md: Fix unfortunate interaction with evms
[linux-2.6/mini2440.git] / kernel / futex.c
blobba7f0be175319cfdd1dba8cf8482ba4107beda15
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
63 #include <asm/futex.h>
65 #include "rtmutex_common.h"
67 int __read_mostly futex_cmpxchg_enabled;
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72 * Priority Inheritance state:
74 struct futex_pi_state {
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
79 struct list_head list;
82 * The PI object:
84 struct rt_mutex pi_mutex;
86 struct task_struct *owner;
87 atomic_t refcount;
89 union futex_key key;
93 * We use this hashed waitqueue instead of a normal wait_queue_t, so
94 * we can wake only the relevant ones (hashed queues may be shared).
96 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
97 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
98 * The order of wakup is always to make the first condition true, then
99 * wake up q->waiter, then make the second condition true.
101 struct futex_q {
102 struct plist_node list;
103 /* Waiter reference */
104 struct task_struct *task;
106 /* Which hash list lock to use: */
107 spinlock_t *lock_ptr;
109 /* Key which the futex is hashed on: */
110 union futex_key key;
112 /* Optional priority inheritance state: */
113 struct futex_pi_state *pi_state;
115 /* rt_waiter storage for requeue_pi: */
116 struct rt_mutex_waiter *rt_waiter;
118 /* The expected requeue pi target futex key: */
119 union futex_key *requeue_pi_key;
121 /* Bitset for the optional bitmasked wakeup */
122 u32 bitset;
126 * Hash buckets are shared by all the futex_keys that hash to the same
127 * location. Each key may have multiple futex_q structures, one for each task
128 * waiting on a futex.
130 struct futex_hash_bucket {
131 spinlock_t lock;
132 struct plist_head chain;
135 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
138 * We hash on the keys returned from get_futex_key (see below).
140 static struct futex_hash_bucket *hash_futex(union futex_key *key)
142 u32 hash = jhash2((u32*)&key->both.word,
143 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144 key->both.offset);
145 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
149 * Return 1 if two futex_keys are equal, 0 otherwise.
151 static inline int match_futex(union futex_key *key1, union futex_key *key2)
153 return (key1 && key2
154 && key1->both.word == key2->both.word
155 && key1->both.ptr == key2->both.ptr
156 && key1->both.offset == key2->both.offset);
160 * Take a reference to the resource addressed by a key.
161 * Can be called while holding spinlocks.
164 static void get_futex_key_refs(union futex_key *key)
166 if (!key->both.ptr)
167 return;
169 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170 case FUT_OFF_INODE:
171 atomic_inc(&key->shared.inode->i_count);
172 break;
173 case FUT_OFF_MMSHARED:
174 atomic_inc(&key->private.mm->mm_count);
175 break;
180 * Drop a reference to the resource addressed by a key.
181 * The hash bucket spinlock must not be held.
183 static void drop_futex_key_refs(union futex_key *key)
185 if (!key->both.ptr) {
186 /* If we're here then we tried to put a key we failed to get */
187 WARN_ON_ONCE(1);
188 return;
191 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192 case FUT_OFF_INODE:
193 iput(key->shared.inode);
194 break;
195 case FUT_OFF_MMSHARED:
196 mmdrop(key->private.mm);
197 break;
202 * get_futex_key - Get parameters which are the keys for a futex.
203 * @uaddr: virtual address of the futex
204 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205 * @key: address where result is stored.
206 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
208 * Returns a negative error code or 0
209 * The key words are stored in *key on success.
211 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
212 * offset_within_page). For private mappings, it's (uaddr, current->mm).
213 * We can usually work out the index without swapping in the page.
215 * lock_page() might sleep, the caller should not hold a spinlock.
217 static int
218 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
220 unsigned long address = (unsigned long)uaddr;
221 struct mm_struct *mm = current->mm;
222 struct page *page;
223 int err;
226 * The futex address must be "naturally" aligned.
228 key->both.offset = address % PAGE_SIZE;
229 if (unlikely((address % sizeof(u32)) != 0))
230 return -EINVAL;
231 address -= key->both.offset;
234 * PROCESS_PRIVATE futexes are fast.
235 * As the mm cannot disappear under us and the 'key' only needs
236 * virtual address, we dont even have to find the underlying vma.
237 * Note : We do have to check 'uaddr' is a valid user address,
238 * but access_ok() should be faster than find_vma()
240 if (!fshared) {
241 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
242 return -EFAULT;
243 key->private.mm = mm;
244 key->private.address = address;
245 get_futex_key_refs(key);
246 return 0;
249 again:
250 err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
251 if (err < 0)
252 return err;
254 page = compound_head(page);
255 lock_page(page);
256 if (!page->mapping) {
257 unlock_page(page);
258 put_page(page);
259 goto again;
263 * Private mappings are handled in a simple way.
265 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
266 * it's a read-only handle, it's expected that futexes attach to
267 * the object not the particular process.
269 if (PageAnon(page)) {
270 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
271 key->private.mm = mm;
272 key->private.address = address;
273 } else {
274 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
275 key->shared.inode = page->mapping->host;
276 key->shared.pgoff = page->index;
279 get_futex_key_refs(key);
281 unlock_page(page);
282 put_page(page);
283 return 0;
286 static inline
287 void put_futex_key(int fshared, union futex_key *key)
289 drop_futex_key_refs(key);
293 * fault_in_user_writeable - fault in user address and verify RW access
294 * @uaddr: pointer to faulting user space address
296 * Slow path to fixup the fault we just took in the atomic write
297 * access to @uaddr.
