3366 unsigned long group_load; /* Total load over the CPUs of the group */
3367 unsigned long sum_nr_running; /* Nr tasks running in the group */
3368 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3369 unsigned long group_capacity;
3370 int group_imb; /* Is there an imbalance in the group ? */
3374 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3375 * @group: The group whose first cpu is to be returned.
3377 static inline unsigned int group_first_cpu(struct sched_group *group)
3379 return cpumask_first(sched_group_cpus(group));
3383 * get_sd_load_idx - Obtain the load index for a given sched domain.
3384 * @sd: The sched_domain whose load_idx is to be obtained.
3385 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3387 static inline int get_sd_load_idx(struct sched_domain *sd,
3388 enum cpu_idle_type idle)
3390 int load_idx;
3392 switch (idle) {
3393 case CPU_NOT_IDLE:
3394 load_idx = sd->busy_idx;
3395 break;
3397 case CPU_NEWLY_IDLE:
3398 load_idx = sd->newidle_idx;
3399 break;
3400 default:
3401 load_idx = sd->idle_idx;
3402 break;
3405 return load_idx;
3409 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3411 * init_sd_power_savings_stats - Initialize power savings statistics for
3412 * the given sched_domain, during load balancing.
3414 * @sd: Sched domain whose power-savings statistics are to be initialized.
3415 * @sds: Variable containing the statistics for sd.
3416 * @idle: Idle status of the CPU at which we're performing load-balancing.
3418 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3419 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3422 * Busy processors will not participate in power savings
3423 * balance.
3425 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3426 sds->power_savings_balance = 0;
3427 else {
3428 sds->power_savings_balance = 1;
3429 sds->min_nr_running = ULONG_MAX;
3430 sds->leader_nr_running = 0;
3435 * update_sd_power_savings_stats - Update the power saving stats for a
3436 * sched_domain while performing load balancing.
3438 * @group: sched_group belonging to the sched_domain under consideration.
3439 * @sds: Variable containing the statistics of the sched_domain
3440 * @local_group: Does group contain the CPU for which we're performing
3441 * load balancing ?
3442 * @sgs: Variable containing the statistics of the group.
3444 static inline void update_sd_power_savings_stats(struct sched_group *group,
3445 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3448 if (!sds->power_savings_balance)
3449 return;
3452 * If the local group is idle or completely loaded
3453 * no need to do power savings balance at this domain
3455 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3456 !sds->this_nr_running))
3457 sds->power_savings_balance = 0;
3460 * If a group is already running at full capacity or idle,
3461 * don't include that group in power savings calculations
3463 if (!sds->power_savings_balance ||
3464 sgs->sum_nr_running >= sgs->group_capacity ||
3465 !sgs->sum_nr_running)
3466 return;
3469 * Calculate the group which has the least non-idle load.
3470 * This is the group from where we need to pick up the load
3471 * for saving power
3473 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3474 (sgs->sum_nr_running == sds->min_nr_running &&
3475 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3476 sds->group_min = group;
3477 sds->min_nr_running = sgs->sum_nr_running;
3478 sds->min_load_per_task = sgs->sum_weighted_load /
3479 sgs->sum_nr_running;
3483 * Calculate the group which is almost near its
3484 * capacity but still has some space to pick up some load
3485 * from other group and save more power
3487 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3488 return;
3490 if (sgs->sum_nr_running > sds->leader_nr_running ||
3491 (sgs->sum_nr_running == sds->leader_nr_running &&
3492 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3493 sds->group_leader = group;
3494 sds->leader_nr_running = sgs->sum_nr_running;
3499 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3500 * @sds: Variable containing the statistics of the sched_domain
3501 * under consideration.
3502 * @this_cpu: Cpu at which we're currently performing load-balancing.
3503 * @imbalance: Variable to store the imbalance.
3505 * Description:
3506 * Check if we have potential to perform some power-savings balance.
3507 * If yes, set the busiest group to be the least loaded group in the
3508 * sched_domain, so that it's CPUs can be put to idle.
3510 * Returns 1 if there is potential to perform power-savings balance.
3511 * Else returns 0.
3513 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3514 int this_cpu, unsigned long *imbalance)
3516 if (!sds->power_savings_balance)
3517 return 0;
3519 if (sds->this != sds->group_leader ||
3520 sds->group_leader == sds->group_min)
3521 return 0;
3523 *imbalance = sds->min_load_per_task;
3524 sds->busiest = sds->group_min;
3526 return 1;
3529 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3530 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3531 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3533 return;
3536 static inline void update_sd_power_savings_stats(struct sched_group *group,
3537 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3539 return;
3542 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3543 int this_cpu, unsigned long *imbalance)
3545 return 0;
3547 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3550 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3552 return SCHED_LOAD_SCALE;
3555 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3557 return default_scale_freq_power(sd, cpu);
3560 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3562 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3563 unsigned long smt_gain = sd->smt_gain;
3565 smt_gain /= weight;
3567 return smt_gain;
3570 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3572 return default_scale_smt_power(sd, cpu);
3575 unsigned long scale_rt_power(int cpu)
3577 struct rq *rq = cpu_rq(cpu);
3578 u64 total, available;
3580 sched_avg_update(rq);
3582 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3583 available = total - rq->rt_avg;
3585 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3586 total = SCHED_LOAD_SCALE;
3588 total >>= SCHED_LOAD_SHIFT;
3590 return div_u64(available, total);
3593 static void update_cpu_power(struct sched_domain *sd, int cpu)
3595 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3596 unsigned long power = SCHED_LOAD_SCALE;
3597 struct sched_group *sdg = sd->groups;
3599 if (sched_feat(ARCH_POWER))
3600 power *= arch_scale_freq_power(sd, cpu);
3601 else
3602 power *= default_scale_freq_power(sd, cpu);
3604 power >>= SCHED_LOAD_SHIFT;
3606 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3607 if (sched_feat(ARCH_POWER))
3608 power *= arch_scale_smt_power(sd, cpu);
3609 else
3610 power *= default_scale_smt_power(sd, cpu);
3612 power >>= SCHED_LOAD_SHIFT;
3615 power *= scale_rt_power(cpu);
3616 power >>= SCHED_LOAD_SHIFT;
3618 if (!power)
3619 power = 1;
3621 sdg->cpu_power = power;
3624 static void update_group_power(struct sched_domain *sd, int cpu)
3626 struct sched_domain *child = sd->child;
3627 struct sched_group *group, *sdg = sd->groups;
3628 unsigned long power;
3630 if (!child) {
3631 update_cpu_power(sd, cpu);
3632 return;
3635 power = 0;
3637 group = child->groups;
3638 do {
3639 power += group->cpu_power;
3640 group = group->next;
3641 } while (group != child->groups);
3643 sdg->cpu_power = power;
3647 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3648 * @group: sched_group whose statistics are to be updated.
3649 * @this_cpu: Cpu for which load balance is currently performed.
3650 * @idle: Idle status of this_cpu
3651 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3652 * @sd_idle: Idle status of the sched_domain containing group.
3653 * @local_group: Does group contain this_cpu.
3654 * @cpus: Set of cpus considered for load balancing.
3655 * @balance: Should we balance.
3656 * @sgs: variable to hold the statistics for this group.
3658 static inline void update_sg_lb_stats(struct sched_domain *sd,
3659 struct sched_group *group, int this_cpu,
3660 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3661 int local_group, const struct cpumask *cpus,
3662 int *balance, struct sg_lb_stats *sgs)
3664 unsigned long load, max_cpu_load, min_cpu_load;
3665 int i;
3666 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3667 unsigned long sum_avg_load_per_task;
3668 unsigned long avg_load_per_task;
3670 if (local_group) {
3671 balance_cpu = group_first_cpu(group);
3672 if (balance_cpu == this_cpu)
3673 update_group_power(sd, this_cpu);
3676 /* Tally up the load of all CPUs in the group */
3677 sum_avg_load_per_task = avg_load_per_task = 0;
3678 max_cpu_load = 0;
3679 min_cpu_load = ~0UL;
3681 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3682 struct rq *rq = cpu_rq(i);
3684 if (*sd_idle && rq->nr_running)
3685 *sd_idle = 0;
3687 /* Bias balancing toward cpus of our domain */
3688 if (local_group) {
3689 if (idle_cpu(i) && !first_idle_cpu) {
3690 first_idle_cpu = 1;
3691 balance_cpu = i;
3694 load = target_load(i, load_idx);
3695 } else {
3696 load = source_load(i, load_idx);
3697 if (load > max_cpu_load)
3698 max_cpu_load = load;
3699 if (min_cpu_load > load)
3700 min_cpu_load = load;
3703 sgs->group_load += load;
3704 sgs->sum_nr_running += rq->nr_running;
3705 sgs->sum_weighted_load += weighted_cpuload(i);
3707 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3711 * First idle cpu or the first cpu(busiest) in this sched group
3712 * is eligible for doing load balancing at this and above
3713 * domains. In the newly idle case, we will allow all the cpu's
3714 * to do the newly idle load balance.
3716 if (idle != CPU_NEWLY_IDLE && local_group &&
3717 balance_cpu != this_cpu && balance) {
3718 *balance = 0;
3719 return;
3722 /* Adjust by relative CPU power of the group */
3723 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3727 * Consider the group unbalanced when the imbalance is larger
3728 * than the average weight of two tasks.
3730 * APZ: with cgroup the avg task weight can vary wildly and
3731 * might not be a suitable number - should we keep a
3732 * normalized nr_running number somewhere that negates
3733 * the hierarchy?
3735 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3736 group->cpu_power;
3738 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3739 sgs->group_imb = 1;
3741 sgs->group_capacity =
3742 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3746 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3747 * @sd: sched_domain whose statistics are to be updated.
3748 * @this_cpu: Cpu for which load balance is currently performed.
3749 * @idle: Idle status of this_cpu
3750 * @sd_idle: Idle status of the sched_domain containing group.
3751 * @cpus: Set of cpus considered for load balancing.
3752 * @balance: Should we balance.
3753 * @sds: variable to hold the statistics for this sched_domain.
3755 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3756 enum cpu_idle_type idle, int *sd_idle,
3757 const struct cpumask *cpus, int *balance,
3758 struct sd_lb_stats *sds)
3760 struct sched_domain *child = sd->child;
3761 struct sched_group *group = sd->groups;
3762 struct sg_lb_stats sgs;
3763 int load_idx, prefer_sibling = 0;
3765 if (child && child->flags & SD_PREFER_SIBLING)
3766 prefer_sibling = 1;
3768 init_sd_power_savings_stats(sd, sds, idle);
3769 load_idx = get_sd_load_idx(sd, idle);
3771 do {
3772 int local_group;
3774 local_group = cpumask_test_cpu(this_cpu,
3775 sched_group_cpus(group));
3776 memset(&sgs, 0, sizeof(sgs));
3777 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3778 local_group, cpus, balance, &sgs);
3780 if (local_group && balance && !(*balance))
3781 return;
3783 sds->total_load += sgs.group_load;
3784 sds->total_pwr += group->cpu_power;
3787 * In case the child domain prefers tasks go to siblings
3788 * first, lower the group capacity to one so that we'll try
3789 * and move all the excess tasks away.
3791 if (prefer_sibling)
3792 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3794 if (local_group) {
3795 sds->this_load = sgs.avg_load;
3796 sds->this = group;
3797 sds->this_nr_running = sgs.sum_nr_running;
3798 sds->this_load_per_task = sgs.sum_weighted_load;
3799 } else if (sgs.avg_load > sds->max_load &&
3800 (sgs.sum_nr_running > sgs.group_capacity ||
3801 sgs.group_imb)) {
3802 sds->max_load = sgs.avg_load;
3803 sds->busiest = group;
3804 sds->busiest_nr_running = sgs.sum_nr_running;
3805 sds->busiest_load_per_task = sgs.sum_weighted_load;
3806 sds->group_imb = sgs.group_imb;
3809 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3810 group = group->next;
3811 } while (group != sd->groups);
3815 * fix_small_imbalance - Calculate the minor imbalance that exists
3816 * amongst the groups of a sched_domain, during
3817 * load balancing.
3818 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3819 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3820 * @imbalance: Variable to store the imbalance.
3822 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3823 int this_cpu, unsigned long *imbalance)
3825 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3826 unsigned int imbn = 2;
3828 if (sds->this_nr_running) {
3829 sds->this_load_per_task /= sds->this_nr_running;
3830 if (sds->busiest_load_per_task >
3831 sds->this_load_per_task)
3832 imbn = 1;
3833 } else
3834 sds->this_load_per_task =
3835 cpu_avg_load_per_task(this_cpu);
3837 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3838 sds->busiest_load_per_task * imbn) {
3839 *imbalance = sds->busiest_load_per_task;
3840 return;
3844 * OK, we don't have enough imbalance to justify moving tasks,
3845 * however we may be able to increase total CPU power used by
3846 * moving them.
3849 pwr_now += sds->busiest->cpu_power *
3850 min(sds->busiest_load_per_task, sds->max_load);
3851 pwr_now += sds->this->cpu_power *
3852 min(sds->this_load_per_task, sds->this_load);
3853 pwr_now /= SCHED_LOAD_SCALE;
3855 /* Amount of load we'd subtract */
3856 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3857 sds->busiest->cpu_power;
3858 if (sds->max_load > tmp)
3859 pwr_move += sds->busiest->cpu_power *
3860 min(sds->busiest_load_per_task, sds->max_load - tmp);
3862 /* Amount of load we'd add */
3863 if (sds->max_load * sds->busiest->cpu_power <
3864 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3865 tmp = (sds->max_load * sds->busiest->cpu_power) /
3866 sds->this->cpu_power;
3867 else
3868 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3869 sds->this->cpu_power;
3870 pwr_move += sds->this->cpu_power *
3871 min(sds->this_load_per_task, sds->this_load + tmp);
3872 pwr_move /= SCHED_LOAD_SCALE;
3874 /* Move if we gain throughput */
3875 if (pwr_move > pwr_now)
3876 *imbalance = sds->busiest_load_per_task;
3880 * calculate_imbalance - Calculate the amount of imbalance present within the
3881 * groups of a given sched_domain during load balance.
3882 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3883 * @this_cpu: Cpu for which currently load balance is being performed.
3884 * @imbalance: The variable to store the imbalance.
3886 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3887 unsigned long *imbalance)
3889 unsigned long max_pull;
3891 * In the presence of smp nice balancing, certain scenarios can have
3892 * max load less than avg load(as we skip the groups at or below
3893 * its cpu_power, while calculating max_load..)
3895 if (sds->max_load < sds->avg_load) {
3896 *imbalance = 0;
3897 return fix_small_imbalance(sds, this_cpu, imbalance);
3900 /* Don't want to pull so many tasks that a group would go idle */
3901 max_pull = min(sds->max_load - sds->avg_load,
3902 sds->max_load - sds->busiest_load_per_task);
3904 /* How much load to actually move to equalise the imbalance */
3905 *imbalance = min(max_pull * sds->busiest->cpu_power,
3906 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3907 / SCHED_LOAD_SCALE;
3910 * if *imbalance is less than the average load per runnable task
3911 * there is no gaurantee that any tasks will be moved so we'll have
3912 * a think about bumping its value to force at least one task to be
3913 * moved
3915 if (*imbalance < sds->busiest_load_per_task)
3916 return fix_small_imbalance(sds, this_cpu, imbalance);
3919 /******* find_busiest_group() helpers end here *********************/
3922 * find_busiest_group - Returns the busiest group within the sched_domain
3923 * if there is an imbalance. If there isn't an imbalance, and
3924 * the user has opted for power-savings, it returns a group whose
3925 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3926 * such a group exists.
3928 * Also calculates the amount of weighted load which should be moved
3929 * to restore balance.
3931 * @sd: The sched_domain whose busiest group is to be returned.
3932 * @this_cpu: The cpu for which load balancing is currently being performed.
3933 * @imbalance: Variable which stores amount of weighted load which should
3934 * be moved to restore balance/put a group to idle.
3935 * @idle: The idle status of this_cpu.
3936 * @sd_idle: The idleness of sd
3937 * @cpus: The set of CPUs under consideration for load-balancing.
3938 * @balance: Pointer to a variable indicating if this_cpu
3939 * is the appropriate cpu to perform load balancing at this_level.
3941 * Returns: - the busiest group if imbalance exists.
3942 * - If no imbalance and user has opted for power-savings balance,
3943 * return the least loaded group whose CPUs can be
3944 * put to idle by rebalancing its tasks onto our group.
3946 static struct sched_group *
3947 find_busiest_group(struct sched_domain *sd, int this_cpu,
3948 unsigned long *imbalance, enum cpu_idle_type idle,
3949 int *sd_idle, const struct cpumask *cpus, int *balance)
3951 struct sd_lb_stats sds;
3953 memset(&sds, 0, sizeof(sds));
3956 * Compute the various statistics relavent for load balancing at
3957 * this level.
3959 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3960 balance, &sds);
3962 /* Cases where imbalance does not exist from POV of this_cpu */
3963 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3964 * at this level.
3965 * 2) There is no busy sibling group to pull from.
3966 * 3) This group is the busiest group.
3967 * 4) This group is more busy than the avg busieness at this
3968 * sched_domain.
3969 * 5) The imbalance is within the specified limit.
3970 * 6) Any rebalance would lead to ping-pong
3972 if (balance && !(*balance))
3973 goto ret;
3975 if (!sds.busiest || sds.busiest_nr_running == 0)
3976 goto out_balanced;
3978 if (sds.this_load >= sds.max_load)
3979 goto out_balanced;
3981 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3983 if (sds.this_load >= sds.avg_load)
3984 goto out_balanced;
3986 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3987 goto out_balanced;
3989 sds.busiest_load_per_task /= sds.busiest_nr_running;
3990 if (sds.group_imb)
3991 sds.busiest_load_per_task =
3992 min(sds.busiest_load_per_task, sds.avg_load);
3995 * We're trying to get all the cpus to the average_load, so we don't
3996 * want to push ourselves above the average load, nor do we wish to
3997 * reduce the max loaded cpu below the average load, as either of these
3998 * actions would just result in more rebalancing later, and ping-pong
3999 * tasks around. Thus we look for the minimum possible imbalance.
4000 * Negative imbalances (*we* are more loaded than anyone else) will
4001 * be counted as no imbalance for these purposes -- we can't fix that
4002 * by pulling tasks to us. Be careful of negative numbers as they'll
4003 * appear as very large values with unsigned longs.
4005 if (sds.max_load <= sds.busiest_load_per_task)
4006 goto out_balanced;
4008 /* Looks like there is an imbalance. Compute it */
4009 calculate_imbalance(&sds, this_cpu, imbalance);
4010 return sds.busiest;
4012 out_balanced:
4014 * There is no obvious imbalance. But check if we can do some balancing
4015 * to save power.
4017 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4018 return sds.busiest;
4019 ret:
4020 *imbalance = 0;
4021 return NULL;
4025 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4027 static struct rq *
4028 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4029 unsigned long imbalance, const struct cpumask *cpus)
4031 struct rq *busiest = NULL, *rq;
4032 unsigned long max_load = 0;
4033 int i;
4035 for_each_cpu(i, sched_group_cpus(group)) {
4036 unsigned long power = power_of(i);
4037 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4038 unsigned long wl;
4040 if (!cpumask_test_cpu(i, cpus))
4041 continue;
4043 rq = cpu_rq(i);
4044 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4045 wl /= power;
4047 if (capacity && rq->nr_running == 1 && wl > imbalance)
4048 continue;
4050 if (wl > max_load) {
4051 max_load = wl;
4052 busiest = rq;
4056 return busiest;
4060 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4061 * so long as it is large enough.
4063 #define MAX_PINNED_INTERVAL 512
4065 /* Working cpumask for load_balance and load_balance_newidle. */
4066 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4069 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4070 * tasks if there is an imbalance.
4072 static int load_balance(int this_cpu, struct rq *this_rq,
4073 struct sched_domain *sd, enum cpu_idle_type idle,
4074 int *balance)
4076 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4077 struct sched_group *group;
4078 unsigned long imbalance;
4079 struct rq *busiest;
4080 unsigned long flags;
4081 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4083 cpumask_setall(cpus);
4086 * When power savings policy is enabled for the parent domain, idle
4087 * sibling can pick up load irrespective of busy siblings. In this case,
4088 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4089 * portraying it as CPU_NOT_IDLE.
4091 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4092 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4093 sd_idle = 1;
4095 schedstat_inc(sd, lb_count[idle]);
4097 redo:
4098 update_shares(sd);
4099 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4100 cpus, balance);
4102 if (*balance == 0)
4103 goto out_balanced;
4105 if (!group) {
4106 schedstat_inc(sd, lb_nobusyg[idle]);
4107 goto out_balanced;
4110 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4111 if (!busiest) {
4112 schedstat_inc(sd, lb_nobusyq[idle]);
4113 goto out_balanced;
4116 BUG_ON(busiest == this_rq);
4118 schedstat_add(sd, lb_imbalance[idle], imbalance);
4120 ld_moved = 0;
4121 if (busiest->nr_running > 1) {
4123 * Attempt to move tasks. If find_busiest_group has found
4124 * an imbalance but busiest->nr_running <= 1, the group is
4125 * still unbalanced. ld_moved simply stays zero, so it is
4126 * correctly treated as an imbalance.
4128 local_irq_save(flags);
4129 double_rq_lock(this_rq, busiest);
4130 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4131 imbalance, sd, idle, &all_pinned);
4132 double_rq_unlock(this_rq, busiest);
4133 local_irq_restore(flags);
4136 * some other cpu did the load balance for us.
4138 if (ld_moved && this_cpu != smp_processor_id())
4139 resched_cpu(this_cpu);
4141 /* All tasks on this runqueue were pinned by CPU affinity */
4142 if (unlikely(all_pinned)) {
4143 cpumask_clear_cpu(cpu_of(busiest), cpus);
4144 if (!cpumask_empty(cpus))
4145 goto redo;
4146 goto out_balanced;
4150 if (!ld_moved) {
4151 schedstat_inc(sd, lb_failed[idle]);
4152 sd->nr_balance_failed++;
4154 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4156 spin_lock_irqsave(&busiest->lock, flags);
4158 /* don't kick the migration_thread, if the curr
4159 * task on busiest cpu can't be moved to this_cpu
4161 if (!cpumask_test_cpu(this_cpu,
4162 &busiest->curr->cpus_allowed)) {
4163 spin_unlock_irqrestore(&busiest->lock, flags);
4164 all_pinned = 1;
4165 goto out_one_pinned;
4168 if (!busiest->active_balance) {
4169 busiest->active_balance = 1;
4170 busiest->push_cpu = this_cpu;
4171 active_balance = 1;
4173 spin_unlock_irqrestore(&busiest->lock, flags);
4174 if (active_balance)
4175 wake_up_process(busiest->migration_thread);
4178 * We've kicked active balancing, reset the failure
4179 * counter.
4181 sd->nr_balance_failed = sd->cache_nice_tries+1;
4183 } else
4184 sd->nr_balance_failed = 0;
4186 if (likely(!active_balance)) {
4187 /* We were unbalanced, so reset the balancing interval */
4188 sd->balance_interval = sd->min_interval;
4189 } else {
4191 * If we've begun active balancing, start to back off. This
4192 * case may not be covered by the all_pinned logic if there
4193 * is only 1 task on the busy runqueue (because we don't call
4194 * move_tasks).
4196 if (sd->balance_interval < sd->max_interval)
4197 sd->balance_interval *= 2;
4200 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4201 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4202 ld_moved = -1;
4204 goto out;
4206 out_balanced:
4207 schedstat_inc(sd, lb_balanced[idle]);
4209 sd->nr_balance_failed = 0;
4211 out_one_pinned:
4212 /* tune up the balancing interval */
4213 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4214 (sd->balance_interval < sd->max_interval))
4215 sd->balance_interval *= 2;
4217 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4218 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4219 ld_moved = -1;
4220 else
4221 ld_moved = 0;
4222 out:
4223 if (ld_moved)
4224 update_shares(sd);
4225 return ld_moved;
4229 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4230 * tasks if there is an imbalance.
4232 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4233 * this_rq is locked.
4235 static int
4236 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4238 struct sched_group *group;
4239 struct rq *busiest = NULL;
4240 unsigned long imbalance;
4241 int ld_moved = 0;
4242 int sd_idle = 0;
4243 int all_pinned = 0;
4244 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4246 cpumask_setall(cpus);
4249 * When power savings policy is enabled for the parent domain, idle
4250 * sibling can pick up load irrespective of busy siblings. In this case,
4251 * let the state of idle sibling percolate up as IDLE, instead of
4252 * portraying it as CPU_NOT_IDLE.
4254 if (sd->flags & SD_SHARE_CPUPOWER &&
4255 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4256 sd_idle = 1;
4258 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4259 redo:
4260 update_shares_locked(this_rq, sd);
4261 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4262 &sd_idle, cpus, NULL);
4263 if (!group) {
4264 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4265 goto out_balanced;
4268 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4269 if (!busiest) {
4270 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4271 goto out_balanced;
4274 BUG_ON(busiest == this_rq);
4276 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4278 ld_moved = 0;
4279 if (busiest->nr_running > 1) {
4280 /* Attempt to move tasks */
4281 double_lock_balance(this_rq, busiest);
4282 /* this_rq->clock is already updated */
4283 update_rq_clock(busiest);
4284 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4285 imbalance, sd, CPU_NEWLY_IDLE,
4286 &all_pinned);
4287 double_unlock_balance(this_rq, busiest);
4289 if (unlikely(all_pinned)) {
4290 cpumask_clear_cpu(cpu_of(busiest), cpus);
4291 if (!cpumask_empty(cpus))
4292 goto redo;
4296 if (!ld_moved) {
4297 int active_balance = 0;
4299 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4300 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4301 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4302 return -1;
4304 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4305 return -1;
4307 if (sd->nr_balance_failed++ < 2)
4308 return -1;
4311 * The only task running in a non-idle cpu can be moved to this
4312 * cpu in an attempt to completely freeup the other CPU
4313 * package. The same method used to move task in load_balance()
4314 * have been extended for load_balance_newidle() to speedup
4315 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4317 * The package power saving logic comes from
4318 * find_busiest_group(). If there are no imbalance, then
4319 * f_b_g() will return NULL. However when sched_mc={1,2} then
4320 * f_b_g() will select a group from which a running task may be
4321 * pulled to this cpu in order to make the other package idle.
4322 * If there is no opportunity to make a package idle and if
4323 * there are no imbalance, then f_b_g() will return NULL and no
4324 * action will be taken in load_balance_newidle().
4326 * Under normal task pull operation due to imbalance, there
4327 * will be more than one task in the source run queue and
4328 * move_tasks() will succeed. ld_moved will be true and this
4329 * active balance code will not be triggered.
4332 /* Lock busiest in correct order while this_rq is held */
4333 double_lock_balance(this_rq, busiest);
4336 * don't kick the migration_thread, if the curr
4337 * task on busiest cpu can't be moved to this_cpu
4339 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4340 double_unlock_balance(this_rq, busiest);
4341 all_pinned = 1;
4342 return ld_moved;
4345 if (!busiest->active_balance) {
4346 busiest->active_balance = 1;
4347 busiest->push_cpu = this_cpu;
4348 active_balance = 1;
4351 double_unlock_balance(this_rq, busiest);
4353 * Should not call ttwu while holding a rq->lock
4355 spin_unlock(&this_rq->lock);
4356 if (active_balance)
4357 wake_up_process(busiest->migration_thread);
4358 spin_lock(&this_rq->lock);
4360 } else
4361 sd->nr_balance_failed = 0;
4363 update_shares_locked(this_rq, sd);
4364 return ld_moved;
4366 out_balanced:
4367 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4368 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4369 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4370 return -1;
4371 sd->nr_balance_failed = 0;
4373 return 0;
4377 * idle_balance is called by schedule() if this_cpu is about to become
4378 * idle. Attempts to pull tasks from other CPUs.
4380 static void idle_balance(int this_cpu, struct rq *this_rq)
4382 struct sched_domain *sd;
4383 int pulled_task = 0;
4384 unsigned long next_balance = jiffies + HZ;
4386 for_each_domain(this_cpu, sd) {
4387 unsigned long interval;
4389 if (!(sd->flags & SD_LOAD_BALANCE))
4390 continue;
4392 if (sd->flags & SD_BALANCE_NEWIDLE)
4393 /* If we've pulled tasks over stop searching: */
4394 pulled_task = load_balance_newidle(this_cpu, this_rq,
4395 sd);
4397 interval = msecs_to_jiffies(sd->balance_interval);
4398 if (time_after(next_balance, sd->last_balance + interval))
4399 next_balance = sd->last_balance + interval;
4400 if (pulled_task)
4401 break;
4403 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4405 * We are going idle. next_balance may be set based on
4406 * a busy processor. So reset next_balance.
4408 this_rq->next_balance = next_balance;
4413 * active_load_balance is run by migration threads. It pushes running tasks
4414 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4415 * running on each physical CPU where possible, and avoids physical /
4416 * logical imbalances.
4418 * Called with busiest_rq locked.
4420 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4422 int target_cpu = busiest_rq->push_cpu;
4423 struct sched_domain *sd;
4424 struct rq *target_rq;
4426 /* Is there any task to move? */
4427 if (busiest_rq->nr_running <= 1)
4428 return;
4430 target_rq = cpu_rq(target_cpu);
4433 * This condition is "impossible", if it occurs
4434 * we need to fix it. Originally reported by
4435 * Bjorn Helgaas on a 128-cpu setup.
4437 BUG_ON(busiest_rq == target_rq);
4439 /* move a task from busiest_rq to target_rq */
4440 double_lock_balance(busiest_rq, target_rq);
4441 update_rq_clock(busiest_rq);
4442 update_rq_clock(target_rq);
4444 /* Search for an sd spanning us and the target CPU. */
4445 for_each_domain(target_cpu, sd) {
4446 if ((sd->flags & SD_LOAD_BALANCE) &&
4447 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4448 break;
4451 if (likely(sd)) {
4452 schedstat_inc(sd, alb_count);
4454 if (move_one_task(target_rq, target_cpu, busiest_rq,
4455 sd, CPU_IDLE))
4456 schedstat_inc(sd, alb_pushed);
4457 else
4458 schedstat_inc(sd, alb_failed);
4460 double_unlock_balance(busiest_rq, target_rq);
4463 #ifdef CONFIG_NO_HZ
4464 static struct {
4465 atomic_t load_balancer;
4466 cpumask_var_t cpu_mask;
4467 cpumask_var_t ilb_grp_nohz_mask;
4468 } nohz ____cacheline_aligned = {
4469 .load_balancer = ATOMIC_INIT(-1),
4472 int get_nohz_load_balancer(void)
4474 return atomic_read(&nohz.load_balancer);
4477 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4479 * lowest_flag_domain - Return lowest sched_domain containing flag.
4480 * @cpu: The cpu whose lowest level of sched domain is to
4481 * be returned.
4482 * @flag: The flag to check for the lowest sched_domain
4483 * for the given cpu.
4485 * Returns the lowest sched_domain of a cpu which contains the given flag.
4487 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4489 struct sched_domain *sd;
4491 for_each_domain(cpu, sd)
4492 if (sd && (sd->flags & flag))
4493 break;
4495 return sd;
4499 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4500 * @cpu: The cpu whose domains we're iterating over.
4501 * @sd: variable holding the value of the power_savings_sd
4502 * for cpu.
4503 * @flag: The flag to filter the sched_domains to be iterated.
4505 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4506 * set, starting from the lowest sched_domain to the highest.
4508 #define for_each_flag_domain(cpu, sd, flag) \
4509 for (sd = lowest_flag_domain(cpu, flag); \
4510 (sd && (sd->flags & flag)); sd = sd->parent)
4513 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4514 * @ilb_group: group to be checked for semi-idleness
4516 * Returns: 1 if the group is semi-idle. 0 otherwise.
4518 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4519 * and atleast one non-idle CPU. This helper function checks if the given
4520 * sched_group is semi-idle or not.
4522 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4524 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4525 sched_group_cpus(ilb_group));
4528 * A sched_group is semi-idle when it has atleast one busy cpu
4529 * and atleast one idle cpu.
4531 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4532 return 0;
4534 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4535 return 0;
4537 return 1;
4540 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4541 * @cpu: The cpu which is nominating a new idle_load_balancer.
4543 * Returns: Returns the id of the idle load balancer if it exists,
4544 * Else, returns >= nr_cpu_ids.
4546 * This algorithm picks the idle load balancer such that it belongs to a
4547 * semi-idle powersavings sched_domain. The idea is to try and avoid
4548 * completely idle packages/cores just for the purpose of idle load balancing
4549 * when there are other idle cpu's which are better suited for that job.
4551 static int find_new_ilb(int cpu)
4553 struct sched_domain *sd;
4554 struct sched_group *ilb_group;
4557 * Have idle load balancer selection from semi-idle packages only
4558 * when power-aware load balancing is enabled
4560 if (!(sched_smt_power_savings || sched_mc_power_savings))
4561 goto out_done;
4564 * Optimize for the case when we have no idle CPUs or only one
4565 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4567 if (cpumask_weight(nohz.cpu_mask) < 2)
4568 goto out_done;
4570 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4571 ilb_group = sd->groups;
4573 do {
4574 if (is_semi_idle_group(ilb_group))
4575 return cpumask_first(nohz.ilb_grp_nohz_mask);
4577 ilb_group = ilb_group->next;
4579 } while (ilb_group != sd->groups);
4582 out_done:
4583 return cpumask_first(nohz.cpu_mask);
4585 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4586 static inline int find_new_ilb(int call_cpu)
4588 return cpumask_first(nohz.cpu_mask);
4590 #endif
4593 * This routine will try to nominate the ilb (idle load balancing)
4594 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4595 * load balancing on behalf of all those cpus. If all the cpus in the system
4596 * go into this tickless mode, then there will be no ilb owner (as there is
4597 * no need for one) and all the cpus will sleep till the next wakeup event
4598 * arrives...
4600 * For the ilb owner, tick is not stopped. And this tick will be used
4601 * for idle load balancing. ilb owner will still be part of
4602 * nohz.cpu_mask..
4604 * While stopping the tick, this cpu will become the ilb owner if there
4605 * is no other owner. And will be the owner till that cpu becomes busy
4606 * or if all cpus in the system stop their ticks at which point
4607 * there is no need for ilb owner.
4609 * When the ilb owner becomes busy, it nominates another owner, during the
4610 * next busy scheduler_tick()
4612 int select_nohz_load_balancer(int stop_tick)
4614 int cpu = smp_processor_id();
4616 if (stop_tick) {
4617 cpu_rq(cpu)->in_nohz_recently = 1;
4619 if (!cpu_active(cpu)) {
4620 if (atomic_read(&nohz.load_balancer) != cpu)
4621 return 0;
4624 * If we are going offline and still the leader,
4625 * give up!
4627 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4628 BUG();
4630 return 0;
4633 cpumask_set_cpu(cpu, nohz.cpu_mask);
4635 /* time for ilb owner also to sleep */
4636 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4637 if (atomic_read(&nohz.load_balancer) == cpu)
4638 atomic_set(&nohz.load_balancer, -1);
4639 return 0;
4642 if (atomic_read(&nohz.load_balancer) == -1) {
4643 /* make me the ilb owner */
4644 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4645 return 1;
4646 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4647 int new_ilb;
4649 if (!(sched_smt_power_savings ||
4650 sched_mc_power_savings))
4651 return 1;
4653 * Check to see if there is a more power-efficient
4654 * ilb.
4656 new_ilb = find_new_ilb(cpu);
4657 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4658 atomic_set(&nohz.load_balancer, -1);
4659 resched_cpu(new_ilb);
4660 return 0;
4662 return 1;
4664 } else {
4665 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4666 return 0;
4668 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4670 if (atomic_read(&nohz.load_balancer) == cpu)
4671 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4672 BUG();
4674 return 0;
4676 #endif
4678 static DEFINE_SPINLOCK(balancing);
4681 * It checks each scheduling domain to see if it is due to be balanced,
4682 * and initiates a balancing operation if so.
4684 * Balancing parameters are set up in arch_init_sched_domains.
4686 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4688 int balance = 1;
4689 struct rq *rq = cpu_rq(cpu);
4690 unsigned long interval;
4691 struct sched_domain *sd;
4692 /* Earliest time when we have to do rebalance again */
4693 unsigned long next_balance = jiffies + 60*HZ;
4694 int update_next_balance = 0;
4695 int need_serialize;
4697 for_each_domain(cpu, sd) {
4698 if (!(sd->flags & SD_LOAD_BALANCE))
4699 continue;
4701 interval = sd->balance_interval;
4702 if (idle != CPU_IDLE)
4703 interval *= sd->busy_factor;
4705 /* scale ms to jiffies */
4706 interval = msecs_to_jiffies(interval);
4707 if (unlikely(!interval))
4708 interval = 1;
4709 if (interval > HZ*NR_CPUS/10)
4710 interval = HZ*NR_CPUS/10;
4712 need_serialize = sd->flags & SD_SERIALIZE;
4714 if (need_serialize) {
4715 if (!spin_trylock(&balancing))
4716 goto out;
4719 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4720 if (load_balance(cpu, rq, sd, idle, &balance)) {
4722 * We've pulled tasks over so either we're no
4723 * longer idle, or one of our SMT siblings is
4724 * not idle.
4726 idle = CPU_NOT_IDLE;
4728 sd->last_balance = jiffies;
4730 if (need_serialize)
4731 spin_unlock(&balancing);
4732 out:
4733 if (time_after(next_balance, sd->last_balance + interval)) {
4734 next_balance = sd->last_balance + interval;
4735 update_next_balance = 1;
4739 * Stop the load balance at this level. There is another
4740 * CPU in our sched group which is doing load balancing more
4741 * actively.
4743 if (!balance)
4744 break;
4748 * next_balance will be updated only when there is a need.
4749 * When the cpu is attached to null domain for ex, it will not be
4750 * updated.
4752 if (likely(update_next_balance))
4753 rq->next_balance = next_balance;
4757 * run_rebalance_domains is triggered when needed from the scheduler tick.
4758 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4759 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4761 static void run_rebalance_domains(struct softirq_action *h)
4763 int this_cpu = smp_processor_id();
4764 struct rq *this_rq = cpu_rq(this_cpu);
4765 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4766 CPU_IDLE : CPU_NOT_IDLE;
4768 rebalance_domains(this_cpu, idle);
4770 #ifdef CONFIG_NO_HZ
4772 * If this cpu is the owner for idle load balancing, then do the
4773 * balancing on behalf of the other idle cpus whose ticks are
4774 * stopped.
4776 if (this_rq->idle_at_tick &&
4777 atomic_read(&nohz.load_balancer) == this_cpu) {
4778 struct rq *rq;
4779 int balance_cpu;
4781 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4782 if (balance_cpu == this_cpu)
4783 continue;
4786 * If this cpu gets work to do, stop the load balancing
4787 * work being done for other cpus. Next load
4788 * balancing owner will pick it up.
4790 if (need_resched())
4791 break;
4793 rebalance_domains(balance_cpu, CPU_IDLE);
4795 rq = cpu_rq(balance_cpu);
4796 if (time_after(this_rq->next_balance, rq->next_balance))
4797 this_rq->next_balance = rq->next_balance;
4800 #endif
4803 static inline int on_null_domain(int cpu)
4805 return !rcu_dereference(cpu_rq(cpu)->sd);
4809 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4811 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4812 * idle load balancing owner or decide to stop the periodic load balancing,
4813 * if the whole system is idle.
4815 static inline void trigger_load_balance(struct rq *rq, int cpu)
4817 #ifdef CONFIG_NO_HZ
4819 * If we were in the nohz mode recently and busy at the current
4820 * scheduler tick, then check if we need to nominate new idle
4821 * load balancer.
4823 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4824 rq->in_nohz_recently = 0;
4826 if (atomic_read(&nohz.load_balancer) == cpu) {
4827 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4828 atomic_set(&nohz.load_balancer, -1);
4831 if (atomic_read(&nohz.load_balancer) == -1) {
4832 int ilb = find_new_ilb(cpu);
4834 if (ilb < nr_cpu_ids)
4835 resched_cpu(ilb);
4840 * If this cpu is idle and doing idle load balancing for all the
4841 * cpus with ticks stopped, is it time for that to stop?
4843 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4844 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4845 resched_cpu(cpu);
4846 return;
4850 * If this cpu is idle and the idle load balancing is done by
4851 * someone else, then no need raise the SCHED_SOFTIRQ
4853 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4854 cpumask_test_cpu(cpu, nohz.cpu_mask))
4855 return;
4856 #endif
4857 /* Don't need to rebalance while attached to NULL domain */
4858 if (time_after_eq(jiffies, rq->next_balance) &&
4859 likely(!on_null_domain(cpu)))
4860 raise_softirq(SCHED_SOFTIRQ);
4863 #else /* CONFIG_SMP */
4866 * on UP we do not need to balance between CPUs:
4868 static inline void idle_balance(int cpu, struct rq *rq)
4872 #endif
4874 DEFINE_PER_CPU(struct kernel_stat, kstat);
4876 EXPORT_PER_CPU_SYMBOL(kstat);
4879 * Return any ns on the sched_clock that have not yet been accounted in
4880 * @p in case that task is currently running.
4882 * Called with task_rq_lock() held on @rq.
4884 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4886 u64 ns = 0;
4888 if (task_current(rq, p)) {
4889 update_rq_clock(rq);
4890 ns = rq->clock - p->se.exec_start;
4891 if ((s64)ns < 0)
4892 ns = 0;
4895 return ns;
4898 unsigned long long task_delta_exec(struct task_struct *p)
4900 unsigned long flags;
4901 struct rq *rq;
4902 u64 ns = 0;
4904 rq = task_rq_lock(p, &flags);
4905 ns = do_task_delta_exec(p, rq);
4906 task_rq_unlock(rq, &flags);
4908 return ns;
4912 * Return accounted runtime for the task.
4913 * In case the task is currently running, return the runtime plus current's
4914 * pending runtime that have not been accounted yet.
4916 unsigned long long task_sched_runtime(struct task_struct *p)
4918 unsigned long flags;
4919 struct rq *rq;
4920 u64 ns = 0;
4922 rq = task_rq_lock(p, &flags);
4923 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4924 task_rq_unlock(rq, &flags);
4926 return ns;
4930 * Return sum_exec_runtime for the thread group.
4931 * In case the task is currently running, return the sum plus current's
4932 * pending runtime that have not been accounted yet.
4934 * Note that the thread group might have other running tasks as well,
4935 * so the return value not includes other pending runtime that other
4936 * running tasks might have.
4938 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4940 struct task_cputime totals;
4941 unsigned long flags;
4942 struct rq *rq;
4943 u64 ns;
4945 rq = task_rq_lock(p, &flags);
4946 thread_group_cputime(p, &totals);
4947 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4948 task_rq_unlock(rq, &flags);
4950 return ns;
4954 * Account user cpu time to a process.
4955 * @p: the process that the cpu time gets accounted to
4956 * @cputime: the cpu time spent in user space since the last update
4957 * @cputime_scaled: cputime scaled by cpu frequency
4959 void account_user_time(struct task_struct *p, cputime_t cputime,
4960 cputime_t cputime_scaled)
4962 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4963 cputime64_t tmp;
4965 /* Add user time to process. */
4966 p->utime = cputime_add(p->utime, cputime);
4967 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4968 account_group_user_time(p, cputime);
4970 /* Add user time to cpustat. */
4971 tmp = cputime_to_cputime64(cputime);
4972 if (TASK_NICE(p) > 0)
4973 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4974 else
4975 cpustat->user = cputime64_add(cpustat->user, tmp);
4977 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4978 /* Account for user time used */
4979 acct_update_integrals(p);
4983 * Account guest cpu time to a process.
4984 * @p: the process that the cpu time gets accounted to
4985 * @cputime: the cpu time spent in virtual machine since the last update
4986 * @cputime_scaled: cputime scaled by cpu frequency
4988 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4989 cputime_t cputime_scaled)
4991 cputime64_t tmp;
4992 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4994 tmp = cputime_to_cputime64(cputime);
4996 /* Add guest time to process. */
4997 p->utime = cputime_add(p->utime, cputime);
4998 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4999 account_group_user_time(p, cputime);
5000 p->gtime = cputime_add(p->gtime, cputime);
5002 /* Add guest time to cpustat. */
5003 cpustat->user = cputime64_add(cpustat->user, tmp);
5004 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5008 * Account system cpu time to a process.
5009 * @p: the process that the cpu time gets accounted to
5010 * @hardirq_offset: the offset to subtract from hardirq_count()
5011 * @cputime: the cpu time spent in kernel space since the last update
5012 * @cputime_scaled: cputime scaled by cpu frequency
5014 void account_system_time(struct task_struct *p, int hardirq_offset,
5015 cputime_t cputime, cputime_t cputime_scaled)
5017 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5018 cputime64_t tmp;
5020 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5021 account_guest_time(p, cputime, cputime_scaled);
5022 return;
5025 /* Add system time to process. */
5026 p->stime = cputime_add(p->stime, cputime);
5027 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5028 account_group_system_time(p, cputime);
5030 /* Add system time to cpustat. */
5031 tmp = cputime_to_cputime64(cputime);
5032 if (hardirq_count() - hardirq_offset)
5033 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5034 else if (softirq_count())
5035 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5036 else
5037 cpustat->system = cputime64_add(cpustat->system, tmp);
5039 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5041 /* Account for system time used */
5042 acct_update_integrals(p);
5046 * Account for involuntary wait time.
5047 * @steal: the cpu time spent in involuntary wait
5049 void account_steal_time(cputime_t cputime)
5051 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5052 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5054 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5058 * Account for idle time.
5059 * @cputime: the cpu time spent in idle wait
5061 void account_idle_time(cputime_t cputime)
5063 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5064 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5065 struct rq *rq = this_rq();
5067 if (atomic_read(&rq->nr_iowait) > 0)
5068 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5069 else
5070 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5073 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5076 * Account a single tick of cpu time.
5077 * @p: the process that the cpu time gets accounted to
5078 * @user_tick: indicates if the tick is a user or a system tick
5080 void account_process_tick(struct task_struct *p, int user_tick)
5082 cputime_t one_jiffy = jiffies_to_cputime(1);
5083 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5084 struct rq *rq = this_rq();
5086 if (user_tick)
5087 account_user_time(p, one_jiffy, one_jiffy_scaled);
5088 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5089 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5090 one_jiffy_scaled);
5091 else
5092 account_idle_time(one_jiffy);
5096 * Account multiple ticks of steal time.
5097 * @p: the process from which the cpu time has been stolen
5098 * @ticks: number of stolen ticks
5100 void account_steal_ticks(unsigned long ticks)
5102 account_steal_time(jiffies_to_cputime(ticks));
5106 * Account multiple ticks of idle time.
5107 * @ticks: number of stolen ticks
5109 void account_idle_ticks(unsigned long ticks)
5111 account_idle_time(jiffies_to_cputime(ticks));
5114 #endif
5117 * Use precise platform statistics if available:
5119 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5120 cputime_t task_utime(struct task_struct *p)
5122 return p->utime;
5125 cputime_t task_stime(struct task_struct *p)
5127 return p->stime;
5129 #else
5130 cputime_t task_utime(struct task_struct *p)
5132 clock_t utime = cputime_to_clock_t(p->utime),
5133 total = utime + cputime_to_clock_t(p->stime);
5134 u64 temp;
5137 * Use CFS's precise accounting:
5139 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5141 if (total) {
5142 temp *= utime;
5143 do_div(temp, total);
5145 utime = (clock_t)temp;
5147 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5148 return p->prev_utime;
5151 cputime_t task_stime(struct task_struct *p)
5153 clock_t stime;
5156 * Use CFS's precise accounting. (we subtract utime from
5157 * the total, to make sure the total observed by userspace
5158 * grows monotonically - apps rely on that):
5160 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5161 cputime_to_clock_t(task_utime(p));
5163 if (stime >= 0)
5164 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5166 return p->prev_stime;
5168 #endif
5170 inline cputime_t task_gtime(struct task_struct *p)
5172 return p->gtime;
5176 * This function gets called by the timer code, with HZ frequency.
5177 * We call it with interrupts disabled.
5179 * It also gets called by the fork code, when changing the parent's
5180 * timeslices.
5182 void scheduler_tick(void)
5184 int cpu = smp_processor_id();
5185 struct rq *rq = cpu_rq(cpu);
5186 struct task_struct *curr = rq->curr;
5188 sched_clock_tick();
5190 spin_lock(&rq->lock);
5191 update_rq_clock(rq);
5192 update_cpu_load(rq);
5193 curr->sched_class->task_tick(rq, curr, 0);
5194 spin_unlock(&rq->lock);
5196 perf_counter_task_tick(curr, cpu);
5198 #ifdef CONFIG_SMP
5199 rq->idle_at_tick = idle_cpu(cpu);
5200 trigger_load_balance(rq, cpu);
5201 #endif
5204 notrace unsigned long get_parent_ip(unsigned long addr)
5206 if (in_lock_functions(addr)) {
5207 addr = CALLER_ADDR2;
5208 if (in_lock_functions(addr))
5209 addr = CALLER_ADDR3;
5211 return addr;
5214 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5215 defined(CONFIG_PREEMPT_TRACER))
5217 void __kprobes add_preempt_count(int val)
5219 #ifdef CONFIG_DEBUG_PREEMPT
5221 * Underflow?
5223 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5224 return;
5225 #endif
5226 preempt_count() += val;
5227 #ifdef CONFIG_DEBUG_PREEMPT
5229 * Spinlock count overflowing soon?
5231 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5232 PREEMPT_MASK - 10);
5233 #endif
5234 if (preempt_count() == val)
5235 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5237 EXPORT_SYMBOL(add_preempt_count);
5239 void __kprobes sub_preempt_count(int val)
5241 #ifdef CONFIG_DEBUG_PREEMPT
5243 * Underflow?
5245 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5246 return;
5248 * Is the spinlock portion underflowing?
5250 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5251 !(preempt_count() & PREEMPT_MASK)))
5252 return;
5253 #endif
5255 if (preempt_count() == val)
5256 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5257 preempt_count() -= val;
5259 EXPORT_SYMBOL(sub_preempt_count);
5261 #endif
5264 * Print scheduling while atomic bug:
5266 static noinline void __schedule_bug(struct task_struct *prev)
5268 struct pt_regs *regs = get_irq_regs();
5270 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5271 prev->comm, prev->pid, preempt_count());
5273 debug_show_held_locks(prev);
5274 print_modules();
5275 if (irqs_disabled())
5276 print_irqtrace_events(prev);
5278 if (regs)
5279 show_regs(regs);
5280 else
5281 dump_stack();
5285 * Various schedule()-time debugging checks and statistics:
5287 static inline void schedule_debug(struct task_struct *prev)
5290 * Test if we are atomic. Since do_exit() needs to call into
5291 * schedule() atomically, we ignore that path for now.
5292 * Otherwise, whine if we are scheduling when we should not be.
5294 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5295 __schedule_bug(prev);
5297 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5299 schedstat_inc(this_rq(), sched_count);
5300 #ifdef CONFIG_SCHEDSTATS
5301 if (unlikely(prev->lock_depth >= 0)) {
5302 schedstat_inc(this_rq(), bkl_count);
5303 schedstat_inc(prev, sched_info.bkl_count);
5305 #endif
5308 static void put_prev_task(struct rq *rq, struct task_struct *p)
5310 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5312 update_avg(&p->se.avg_running, runtime);
5314 if (p->state == TASK_RUNNING) {
5316 * In order to avoid avg_overlap growing stale when we are
5317 * indeed overlapping and hence not getting put to sleep, grow
5318 * the avg_overlap on preemption.
5320 * We use the average preemption runtime because that
5321 * correlates to the amount of cache footprint a task can
5322 * build up.
5324 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5325 update_avg(&p->se.avg_overlap, runtime);
5326 } else {
5327 update_avg(&p->se.avg_running, 0);
5329 p->sched_class->put_prev_task(rq, p);
5333 * Pick up the highest-prio task:
5335 static inline struct task_struct *
5336 pick_next_task(struct rq *rq)
5338 const struct sched_class *class;
5339 struct task_struct *p;
5342 * Optimization: we know that if all tasks are in
5343 * the fair class we can call that function directly:
5345 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5346 p = fair_sched_class.pick_next_task(rq);
5347 if (likely(p))
5348 return p;
5351 class = sched_class_highest;
5352 for ( ; ; ) {
5353 p = class->pick_next_task(rq);
5354 if (p)
5355 return p;
5357 * Will never be NULL as the idle class always
5358 * returns a non-NULL p:
5360 class = class->next;
5365 * schedule() is the main scheduler function.
5367 asmlinkage void __sched schedule(void)
5369 struct task_struct *prev, *next;
5370 unsigned long *switch_count;
5371 struct rq *rq;
5372 int cpu;
5374 need_resched:
5375 preempt_disable();
5376 cpu = smp_processor_id();
5377 rq = cpu_rq(cpu);
5378 rcu_sched_qs(cpu);
5379 prev = rq->curr;
5380 switch_count = &prev->nivcsw;
5382 release_kernel_lock(prev);
5383 need_resched_nonpreemptible:
5385 schedule_debug(prev);
5387 if (sched_feat(HRTICK))
5388 hrtick_clear(rq);
5390 spin_lock_irq(&rq->lock);
5391 update_rq_clock(rq);
5392 clear_tsk_need_resched(prev);
5394 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5395 if (unlikely(signal_pending_state(prev->state, prev)))
5396 prev->state = TASK_RUNNING;
5397 else
5398 deactivate_task(rq, prev, 1);
5399 switch_count = &prev->nvcsw;
5402 pre_schedule(rq, prev);
5404 if (unlikely(!rq->nr_running))
5405 idle_balance(cpu, rq);
5407 put_prev_task(rq, prev);
5408 next = pick_next_task(rq);
5410 if (likely(prev != next)) {
5411 sched_info_switch(prev, next);
5412 perf_counter_task_sched_out(prev, next, cpu);
5414 rq->nr_switches++;
5415 rq->curr = next;
5416 ++*switch_count;
5418 context_switch(rq, prev, next); /* unlocks the rq */
5420 * the context switch might have flipped the stack from under
5421 * us, hence refresh the local variables.
5423 cpu = smp_processor_id();
5424 rq = cpu_rq(cpu);
5425 } else
5426 spin_unlock_irq(&rq->lock);
5428 post_schedule(rq);
5430 if (unlikely(reacquire_kernel_lock(current) < 0))
5431 goto need_resched_nonpreemptible;
5433 preempt_enable_no_resched();
5434 if (need_resched())
5435 goto need_resched;
5437 EXPORT_SYMBOL(schedule);
5439 #ifdef CONFIG_SMP
5441 * Look out! "owner" is an entirely speculative pointer
5442 * access and not reliable.
5444 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5446 unsigned int cpu;
5447 struct rq *rq;
5449 if (!sched_feat(OWNER_SPIN))
5450 return 0;
5452 #ifdef CONFIG_DEBUG_PAGEALLOC
5454 * Need to access the cpu field knowing that
5455 * DEBUG_PAGEALLOC could have unmapped it if
5456 * the mutex owner just released it and exited.
5458 if (probe_kernel_address(&owner->cpu, cpu))
5459 goto out;
5460 #else
5461 cpu = owner->cpu;
5462 #endif
5465 * Even if the access succeeded (likely case),
5466 * the cpu field may no longer be valid.
5468 if (cpu >= nr_cpumask_bits)
5469 goto out;
5472 * We need to validate that we can do a
5473 * get_cpu() and that we have the percpu area.
5475 if (!cpu_online(cpu))
5476 goto out;
5478 rq = cpu_rq(cpu);
5480 for (;;) {
5482 * Owner changed, break to re-assess state.
5484 if (lock->owner != owner)
5485 break;
5488 * Is that owner really running on that cpu?
5490 if (task_thread_info(rq->curr) != owner || need_resched())
5491 return 0;
5493 cpu_relax();
5495 out:
5496 return 1;
5498 #endif
5500 #ifdef CONFIG_PREEMPT
5502 * this is the entry point to schedule() from in-kernel preemption
5503 * off of preempt_enable. Kernel preemptions off return from interrupt
5504 * occur there and call schedule directly.
5506 asmlinkage void __sched preempt_schedule(void)
5508 struct thread_info *ti = current_thread_info();
5511 * If there is a non-zero preempt_count or interrupts are disabled,
5512 * we do not want to preempt the current task. Just return..
5514 if (likely(ti->preempt_count || irqs_disabled()))
5515 return;
5517 do {
5518 add_preempt_count(PREEMPT_ACTIVE);
5519 schedule();
5520 sub_preempt_count(PREEMPT_ACTIVE);
5523 * Check again in case we missed a preemption opportunity
5524 * between schedule and now.
5526 barrier();
5527 } while (need_resched());
5529 EXPORT_SYMBOL(preempt_schedule);
5532 * this is the entry point to schedule() from kernel preemption
5533 * off of irq context.
5534 * Note, that this is called and return with irqs disabled. This will
5535 * protect us against recursive calling from irq.
5537 asmlinkage void __sched preempt_schedule_irq(void)
5539 struct thread_info *ti = current_thread_info();
5541 /* Catch callers which need to be fixed */
5542 BUG_ON(ti->preempt_count || !irqs_disabled());
5544 do {
5545 add_preempt_count(PREEMPT_ACTIVE);
5546 local_irq_enable();
5547 schedule();
5548 local_irq_disable();
5549 sub_preempt_count(PREEMPT_ACTIVE);
5552 * Check again in case we missed a preemption opportunity
5553 * between schedule and now.
5555 barrier();
5556 } while (need_resched());
5559 #endif /* CONFIG_PREEMPT */
5561 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5562 void *key)
5564 return try_to_wake_up(curr->private, mode, wake_flags);
5566 EXPORT_SYMBOL(default_wake_function);
5569 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5570 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5571 * number) then we wake all the non-exclusive tasks and one exclusive task.
5573 * There are circumstances in which we can try to wake a task which has already
5574 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5575 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5577 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5578 int nr_exclusive, int wake_flags, void *key)
5580 wait_queue_t *curr, *next;
5582 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5583 unsigned flags = curr->flags;
5585 if (curr->func(curr, mode, wake_flags, key) &&
5586 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5587 break;
5592 * __wake_up - wake up threads blocked on a waitqueue.
5593 * @q: the waitqueue
5594 * @mode: which threads
5595 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5596 * @key: is directly passed to the wakeup function
5598 * It may be assumed that this function implies a write memory barrier before
5599 * changing the task state if and only if any tasks are woken up.
5601 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5602 int nr_exclusive, void *key)
5604 unsigned long flags;
5606 spin_lock_irqsave(&q->lock, flags);
5607 __wake_up_common(q, mode, nr_exclusive, 0, key);
5608 spin_unlock_irqrestore(&q->lock, flags);
5610 EXPORT_SYMBOL(__wake_up);
5613 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5615 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5617 __wake_up_common(q, mode, 1, 0, NULL);
5620 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5622 __wake_up_common(q, mode, 1, 0, key);
5626 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5627 * @q: the waitqueue
5628 * @mode: which threads
5629 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5630 * @key: opaque value to be passed to wakeup targets
5632 * The sync wakeup differs that the waker knows that it will schedule
5633 * away soon, so while the target thread will be woken up, it will not
5634 * be migrated to another CPU - ie. the two threads are 'synchronized'
5635 * with each other. This can prevent needless bouncing between CPUs.
5637 * On UP it can prevent extra preemption.
5639 * It may be assumed that this function implies a write memory barrier before
5640 * changing the task state if and only if any tasks are woken up.
5642 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5643 int nr_exclusive, void *key)
5645 unsigned long flags;
5646 int wake_flags = WF_SYNC;
5648 if (unlikely(!q))
5649 return;
5651 if (unlikely(!nr_exclusive))
5652 wake_flags = 0;
5654 spin_lock_irqsave(&q->lock, flags);
5655 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5656 spin_unlock_irqrestore(&q->lock, flags);
5658 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5661 * __wake_up_sync - see __wake_up_sync_key()
5663 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5665 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5667 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5670 * complete: - signals a single thread waiting on this completion
5671 * @x: holds the state of this particular completion
5673 * This will wake up a single thread waiting on this completion. Threads will be
5674 * awakened in the same order in which they were queued.
5676 * See also complete_all(), wait_for_completion() and related routines.
5678 * It may be assumed that this function implies a write memory barrier before
5679 * changing the task state if and only if any tasks are woken up.
5681 void complete(struct completion *x)
5683 unsigned long flags;
5685 spin_lock_irqsave(&x->wait.lock, flags);
5686 x->done++;
5687 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5688 spin_unlock_irqrestore(&x->wait.lock, flags);
5690 EXPORT_SYMBOL(complete);
5693 * complete_all: - signals all threads waiting on this completion
5694 * @x: holds the state of this particular completion
5696 * This will wake up all threads waiting on this particular completion event.
5698 * It may be assumed that this function implies a write memory barrier before
5699 * changing the task state if and only if any tasks are woken up.
5701 void complete_all(struct completion *x)
5703 unsigned long flags;
5705 spin_lock_irqsave(&x->wait.lock, flags);
5706 x->done += UINT_MAX/2;
5707 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5708 spin_unlock_irqrestore(&x->wait.lock, flags);
5710 EXPORT_SYMBOL(complete_all);
5712 static inline long __sched
5713 do_wait_for_common(struct completion *x, long timeout, int state)
5715 if (!x->done) {
5716 DECLARE_WAITQUEUE(wait, current);
5718 wait.flags |= WQ_FLAG_EXCLUSIVE;
5719 __add_wait_queue_tail(&x->wait, &wait);
5720 do {
5721 if (signal_pending_state(state, current)) {
5722 timeout = -ERESTARTSYS;
5723 break;
5725 __set_current_state(state);
5726 spin_unlock_irq(&x->wait.lock);
5727 timeout = schedule_timeout(timeout);
5728 spin_lock_irq(&x->wait.lock);
5729 } while (!x->done && timeout);
5730 __remove_wait_queue(&x->wait, &wait);
5731 if (!x->done)
5732 return timeout;
5734 x->done--;
5735 return timeout ?: 1;
5738 static long __sched
5739 wait_for_common(struct completion *x, long timeout, int state)
5741 might_sleep();
5743 spin_lock_irq(&x->wait.lock);
5744 timeout = do_wait_for_common(x, timeout, state);
5745 spin_unlock_irq(&x->wait.lock);
5746 return timeout;
5750 * wait_for_completion: - waits for completion of a task
5751 * @x: holds the state of this particular completion
5753 * This waits to be signaled for completion of a specific task. It is NOT
5754 * interruptible and there is no timeout.
5756 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5757 * and interrupt capability. Also see complete().
5759 void __sched wait_for_completion(struct completion *x)
5761 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5763 EXPORT_SYMBOL(wait_for_completion);
5766 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5767 * @x: holds the state of this particular completion
5768 * @timeout: timeout value in jiffies
5770 * This waits for either a completion of a specific task to be signaled or for a
5771 * specified timeout to expire. The timeout is in jiffies. It is not
5772 * interruptible.
5774 unsigned long __sched
5775 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5777 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5779 EXPORT_SYMBOL(wait_for_completion_timeout);
5782 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5783 * @x: holds the state of this particular completion
5785 * This waits for completion of a specific task to be signaled. It is
5786 * interruptible.
5788 int __sched wait_for_completion_interruptible(struct completion *x)
5790 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5791 if (t == -ERESTARTSYS)
5792 return t;
5793 return 0;
5795 EXPORT_SYMBOL(wait_for_completion_interruptible);
5798 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5799 * @x: holds the state of this particular completion
5800 * @timeout: timeout value in jiffies
5802 * This waits for either a completion of a specific task to be signaled or for a
5803 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5805 unsigned long __sched
5806 wait_for_completion_interruptible_timeout(struct completion *x,
5807 unsigned long timeout)
5809 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5811 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5814 * wait_for_completion_killable: - waits for completion of a task (killable)
5815 * @x: holds the state of this particular completion
5817 * This waits to be signaled for completion of a specific task. It can be
5818 * interrupted by a kill signal.
5820 int __sched wait_for_completion_killable(struct completion *x)
5822 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5823 if (t == -ERESTARTSYS)
5824 return t;
5825 return 0;
5827 EXPORT_SYMBOL(wait_for_completion_killable);
5830 * try_wait_for_completion - try to decrement a completion without blocking
5831 * @x: completion structure
5833 * Returns: 0 if a decrement cannot be done without blocking
5834 * 1 if a decrement succeeded.
5836 * If a completion is being used as a counting completion,
5837 * attempt to decrement the counter without blocking. This
5838 * enables us to avoid waiting if the resource the completion
5839 * is protecting is not available.
5841 bool try_wait_for_completion(struct completion *x)
5843 int ret = 1;
5845 spin_lock_irq(&x->wait.lock);
5846 if (!x->done)
5847 ret = 0;
5848 else
5849 x->done--;
5850 spin_unlock_irq(&x->wait.lock);
5851 return ret;
5853 EXPORT_SYMBOL(try_wait_for_completion);
5856 * completion_done - Test to see if a completion has any waiters
5857 * @x: completion structure
5859 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5860 * 1 if there are no waiters.
5863 bool completion_done(struct completion *x)
5865 int ret = 1;
5867 spin_lock_irq(&x->wait.lock);
5868 if (!x->done)
5869 ret = 0;
5870 spin_unlock_irq(&x->wait.lock);
5871 return ret;
5873 EXPORT_SYMBOL(completion_done);
5875 static long __sched
5876 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5878 unsigned long flags;
5879 wait_queue_t wait;
5881 init_waitqueue_entry(&wait, current);
5883 __set_current_state(state);
5885 spin_lock_irqsave(&q->lock, flags);
5886 __add_wait_queue(q, &wait);
5887 spin_unlock(&q->lock);
5888 timeout = schedule_timeout(timeout);
5889 spin_lock_irq(&q->lock);
5890 __remove_wait_queue(q, &wait);
5891 spin_unlock_irqrestore(&q->lock, flags);
5893 return timeout;
5896 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5898 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5900 EXPORT_SYMBOL(interruptible_sleep_on);
5902 long __sched
5903 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5905 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5907 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5909 void __sched sleep_on(wait_queue_head_t *q)
5911 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5913 EXPORT_SYMBOL(sleep_on);
5915 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5917 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5919 EXPORT_SYMBOL(sleep_on_timeout);
5921 #ifdef CONFIG_RT_MUTEXES
5924 * rt_mutex_setprio - set the current priority of a task
5925 * @p: task
5926 * @prio: prio value (kernel-internal form)
5928 * This function changes the 'effective' priority of a task. It does
5929 * not touch ->normal_prio like __setscheduler().
5931 * Used by the rt_mutex code to implement priority inheritance logic.
5933 void rt_mutex_setprio(struct task_struct *p, int prio)
5935 unsigned long flags;
5936 int oldprio, on_rq, running;
5937 struct rq *rq;
5938 const struct sched_class *prev_class = p->sched_class;
5940 BUG_ON(prio < 0 || prio > MAX_PRIO);
5942 rq = task_rq_lock(p, &flags);
5943 update_rq_clock(rq);
5945 oldprio = p->prio;
5946 on_rq = p->se.on_rq;
5947 running = task_current(rq, p);
5948 if (on_rq)
5949 dequeue_task(rq, p, 0);
5950 if (running)
5951 p->sched_class->put_prev_task(rq, p);
5953 if (rt_prio(prio))
5954 p->sched_class = &rt_sched_class;
5955 else
5956 p->sched_class = &fair_sched_class;
5958 p->prio = prio;
5960 if (running)
5961 p->sched_class->set_curr_task(rq);
5962 if (on_rq) {
5963 enqueue_task(rq, p, 0);
5965 check_class_changed(rq, p, prev_class, oldprio, running);
5967 task_rq_unlock(rq, &flags);
5970 #endif
5972 void set_user_nice(struct task_struct *p, long nice)
5974 int old_prio, delta, on_rq;
5975 unsigned long flags;
5976 struct rq *rq;
5978 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5979 return;
5981 * We have to be careful, if called from sys_setpriority(),
5982 * the task might be in the middle of scheduling on another CPU.
5984 rq = task_rq_lock(p, &flags);
5985 update_rq_clock(rq);
5987 * The RT priorities are set via sched_setscheduler(), but we still
5988 * allow the 'normal' nice value to be set - but as expected
5989 * it wont have any effect on scheduling until the task is
5990 * SCHED_FIFO/SCHED_RR:
5992 if (task_has_rt_policy(p)) {
5993 p->static_prio = NICE_TO_PRIO(nice);
5994 goto out_unlock;
5996 on_rq = p->se.on_rq;
5997 if (on_rq)
5998 dequeue_task(rq, p, 0);
6000 p->static_prio = NICE_TO_PRIO(nice);
6001 set_load_weight(p);
6002 old_prio = p->prio;
6003 p->prio = effective_prio(p);
6004 delta = p->prio - old_prio;
6006 if (on_rq) {
6007 enqueue_task(rq, p, 0);
6009 * If the task increased its priority or is running and
6010 * lowered its priority, then reschedule its CPU:
6012 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6013 resched_task(rq->curr);
6015 out_unlock:
6016 task_rq_unlock(rq, &flags);
6018 EXPORT_SYMBOL(set_user_nice);
6021 * can_nice - check if a task can reduce its nice value
6022 * @p: task
6023 * @nice: nice value
6025 int can_nice(const struct task_struct *p, const int nice)
6027 /* convert nice value [19,-20] to rlimit style value [1,40] */
6028 int nice_rlim = 20 - nice;
6030 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6031 capable(CAP_SYS_NICE));
6034 #ifdef __ARCH_WANT_SYS_NICE
6037 * sys_nice - change the priority of the current process.
6038 * @increment: priority increment
6040 * sys_setpriority is a more generic, but much slower function that
6041 * does similar things.
6043 SYSCALL_DEFINE1(nice, int, increment)
6045 long nice, retval;
6048 * Setpriority might change our priority at the same moment.
6049 * We don't have to worry. Conceptually one call occurs first
6050 * and we have a single winner.
6052 if (increment < -40)
6053 increment = -40;
6054 if (increment > 40)
6055 increment = 40;
6057 nice = TASK_NICE(current) + increment;
6058 if (nice < -20)
6059 nice = -20;
6060 if (nice > 19)
6061 nice = 19;
6063 if (increment < 0 && !can_nice(current, nice))
6064 return -EPERM;
6066 retval = security_task_setnice(current, nice);
6067 if (retval)
6068 return retval;
6070 set_user_nice(current, nice);
6071 return 0;
6074 #endif
6077 * task_prio - return the priority value of a given task.
6078 * @p: the task in question.
6080 * This is the priority value as seen by users in /proc.
6081 * RT tasks are offset by -200. Normal tasks are centered
6082 * around 0, value goes from -16 to +15.
6084 int task_prio(const struct task_struct *p)
6086 return p->prio - MAX_RT_PRIO;
6090 * task_nice - return the nice value of a given task.
6091 * @p: the task in question.
6093 int task_nice(const struct task_struct *p)
6095 return TASK_NICE(p);
6097 EXPORT_SYMBOL(task_nice);
6100 * idle_cpu - is a given cpu idle currently?
6101 * @cpu: the processor in question.
6103 int idle_cpu(int cpu)
6105 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6109 * idle_task - return the idle task for a given cpu.
6110 * @cpu: the processor in question.
6112 struct task_struct *idle_task(int cpu)
6114 return cpu_rq(cpu)->idle;
6118 * find_process_by_pid - find a process with a matching PID value.
6119 * @pid: the pid in question.
6121 static struct task_struct *find_process_by_pid(pid_t pid)
6123 return pid ? find_task_by_vpid(pid) : current;
6126 /* Actually do priority change: must hold rq lock. */
6127 static void
6128 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6130 BUG_ON(p->se.on_rq);
6132 p->policy = policy;
6133 switch (p->policy) {
6134 case SCHED_NORMAL:
6135 case SCHED_BATCH:
6136 case SCHED_IDLE:
6137 p->sched_class = &fair_sched_class;
6138 break;
6139 case SCHED_FIFO:
6140 case SCHED_RR:
6141 p->sched_class = &rt_sched_class;
6142 break;
6145 p->rt_priority = prio;
6146 p->normal_prio = normal_prio(p);
6147 /* we are holding p->pi_lock already */
6148 p->prio = rt_mutex_getprio(p);
6149 set_load_weight(p);
6153 * check the target process has a UID that matches the current process's
6155 static bool check_same_owner(struct task_struct *p)
6157 const struct cred *cred = current_cred(), *pcred;
6158 bool match;
6160 rcu_read_lock();
6161 pcred = __task_cred(p);
6162 match = (cred->euid == pcred->euid ||
6163 cred->euid == pcred->uid);
6164 rcu_read_unlock();
6165 return match;
6168 static int __sched_setscheduler(struct task_struct *p, int policy,
6169 struct sched_param *param, bool user)
6171 int retval, oldprio, oldpolicy = -1, on_rq, running;
6172 unsigned long flags;
6173 const struct sched_class *prev_class = p->sched_class;
6174 struct rq *rq;
6175 int reset_on_fork;
6177 /* may grab non-irq protected spin_locks */
6178 BUG_ON(in_interrupt());
6179 recheck:
6180 /* double check policy once rq lock held */
6181 if (policy < 0) {
6182 reset_on_fork = p->sched_reset_on_fork;
6183 policy = oldpolicy = p->policy;
6184 } else {
6185 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6186 policy &= ~SCHED_RESET_ON_FORK;
6188 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6189 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6190 policy != SCHED_IDLE)
6191 return -EINVAL;
6195 * Valid priorities for SCHED_FIFO and SCHED_RR are
6196 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6197 * SCHED_BATCH and SCHED_IDLE is 0.
6199 if (param->sched_priority < 0 ||
6200 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6201 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6202 return -EINVAL;
6203 if (rt_policy(policy) != (param->sched_priority != 0))
6204 return -EINVAL;
6207 * Allow unprivileged RT tasks to decrease priority:
6209 if (user && !capable(CAP_SYS_NICE)) {
6210 if (rt_policy(policy)) {
6211 unsigned long rlim_rtprio;
6213 if (!lock_task_sighand(p, &flags))
6214 return -ESRCH;
6215 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6216 unlock_task_sighand(p, &flags);
6218 /* can't set/change the rt policy */
6219 if (policy != p->policy && !rlim_rtprio)
6220 return -EPERM;
6222 /* can't increase priority */
6223 if (param->sched_priority > p->rt_priority &&
6224 param->sched_priority > rlim_rtprio)
6225 return -EPERM;
6228 * Like positive nice levels, dont allow tasks to
6229 * move out of SCHED_IDLE either:
6231 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6232 return -EPERM;
6234 /* can't change other user's priorities */
6235 if (!check_same_owner(p))
6236 return -EPERM;
6238 /* Normal users shall not reset the sched_reset_on_fork flag */
6239 if (p->sched_reset_on_fork && !reset_on_fork)
6240 return -EPERM;
6243 if (user) {
6244 #ifdef CONFIG_RT_GROUP_SCHED
6246 * Do not allow realtime tasks into groups that have no runtime
6247 * assigned.
6249 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6250 task_group(p)->rt_bandwidth.rt_runtime == 0)
6251 return -EPERM;
6252 #endif
6254 retval = security_task_setscheduler(p, policy, param);
6255 if (retval)
6256 return retval;
6260 * make sure no PI-waiters arrive (or leave) while we are
6261 * changing the priority of the task:
6263 spin_lock_irqsave(&p->pi_lock, flags);
6265 * To be able to change p->policy safely, the apropriate
6266 * runqueue lock must be held.
6268 rq = __task_rq_lock(p);
6269 /* recheck policy now with rq lock held */
6270 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6271 policy = oldpolicy = -1;
6272 __task_rq_unlock(rq);
6273 spin_unlock_irqrestore(&p->pi_lock, flags);
6274 goto recheck;
6276 update_rq_clock(rq);
6277 on_rq = p->se.on_rq;
6278 running = task_current(rq, p);
6279 if (on_rq)
6280 deactivate_task(rq, p, 0);
6281 if (running)
6282 p->sched_class->put_prev_task(rq, p);
6284 p->sched_reset_on_fork = reset_on_fork;
6286 oldprio = p->prio;
6287 __setscheduler(rq, p, policy, param->sched_priority);
6289 if (running)
6290 p->sched_class->set_curr_task(rq);
6291 if (on_rq) {
6292 activate_task(rq, p, 0);
6294 check_class_changed(rq, p, prev_class, oldprio, running);
6296 __task_rq_unlock(rq);
6297 spin_unlock_irqrestore(&p->pi_lock, flags);
6299 rt_mutex_adjust_pi(p);
6301 return 0;
6305 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6306 * @p: the task in question.
6307 * @policy: new policy.
6308 * @param: structure containing the new RT priority.
6310 * NOTE that the task may be already dead.
6312 int sched_setscheduler(struct task_struct *p, int policy,
6313 struct sched_param *param)
6315 return __sched_setscheduler(p, policy, param, true);
6317 EXPORT_SYMBOL_GPL(sched_setscheduler);
6320 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6321 * @p: the task in question.
6322 * @policy: new policy.
6323 * @param: structure containing the new RT priority.
6325 * Just like sched_setscheduler, only don't bother checking if the
6326 * current context has permission. For example, this is needed in
6327 * stop_machine(): we create temporary high priority worker threads,
6328 * but our caller might not have that capability.
6330 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6331 struct sched_param *param)
6333 return __sched_setscheduler(p, policy, param, false);
6336 static int
6337 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6339 struct sched_param lparam;
6340 struct task_struct *p;
6341 int retval;
6343 if (!param || pid < 0)
6344 return -EINVAL;
6345 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6346 return -EFAULT;
6348 rcu_read_lock();
6349 retval = -ESRCH;
6350 p = find_process_by_pid(pid);
6351 if (p != NULL)
6352 retval = sched_setscheduler(p, policy, &lparam);
6353 rcu_read_unlock();
6355 return retval;
6359 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6360 * @pid: the pid in question.
6361 * @policy: new policy.
6362 * @param: structure containing the new RT priority.
6364 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6365 struct sched_param __user *, param)
6367 /* negative values for policy are not valid */
6368 if (policy < 0)
6369 return -EINVAL;
6371 return do_sched_setscheduler(pid, policy, param);
6375 * sys_sched_setparam - set/change the RT priority of a thread
6376 * @pid: the pid in question.
6377 * @param: structure containing the new RT priority.
6379 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6381 return do_sched_setscheduler(pid, -1, param);
6385 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6386 * @pid: the pid in question.
6388 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6390 struct task_struct *p;
6391 int retval;
6393 if (pid < 0)
6394 return -EINVAL;
6396 retval = -ESRCH;
6397 read_lock(&tasklist_lock);
6398 p = find_process_by_pid(pid);
6399 if (p) {
6400 retval = security_task_getscheduler(p);
6401 if (!retval)
6402 retval = p->policy
6403 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6405 read_unlock(&tasklist_lock);
6406 return retval;
6410 * sys_sched_getparam - get the RT priority of a thread
6411 * @pid: the pid in question.
6412 * @param: structure containing the RT priority.
6414 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6416 struct sched_param lp;
6417 struct task_struct *p;
6418 int retval;
6420 if (!param || pid < 0)
6421 return -EINVAL;
6423 read_lock(&tasklist_lock);
6424 p = find_process_by_pid(pid);
6425 retval = -ESRCH;
6426 if (!p)
6427 goto out_unlock;
6429 retval = security_task_getscheduler(p);
6430 if (retval)
6431 goto out_unlock;
6433 lp.sched_priority = p->rt_priority;
6434 read_unlock(&tasklist_lock);
6437 * This one might sleep, we cannot do it with a spinlock held ...
6439 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6441 return retval;
6443 out_unlock:
6444 read_unlock(&tasklist_lock);
6445 return retval;
6448 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6450 cpumask_var_t cpus_allowed, new_mask;
6451 struct task_struct *p;
6452 int retval;
6454 get_online_cpus();
6455 read_lock(&tasklist_lock);
6457 p = find_process_by_pid(pid);
6458 if (!p) {
6459 read_unlock(&tasklist_lock);
6460 put_online_cpus();
6461 return -ESRCH;
6465 * It is not safe to call set_cpus_allowed with the
6466 * tasklist_lock held. We will bump the task_struct's
6467 * usage count and then drop tasklist_lock.
6469 get_task_struct(p);
6470 read_unlock(&tasklist_lock);
6472 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6473 retval = -ENOMEM;
6474 goto out_put_task;
6476 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6477 retval = -ENOMEM;
6478 goto out_free_cpus_allowed;
6480 retval = -EPERM;
6481 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6482 goto out_unlock;
6484 retval = security_task_setscheduler(p, 0, NULL);
6485 if (retval)
6486 goto out_unlock;
6488 cpuset_cpus_allowed(p, cpus_allowed);
6489 cpumask_and(new_mask, in_mask, cpus_allowed);
6490 again:
6491 retval = set_cpus_allowed_ptr(p, new_mask);
6493 if (!retval) {
6494 cpuset_cpus_allowed(p, cpus_allowed);
6495 if (!cpumask_subset(new_mask, cpus_allowed)) {
6497 * We must have raced with a concurrent cpuset
6498 * update. Just reset the cpus_allowed to the
6499 * cpuset's cpus_allowed
6501 cpumask_copy(new_mask, cpus_allowed);
6502 goto again;
6505 out_unlock:
6506 free_cpumask_var(new_mask);
6507 out_free_cpus_allowed:
6508 free_cpumask_var(cpus_allowed);
6509 out_put_task:
6510 put_task_struct(p);
6511 put_online_cpus();
6512 return retval;
6515 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6516 struct cpumask *new_mask)
6518 if (len < cpumask_size())
6519 cpumask_clear(new_mask);
6520 else if (len > cpumask_size())
6521 len = cpumask_size();
6523 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6527 * sys_sched_setaffinity - set the cpu affinity of a process
6528 * @pid: pid of the process
6529 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6530 * @user_mask_ptr: user-space pointer to the new cpu mask
6532 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6533 unsigned long __user *, user_mask_ptr)
6535 cpumask_var_t new_mask;
6536 int retval;
6538 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6539 return -ENOMEM;
6541 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6542 if (retval == 0)
6543 retval = sched_setaffinity(pid, new_mask);
6544 free_cpumask_var(new_mask);
6545 return retval;
6548 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6550 struct task_struct *p;
6551 int retval;
6553 get_online_cpus();
6554 read_lock(&tasklist_lock);
6556 retval = -ESRCH;
6557 p = find_process_by_pid(pid);
6558 if (!p)
6559 goto out_unlock;
6561 retval = security_task_getscheduler(p);
6562 if (retval)
6563 goto out_unlock;
6565 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6567 out_unlock:
6568 read_unlock(&tasklist_lock);
6569 put_online_cpus();
6571 return retval;
6575 * sys_sched_getaffinity - get the cpu affinity of a process
6576 * @pid: pid of the process
6577 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6578 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6580 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6581 unsigned long __user *, user_mask_ptr)
6583 int ret;
6584 cpumask_var_t mask;
6586 if (len < cpumask_size())
6587 return -EINVAL;
6589 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6590 return -ENOMEM;
6592 ret = sched_getaffinity(pid, mask);
6593 if (ret == 0) {
6594 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6595 ret = -EFAULT;
6596 else
6597 ret = cpumask_size();
6599 free_cpumask_var(mask);
6601 return ret;
6605 * sys_sched_yield - yield the current processor to other threads.
6607 * This function yields the current CPU to other tasks. If there are no
6608 * other threads running on this CPU then this function will return.
6610 SYSCALL_DEFINE0(sched_yield)
6612 struct rq *rq = this_rq_lock();
6614 schedstat_inc(rq, yld_count);
6615 current->sched_class->yield_task(rq);
6618 * Since we are going to call schedule() anyway, there's
6619 * no need to preempt or enable interrupts:
6621 __release(rq->lock);
6622 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6623 _raw_spin_unlock(&rq->lock);
6624 preempt_enable_no_resched();
6626 schedule();
6628 return 0;
6631 static inline int should_resched(void)
6633 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6636 static void __cond_resched(void)
6638 add_preempt_count(PREEMPT_ACTIVE);
6639 schedule();
6640 sub_preempt_count(PREEMPT_ACTIVE);
6643 int __sched _cond_resched(void)
6645 if (should_resched()) {
6646 __cond_resched();
6647 return 1;
6649 return 0;
6651 EXPORT_SYMBOL(_cond_resched);
6654 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6655 * call schedule, and on return reacquire the lock.
6657 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6658 * operations here to prevent schedule() from being called twice (once via
6659 * spin_unlock(), once by hand).
6661 int __cond_resched_lock(spinlock_t *lock)
6663 int resched = should_resched();
6664 int ret = 0;
6666 lockdep_assert_held(lock);
6668 if (spin_needbreak(lock) || resched) {
6669 spin_unlock(lock);
6670 if (resched)
6671 __cond_resched();
6672 else
6673 cpu_relax();
6674 ret = 1;
6675 spin_lock(lock);
6677 return ret;
6679 EXPORT_SYMBOL(__cond_resched_lock);
6681 int __sched __cond_resched_softirq(void)
6683 BUG_ON(!in_softirq());
6685 if (should_resched()) {
6686 local_bh_enable();
6687 __cond_resched();
6688 local_bh_disable();
6689 return 1;
6691 return 0;
6693 EXPORT_SYMBOL(__cond_resched_softirq);
6696 * yield - yield the current processor to other threads.
6698 * This is a shortcut for kernel-space yielding - it marks the
6699 * thread runnable and calls sys_sched_yield().
6701 void __sched yield(void)
6703 set_current_state(TASK_RUNNING);
6704 sys_sched_yield();
6706 EXPORT_SYMBOL(yield);
6709 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6710 * that process accounting knows that this is a task in IO wait state.
6712 * But don't do that if it is a deliberate, throttling IO wait (this task
6713 * has set its backing_dev_info: the queue against which it should throttle)
6715 void __sched io_schedule(void)
6717 struct rq *rq = raw_rq();
6719 delayacct_blkio_start();
6720 atomic_inc(&rq->nr_iowait);
6721 current->in_iowait = 1;
6722 schedule();
6723 current->in_iowait = 0;
6724 atomic_dec(&rq->nr_iowait);
6725 delayacct_blkio_end();
6727 EXPORT_SYMBOL(io_schedule);
6729 long __sched io_schedule_timeout(long timeout)
6731 struct rq *rq = raw_rq();
6732 long ret;
6734 delayacct_blkio_start();
6735 atomic_inc(&rq->nr_iowait);
6736 current->in_iowait = 1;
6737 ret = schedule_timeout(timeout);
6738 current->in_iowait = 0;
6739 atomic_dec(&rq->nr_iowait);
6740 delayacct_blkio_end();
6741 return ret;
6745 * sys_sched_get_priority_max - return maximum RT priority.
6746 * @policy: scheduling class.
6748 * this syscall returns the maximum rt_priority that can be used
6749 * by a given scheduling class.
6751 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6753 int ret = -EINVAL;
6755 switch (policy) {
6756 case SCHED_FIFO:
6757 case SCHED_RR:
6758 ret = MAX_USER_RT_PRIO-1;
6759 break;
6760 case SCHED_NORMAL:
6761 case SCHED_BATCH:
6762 case SCHED_IDLE:
6763 ret = 0;
6764 break;
6766 return ret;
6770 * sys_sched_get_priority_min - return minimum RT priority.
6771 * @policy: scheduling class.
6773 * this syscall returns the minimum rt_priority that can be used
6774 * by a given scheduling class.
6776 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6778 int ret = -EINVAL;
6780 switch (policy) {
6781 case SCHED_FIFO:
6782 case SCHED_RR:
6783 ret = 1;
6784 break;
6785 case SCHED_NORMAL:
6786 case SCHED_BATCH:
6787 case SCHED_IDLE:
6788 ret = 0;
6790 return ret;
6794 * sys_sched_rr_get_interval - return the default timeslice of a process.
6795 * @pid: pid of the process.
6796 * @interval: userspace pointer to the timeslice value.
6798 * this syscall writes the default timeslice value of a given process
6799 * into the user-space timespec buffer. A value of '0' means infinity.
6801 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6802 struct timespec __user *, interval)
6804 struct task_struct *p;
6805 unsigned int time_slice;
6806 int retval;
6807 struct timespec t;
6809 if (pid < 0)
6810 return -EINVAL;
6812 retval = -ESRCH;
6813 read_lock(&tasklist_lock);
6814 p = find_process_by_pid(pid);
6815 if (!p)
6816 goto out_unlock;
6818 retval = security_task_getscheduler(p);
6819 if (retval)
6820 goto out_unlock;
6823 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6824 * tasks that are on an otherwise idle runqueue:
6826 time_slice = 0;
6827 if (p->policy == SCHED_RR) {
6828 time_slice = DEF_TIMESLICE;
6829 } else if (p->policy != SCHED_FIFO) {
6830 struct sched_entity *se = &p->se;
6831 unsigned long flags;
6832 struct rq *rq;
6834 rq = task_rq_lock(p, &flags);
6835 if (rq->cfs.load.weight)
6836 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6837 task_rq_unlock(rq, &flags);
6839 read_unlock(&tasklist_lock);
6840 jiffies_to_timespec(time_slice, &t);
6841 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6842 return retval;
6844 out_unlock:
6845 read_unlock(&tasklist_lock);
6846 return retval;
6849 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6851 void sched_show_task(struct task_struct *p)
6853 unsigned long free = 0;
6854 unsigned state;
6856 state = p->state ? __ffs(p->state) + 1 : 0;
6857 printk(KERN_INFO "%-13.13s %c", p->comm,
6858 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6859 #if BITS_PER_LONG == 32
6860 if (state == TASK_RUNNING)
6861 printk(KERN_CONT " running ");
6862 else
6863 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6864 #else
6865 if (state == TASK_RUNNING)
6866 printk(KERN_CONT " running task ");
6867 else
6868 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6869 #endif
6870 #ifdef CONFIG_DEBUG_STACK_USAGE
6871 free = stack_not_used(p);
6872 #endif
6873 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6874 task_pid_nr(p), task_pid_nr(p->real_parent),
6875 (unsigned long)task_thread_info(p)->flags);
6877 show_stack(p, NULL);
6880 void show_state_filter(unsigned long state_filter)
6882 struct task_struct *g, *p;
6884 #if BITS_PER_LONG == 32
6885 printk(KERN_INFO
6886 " task PC stack pid father\n");
6887 #else
6888 printk(KERN_INFO
6889 " task PC stack pid father\n");
6890 #endif
6891 read_lock(&tasklist_lock);
6892 do_each_thread(g, p) {
6894 * reset the NMI-timeout, listing all files on a slow
6895 * console might take alot of time:
6897 touch_nmi_watchdog();
6898 if (!state_filter || (p->state & state_filter))
6899 sched_show_task(p);
6900 } while_each_thread(g, p);
6902 touch_all_softlockup_watchdogs();
6904 #ifdef CONFIG_SCHED_DEBUG
6905 sysrq_sched_debug_show();
6906 #endif
6907 read_unlock(&tasklist_lock);
6909 * Only show locks if all tasks are dumped:
6911 if (state_filter == -1)
6912 debug_show_all_locks();
6915 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6917 idle->sched_class = &idle_sched_class;
6921 * init_idle - set up an idle thread for a given CPU
6922 * @idle: task in question
6923 * @cpu: cpu the idle task belongs to
6925 * NOTE: this function does not set the idle thread's NEED_RESCHED
6926 * flag, to make booting more robust.
6928 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6930 struct rq *rq = cpu_rq(cpu);
6931 unsigned long flags;
6933 spin_lock_irqsave(&rq->lock, flags);
6935 __sched_fork(idle);
6936 idle->se.exec_start = sched_clock();
6938 idle->prio = idle->normal_prio = MAX_PRIO;
6939 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6940 __set_task_cpu(idle, cpu);
6942 rq->curr = rq->idle = idle;
6943 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6944 idle->oncpu = 1;
6945 #endif
6946 spin_unlock_irqrestore(&rq->lock, flags);
6948 /* Set the preempt count _outside_ the spinlocks! */
6949 #if defined(CONFIG_PREEMPT)
6950 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6951 #else
6952 task_thread_info(idle)->preempt_count = 0;
6953 #endif
6955 * The idle tasks have their own, simple scheduling class:
6957 idle->sched_class = &idle_sched_class;
6958 ftrace_graph_init_task(idle);
6962 * In a system that switches off the HZ timer nohz_cpu_mask
6963 * indicates which cpus entered this state. This is used
6964 * in the rcu update to wait only for active cpus. For system
6965 * which do not switch off the HZ timer nohz_cpu_mask should
6966 * always be CPU_BITS_NONE.
6968 cpumask_var_t nohz_cpu_mask;
6971 * Increase the granularity value when there are more CPUs,
6972 * because with more CPUs the 'effective latency' as visible
6973 * to users decreases. But the relationship is not linear,
6974 * so pick a second-best guess by going with the log2 of the
6975 * number of CPUs.
6977 * This idea comes from the SD scheduler of Con Kolivas:
6979 static inline void sched_init_granularity(void)
6981 unsigned int factor = 1 + ilog2(num_online_cpus());
6982 const unsigned long limit = 200000000;
6984 sysctl_sched_min_granularity *= factor;
6985 if (sysctl_sched_min_granularity > limit)
6986 sysctl_sched_min_granularity = limit;
6988 sysctl_sched_latency *= factor;
6989 if (sysctl_sched_latency > limit)
6990 sysctl_sched_latency = limit;
6992 sysctl_sched_wakeup_granularity *= factor;
6994 sysctl_sched_shares_ratelimit *= factor;
6997 #ifdef CONFIG_SMP
6999 * This is how migration works:
7001 * 1) we queue a struct migration_req structure in the source CPU's
7002 * runqueue and wake up that CPU's migration thread.
7003 * 2) we down() the locked semaphore => thread blocks.
7004 * 3) migration thread wakes up (implicitly it forces the migrated
7005 * thread off the CPU)
7006 * 4) it gets the migration request and checks whether the migrated
7007 * task is still in the wrong runqueue.
7008 * 5) if it's in the wrong runqueue then the migration thread removes
7009 * it and puts it into the right queue.
7010 * 6) migration thread up()s the semaphore.
7011 * 7) we wake up and the migration is done.
7015 * Change a given task's CPU affinity. Migrate the thread to a
7016 * proper CPU and schedule it away if the CPU it's executing on
7017 * is removed from the allowed bitmask.
7019 * NOTE: the caller must have a valid reference to the task, the
7020 * task must not exit() & deallocate itself prematurely. The
7021 * call is not atomic; no spinlocks may be held.
7023 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7025 struct migration_req req;
7026 unsigned long flags;
7027 struct rq *rq;
7028 int ret = 0;
7030 rq = task_rq_lock(p, &flags);
7031 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7032 ret = -EINVAL;
7033 goto out;
7036 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7037 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7038 ret = -EINVAL;
7039 goto out;
7042 if (p->sched_class->set_cpus_allowed)
7043 p->sched_class->set_cpus_allowed(p, new_mask);
7044 else {
7045 cpumask_copy(&p->cpus_allowed, new_mask);
7046 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7049 /* Can the task run on the task's current CPU? If so, we're done */
7050 if (cpumask_test_cpu(task_cpu(p), new_mask))
7051 goto out;
7053 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7054 /* Need help from migration thread: drop lock and wait. */
7055 struct task_struct *mt = rq->migration_thread;
7057 get_task_struct(mt);
7058 task_rq_unlock(rq, &flags);
7059 wake_up_process(rq->migration_thread);
7060 put_task_struct(mt);
7061 wait_for_completion(&req.done);
7062 tlb_migrate_finish(p->mm);
7063 return 0;
7065 out:
7066 task_rq_unlock(rq, &flags);
7068 return ret;
7070 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7073 * Move (not current) task off this cpu, onto dest cpu. We're doing
7074 * this because either it can't run here any more (set_cpus_allowed()
7075 * away from this CPU, or CPU going down), or because we're
7076 * attempting to rebalance this task on exec (sched_exec).
7078 * So we race with normal scheduler movements, but that's OK, as long
7079 * as the task is no longer on this CPU.
7081 * Returns non-zero if task was successfully migrated.
7083 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7085 struct rq *rq_dest, *rq_src;
7086 int ret = 0, on_rq;
7088 if (unlikely(!cpu_active(dest_cpu)))
7089 return ret;
7091 rq_src = cpu_rq(src_cpu);
7092 rq_dest = cpu_rq(dest_cpu);
7094 double_rq_lock(rq_src, rq_dest);
7095 /* Already moved. */
7096 if (task_cpu(p) != src_cpu)
7097 goto done;
7098 /* Affinity changed (again). */
7099 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7100 goto fail;
7102 on_rq = p->se.on_rq;
7103 if (on_rq)
7104 deactivate_task(rq_src, p, 0);
7106 set_task_cpu(p, dest_cpu);
7107 if (on_rq) {
7108 activate_task(rq_dest, p, 0);
7109 check_preempt_curr(rq_dest, p, 0);
7111 done:
7112 ret = 1;
7113 fail:
7114 double_rq_unlock(rq_src, rq_dest);
7115 return ret;
7118 #define RCU_MIGRATION_IDLE 0
7119 #define RCU_MIGRATION_NEED_QS 1
7120 #define RCU_MIGRATION_GOT_QS 2
7121 #define RCU_MIGRATION_MUST_SYNC 3
7124 * migration_thread - this is a highprio system thread that performs
7125 * thread migration by bumping thread off CPU then 'pushing' onto
7126 * another runqueue.
7128 static int migration_thread(void *data)
7130 int badcpu;
7131 int cpu = (long)data;
7132 struct rq *rq;
7134 rq = cpu_rq(cpu);
7135 BUG_ON(rq->migration_thread != current);
7137 set_current_state(TASK_INTERRUPTIBLE);
7138 while (!kthread_should_stop()) {
7139 struct migration_req *req;
7140 struct list_head *head;
7142 spin_lock_irq(&rq->lock);
7144 if (cpu_is_offline(cpu)) {
7145 spin_unlock_irq(&rq->lock);
7146 break;
7149 if (rq->active_balance) {
7150 active_load_balance(rq, cpu);
7151 rq->active_balance = 0;
7154 head = &rq->migration_queue;
7156 if (list_empty(head)) {
7157 spin_unlock_irq(&rq->lock);
7158 schedule();
7159 set_current_state(TASK_INTERRUPTIBLE);
7160 continue;
7162 req = list_entry(head->next, struct migration_req, list);
7163 list_del_init(head->next);
7165 if (req->task != NULL) {
7166 spin_unlock(&rq->lock);
7167 __migrate_task(req->task, cpu, req->dest_cpu);
7168 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7169 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7170 spin_unlock(&rq->lock);
7171 } else {
7172 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7173 spin_unlock(&rq->lock);
7174 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7176 local_irq_enable();
7178 complete(&req->done);
7180 __set_current_state(TASK_RUNNING);
7182 return 0;
7185 #ifdef CONFIG_HOTPLUG_CPU
7187 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7189 int ret;
7191 local_irq_disable();
7192 ret = __migrate_task(p, src_cpu, dest_cpu);
7193 local_irq_enable();
7194 return ret;
7198 * Figure out where task on dead CPU should go, use force if necessary.
7200 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7202 int dest_cpu;
7203 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7205 again:
7206 /* Look for allowed, online CPU in same node. */
7207 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7208 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7209 goto move;
7211 /* Any allowed, online CPU? */
7212 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7213 if (dest_cpu < nr_cpu_ids)
7214 goto move;
7216 /* No more Mr. Nice Guy. */
7217 if (dest_cpu >= nr_cpu_ids) {
7218 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7219 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7222 * Don't tell them about moving exiting tasks or
7223 * kernel threads (both mm NULL), since they never
7224 * leave kernel.
7226 if (p->mm && printk_ratelimit()) {
7227 printk(KERN_INFO "process %d (%s) no "
7228 "longer affine to cpu%d\n",
7229 task_pid_nr(p), p->comm, dead_cpu);
7233 move:
7234 /* It can have affinity changed while we were choosing. */
7235 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7236 goto again;
7240 * While a dead CPU has no uninterruptible tasks queued at this point,
7241 * it might still have a nonzero ->nr_uninterruptible counter, because
7242 * for performance reasons the counter is not stricly tracking tasks to
7243 * their home CPUs. So we just add the counter to another CPU's counter,
7244 * to keep the global sum constant after CPU-down:
7246 static void migrate_nr_uninterruptible(struct rq *rq_src)
7248 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7249 unsigned long flags;
7251 local_irq_save(flags);
7252 double_rq_lock(rq_src, rq_dest);
7253 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7254 rq_src->nr_uninterruptible = 0;
7255 double_rq_unlock(rq_src, rq_dest);
7256 local_irq_restore(flags);
7259 /* Run through task list and migrate tasks from the dead cpu. */
7260 static void migrate_live_tasks(int src_cpu)
7262 struct task_struct *p, *t;
7264 read_lock(&tasklist_lock);
7266 do_each_thread(t, p) {
7267 if (p == current)
7268 continue;
7270 if (task_cpu(p) == src_cpu)
7271 move_task_off_dead_cpu(src_cpu, p);
7272 } while_each_thread(t, p);
7274 read_unlock(&tasklist_lock);
7278 * Schedules idle task to be the next runnable task on current CPU.
7279 * It does so by boosting its priority to highest possible.
7280 * Used by CPU offline code.
7282 void sched_idle_next(void)
7284 int this_cpu = smp_processor_id();
7285 struct rq *rq = cpu_rq(this_cpu);
7286 struct task_struct *p = rq->idle;
7287 unsigned long flags;
7289 /* cpu has to be offline */
7290 BUG_ON(cpu_online(this_cpu));
7293 * Strictly not necessary since rest of the CPUs are stopped by now
7294 * and interrupts disabled on the current cpu.
7296 spin_lock_irqsave(&rq->lock, flags);
7298 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7300 update_rq_clock(rq);
7301 activate_task(rq, p, 0);
7303 spin_unlock_irqrestore(&rq->lock, flags);
7307 * Ensures that the idle task is using init_mm right before its cpu goes
7308 * offline.
7310 void idle_task_exit(void)
7312 struct mm_struct *mm = current->active_mm;
7314 BUG_ON(cpu_online(smp_processor_id()));
7316 if (mm != &init_mm)
7317 switch_mm(mm, &init_mm, current);
7318 mmdrop(mm);
7321 /* called under rq->lock with disabled interrupts */
7322 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7324 struct rq *rq = cpu_rq(dead_cpu);
7326 /* Must be exiting, otherwise would be on tasklist. */
7327 BUG_ON(!p->exit_state);
7329 /* Cannot have done final schedule yet: would have vanished. */
7330 BUG_ON(p->state == TASK_DEAD);
7332 get_task_struct(p);
7335 * Drop lock around migration; if someone else moves it,
7336 * that's OK. No task can be added to this CPU, so iteration is
7337 * fine.
7339 spin_unlock_irq(&rq->lock);
7340 move_task_off_dead_cpu(dead_cpu, p);
7341 spin_lock_irq(&rq->lock);
7343 put_task_struct(p);
7346 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7347 static void migrate_dead_tasks(unsigned int dead_cpu)
7349 struct rq *rq = cpu_rq(dead_cpu);
7350 struct task_struct *next;
7352 for ( ; ; ) {
7353 if (!rq->nr_running)
7354 break;
7355 update_rq_clock(rq);
7356 next = pick_next_task(rq);
7357 if (!next)
7358 break;
7359 next->sched_class->put_prev_task(rq, next);
7360 migrate_dead(dead_cpu, next);
7366 * remove the tasks which were accounted by rq from calc_load_tasks.
7368 static void calc_global_load_remove(struct rq *rq)
7370 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7371 rq->calc_load_active = 0;
7373 #endif /* CONFIG_HOTPLUG_CPU */
7375 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7377 static struct ctl_table sd_ctl_dir[] = {
7379 .procname = "sched_domain",
7380 .mode = 0555,
7382 {0, },
7385 static struct ctl_table sd_ctl_root[] = {
7387 .ctl_name = CTL_KERN,
7388 .procname = "kernel",
7389 .mode = 0555,
7390 .child = sd_ctl_dir,
7392 {0, },
7395 static struct ctl_table *sd_alloc_ctl_entry(int n)
7397 struct ctl_table *entry =
7398 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7400 return entry;
7403 static void sd_free_ctl_entry(struct ctl_table **tablep)
7405 struct ctl_table *entry;
7408 * In the intermediate directories, both the child directory and
7409 * procname are dynamically allocated and could fail but the mode
7410 * will always be set. In the lowest directory the names are
7411 * static strings and all have proc handlers.
7413 for (entry = *tablep; entry->mode; entry++) {
7414 if (entry->child)
7415 sd_free_ctl_entry(&entry->child);
7416 if (entry->proc_handler == NULL)
7417 kfree(entry->procname);
7420 kfree(*tablep);
7421 *tablep = NULL;
7424 static void
7425 set_table_entry(struct ctl_table *entry,
7426 const char *procname, void *data, int maxlen,
7427 mode_t mode, proc_handler *proc_handler)
7429 entry->procname = procname;
7430 entry->data = data;
7431 entry->maxlen = maxlen;
7432 entry->mode = mode;
7433 entry->proc_handler = proc_handler;
7436 static struct ctl_table *
7437 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7439 struct ctl_table *table = sd_alloc_ctl_entry(13);
7441 if (table == NULL)
7442 return NULL;
7444 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7445 sizeof(long), 0644, proc_doulongvec_minmax);
7446 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7447 sizeof(long), 0644, proc_doulongvec_minmax);
7448 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7449 sizeof(int), 0644, proc_dointvec_minmax);
7450 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7451 sizeof(int), 0644, proc_dointvec_minmax);
7452 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7453 sizeof(int), 0644, proc_dointvec_minmax);
7454 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7455 sizeof(int), 0644, proc_dointvec_minmax);
7456 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7457 sizeof(int), 0644, proc_dointvec_minmax);
7458 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7459 sizeof(int), 0644, proc_dointvec_minmax);
7460 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7461 sizeof(int), 0644, proc_dointvec_minmax);
7462 set_table_entry(&table[9], "cache_nice_tries",
7463 &sd->cache_nice_tries,
7464 sizeof(int), 0644, proc_dointvec_minmax);
7465 set_table_entry(&table[10], "flags", &sd->flags,
7466 sizeof(int), 0644, proc_dointvec_minmax);
7467 set_table_entry(&table[11], "name", sd->name,
7468 CORENAME_MAX_SIZE, 0444, proc_dostring);
7469 /* &table[12] is terminator */
7471 return table;
7474 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7476 struct ctl_table *entry, *table;
7477 struct sched_domain *sd;
7478 int domain_num = 0, i;
7479 char buf[32];
7481 for_each_domain(cpu, sd)
7482 domain_num++;
7483 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7484 if (table == NULL)
7485 return NULL;
7487 i = 0;
7488 for_each_domain(cpu, sd) {
7489 snprintf(buf, 32, "domain%d", i);
7490 entry->procname = kstrdup(buf, GFP_KERNEL);
7491 entry->mode = 0555;
7492 entry->child = sd_alloc_ctl_domain_table(sd);
7493 entry++;
7494 i++;
7496 return table;
7499 static struct ctl_table_header *sd_sysctl_header;
7500 static void register_sched_domain_sysctl(void)
7502 int i, cpu_num = num_online_cpus();
7503 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7504 char buf[32];
7506 WARN_ON(sd_ctl_dir[0].child);
7507 sd_ctl_dir[0].child = entry;
7509 if (entry == NULL)
7510 return;
7512 for_each_online_cpu(i) {
7513 snprintf(buf, 32, "cpu%d", i);
7514 entry->procname = kstrdup(buf, GFP_KERNEL);
7515 entry->mode = 0555;
7516 entry->child = sd_alloc_ctl_cpu_table(i);
7517 entry++;
7520 WARN_ON(sd_sysctl_header);
7521 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7524 /* may be called multiple times per register */
7525 static void unregister_sched_domain_sysctl(void)
7527 if (sd_sysctl_header)
7528 unregister_sysctl_table(sd_sysctl_header);
7529 sd_sysctl_header = NULL;
7530 if (sd_ctl_dir[0].child)
7531 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7533 #else
7534 static void register_sched_domain_sysctl(void)
7537 static void unregister_sched_domain_sysctl(void)
7540 #endif
7542 static void set_rq_online(struct rq *rq)
7544 if (!rq->online) {
7545 const struct sched_class *class;
7547 cpumask_set_cpu(rq->cpu, rq->rd->online);
7548 rq->online = 1;
7550 for_each_class(class) {
7551 if (class->rq_online)
7552 class->rq_online(rq);
7557 static void set_rq_offline(struct rq *rq)
7559 if (rq->online) {
7560 const struct sched_class *class;
7562 for_each_class(class) {
7563 if (class->rq_offline)
7564 class->rq_offline(rq);
7567 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7568 rq->online = 0;
7573 * migration_call - callback that gets triggered when a CPU is added.
7574 * Here we can start up the necessary migration thread for the new CPU.
7576 static int __cpuinit
7577 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7579 struct task_struct *p;
7580 int cpu = (long)hcpu;
7581 unsigned long flags;
7582 struct rq *rq;
7584 switch (action) {
7586 case CPU_UP_PREPARE:
7587 case CPU_UP_PREPARE_FROZEN:
7588 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7589 if (IS_ERR(p))
7590 return NOTIFY_BAD;
7591 kthread_bind(p, cpu);
7592 /* Must be high prio: stop_machine expects to yield to it. */
7593 rq = task_rq_lock(p, &flags);
7594 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7595 task_rq_unlock(rq, &flags);
7596 get_task_struct(p);
7597 cpu_rq(cpu)->migration_thread = p;
7598 rq->calc_load_update = calc_load_update;
7599 break;
7601 case CPU_ONLINE:
7602 case CPU_ONLINE_FROZEN:
7603 /* Strictly unnecessary, as first user will wake it. */
7604 wake_up_process(cpu_rq(cpu)->migration_thread);
7606 /* Update our root-domain */
7607 rq = cpu_rq(cpu);
7608 spin_lock_irqsave(&rq->lock, flags);
7609 if (rq->rd) {
7610 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7612 set_rq_online(rq);
7614 spin_unlock_irqrestore(&rq->lock, flags);
7615 break;
7617 #ifdef CONFIG_HOTPLUG_CPU
7618 case CPU_UP_CANCELED:
7619 case CPU_UP_CANCELED_FROZEN:
7620 if (!cpu_rq(cpu)->migration_thread)
7621 break;
7622 /* Unbind it from offline cpu so it can run. Fall thru. */
7623 kthread_bind(cpu_rq(cpu)->migration_thread,
7624 cpumask_any(cpu_online_mask));
7625 kthread_stop(cpu_rq(cpu)->migration_thread);
7626 put_task_struct(cpu_rq(cpu)->migration_thread);
7627 cpu_rq(cpu)->migration_thread = NULL;
7628 break;
7630 case CPU_DEAD:
7631 case CPU_DEAD_FROZEN:
7632 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7633 migrate_live_tasks(cpu);
7634 rq = cpu_rq(cpu);
7635 kthread_stop(rq->migration_thread);
7636 put_task_struct(rq->migration_thread);
7637 rq->migration_thread = NULL;
7638 /* Idle task back to normal (off runqueue, low prio) */
7639 spin_lock_irq(&rq->lock);
7640 update_rq_clock(rq);
7641 deactivate_task(rq, rq->idle, 0);
7642 rq->idle->static_prio = MAX_PRIO;
7643 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7644 rq->idle->sched_class = &idle_sched_class;
7645 migrate_dead_tasks(cpu);
7646 spin_unlock_irq(&rq->lock);
7647 cpuset_unlock();
7648 migrate_nr_uninterruptible(rq);
7649 BUG_ON(rq->nr_running != 0);
7650 calc_global_load_remove(rq);
7652 * No need to migrate the tasks: it was best-effort if
7653 * they didn't take sched_hotcpu_mutex. Just wake up
7654 * the requestors.
7656 spin_lock_irq(&rq->lock);
7657 while (!list_empty(&rq->migration_queue)) {
7658 struct migration_req *req;
7660 req = list_entry(rq->migration_queue.next,
7661 struct migration_req, list);
7662 list_del_init(&req->list);
7663 spin_unlock_irq(&rq->lock);
7664 complete(&req->done);
7665 spin_lock_irq(&rq->lock);
7667 spin_unlock_irq(&rq->lock);
7668 break;
7670 case CPU_DYING:
7671 case CPU_DYING_FROZEN:
7672 /* Update our root-domain */
7673 rq = cpu_rq(cpu);
7674 spin_lock_irqsave(&rq->lock, flags);
7675 if (rq->rd) {
7676 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7677 set_rq_offline(rq);
7679 spin_unlock_irqrestore(&rq->lock, flags);
7680 break;
7681 #endif
7683 return NOTIFY_OK;
7687 * Register at high priority so that task migration (migrate_all_tasks)
7688 * happens before everything else. This has to be lower priority than
7689 * the notifier in the perf_counter subsystem, though.
7691 static struct notifier_block __cpuinitdata migration_notifier = {
7692 .notifier_call = migration_call,
7693 .priority = 10
7696 static int __init migration_init(void)
7698 void *cpu = (void *)(long)smp_processor_id();
7699 int err;
7701 /* Start one for the boot CPU: */
7702 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7703 BUG_ON(err == NOTIFY_BAD);
7704 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7705 register_cpu_notifier(&migration_notifier);
7707 return 0;
7709 early_initcall(migration_init);
7710 #endif
7712 #ifdef CONFIG_SMP
7714 #ifdef CONFIG_SCHED_DEBUG
7716 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7717 struct cpumask *groupmask)
7719 struct sched_group *group = sd->groups;
7720 char str[256];
7722 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7723 cpumask_clear(groupmask);
7725 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7727 if (!(sd->flags & SD_LOAD_BALANCE)) {
7728 printk("does not load-balance\n");
7729 if (sd->parent)
7730 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7731 " has parent");
7732 return -1;
7735 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7737 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7738 printk(KERN_ERR "ERROR: domain->span does not contain "
7739 "CPU%d\n", cpu);
7741 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7742 printk(KERN_ERR "ERROR: domain->groups does not contain"
7743 " CPU%d\n", cpu);
7746 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7747 do {
7748 if (!group) {
7749 printk("\n");
7750 printk(KERN_ERR "ERROR: group is NULL\n");
7751 break;
7754 if (!group->cpu_power) {
7755 printk(KERN_CONT "\n");
7756 printk(KERN_ERR "ERROR: domain->cpu_power not "
7757 "set\n");
7758 break;
7761 if (!cpumask_weight(sched_group_cpus(group))) {
7762 printk(KERN_CONT "\n");
7763 printk(KERN_ERR "ERROR: empty group\n");
7764 break;
7767 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7768 printk(KERN_CONT "\n");
7769 printk(KERN_ERR "ERROR: repeated CPUs\n");
7770 break;
7773 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7775 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7777 printk(KERN_CONT " %s", str);
7778 if (group->cpu_power != SCHED_LOAD_SCALE) {
7779 printk(KERN_CONT " (cpu_power = %d)",
7780 group->cpu_power);
7783 group = group->next;
7784 } while (group != sd->groups);
7785 printk(KERN_CONT "\n");
7787 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7788 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7790 if (sd->parent &&
7791 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7792 printk(KERN_ERR "ERROR: parent span is not a superset "
7793 "of domain->span\n");
7794 return 0;
7797 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7799 cpumask_var_t groupmask;
7800 int level = 0;
7802 if (!sd) {
7803 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7804 return;
7807 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7809 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7810 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7811 return;
7814 for (;;) {
7815 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7816 break;
7817 level++;
7818 sd = sd->parent;
7819 if (!sd)
7820 break;
7822 free_cpumask_var(groupmask);
7824 #else /* !CONFIG_SCHED_DEBUG */
7825 # define sched_domain_debug(sd, cpu) do { } while (0)
7826 #endif /* CONFIG_SCHED_DEBUG */
7828 static int sd_degenerate(struct sched_domain *sd)
7830 if (cpumask_weight(sched_domain_span(sd)) == 1)
7831 return 1;
7833 /* Following flags need at least 2 groups */
7834 if (sd->flags & (SD_LOAD_BALANCE |
7835 SD_BALANCE_NEWIDLE |
7836 SD_BALANCE_FORK |
7837 SD_BALANCE_EXEC |
7838 SD_SHARE_CPUPOWER |
7839 SD_SHARE_PKG_RESOURCES)) {
7840 if (sd->groups != sd->groups->next)
7841 return 0;
7844 /* Following flags don't use groups */
7845 if (sd->flags & (SD_WAKE_AFFINE))
7846 return 0;
7848 return 1;
7851 static int
7852 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7854 unsigned long cflags = sd->flags, pflags = parent->flags;
7856 if (sd_degenerate(parent))
7857 return 1;
7859 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7860 return 0;
7862 /* Flags needing groups don't count if only 1 group in parent */
7863 if (parent->groups == parent->groups->next) {
7864 pflags &= ~(SD_LOAD_BALANCE |
7865 SD_BALANCE_NEWIDLE |
7866 SD_BALANCE_FORK |
7867 SD_BALANCE_EXEC |
7868 SD_SHARE_CPUPOWER |
7869 SD_SHARE_PKG_RESOURCES);
7870 if (nr_node_ids == 1)
7871 pflags &= ~SD_SERIALIZE;
7873 if (~cflags & pflags)
7874 return 0;
7876 return 1;
7879 static void free_rootdomain(struct root_domain *rd)
7881 cpupri_cleanup(&rd->cpupri);
7883 free_cpumask_var(rd->rto_mask);
7884 free_cpumask_var(rd->online);
7885 free_cpumask_var(rd->span);
7886 kfree(rd);
7889 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7891 struct root_domain *old_rd = NULL;
7892 unsigned long flags;
7894 spin_lock_irqsave(&rq->lock, flags);
7896 if (rq->rd) {
7897 old_rd = rq->rd;
7899 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7900 set_rq_offline(rq);
7902 cpumask_clear_cpu(rq->cpu, old_rd->span);
7905 * If we dont want to free the old_rt yet then
7906 * set old_rd to NULL to skip the freeing later
7907 * in this function:
7909 if (!atomic_dec_and_test(&old_rd->refcount))
7910 old_rd = NULL;
7913 atomic_inc(&rd->refcount);
7914 rq->rd = rd;
7916 cpumask_set_cpu(rq->cpu, rd->span);
7917 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7918 set_rq_online(rq);
7920 spin_unlock_irqrestore(&rq->lock, flags);
7922 if (old_rd)
7923 free_rootdomain(old_rd);
7926 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7928 gfp_t gfp = GFP_KERNEL;
7930 memset(rd, 0, sizeof(*rd));
7932 if (bootmem)
7933 gfp = GFP_NOWAIT;
7935 if (!alloc_cpumask_var(&rd->span, gfp))
7936 goto out;
7937 if (!alloc_cpumask_var(&rd->online, gfp))
7938 goto free_span;
7939 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7940 goto free_online;
7942 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7943 goto free_rto_mask;
7944 return 0;
7946 free_rto_mask:
7947 free_cpumask_var(rd->rto_mask);
7948 free_online:
7949 free_cpumask_var(rd->online);
7950 free_span:
7951 free_cpumask_var(rd->span);
7952 out:
7953 return -ENOMEM;
7956 static void init_defrootdomain(void)
7958 init_rootdomain(&def_root_domain, true);
7960 atomic_set(&def_root_domain.refcount, 1);
7963 static struct root_domain *alloc_rootdomain(void)
7965 struct root_domain *rd;
7967 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7968 if (!rd)
7969 return NULL;
7971 if (init_rootdomain(rd, false) != 0) {
7972 kfree(rd);
7973 return NULL;
7976 return rd;
7980 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7981 * hold the hotplug lock.
7983 static void
7984 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7986 struct rq *rq = cpu_rq(cpu);
7987 struct sched_domain *tmp;
7989 /* Remove the sched domains which do not contribute to scheduling. */
7990 for (tmp = sd; tmp; ) {
7991 struct sched_domain *parent = tmp->parent;
7992 if (!parent)
7993 break;
7995 if (sd_parent_degenerate(tmp, parent)) {
7996 tmp->parent = parent->parent;
7997 if (parent->parent)
7998 parent->parent->child = tmp;
7999 } else
8000 tmp = tmp->parent;
8003 if (sd && sd_degenerate(sd)) {
8004 sd = sd->parent;
8005 if (sd)
8006 sd->child = NULL;
8009 sched_domain_debug(sd, cpu);
8011 rq_attach_root(rq, rd);
8012 rcu_assign_pointer(rq->sd, sd);
8015 /* cpus with isolated domains */
8016 static cpumask_var_t cpu_isolated_map;
8018 /* Setup the mask of cpus configured for isolated domains */
8019 static int __init isolated_cpu_setup(char *str)
8021 cpulist_parse(str, cpu_isolated_map);
8022 return 1;
8025 __setup("isolcpus=", isolated_cpu_setup);
8028 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8029 * to a function which identifies what group(along with sched group) a CPU
8030 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8031 * (due to the fact that we keep track of groups covered with a struct cpumask).
8033 * init_sched_build_groups will build a circular linked list of the groups
8034 * covered by the given span, and will set each group's ->cpumask correctly,
8035 * and ->cpu_power to 0.
8037 static void
8038 init_sched_build_groups(const struct cpumask *span,
8039 const struct cpumask *cpu_map,
8040 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8041 struct sched_group **sg,
8042 struct cpumask *tmpmask),
8043 struct cpumask *covered, struct cpumask *tmpmask)
8045 struct sched_group *first = NULL, *last = NULL;
8046 int i;
8048 cpumask_clear(covered);
8050 for_each_cpu(i, span) {
8051 struct sched_group *sg;
8052 int group = group_fn(i, cpu_map, &sg, tmpmask);
8053 int j;
8055 if (cpumask_test_cpu(i, covered))
8056 continue;
8058 cpumask_clear(sched_group_cpus(sg));
8059 sg->cpu_power = 0;
8061 for_each_cpu(j, span) {
8062 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8063 continue;
8065 cpumask_set_cpu(j, covered);
8066 cpumask_set_cpu(j, sched_group_cpus(sg));
8068 if (!first)
8069 first = sg;
8070 if (last)
8071 last->next = sg;
8072 last = sg;
8074 last->next = first;
8077 #define SD_NODES_PER_DOMAIN 16
8079 #ifdef CONFIG_NUMA
8082 * find_next_best_node - find the next node to include in a sched_domain
8083 * @node: node whose sched_domain we're building
8084 * @used_nodes: nodes already in the sched_domain
8086 * Find the next node to include in a given scheduling domain. Simply
8087 * finds the closest node not already in the @used_nodes map.
8089 * Should use nodemask_t.
8091 static int find_next_best_node(int node, nodemask_t *used_nodes)
8093 int i, n, val, min_val, best_node = 0;
8095 min_val = INT_MAX;
8097 for (i = 0; i < nr_node_ids; i++) {
8098 /* Start at @node */
8099 n = (node + i) % nr_node_ids;
8101 if (!nr_cpus_node(n))
8102 continue;
8104 /* Skip already used nodes */
8105 if (node_isset(n, *used_nodes))
8106 continue;
8108 /* Simple min distance search */
8109 val = node_distance(node, n);
8111 if (val < min_val) {
8112 min_val = val;
8113 best_node = n;
8117 node_set(best_node, *used_nodes);
8118 return best_node;
8122 * sched_domain_node_span - get a cpumask for a node's sched_domain
8123 * @node: node whose cpumask we're constructing
8124 * @span: resulting cpumask
8126 * Given a node, construct a good cpumask for its sched_domain to span. It
8127 * should be one that prevents unnecessary balancing, but also spreads tasks
8128 * out optimally.
8130 static void sched_domain_node_span(int node, struct cpumask *span)
8132 nodemask_t used_nodes;
8133 int i;
8135 cpumask_clear(span);
8136 nodes_clear(used_nodes);
8138 cpumask_or(span, span, cpumask_of_node(node));
8139 node_set(node, used_nodes);
8141 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8142 int next_node = find_next_best_node(node, &used_nodes);
8144 cpumask_or(span, span, cpumask_of_node(next_node));
8147 #endif /* CONFIG_NUMA */
8149 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8152 * The cpus mask in sched_group and sched_domain hangs off the end.
8154 * ( See the the comments in include/linux/sched.h:struct sched_group
8155 * and struct sched_domain. )
8157 struct static_sched_group {
8158 struct sched_group sg;
8159 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8162 struct static_sched_domain {
8163 struct sched_domain sd;
8164 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8167 struct s_data {
8168 #ifdef CONFIG_NUMA
8169 int sd_allnodes;
8170 cpumask_var_t domainspan;
8171 cpumask_var_t covered;
8172 cpumask_var_t notcovered;
8173 #endif
8174 cpumask_var_t nodemask;
8175 cpumask_var_t this_sibling_map;
8176 cpumask_var_t this_core_map;
8177 cpumask_var_t send_covered;
8178 cpumask_var_t tmpmask;
8179 struct sched_group **sched_group_nodes;
8180 struct root_domain *rd;
8183 enum s_alloc {
8184 sa_sched_groups = 0,
8185 sa_rootdomain,
8186 sa_tmpmask,
8187 sa_send_covered,
8188 sa_this_core_map,
8189 sa_this_sibling_map,
8190 sa_nodemask,
8191 sa_sched_group_nodes,
8192 #ifdef CONFIG_NUMA
8193 sa_notcovered,
8194 sa_covered,
8195 sa_domainspan,
8196 #endif
8197 sa_none,
8201 * SMT sched-domains:
8203 #ifdef CONFIG_SCHED_SMT
8204 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8205 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8207 static int
8208 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8209 struct sched_group **sg, struct cpumask *unused)
8211 if (sg)
8212 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8213 return cpu;
8215 #endif /* CONFIG_SCHED_SMT */
8218 * multi-core sched-domains:
8220 #ifdef CONFIG_SCHED_MC
8221 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8222 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8223 #endif /* CONFIG_SCHED_MC */
8225 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8226 static int
8227 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8228 struct sched_group **sg, struct cpumask *mask)
8230 int group;
8232 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8233 group = cpumask_first(mask);
8234 if (sg)
8235 *sg = &per_cpu(sched_group_core, group).sg;
8236 return group;
8238 #elif defined(CONFIG_SCHED_MC)
8239 static int
8240 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8241 struct sched_group **sg, struct cpumask *unused)
8243 if (sg)
8244 *sg = &per_cpu(sched_group_core, cpu).sg;
8245 return cpu;
8247 #endif
8249 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8250 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8252 static int
8253 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8254 struct sched_group **sg, struct cpumask *mask)
8256 int group;
8257 #ifdef CONFIG_SCHED_MC
8258 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8259 group = cpumask_first(mask);
8260 #elif defined(CONFIG_SCHED_SMT)
8261 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8262 group = cpumask_first(mask);
8263 #else
8264 group = cpu;
8265 #endif
8266 if (sg)
8267 *sg = &per_cpu(sched_group_phys, group).sg;
8268 return group;
8271 #ifdef CONFIG_NUMA
8273 * The init_sched_build_groups can't handle what we want to do with node
8274 * groups, so roll our own. Now each node has its own list of groups which
8275 * gets dynamically allocated.
8277 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8278 static struct sched_group ***sched_group_nodes_bycpu;
8280 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8281 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8283 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8284 struct sched_group **sg,
8285 struct cpumask *nodemask)
8287 int group;
8289 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8290 group = cpumask_first(nodemask);
8292 if (sg)
8293 *sg = &per_cpu(sched_group_allnodes, group).sg;
8294 return group;
8297 static void init_numa_sched_groups_power(struct sched_group *group_head)
8299 struct sched_group *sg = group_head;
8300 int j;
8302 if (!sg)
8303 return;
8304 do {
8305 for_each_cpu(j, sched_group_cpus(sg)) {
8306 struct sched_domain *sd;
8308 sd = &per_cpu(phys_domains, j).sd;
8309 if (j != group_first_cpu(sd->groups)) {
8311 * Only add "power" once for each
8312 * physical package.
8314 continue;
8317 sg->cpu_power += sd->groups->cpu_power;
8319 sg = sg->next;
8320 } while (sg != group_head);
8323 static int build_numa_sched_groups(struct s_data *d,
8324 const struct cpumask *cpu_map, int num)
8326 struct sched_domain *sd;
8327 struct sched_group *sg, *prev;
8328 int n, j;
8330 cpumask_clear(d->covered);
8331 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8332 if (cpumask_empty(d->nodemask)) {
8333 d->sched_group_nodes[num] = NULL;
8334 goto out;
8337 sched_domain_node_span(num, d->domainspan);
8338 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8340 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8341 GFP_KERNEL, num);
8342 if (!sg) {
8343 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8344 num);
8345 return -ENOMEM;
8347 d->sched_group_nodes[num] = sg;
8349 for_each_cpu(j, d->nodemask) {
8350 sd = &per_cpu(node_domains, j).sd;
8351 sd->groups = sg;
8354 sg->cpu_power = 0;
8355 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8356 sg->next = sg;
8357 cpumask_or(d->covered, d->covered, d->nodemask);
8359 prev = sg;
8360 for (j = 0; j < nr_node_ids; j++) {
8361 n = (num + j) % nr_node_ids;
8362 cpumask_complement(d->notcovered, d->covered);
8363 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8364 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8365 if (cpumask_empty(d->tmpmask))
8366 break;
8367 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8368 if (cpumask_empty(d->tmpmask))
8369 continue;
8370 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8371 GFP_KERNEL, num);
8372 if (!sg) {
8373 printk(KERN_WARNING
8374 "Can not alloc domain group for node %d\n", j);
8375 return -ENOMEM;
8377 sg->cpu_power = 0;
8378 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8379 sg->next = prev->next;
8380 cpumask_or(d->covered, d->covered, d->tmpmask);
8381 prev->next = sg;
8382 prev = sg;
8384 out:
8385 return 0;
8387 #endif /* CONFIG_NUMA */
8389 #ifdef CONFIG_NUMA
8390 /* Free memory allocated for various sched_group structures */
8391 static void free_sched_groups(const struct cpumask *cpu_map,
8392 struct cpumask *nodemask)
8394 int cpu, i;
8396 for_each_cpu(cpu, cpu_map) {
8397 struct sched_group **sched_group_nodes
8398 = sched_group_nodes_bycpu[cpu];
8400 if (!sched_group_nodes)
8401 continue;
8403 for (i = 0; i < nr_node_ids; i++) {
8404 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8406 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8407 if (cpumask_empty(nodemask))
8408 continue;
8410 if (sg == NULL)
8411 continue;
8412 sg = sg->next;
8413 next_sg:
8414 oldsg = sg;
8415 sg = sg->next;
8416 kfree(oldsg);
8417 if (oldsg != sched_group_nodes[i])
8418 goto next_sg;
8420 kfree(sched_group_nodes);
8421 sched_group_nodes_bycpu[cpu] = NULL;
8424 #else /* !CONFIG_NUMA */
8425 static void free_sched_groups(const struct cpumask *cpu_map,
8426 struct cpumask *nodemask)
8429 #endif /* CONFIG_NUMA */
8432 * Initialize sched groups cpu_power.
8434 * cpu_power indicates the capacity of sched group, which is used while
8435 * distributing the load between different sched groups in a sched domain.
8436 * Typically cpu_power for all the groups in a sched domain will be same unless
8437 * there are asymmetries in the topology. If there are asymmetries, group
8438 * having more cpu_power will pickup more load compared to the group having
8439 * less cpu_power.
8441 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8443 struct sched_domain *child;
8444 struct sched_group *group;
8445 long power;
8446 int weight;
8448 WARN_ON(!sd || !sd->groups);
8450 if (cpu != group_first_cpu(sd->groups))
8451 return;
8453 child = sd->child;
8455 sd->groups->cpu_power = 0;
8457 if (!child) {
8458 power = SCHED_LOAD_SCALE;
8459 weight = cpumask_weight(sched_domain_span(sd));
8461 * SMT siblings share the power of a single core.
8462 * Usually multiple threads get a better yield out of
8463 * that one core than a single thread would have,
8464 * reflect that in sd->smt_gain.
8466 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8467 power *= sd->smt_gain;
8468 power /= weight;
8469 power >>= SCHED_LOAD_SHIFT;
8471 sd->groups->cpu_power += power;
8472 return;
8476 * Add cpu_power of each child group to this groups cpu_power.
8478 group = child->groups;
8479 do {
8480 sd->groups->cpu_power += group->cpu_power;
8481 group = group->next;
8482 } while (group != child->groups);
8486 * Initializers for schedule domains
8487 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8490 #ifdef CONFIG_SCHED_DEBUG
8491 # define SD_INIT_NAME(sd, type) sd->name = #type
8492 #else
8493 # define SD_INIT_NAME(sd, type) do { } while (0)
8494 #endif
8496 #define SD_INIT(sd, type) sd_init_##type(sd)
8498 #define SD_INIT_FUNC(type) \
8499 static noinline void sd_init_##type(struct sched_domain *sd) \
8501 memset(sd, 0, sizeof(*sd)); \
8502 *sd = SD_##type##_INIT; \
8503 sd->level = SD_LV_##type; \
8504 SD_INIT_NAME(sd, type); \
8507 SD_INIT_FUNC(CPU)
8508 #ifdef CONFIG_NUMA
8509 SD_INIT_FUNC(ALLNODES)
8510 SD_INIT_FUNC(NODE)
8511 #endif
8512 #ifdef CONFIG_SCHED_SMT
8513 SD_INIT_FUNC(SIBLING)
8514 #endif
8515 #ifdef CONFIG_SCHED_MC
8516 SD_INIT_FUNC(MC)
8517 #endif
8519 static int default_relax_domain_level = -1;
8521 static int __init setup_relax_domain_level(char *str)
8523 unsigned long val;
8525 val = simple_strtoul(str, NULL, 0);
8526 if (val < SD_LV_MAX)
8527 default_relax_domain_level = val;
8529 return 1;
8531 __setup("relax_domain_level=", setup_relax_domain_level);
8533 static void set_domain_attribute(struct sched_domain *sd,
8534 struct sched_domain_attr *attr)
8536 int request;
8538 if (!attr || attr->relax_domain_level < 0) {
8539 if (default_relax_domain_level < 0)
8540 return;
8541 else
8542 request = default_relax_domain_level;
8543 } else
8544 request = attr->relax_domain_level;
8545 if (request < sd->level) {
8546 /* turn off idle balance on this domain */
8547 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8548 } else {
8549 /* turn on idle balance on this domain */
8550 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8554 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8555 const struct cpumask *cpu_map)
8557 switch (what) {
8558 case sa_sched_groups:
8559 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8560 d->sched_group_nodes = NULL;
8561 case sa_rootdomain:
8562 free_rootdomain(d->rd); /* fall through */
8563 case sa_tmpmask:
8564 free_cpumask_var(d->tmpmask); /* fall through */
8565 case sa_send_covered:
8566 free_cpumask_var(d->send_covered); /* fall through */
8567 case sa_this_core_map:
8568 free_cpumask_var(d->this_core_map); /* fall through */
8569 case sa_this_sibling_map:
8570 free_cpumask_var(d->this_sibling_map); /* fall through */
8571 case sa_nodemask:
8572 free_cpumask_var(d->nodemask); /* fall through */
8573 case sa_sched_group_nodes:
8574 #ifdef CONFIG_NUMA
8575 kfree(d->sched_group_nodes); /* fall through */
8576 case sa_notcovered:
8577 free_cpumask_var(d->notcovered); /* fall through */
8578 case sa_covered:
8579 free_cpumask_var(d->covered); /* fall through */
8580 case sa_domainspan:
8581 free_cpumask_var(d->domainspan); /* fall through */
8582 #endif
8583 case sa_none:
8584 break;
8588 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8589 const struct cpumask *cpu_map)
8591 #ifdef CONFIG_NUMA
8592 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8593 return sa_none;
8594 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8595 return sa_domainspan;
8596 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8597 return sa_covered;
8598 /* Allocate the per-node list of sched groups */
8599 d->sched_group_nodes = kcalloc(nr_node_ids,
8600 sizeof(struct sched_group *), GFP_KERNEL);
8601 if (!d->sched_group_nodes) {
8602 printk(KERN_WARNING "Can not alloc sched group node list\n");
8603 return sa_notcovered;
8605 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8606 #endif
8607 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8608 return sa_sched_group_nodes;
8609 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8610 return sa_nodemask;
8611 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8612 return sa_this_sibling_map;
8613 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8614 return sa_this_core_map;
8615 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8616 return sa_send_covered;
8617 d->rd = alloc_rootdomain();
8618 if (!d->rd) {
8619 printk(KERN_WARNING "Cannot alloc root domain\n");
8620 return sa_tmpmask;
8622 return sa_rootdomain;
8625 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8626 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8628 struct sched_domain *sd = NULL;
8629 #ifdef CONFIG_NUMA
8630 struct sched_domain *parent;
8632 d->sd_allnodes = 0;
8633 if (cpumask_weight(cpu_map) >
8634 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8635 sd = &per_cpu(allnodes_domains, i).sd;
8636 SD_INIT(sd, ALLNODES);
8637 set_domain_attribute(sd, attr);
8638 cpumask_copy(sched_domain_span(sd), cpu_map);
8639 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8640 d->sd_allnodes = 1;
8642 parent = sd;
8644 sd = &per_cpu(node_domains, i).sd;
8645 SD_INIT(sd, NODE);
8646 set_domain_attribute(sd, attr);
8647 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8648 sd->parent = parent;
8649 if (parent)
8650 parent->child = sd;
8651 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8652 #endif
8653 return sd;
8656 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8657 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8658 struct sched_domain *parent, int i)
8660 struct sched_domain *sd;
8661 sd = &per_cpu(phys_domains, i).sd;
8662 SD_INIT(sd, CPU);
8663 set_domain_attribute(sd, attr);
8664 cpumask_copy(sched_domain_span(sd), d->nodemask);
8665 sd->parent = parent;
8666 if (parent)
8667 parent->child = sd;
8668 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8669 return sd;
8672 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8673 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8674 struct sched_domain *parent, int i)
8676 struct sched_domain *sd = parent;
8677 #ifdef CONFIG_SCHED_MC
8678 sd = &per_cpu(core_domains, i).sd;
8679 SD_INIT(sd, MC);
8680 set_domain_attribute(sd, attr);
8681 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8682 sd->parent = parent;
8683 parent->child = sd;
8684 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8685 #endif
8686 return sd;
8689 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8690 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8691 struct sched_domain *parent, int i)
8693 struct sched_domain *sd = parent;
8694 #ifdef CONFIG_SCHED_SMT
8695 sd = &per_cpu(cpu_domains, i).sd;
8696 SD_INIT(sd, SIBLING);
8697 set_domain_attribute(sd, attr);
8698 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8699 sd->parent = parent;
8700 parent->child = sd;
8701 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8702 #endif
8703 return sd;
8706 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8707 const struct cpumask *cpu_map, int cpu)
8709 switch (l) {
8710 #ifdef CONFIG_SCHED_SMT
8711 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8712 cpumask_and(d->this_sibling_map, cpu_map,
8713 topology_thread_cpumask(cpu));
8714 if (cpu == cpumask_first(d->this_sibling_map))
8715 init_sched_build_groups(d->this_sibling_map, cpu_map,
8716 &cpu_to_cpu_group,
8717 d->send_covered, d->tmpmask);
8718 break;
8719 #endif
8720 #ifdef CONFIG_SCHED_MC
8721 case SD_LV_MC: /* set up multi-core groups */
8722 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8723 if (cpu == cpumask_first(d->this_core_map))
8724 init_sched_build_groups(d->this_core_map, cpu_map,
8725 &cpu_to_core_group,
8726 d->send_covered, d->tmpmask);
8727 break;
8728 #endif
8729 case SD_LV_CPU: /* set up physical groups */
8730 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8731 if (!cpumask_empty(d->nodemask))
8732 init_sched_build_groups(d->nodemask, cpu_map,
8733 &cpu_to_phys_group,
8734 d->send_covered, d->tmpmask);
8735 break;
8736 #ifdef CONFIG_NUMA
8737 case SD_LV_ALLNODES:
8738 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8739 d->send_covered, d->tmpmask);
8740 break;
8741 #endif
8742 default:
8743 break;
8748 * Build sched domains for a given set of cpus and attach the sched domains
8749 * to the individual cpus
8751 static int __build_sched_domains(const struct cpumask *cpu_map,
8752 struct sched_domain_attr *attr)
8754 enum s_alloc alloc_state = sa_none;
8755 struct s_data d;
8756 struct sched_domain *sd;
8757 int i;
8758 #ifdef CONFIG_NUMA
8759 d.sd_allnodes = 0;
8760 #endif
8762 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8763 if (alloc_state != sa_rootdomain)
8764 goto error;
8765 alloc_state = sa_sched_groups;
8768 * Set up domains for cpus specified by the cpu_map.
8770 for_each_cpu(i, cpu_map) {
8771 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8772 cpu_map);
8774 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8775 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8776 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8777 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8780 for_each_cpu(i, cpu_map) {
8781 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8782 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8785 /* Set up physical groups */
8786 for (i = 0; i < nr_node_ids; i++)
8787 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8789 #ifdef CONFIG_NUMA
8790 /* Set up node groups */
8791 if (d.sd_allnodes)
8792 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8794 for (i = 0; i < nr_node_ids; i++)
8795 if (build_numa_sched_groups(&d, cpu_map, i))
8796 goto error;
8797 #endif
8799 /* Calculate CPU power for physical packages and nodes */
8800 #ifdef CONFIG_SCHED_SMT
8801 for_each_cpu(i, cpu_map) {
8802 sd = &per_cpu(cpu_domains, i).sd;
8803 init_sched_groups_power(i, sd);
8805 #endif
8806 #ifdef CONFIG_SCHED_MC
8807 for_each_cpu(i, cpu_map) {
8808 sd = &per_cpu(core_domains, i).sd;
8809 init_sched_groups_power(i, sd);
8811 #endif
8813 for_each_cpu(i, cpu_map) {
8814 sd = &per_cpu(phys_domains, i).sd;
8815 init_sched_groups_power(i, sd);
8818 #ifdef CONFIG_NUMA
8819 for (i = 0; i < nr_node_ids; i++)
8820 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8822 if (d.sd_allnodes) {
8823 struct sched_group *sg;
8825 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8826 d.tmpmask);
8827 init_numa_sched_groups_power(sg);
8829 #endif
8831 /* Attach the domains */
8832 for_each_cpu(i, cpu_map) {
8833 #ifdef CONFIG_SCHED_SMT
8834 sd = &per_cpu(cpu_domains, i).sd;
8835 #elif defined(CONFIG_SCHED_MC)
8836 sd = &per_cpu(core_domains, i).sd;
8837 #else
8838 sd = &per_cpu(phys_domains, i).sd;
8839 #endif
8840 cpu_attach_domain(sd, d.rd, i);
8843 d.sched_group_nodes = NULL; /* don't free this we still need it */
8844 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8845 return 0;
8847 error:
8848 __free_domain_allocs(&d, alloc_state, cpu_map);
8849 return -ENOMEM;
8852 static int build_sched_domains(const struct cpumask *cpu_map)
8854 return __build_sched_domains(cpu_map, NULL);
8857 static struct cpumask *doms_cur; /* current sched domains */
8858 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8859 static struct sched_domain_attr *dattr_cur;
8860 /* attribues of custom domains in 'doms_cur' */
8863 * Special case: If a kmalloc of a doms_cur partition (array of
8864 * cpumask) fails, then fallback to a single sched domain,
8865 * as determined by the single cpumask fallback_doms.
8867 static cpumask_var_t fallback_doms;
8870 * arch_update_cpu_topology lets virtualized architectures update the
8871 * cpu core maps. It is supposed to return 1 if the topology changed
8872 * or 0 if it stayed the same.
8874 int __attribute__((weak)) arch_update_cpu_topology(void)
8876 return 0;
8880 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8881 * For now this just excludes isolated cpus, but could be used to
8882 * exclude other special cases in the future.
8884 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8886 int err;
8888 arch_update_cpu_topology();
8889 ndoms_cur = 1;
8890 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8891 if (!doms_cur)
8892 doms_cur = fallback_doms;
8893 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8894 dattr_cur = NULL;
8895 err = build_sched_domains(doms_cur);
8896 register_sched_domain_sysctl();
8898 return err;
8901 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8902 struct cpumask *tmpmask)
8904 free_sched_groups(cpu_map, tmpmask);
8908 * Detach sched domains from a group of cpus specified in cpu_map
8909 * These cpus will now be attached to the NULL domain
8911 static void detach_destroy_domains(const struct cpumask *cpu_map)
8913 /* Save because hotplug lock held. */
8914 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8915 int i;
8917 for_each_cpu(i, cpu_map)
8918 cpu_attach_domain(NULL, &def_root_domain, i);
8919 synchronize_sched();
8920 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8923 /* handle null as "default" */
8924 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8925 struct sched_domain_attr *new, int idx_new)
8927 struct sched_domain_attr tmp;
8929 /* fast path */
8930 if (!new && !cur)
8931 return 1;
8933 tmp = SD_ATTR_INIT;
8934 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8935 new ? (new + idx_new) : &tmp,
8936 sizeof(struct sched_domain_attr));
8940 * Partition sched domains as specified by the 'ndoms_new'
8941 * cpumasks in the array doms_new[] of cpumasks. This compares
8942 * doms_new[] to the current sched domain partitioning, doms_cur[].
8943 * It destroys each deleted domain and builds each new domain.
8945 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8946 * The masks don't intersect (don't overlap.) We should setup one
8947 * sched domain for each mask. CPUs not in any of the cpumasks will
8948 * not be load balanced. If the same cpumask appears both in the
8949 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8950 * it as it is.
8952 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8953 * ownership of it and will kfree it when done with it. If the caller
8954 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8955 * ndoms_new == 1, and partition_sched_domains() will fallback to
8956 * the single partition 'fallback_doms', it also forces the domains
8957 * to be rebuilt.
8959 * If doms_new == NULL it will be replaced with cpu_online_mask.
8960 * ndoms_new == 0 is a special case for destroying existing domains,
8961 * and it will not create the default domain.
8963 * Call with hotplug lock held
8965 /* FIXME: Change to struct cpumask *doms_new[] */
8966 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8967 struct sched_domain_attr *dattr_new)
8969 int i, j, n;
8970 int new_topology;
8972 mutex_lock(&sched_domains_mutex);
8974 /* always unregister in case we don't destroy any domains */
8975 unregister_sched_domain_sysctl();
8977 /* Let architecture update cpu core mappings. */
8978 new_topology = arch_update_cpu_topology();
8980 n = doms_new ? ndoms_new : 0;
8982 /* Destroy deleted domains */
8983 for (i = 0; i < ndoms_cur; i++) {
8984 for (j = 0; j < n && !new_topology; j++) {
8985 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8986 && dattrs_equal(dattr_cur, i, dattr_new, j))
8987 goto match1;
8989 /* no match - a current sched domain not in new doms_new[] */
8990 detach_destroy_domains(doms_cur + i);
8991 match1:
8995 if (doms_new == NULL) {
8996 ndoms_cur = 0;
8997 doms_new = fallback_doms;
8998 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8999 WARN_ON_ONCE(dattr_new);
9002 /* Build new domains */
9003 for (i = 0; i < ndoms_new; i++) {
9004 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9005 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9006 && dattrs_equal(dattr_new, i, dattr_cur, j))
9007 goto match2;
9009 /* no match - add a new doms_new */
9010 __build_sched_domains(doms_new + i,
9011 dattr_new ? dattr_new + i : NULL);
9012 match2:
9016 /* Remember the new sched domains */
9017 if (doms_cur != fallback_doms)
9018 kfree(doms_cur);
9019 kfree(dattr_cur); /* kfree(NULL) is safe */
9020 doms_cur = doms_new;
9021 dattr_cur = dattr_new;
9022 ndoms_cur = ndoms_new;
9024 register_sched_domain_sysctl();
9026 mutex_unlock(&sched_domains_mutex);
9029 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9030 static void arch_reinit_sched_domains(void)
9032 get_online_cpus();
9034 /* Destroy domains first to force the rebuild */
9035 partition_sched_domains(0, NULL, NULL);
9037 rebuild_sched_domains();
9038 put_online_cpus();
9041 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9043 unsigned int level = 0;
9045 if (sscanf(buf, "%u", &level) != 1)
9046 return -EINVAL;
9049 * level is always be positive so don't check for
9050 * level < POWERSAVINGS_BALANCE_NONE which is 0
9051 * What happens on 0 or 1 byte write,
9052 * need to check for count as well?
9055 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9056 return -EINVAL;
9058 if (smt)
9059 sched_smt_power_savings = level;
9060 else
9061 sched_mc_power_savings = level;
9063 arch_reinit_sched_domains();
9065 return count;
9068 #ifdef CONFIG_SCHED_MC
9069 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9070 char *page)
9072 return sprintf(page, "%u\n", sched_mc_power_savings);
9074 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9075 const char *buf, size_t count)
9077 return sched_power_savings_store(buf, count, 0);
9079 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9080 sched_mc_power_savings_show,
9081 sched_mc_power_savings_store);
9082 #endif
9084 #ifdef CONFIG_SCHED_SMT
9085 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9086 char *page)
9088 return sprintf(page, "%u\n", sched_smt_power_savings);
9090 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9091 const char *buf, size_t count)
9093 return sched_power_savings_store(buf, count, 1);
9095 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9096 sched_smt_power_savings_show,
9097 sched_smt_power_savings_store);
9098 #endif
9100 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9102 int err = 0;
9104 #ifdef CONFIG_SCHED_SMT
9105 if (smt_capable())
9106 err = sysfs_create_file(&cls->kset.kobj,
9107 &attr_sched_smt_power_savings.attr);
9108 #endif
9109 #ifdef CONFIG_SCHED_MC
9110 if (!err && mc_capable())
9111 err = sysfs_create_file(&cls->kset.kobj,
9112 &attr_sched_mc_power_savings.attr);
9113 #endif
9114 return err;
9116 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9118 #ifndef CONFIG_CPUSETS
9120 * Add online and remove offline CPUs from the scheduler domains.
9121 * When cpusets are enabled they take over this function.
9123 static int update_sched_domains(struct notifier_block *nfb,
9124 unsigned long action, void *hcpu)
9126 switch (action) {
9127 case CPU_ONLINE:
9128 case CPU_ONLINE_FROZEN:
9129 case CPU_DEAD:
9130 case CPU_DEAD_FROZEN:
9131 partition_sched_domains(1, NULL, NULL);
9132 return NOTIFY_OK;
9134 default:
9135 return NOTIFY_DONE;
9138 #endif
9140 static int update_runtime(struct notifier_block *nfb,
9141 unsigned long action, void *hcpu)
9143 int cpu = (int)(long)hcpu;
9145 switch (action) {
9146 case CPU_DOWN_PREPARE:
9147 case CPU_DOWN_PREPARE_FROZEN:
9148 disable_runtime(cpu_rq(cpu));
9149 return NOTIFY_OK;
9151 case CPU_DOWN_FAILED:
9152 case CPU_DOWN_FAILED_FROZEN:
9153 case CPU_ONLINE:
9154 case CPU_ONLINE_FROZEN:
9155 enable_runtime(cpu_rq(cpu));
9156 return NOTIFY_OK;
9158 default:
9159 return NOTIFY_DONE;
9163 void __init sched_init_smp(void)
9165 cpumask_var_t non_isolated_cpus;
9167 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9169 #if defined(CONFIG_NUMA)
9170 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9171 GFP_KERNEL);
9172 BUG_ON(sched_group_nodes_bycpu == NULL);
9173 #endif
9174 get_online_cpus();
9175 mutex_lock(&sched_domains_mutex);
9176 arch_init_sched_domains(cpu_online_mask);
9177 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9178 if (cpumask_empty(non_isolated_cpus))
9179 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9180 mutex_unlock(&sched_domains_mutex);
9181 put_online_cpus();
9183 #ifndef CONFIG_CPUSETS
9184 /* XXX: Theoretical race here - CPU may be hotplugged now */
9185 hotcpu_notifier(update_sched_domains, 0);
9186 #endif
9188 /* RT runtime code needs to handle some hotplug events */
9189 hotcpu_notifier(update_runtime, 0);
9191 init_hrtick();
9193 /* Move init over to a non-isolated CPU */
9194 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9195 BUG();
9196 sched_init_granularity();
9197 free_cpumask_var(non_isolated_cpus);
9199 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9200 init_sched_rt_class();
9202 #else
9203 void __init sched_init_smp(void)
9205 sched_init_granularity();
9207 #endif /* CONFIG_SMP */
9209 const_debug unsigned int sysctl_timer_migration = 1;
9211 int in_sched_functions(unsigned long addr)
9213 return in_lock_functions(addr) ||
9214 (addr >= (unsigned long)__sched_text_start
9215 && addr < (unsigned long)__sched_text_end);
9218 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9220 cfs_rq->tasks_timeline = RB_ROOT;
9221 INIT_LIST_HEAD(&cfs_rq->tasks);
9222 #ifdef CONFIG_FAIR_GROUP_SCHED
9223 cfs_rq->rq = rq;
9224 #endif
9225 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9228 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9230 struct rt_prio_array *array;
9231 int i;
9233 array = &rt_rq->active;
9234 for (i = 0; i < MAX_RT_PRIO; i++) {
9235 INIT_LIST_HEAD(array->queue + i);
9236 __clear_bit(i, array->bitmap);
9238 /* delimiter for bitsearch: */
9239 __set_bit(MAX_RT_PRIO, array->bitmap);
9241 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9242 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9243 #ifdef CONFIG_SMP
9244 rt_rq->highest_prio.next = MAX_RT_PRIO;
9245 #endif
9246 #endif
9247 #ifdef CONFIG_SMP
9248 rt_rq->rt_nr_migratory = 0;
9249 rt_rq->overloaded = 0;
9250 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9251 #endif
9253 rt_rq->rt_time = 0;
9254 rt_rq->rt_throttled = 0;
9255 rt_rq->rt_runtime = 0;
9256 spin_lock_init(&rt_rq->rt_runtime_lock);
9258 #ifdef CONFIG_RT_GROUP_SCHED
9259 rt_rq->rt_nr_boosted = 0;
9260 rt_rq->rq = rq;
9261 #endif
9264 #ifdef CONFIG_FAIR_GROUP_SCHED
9265 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9266 struct sched_entity *se, int cpu, int add,
9267 struct sched_entity *parent)
9269 struct rq *rq = cpu_rq(cpu);
9270 tg->cfs_rq[cpu] = cfs_rq;
9271 init_cfs_rq(cfs_rq, rq);
9272 cfs_rq->tg = tg;
9273 if (add)
9274 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9276 tg->se[cpu] = se;
9277 /* se could be NULL for init_task_group */
9278 if (!se)
9279 return;
9281 if (!parent)
9282 se->cfs_rq = &rq->cfs;
9283 else
9284 se->cfs_rq = parent->my_q;
9286 se->my_q = cfs_rq;
9287 se->load.weight = tg->shares;
9288 se->load.inv_weight = 0;
9289 se->parent = parent;
9291 #endif
9293 #ifdef CONFIG_RT_GROUP_SCHED
9294 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9295 struct sched_rt_entity *rt_se, int cpu, int add,
9296 struct sched_rt_entity *parent)
9298 struct rq *rq = cpu_rq(cpu);
9300 tg->rt_rq[cpu] = rt_rq;
9301 init_rt_rq(rt_rq, rq);
9302 rt_rq->tg = tg;
9303 rt_rq->rt_se = rt_se;
9304 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9305 if (add)
9306 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9308 tg->rt_se[cpu] = rt_se;
9309 if (!rt_se)
9310 return;
9312 if (!parent)
9313 rt_se->rt_rq = &rq->rt;
9314 else
9315 rt_se->rt_rq = parent->my_q;
9317 rt_se->my_q = rt_rq;
9318 rt_se->parent = parent;
9319 INIT_LIST_HEAD(&rt_se->run_list);
9321 #endif
9323 void __init sched_init(void)
9325 int i, j;
9326 unsigned long alloc_size = 0, ptr;
9328 #ifdef CONFIG_FAIR_GROUP_SCHED
9329 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9330 #endif
9331 #ifdef CONFIG_RT_GROUP_SCHED
9332 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9333 #endif
9334 #ifdef CONFIG_USER_SCHED
9335 alloc_size *= 2;
9336 #endif
9337 #ifdef CONFIG_CPUMASK_OFFSTACK
9338 alloc_size += num_possible_cpus() * cpumask_size();
9339 #endif
9341 * As sched_init() is called before page_alloc is setup,
9342 * we use alloc_bootmem().
9344 if (alloc_size) {
9345 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9347 #ifdef CONFIG_FAIR_GROUP_SCHED
9348 init_task_group.se = (struct sched_entity **)ptr;
9349 ptr += nr_cpu_ids * sizeof(void **);
9351 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9352 ptr += nr_cpu_ids * sizeof(void **);
9354 #ifdef CONFIG_USER_SCHED
9355 root_task_group.se = (struct sched_entity **)ptr;
9356 ptr += nr_cpu_ids * sizeof(void **);
9358 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9359 ptr += nr_cpu_ids * sizeof(void **);
9360 #endif /* CONFIG_USER_SCHED */
9361 #endif /* CONFIG_FAIR_GROUP_SCHED */
9362 #ifdef CONFIG_RT_GROUP_SCHED
9363 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9364 ptr += nr_cpu_ids * sizeof(void **);
9366 init_task_group.rt_rq = (struct rt_rq **)ptr;
9367 ptr += nr_cpu_ids * sizeof(void **);
9369 #ifdef CONFIG_USER_SCHED
9370 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9371 ptr += nr_cpu_ids * sizeof(void **);
9373 root_task_group.rt_rq = (struct rt_rq **)ptr;
9374 ptr += nr_cpu_ids * sizeof(void **);
9375 #endif /* CONFIG_USER_SCHED */
9376 #endif /* CONFIG_RT_GROUP_SCHED */
9377 #ifdef CONFIG_CPUMASK_OFFSTACK
9378 for_each_possible_cpu(i) {
9379 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9380 ptr += cpumask_size();
9382 #endif /* CONFIG_CPUMASK_OFFSTACK */
9385 #ifdef CONFIG_SMP
9386 init_defrootdomain();
9387 #endif
9389 init_rt_bandwidth(&def_rt_bandwidth,
9390 global_rt_period(), global_rt_runtime());
9392 #ifdef CONFIG_RT_GROUP_SCHED
9393 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9394 global_rt_period(), global_rt_runtime());
9395 #ifdef CONFIG_USER_SCHED
9396 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9397 global_rt_period(), RUNTIME_INF);
9398 #endif /* CONFIG_USER_SCHED */
9399 #endif /* CONFIG_RT_GROUP_SCHED */
9401 #ifdef CONFIG_GROUP_SCHED
9402 list_add(&init_task_group.list, &task_groups);
9403 INIT_LIST_HEAD(&init_task_group.children);
9405 #ifdef CONFIG_USER_SCHED
9406 INIT_LIST_HEAD(&root_task_group.children);
9407 init_task_group.parent = &root_task_group;
9408 list_add(&init_task_group.siblings, &root_task_group.children);
9409 #endif /* CONFIG_USER_SCHED */
9410 #endif /* CONFIG_GROUP_SCHED */
9412 for_each_possible_cpu(i) {
9413 struct rq *rq;
9415 rq = cpu_rq(i);
9416 spin_lock_init(&rq->lock);
9417 rq->nr_running = 0;
9418 rq->calc_load_active = 0;
9419 rq->calc_load_update = jiffies + LOAD_FREQ;
9420 init_cfs_rq(&rq->cfs, rq);
9421 init_rt_rq(&rq->rt, rq);
9422 #ifdef CONFIG_FAIR_GROUP_SCHED
9423 init_task_group.shares = init_task_group_load;
9424 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9425 #ifdef CONFIG_CGROUP_SCHED
9427 * How much cpu bandwidth does init_task_group get?
9429 * In case of task-groups formed thr' the cgroup filesystem, it
9430 * gets 100% of the cpu resources in the system. This overall
9431 * system cpu resource is divided among the tasks of
9432 * init_task_group and its child task-groups in a fair manner,
9433 * based on each entity's (task or task-group's) weight
9434 * (se->load.weight).
9436 * In other words, if init_task_group has 10 tasks of weight
9437 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9438 * then A0's share of the cpu resource is:
9440 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9442 * We achieve this by letting init_task_group's tasks sit
9443 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9445 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9446 #elif defined CONFIG_USER_SCHED
9447 root_task_group.shares = NICE_0_LOAD;
9448 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9450 * In case of task-groups formed thr' the user id of tasks,
9451 * init_task_group represents tasks belonging to root user.
9452 * Hence it forms a sibling of all subsequent groups formed.
9453 * In this case, init_task_group gets only a fraction of overall
9454 * system cpu resource, based on the weight assigned to root
9455 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9456 * by letting tasks of init_task_group sit in a separate cfs_rq
9457 * (init_tg_cfs_rq) and having one entity represent this group of
9458 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9460 init_tg_cfs_entry(&init_task_group,
9461 &per_cpu(init_tg_cfs_rq, i),
9462 &per_cpu(init_sched_entity, i), i, 1,
9463 root_task_group.se[i]);
9465 #endif
9466 #endif /* CONFIG_FAIR_GROUP_SCHED */
9468 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9469 #ifdef CONFIG_RT_GROUP_SCHED
9470 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9471 #ifdef CONFIG_CGROUP_SCHED
9472 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9473 #elif defined CONFIG_USER_SCHED
9474 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9475 init_tg_rt_entry(&init_task_group,
9476 &per_cpu(init_rt_rq, i),
9477 &per_cpu(init_sched_rt_entity, i), i, 1,
9478 root_task_group.rt_se[i]);
9479 #endif
9480 #endif
9482 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9483 rq->cpu_load[j] = 0;
9484 #ifdef CONFIG_SMP
9485 rq->sd = NULL;
9486 rq->rd = NULL;
9487 rq->post_schedule = 0;
9488 rq->active_balance = 0;
9489 rq->next_balance = jiffies;
9490 rq->push_cpu = 0;
9491 rq->cpu = i;
9492 rq->online = 0;
9493 rq->migration_thread = NULL;
9494 INIT_LIST_HEAD(&rq->migration_queue);
9495 rq_attach_root(rq, &def_root_domain);
9496 #endif
9497 init_rq_hrtick(rq);
9498 atomic_set(&rq->nr_iowait, 0);
9501 set_load_weight(&init_task);
9503 #ifdef CONFIG_PREEMPT_NOTIFIERS
9504 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9505 #endif
9507 #ifdef CONFIG_SMP
9508 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9509 #endif
9511 #ifdef CONFIG_RT_MUTEXES
9512 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9513 #endif
9516 * The boot idle thread does lazy MMU switching as well:
9518 atomic_inc(&init_mm.mm_count);
9519 enter_lazy_tlb(&init_mm, current);
9522 * Make us the idle thread. Technically, schedule() should not be
9523 * called from this thread, however somewhere below it might be,
9524 * but because we are the idle thread, we just pick up running again
9525 * when this runqueue becomes "idle".
9527 init_idle(current, smp_processor_id());
9529 calc_load_update = jiffies + LOAD_FREQ;
9532 * During early bootup we pretend to be a normal task:
9534 current->sched_class = &fair_sched_class;
9536 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9537 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9538 #ifdef CONFIG_SMP
9539 #ifdef CONFIG_NO_HZ
9540 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9541 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9542 #endif
9543 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9544 #endif /* SMP */
9546 perf_counter_init();
9548 scheduler_running = 1;
9551 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9552 static inline int preempt_count_equals(int preempt_offset)
9554 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9556 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9559 void __might_sleep(char *file, int line, int preempt_offset)
9561 #ifdef in_atomic
9562 static unsigned long prev_jiffy; /* ratelimiting */
9564 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9565 system_state != SYSTEM_RUNNING || oops_in_progress)
9566 return;
9567 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9568 return;
9569 prev_jiffy = jiffies;
9571 printk(KERN_ERR
9572 "BUG: sleeping function called from invalid context at %s:%d\n",
9573 file, line);
9574 printk(KERN_ERR
9575 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9576 in_atomic(), irqs_disabled(),
9577 current->pid, current->comm);
9579 debug_show_held_locks(current);
9580 if (irqs_disabled())
9581 print_irqtrace_events(current);
9582 dump_stack();
9583 #endif
9585 EXPORT_SYMBOL(__might_sleep);
9586 #endif
9588 #ifdef CONFIG_MAGIC_SYSRQ
9589 static void normalize_task(struct rq *rq, struct task_struct *p)
9591 int on_rq;
9593 update_rq_clock(rq);
9594 on_rq = p->se.on_rq;
9595 if (on_rq)
9596 deactivate_task(rq, p, 0);
9597 __setscheduler(rq, p, SCHED_NORMAL, 0);
9598 if (on_rq) {
9599 activate_task(rq, p, 0);
9600 resched_task(rq->curr);
9604 void normalize_rt_tasks(void)
9606 struct task_struct *g, *p;
9607 unsigned long flags;
9608 struct rq *rq;
9610 read_lock_irqsave(&tasklist_lock, flags);
9611 do_each_thread(g, p) {
9613 * Only normalize user tasks:
9615 if (!p->mm)
9616 continue;
9618 p->se.exec_start = 0;
9619 #ifdef CONFIG_SCHEDSTATS
9620 p->se.wait_start = 0;
9621 p->se.sleep_start = 0;
9622 p->se.block_start = 0;
9623 #endif
9625 if (!rt_task(p)) {
9627 * Renice negative nice level userspace
9628 * tasks back to 0:
9630 if (TASK_NICE(p) < 0 && p->mm)
9631 set_user_nice(p, 0);
9632 continue;
9635 spin_lock(&p->pi_lock);
9636 rq = __task_rq_lock(p);
9638 normalize_task(rq, p);
9640 __task_rq_unlock(rq);
9641 spin_unlock(&p->pi_lock);
9642 } while_each_thread(g, p);
9644 read_unlock_irqrestore(&tasklist_lock, flags);
9647 #endif /* CONFIG_MAGIC_SYSRQ */
9649 #ifdef CONFIG_IA64
9651 * These functions are only useful for the IA64 MCA handling.
9653 * They can only be called when the whole system has been
9654 * stopped - every CPU needs to be quiescent, and no scheduling
9655 * activity can take place. Using them for anything else would
9656 * be a serious bug, and as a result, they aren't even visible
9657 * under any other configuration.
9661 * curr_task - return the current task for a given cpu.
9662 * @cpu: the processor in question.
9664 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9666 struct task_struct *curr_task(int cpu)
9668 return cpu_curr(cpu);
9672 * set_curr_task - set the current task for a given cpu.
9673 * @cpu: the processor in question.
9674 * @p: the task pointer to set.
9676 * Description: This function must only be used when non-maskable interrupts
9677 * are serviced on a separate stack. It allows the architecture to switch the
9678 * notion of the current task on a cpu in a non-blocking manner. This function
9679 * must be called with all CPU's synchronized, and interrupts disabled, the
9680 * and caller must save the original value of the current task (see
9681 * curr_task() above) and restore that value before reenabling interrupts and
9682 * re-starting the system.
9684 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9686 void set_curr_task(int cpu, struct task_struct *p)
9688 cpu_curr(cpu) = p;
9691 #endif
9693 #ifdef CONFIG_FAIR_GROUP_SCHED
9694 static void free_fair_sched_group(struct task_group *tg)
9696 int i;
9698 for_each_possible_cpu(i) {
9699 if (tg->cfs_rq)
9700 kfree(tg->cfs_rq[i]);
9701 if (tg->se)
9702 kfree(tg->se[i]);
9705 kfree(tg->cfs_rq);
9706 kfree(tg->se);
9709 static
9710 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9712 struct cfs_rq *cfs_rq;
9713 struct sched_entity *se;
9714 struct rq *rq;
9715 int i;
9717 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9718 if (!tg->cfs_rq)
9719 goto err;
9720 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9721 if (!tg->se)
9722 goto err;
9724 tg->shares = NICE_0_LOAD;
9726 for_each_possible_cpu(i) {
9727 rq = cpu_rq(i);
9729 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9730 GFP_KERNEL, cpu_to_node(i));
9731 if (!cfs_rq)
9732 goto err;
9734 se = kzalloc_node(sizeof(struct sched_entity),
9735 GFP_KERNEL, cpu_to_node(i));
9736 if (!se)
9737 goto err;
9739 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9742 return 1;
9744 err:
9745 return 0;
9748 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9750 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9751 &cpu_rq(cpu)->leaf_cfs_rq_list);
9754 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9756 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9758 #else /* !CONFG_FAIR_GROUP_SCHED */
9759 static inline void free_fair_sched_group(struct task_group *tg)
9763 static inline
9764 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9766 return 1;
9769 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9773 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9776 #endif /* CONFIG_FAIR_GROUP_SCHED */
9778 #ifdef CONFIG_RT_GROUP_SCHED
9779 static void free_rt_sched_group(struct task_group *tg)
9781 int i;
9783 destroy_rt_bandwidth(&tg->rt_bandwidth);
9785 for_each_possible_cpu(i) {
9786 if (tg->rt_rq)
9787 kfree(tg->rt_rq[i]);
9788 if (tg->rt_se)
9789 kfree(tg->rt_se[i]);
9792 kfree(tg->rt_rq);
9793 kfree(tg->rt_se);
9796 static
9797 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9799 struct rt_rq *rt_rq;
9800 struct sched_rt_entity *rt_se;
9801 struct rq *rq;
9802 int i;
9804 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9805 if (!tg->rt_rq)
9806 goto err;
9807 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9808 if (!tg->rt_se)
9809 goto err;
9811 init_rt_bandwidth(&tg->rt_bandwidth,
9812 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9814 for_each_possible_cpu(i) {
9815 rq = cpu_rq(i);
9817 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9818 GFP_KERNEL, cpu_to_node(i));
9819 if (!rt_rq)
9820 goto err;
9822 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9823 GFP_KERNEL, cpu_to_node(i));
9824 if (!rt_se)
9825 goto err;
9827 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9830 return 1;
9832 err:
9833 return 0;
9836 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9838 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9839 &cpu_rq(cpu)->leaf_rt_rq_list);
9842 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9844 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9846 #else /* !CONFIG_RT_GROUP_SCHED */
9847 static inline void free_rt_sched_group(struct task_group *tg)
9851 static inline
9852 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9854 return 1;
9857 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9861 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9864 #endif /* CONFIG_RT_GROUP_SCHED */
9866 #ifdef CONFIG_GROUP_SCHED
9867 static void free_sched_group(struct task_group *tg)
9869 free_fair_sched_group(tg);
9870 free_rt_sched_group(tg);
9871 kfree(tg);
9874 /* allocate runqueue etc for a new task group */
9875 struct task_group *sched_create_group(struct task_group *parent)
9877 struct task_group *tg;
9878 unsigned long flags;
9879 int i;
9881 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9882 if (!tg)
9883 return ERR_PTR(-ENOMEM);
9885 if (!alloc_fair_sched_group(tg, parent))
9886 goto err;
9888 if (!alloc_rt_sched_group(tg, parent))
9889 goto err;
9891 spin_lock_irqsave(&task_group_lock, flags);
9892 for_each_possible_cpu(i) {
9893 register_fair_sched_group(tg, i);
9894 register_rt_sched_group(tg, i);
9896 list_add_rcu(&tg->list, &task_groups);
9898 WARN_ON(!parent); /* root should already exist */
9900 tg->parent = parent;
9901 INIT_LIST_HEAD(&tg->children);
9902 list_add_rcu(&tg->siblings, &parent->children);
9903 spin_unlock_irqrestore(&task_group_lock, flags);
9905 return tg;
9907 err:
9908 free_sched_group(tg);
9909 return ERR_PTR(-ENOMEM);
9912 /* rcu callback to free various structures associated with a task group */
9913 static void free_sched_group_rcu(struct rcu_head *rhp)
9915 /* now it should be safe to free those cfs_rqs */
9916 free_sched_group(container_of(rhp, struct task_group, rcu));
9919 /* Destroy runqueue etc associated with a task group */
9920 void sched_destroy_group(struct task_group *tg)
9922 unsigned long flags;
9923 int i;
9925 spin_lock_irqsave(&task_group_lock, flags);
9926 for_each_possible_cpu(i) {
9927 unregister_fair_sched_group(tg, i);
9928 unregister_rt_sched_group(tg, i);
9930 list_del_rcu(&tg->list);
9931 list_del_rcu(&tg->siblings);
9932 spin_unlock_irqrestore(&task_group_lock, flags);
9934 /* wait for possible concurrent references to cfs_rqs complete */
9935 call_rcu(&tg->rcu, free_sched_group_rcu);
9938 /* change task's runqueue when it moves between groups.
9939 * The caller of this function should have put the task in its new group
9940 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9941 * reflect its new group.
9943 void sched_move_task(struct task_struct *tsk)
9945 int on_rq, running;
9946 unsigned long flags;
9947 struct rq *rq;
9949 rq = task_rq_lock(tsk, &flags);
9951 update_rq_clock(rq);
9953 running = task_current(rq, tsk);
9954 on_rq = tsk->se.on_rq;
9956 if (on_rq)
9957 dequeue_task(rq, tsk, 0);
9958 if (unlikely(running))
9959 tsk->sched_class->put_prev_task(rq, tsk);
9961 set_task_rq(tsk, task_cpu(tsk));
9963 #ifdef CONFIG_FAIR_GROUP_SCHED
9964 if (tsk->sched_class->moved_group)
9965 tsk->sched_class->moved_group(tsk);
9966 #endif
9968 if (unlikely(running))
9969 tsk->sched_class->set_curr_task(rq);
9970 if (on_rq)
9971 enqueue_task(rq, tsk, 0);
9973 task_rq_unlock(rq, &flags);
9975 #endif /* CONFIG_GROUP_SCHED */
9977 #ifdef CONFIG_FAIR_GROUP_SCHED
9978 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9980 struct cfs_rq *cfs_rq = se->cfs_rq;
9981 int on_rq;
9983 on_rq = se->on_rq;
9984 if (on_rq)
9985 dequeue_entity(cfs_rq, se, 0);
9987 se->load.weight = shares;
9988 se->load.inv_weight = 0;
9990 if (on_rq)
9991 enqueue_entity(cfs_rq, se, 0);
9994 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9996 struct cfs_rq *cfs_rq = se->cfs_rq;
9997 struct rq *rq = cfs_rq->rq;
9998 unsigned long flags;
10000 spin_lock_irqsave(&rq->lock, flags);
10001 __set_se_shares(se, shares);
10002 spin_unlock_irqrestore(&rq->lock, flags);
10005 static DEFINE_MUTEX(shares_mutex);
10007 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10009 int i;
10010 unsigned long flags;
10013 * We can't change the weight of the root cgroup.
10015 if (!tg->se[0])
10016 return -EINVAL;
10018 if (shares < MIN_SHARES)
10019 shares = MIN_SHARES;
10020 else if (shares > MAX_SHARES)
10021 shares = MAX_SHARES;
10023 mutex_lock(&shares_mutex);
10024 if (tg->shares == shares)
10025 goto done;
10027 spin_lock_irqsave(&task_group_lock, flags);
10028 for_each_possible_cpu(i)
10029 unregister_fair_sched_group(tg, i);
10030 list_del_rcu(&tg->siblings);
10031 spin_unlock_irqrestore(&task_group_lock, flags);
10033 /* wait for any ongoing reference to this group to finish */
10034 synchronize_sched();
10037 * Now we are free to modify the group's share on each cpu
10038 * w/o tripping rebalance_share or load_balance_fair.
10040 tg->shares = shares;
10041 for_each_possible_cpu(i) {
10043 * force a rebalance
10045 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10046 set_se_shares(tg->se[i], shares);
10050 * Enable load balance activity on this group, by inserting it back on
10051 * each cpu's rq->leaf_cfs_rq_list.
10053 spin_lock_irqsave(&task_group_lock, flags);
10054 for_each_possible_cpu(i)
10055 register_fair_sched_group(tg, i);
10056 list_add_rcu(&tg->siblings, &tg->parent->children);
10057 spin_unlock_irqrestore(&task_group_lock, flags);
10058 done:
10059 mutex_unlock(&shares_mutex);
10060 return 0;
10063 unsigned long sched_group_shares(struct task_group *tg)
10065 return tg->shares;
10067 #endif
10069 #ifdef CONFIG_RT_GROUP_SCHED
10071 * Ensure that the real time constraints are schedulable.
10073 static DEFINE_MUTEX(rt_constraints_mutex);
10075 static unsigned long to_ratio(u64 period, u64 runtime)
10077 if (runtime == RUNTIME_INF)
10078 return 1ULL << 20;
10080 return div64_u64(runtime << 20, period);
10083 /* Must be called with tasklist_lock held */
10084 static inline int tg_has_rt_tasks(struct task_group *tg)
10086 struct task_struct *g, *p;
10088 do_each_thread(g, p) {
10089 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10090 return 1;
10091 } while_each_thread(g, p);
10093 return 0;
10096 struct rt_schedulable_data {
10097 struct task_group *tg;
10098 u64 rt_period;
10099 u64 rt_runtime;
10102 static int tg_schedulable(struct task_group *tg, void *data)
10104 struct rt_schedulable_data *d = data;
10105 struct task_group *child;
10106 unsigned long total, sum = 0;
10107 u64 period, runtime;
10109 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10110 runtime = tg->rt_bandwidth.rt_runtime;
10112 if (tg == d->tg) {
10113 period = d->rt_period;
10114 runtime = d->rt_runtime;
10117 #ifdef CONFIG_USER_SCHED
10118 if (tg == &root_task_group) {
10119 period = global_rt_period();
10120 runtime = global_rt_runtime();
10122 #endif
10125 * Cannot have more runtime than the period.
10127 if (runtime > period && runtime != RUNTIME_INF)
10128 return -EINVAL;
10131 * Ensure we don't starve existing RT tasks.
10133 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10134 return -EBUSY;
10136 total = to_ratio(period, runtime);
10139 * Nobody can have more than the global setting allows.
10141 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10142 return -EINVAL;
10145 * The sum of our children's runtime should not exceed our own.
10147 list_for_each_entry_rcu(child, &tg->children, siblings) {
10148 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10149 runtime = child->rt_bandwidth.rt_runtime;
10151 if (child == d->tg) {
10152 period = d->rt_period;
10153 runtime = d->rt_runtime;
10156 sum += to_ratio(period, runtime);
10159 if (sum > total)
10160 return -EINVAL;
10162 return 0;
10165 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10167 struct rt_schedulable_data data = {
10168 .tg = tg,
10169 .rt_period = period,
10170 .rt_runtime = runtime,
10173 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10176 static int tg_set_bandwidth(struct task_group *tg,
10177 u64 rt_period, u64 rt_runtime)
10179 int i, err = 0;
10181 mutex_lock(&rt_constraints_mutex);
10182 read_lock(&tasklist_lock);
10183 err = __rt_schedulable(tg, rt_period, rt_runtime);
10184 if (err)
10185 goto unlock;
10187 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10188 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10189 tg->rt_bandwidth.rt_runtime = rt_runtime;
10191 for_each_possible_cpu(i) {
10192 struct rt_rq *rt_rq = tg->rt_rq[i];
10194 spin_lock(&rt_rq->rt_runtime_lock);
10195 rt_rq->rt_runtime = rt_runtime;
10196 spin_unlock(&rt_rq->rt_runtime_lock);
10198 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10199 unlock:
10200 read_unlock(&tasklist_lock);
10201 mutex_unlock(&rt_constraints_mutex);
10203 return err;
10206 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10208 u64 rt_runtime, rt_period;
10210 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10211 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10212 if (rt_runtime_us < 0)
10213 rt_runtime = RUNTIME_INF;
10215 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10218 long sched_group_rt_runtime(struct task_group *tg)
10220 u64 rt_runtime_us;
10222 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10223 return -1;
10225 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10226 do_div(rt_runtime_us, NSEC_PER_USEC);
10227 return rt_runtime_us;
10230 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10232 u64 rt_runtime, rt_period;
10234 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10235 rt_runtime = tg->rt_bandwidth.rt_runtime;
10237 if (rt_period == 0)
10238 return -EINVAL;
10240 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10243 long sched_group_rt_period(struct task_group *tg)
10245 u64 rt_period_us;
10247 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10248 do_div(rt_period_us, NSEC_PER_USEC);
10249 return rt_period_us;
10252 static int sched_rt_global_constraints(void)
10254 u64 runtime, period;
10255 int ret = 0;
10257 if (sysctl_sched_rt_period <= 0)
10258 return -EINVAL;
10260 runtime = global_rt_runtime();
10261 period = global_rt_period();
10264 * Sanity check on the sysctl variables.
10266 if (runtime > period && runtime != RUNTIME_INF)
10267 return -EINVAL;
10269 mutex_lock(&rt_constraints_mutex);
10270 read_lock(&tasklist_lock);
10271 ret = __rt_schedulable(NULL, 0, 0);
10272 read_unlock(&tasklist_lock);
10273 mutex_unlock(&rt_constraints_mutex);
10275 return ret;
10278 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10280 /* Don't accept realtime tasks when there is no way for them to run */
10281 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10282 return 0;
10284 return 1;
10287 #else /* !CONFIG_RT_GROUP_SCHED */
10288 static int sched_rt_global_constraints(void)
10290 unsigned long flags;
10291 int i;
10293 if (sysctl_sched_rt_period <= 0)
10294 return -EINVAL;
10297 * There's always some RT tasks in the root group
10298 * -- migration, kstopmachine etc..
10300 if (sysctl_sched_rt_runtime == 0)
10301 return -EBUSY;
10303 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10304 for_each_possible_cpu(i) {
10305 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10307 spin_lock(&rt_rq->rt_runtime_lock);
10308 rt_rq->rt_runtime = global_rt_runtime();
10309 spin_unlock(&rt_rq->rt_runtime_lock);
10311 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10313 return 0;
10315 #endif /* CONFIG_RT_GROUP_SCHED */
10317 int sched_rt_handler(struct ctl_table *table, int write,
10318 struct file *filp, void __user *buffer, size_t *lenp,
10319 loff_t *ppos)
10321 int ret;
10322 int old_period, old_runtime;
10323 static DEFINE_MUTEX(mutex);
10325 mutex_lock(&mutex);
10326 old_period = sysctl_sched_rt_period;
10327 old_runtime = sysctl_sched_rt_runtime;
10329 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10331 if (!ret && write) {
10332 ret = sched_rt_global_constraints();
10333 if (ret) {
10334 sysctl_sched_rt_period = old_period;
10335 sysctl_sched_rt_runtime = old_runtime;
10336 } else {
10337 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10338 def_rt_bandwidth.rt_period =
10339 ns_to_ktime(global_rt_period());
10342 mutex_unlock(&mutex);
10344 return ret;
10347 #ifdef CONFIG_CGROUP_SCHED
10349 /* return corresponding task_group object of a cgroup */
10350 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10352 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10353 struct task_group, css);
10356 static struct cgroup_subsys_state *
10357 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10359 struct task_group *tg, *parent;
10361 if (!cgrp->parent) {
10362 /* This is early initialization for the top cgroup */
10363 return &init_task_group.css;
10366 parent = cgroup_tg(cgrp->parent);
10367 tg = sched_create_group(parent);
10368 if (IS_ERR(tg))
10369 return ERR_PTR(-ENOMEM);
10371 return &tg->css;
10374 static void
10375 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10377 struct task_group *tg = cgroup_tg(cgrp);
10379 sched_destroy_group(tg);
10382 static int
10383 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10384 struct task_struct *tsk)
10386 #ifdef CONFIG_RT_GROUP_SCHED
10387 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10388 return -EINVAL;
10389 #else
10390 /* We don't support RT-tasks being in separate groups */
10391 if (tsk->sched_class != &fair_sched_class)
10392 return -EINVAL;
10393 #endif
10395 return 0;
10398 static void
10399 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10400 struct cgroup *old_cont, struct task_struct *tsk)
10402 sched_move_task(tsk);
10405 #ifdef CONFIG_FAIR_GROUP_SCHED
10406 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10407 u64 shareval)
10409 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10412 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10414 struct task_group *tg = cgroup_tg(cgrp);
10416 return (u64) tg->shares;
10418 #endif /* CONFIG_FAIR_GROUP_SCHED */
10420 #ifdef CONFIG_RT_GROUP_SCHED
10421 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10422 s64 val)
10424 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10427 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10429 return sched_group_rt_runtime(cgroup_tg(cgrp));
10432 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10433 u64 rt_period_us)
10435 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10438 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10440 return sched_group_rt_period(cgroup_tg(cgrp));
10442 #endif /* CONFIG_RT_GROUP_SCHED */
10444 static struct cftype cpu_files[] = {
10445 #ifdef CONFIG_FAIR_GROUP_SCHED
10447 .name = "shares",
10448 .read_u64 = cpu_shares_read_u64,
10449 .write_u64 = cpu_shares_write_u64,
10451 #endif
10452 #ifdef CONFIG_RT_GROUP_SCHED
10454 .name = "rt_runtime_us",
10455 .read_s64 = cpu_rt_runtime_read,
10456 .write_s64 = cpu_rt_runtime_write,
10459 .name = "rt_period_us",
10460 .read_u64 = cpu_rt_period_read_uint,
10461 .write_u64 = cpu_rt_period_write_uint,
10463 #endif
10466 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10468 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10471 struct cgroup_subsys cpu_cgroup_subsys = {
10472 .name = "cpu",
10473 .create = cpu_cgroup_create,
10474 .destroy = cpu_cgroup_destroy,
10475 .can_attach = cpu_cgroup_can_attach,
10476 .attach = cpu_cgroup_attach,
10477 .populate = cpu_cgroup_populate,
10478 .subsys_id = cpu_cgroup_subsys_id,
10479 .early_init = 1,
10482 #endif /* CONFIG_CGROUP_SCHED */
10484 #ifdef CONFIG_CGROUP_CPUACCT
10487 * CPU accounting code for task groups.
10489 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10490 * (balbir@in.ibm.com).
10493 /* track cpu usage of a group of tasks and its child groups */
10494 struct cpuacct {
10495 struct cgroup_subsys_state css;
10496 /* cpuusage holds pointer to a u64-type object on every cpu */
10497 u64 *cpuusage;
10498 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10499 struct cpuacct *parent;
10502 struct cgroup_subsys cpuacct_subsys;
10504 /* return cpu accounting group corresponding to this container */
10505 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10507 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10508 struct cpuacct, css);
10511 /* return cpu accounting group to which this task belongs */
10512 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10514 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10515 struct cpuacct, css);
10518 /* create a new cpu accounting group */
10519 static struct cgroup_subsys_state *cpuacct_create(
10520 struct cgroup_subsys *ss, struct cgroup *cgrp)
10522 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10523 int i;
10525 if (!ca)
10526 goto out;
10528 ca->cpuusage = alloc_percpu(u64);
10529 if (!ca->cpuusage)
10530 goto out_free_ca;
10532 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10533 if (percpu_counter_init(&ca->cpustat[i], 0))
10534 goto out_free_counters;
10536 if (cgrp->parent)
10537 ca->parent = cgroup_ca(cgrp->parent);
10539 return &ca->css;
10541 out_free_counters:
10542 while (--i >= 0)
10543 percpu_counter_destroy(&ca->cpustat[i]);
10544 free_percpu(ca->cpuusage);
10545 out_free_ca:
10546 kfree(ca);
10547 out:
10548 return ERR_PTR(-ENOMEM);
10551 /* destroy an existing cpu accounting group */
10552 static void
10553 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10555 struct cpuacct *ca = cgroup_ca(cgrp);
10556 int i;
10558 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10559 percpu_counter_destroy(&ca->cpustat[i]);
10560 free_percpu(ca->cpuusage);
10561 kfree(ca);
10564 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10566 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10567 u64 data;
10569 #ifndef CONFIG_64BIT
10571 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10573 spin_lock_irq(&cpu_rq(cpu)->lock);
10574 data = *cpuusage;
10575 spin_unlock_irq(&cpu_rq(cpu)->lock);
10576 #else
10577 data = *cpuusage;
10578 #endif
10580 return data;
10583 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10585 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10587 #ifndef CONFIG_64BIT
10589 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10591 spin_lock_irq(&cpu_rq(cpu)->lock);
10592 *cpuusage = val;
10593 spin_unlock_irq(&cpu_rq(cpu)->lock);
10594 #else
10595 *cpuusage = val;
10596 #endif
10599 /* return total cpu usage (in nanoseconds) of a group */
10600 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10602 struct cpuacct *ca = cgroup_ca(cgrp);
10603 u64 totalcpuusage = 0;
10604 int i;
10606 for_each_present_cpu(i)
10607 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10609 return totalcpuusage;
10612 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10613 u64 reset)
10615 struct cpuacct *ca = cgroup_ca(cgrp);
10616 int err = 0;
10617 int i;
10619 if (reset) {
10620 err = -EINVAL;
10621 goto out;
10624 for_each_present_cpu(i)
10625 cpuacct_cpuusage_write(ca, i, 0);
10627 out:
10628 return err;
10631 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10632 struct seq_file *m)
10634 struct cpuacct *ca = cgroup_ca(cgroup);
10635 u64 percpu;
10636 int i;
10638 for_each_present_cpu(i) {
10639 percpu = cpuacct_cpuusage_read(ca, i);
10640 seq_printf(m, "%llu ", (unsigned long long) percpu);
10642 seq_printf(m, "\n");
10643 return 0;
10646 static const char *cpuacct_stat_desc[] = {
10647 [CPUACCT_STAT_USER] = "user",
10648 [CPUACCT_STAT_SYSTEM] = "system",
10651 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10652 struct cgroup_map_cb *cb)
10654 struct cpuacct *ca = cgroup_ca(cgrp);
10655 int i;
10657 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10658 s64 val = percpu_counter_read(&ca->cpustat[i]);
10659 val = cputime64_to_clock_t(val);
10660 cb->fill(cb, cpuacct_stat_desc[i], val);
10662 return 0;
10665 static struct cftype files[] = {
10667 .name = "usage",
10668 .read_u64 = cpuusage_read,
10669 .write_u64 = cpuusage_write,
10672 .name = "usage_percpu",
10673 .read_seq_string = cpuacct_percpu_seq_read,
10676 .name = "stat",
10677 .read_map = cpuacct_stats_show,
10681 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10683 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10687 * charge this task's execution time to its accounting group.
10689 * called with rq->lock held.
10691 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10693 struct cpuacct *ca;
10694 int cpu;
10696 if (unlikely(!cpuacct_subsys.active))
10697 return;
10699 cpu = task_cpu(tsk);
10701 rcu_read_lock();
10703 ca = task_ca(tsk);
10705 for (; ca; ca = ca->parent) {
10706 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10707 *cpuusage += cputime;
10710 rcu_read_unlock();
10714 * Charge the system/user time to the task's accounting group.
10716 static void cpuacct_update_stats(struct task_struct *tsk,
10717 enum cpuacct_stat_index idx, cputime_t val)
10719 struct cpuacct *ca;
10721 if (unlikely(!cpuacct_subsys.active))
10722 return;
10724 rcu_read_lock();
10725 ca = task_ca(tsk);
10727 do {
10728 percpu_counter_add(&ca->cpustat[idx], val);
10729 ca = ca->parent;
10730 } while (ca);
10731 rcu_read_unlock();
10734 struct cgroup_subsys cpuacct_subsys = {
10735 .name = "cpuacct",
10736 .create = cpuacct_create,
10737 .destroy = cpuacct_destroy,
10738 .populate = cpuacct_populate,
10739 .subsys_id = cpuacct_subsys_id,
10741 #endif /* CONFIG_CGROUP_CPUACCT */
10743 #ifndef CONFIG_SMP
10745 int rcu_expedited_torture_stats(char *page)
10747 return 0;
10749 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10751 void synchronize_sched_expedited(void)
10754 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10756 #else /* #ifndef CONFIG_SMP */
10758 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10759 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10761 #define RCU_EXPEDITED_STATE_POST -2
10762 #define RCU_EXPEDITED_STATE_IDLE -1
10764 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10766 int rcu_expedited_torture_stats(char *page)
10768 int cnt = 0;
10769 int cpu;
10771 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10772 for_each_online_cpu(cpu) {
10773 cnt += sprintf(&page[cnt], " %d:%d",
10774 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10776 cnt += sprintf(&page[cnt], "\n");
10777 return cnt;
10779 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10781 static long synchronize_sched_expedited_count;
10784 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10785 * approach to force grace period to end quickly. This consumes
10786 * significant time on all CPUs, and is thus not recommended for
10787 * any sort of common-case code.
10789 * Note that it is illegal to call this function while holding any
10790 * lock that is acquired by a CPU-hotplug notifier. Failing to
10791 * observe this restriction will result in deadlock.
10793 void synchronize_sched_expedited(void)
10795 int cpu;
10796 unsigned long flags;
10797 bool need_full_sync = 0;
10798 struct rq *rq;
10799 struct migration_req *req;
10800 long snap;
10801 int trycount = 0;
10803 smp_mb(); /* ensure prior mod happens before capturing snap. */
10804 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10805 get_online_cpus();
10806 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10807 put_online_cpus();
10808 if (trycount++ < 10)
10809 udelay(trycount * num_online_cpus());
10810 else {
10811 synchronize_sched();
10812 return;
10814 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10815 smp_mb(); /* ensure test happens before caller kfree */
10816 return;
10818 get_online_cpus();
10820 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10821 for_each_online_cpu(cpu) {
10822 rq = cpu_rq(cpu);
10823 req = &per_cpu(rcu_migration_req, cpu);
10824 init_completion(&req->done);
10825 req->task = NULL;
10826 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10827 spin_lock_irqsave(&rq->lock, flags);
10828 list_add(&req->list, &rq->migration_queue);
10829 spin_unlock_irqrestore(&rq->lock, flags);
10830 wake_up_process(rq->migration_thread);
10832 for_each_online_cpu(cpu) {
10833 rcu_expedited_state = cpu;
10834 req = &per_cpu(rcu_migration_req, cpu);
10835 rq = cpu_rq(cpu);
10836 wait_for_completion(&req->done);
10837 spin_lock_irqsave(&rq->lock, flags);
10838 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10839 need_full_sync = 1;
10840 req->dest_cpu = RCU_MIGRATION_IDLE;
10841 spin_unlock_irqrestore(&rq->lock, flags);
10843 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10844 mutex_unlock(&rcu_sched_expedited_mutex);
10845 put_online_cpus();
10846 if (need_full_sync)
10847 synchronize_sched();
10849 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10851 #endif /* #else #ifndef CONFIG_SMP */