299 * We have no generic implementation of a non destructive write to the
300 * user address. We know that we faulted in the atomic pagefault
301 * disabled section so we can as well avoid the #PF overhead by
302 * calling get_user_pages() right away.
304 static int fault_in_user_writeable(u32 __user *uaddr)
306 struct mm_struct *mm = current->mm;
307 int ret;
309 down_read(&mm->mmap_sem);
310 ret = get_user_pages(current, mm, (unsigned long)uaddr,
311 1, 1, 0, NULL, NULL);
312 up_read(&mm->mmap_sem);
314 return ret < 0 ? ret : 0;
318 * futex_top_waiter() - Return the highest priority waiter on a futex
319 * @hb: the hash bucket the futex_q's reside in
320 * @key: the futex key (to distinguish it from other futex futex_q's)
322 * Must be called with the hb lock held.
324 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
325 union futex_key *key)
327 struct futex_q *this;
329 plist_for_each_entry(this, &hb->chain, list) {
330 if (match_futex(&this->key, key))
331 return this;
333 return NULL;
336 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
338 u32 curval;
340 pagefault_disable();
341 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
342 pagefault_enable();
344 return curval;
347 static int get_futex_value_locked(u32 *dest, u32 __user *from)
349 int ret;
351 pagefault_disable();
352 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
353 pagefault_enable();
355 return ret ? -EFAULT : 0;
360 * PI code:
362 static int refill_pi_state_cache(void)
364 struct futex_pi_state *pi_state;
366 if (likely(current->pi_state_cache))
367 return 0;
369 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
371 if (!pi_state)
372 return -ENOMEM;
374 INIT_LIST_HEAD(&pi_state->list);
375 /* pi_mutex gets initialized later */
376 pi_state->owner = NULL;
377 atomic_set(&pi_state->refcount, 1);
378 pi_state->key = FUTEX_KEY_INIT;
380 current->pi_state_cache = pi_state;
382 return 0;
385 static struct futex_pi_state * alloc_pi_state(void)
387 struct futex_pi_state *pi_state = current->pi_state_cache;
389 WARN_ON(!pi_state);
390 current->pi_state_cache = NULL;
392 return pi_state;
395 static void free_pi_state(struct futex_pi_state *pi_state)
397 if (!atomic_dec_and_test(&pi_state->refcount))
398 return;
401 * If pi_state->owner is NULL, the owner is most probably dying
402 * and has cleaned up the pi_state already
404 if (pi_state->owner) {
405 spin_lock_irq(&pi_state->owner->pi_lock);
406 list_del_init(&pi_state->list);
407 spin_unlock_irq(&pi_state->owner->pi_lock);
409 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
412 if (current->pi_state_cache)
413 kfree(pi_state);
414 else {
416 * pi_state->list is already empty.
417 * clear pi_state->owner.
418 * refcount is at 0 - put it back to 1.
420 pi_state->owner = NULL;
421 atomic_set(&pi_state->refcount, 1);
422 current->pi_state_cache = pi_state;
427 * Look up the task based on what TID userspace gave us.
428 * We dont trust it.
430 static struct task_struct * futex_find_get_task(pid_t pid)
432 struct task_struct *p;
433 const struct cred *cred = current_cred(), *pcred;
435 rcu_read_lock();
436 p = find_task_by_vpid(pid);
437 if (!p) {
438 p = ERR_PTR(-ESRCH);
439 } else {
440 pcred = __task_cred(p);
441 if (cred->euid != pcred->euid &&
442 cred->euid != pcred->uid)
443 p = ERR_PTR(-ESRCH);
444 else
445 get_task_struct(p);
448 rcu_read_unlock();
450 return p;
454 * This task is holding PI mutexes at exit time => bad.
455 * Kernel cleans up PI-state, but userspace is likely hosed.
456 * (Robust-futex cleanup is separate and might save the day for userspace.)
458 void exit_pi_state_list(struct task_struct *curr)
460 struct list_head *next, *head = &curr->pi_state_list;
461 struct futex_pi_state *pi_state;
462 struct futex_hash_bucket *hb;
463 union futex_key key = FUTEX_KEY_INIT;
465 if (!futex_cmpxchg_enabled)
466 return;
468 * We are a ZOMBIE and nobody can enqueue itself on
469 * pi_state_list anymore, but we have to be careful
470 * versus waiters unqueueing themselves:
472 spin_lock_irq(&curr->pi_lock);
473 while (!list_empty(head)) {
475 next = head->next;
476 pi_state = list_entry(next, struct futex_pi_state, list);
477 key = pi_state->key;
478 hb = hash_futex(&key);
479 spin_unlock_irq(&curr->pi_lock);
481 spin_lock(&hb->lock);
483 spin_lock_irq(&curr->pi_lock);
485 * We dropped the pi-lock, so re-check whether this
486 * task still owns the PI-state:
488 if (head->next != next) {
489 spin_unlock(&hb->lock);
490 continue;
493 WARN_ON(pi_state->owner != curr);
494 WARN_ON(list_empty(&pi_state->list));
495 list_del_init(&pi_state->list);
496 pi_state->owner = NULL;
497 spin_unlock_irq(&curr->pi_lock);
499 rt_mutex_unlock(&pi_state->pi_mutex);
501 spin_unlock(&hb->lock);
503 spin_lock_irq(&curr->pi_lock);
505 spin_unlock_irq(&curr->pi_lock);
508 static int
509 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
510 union futex_key *key, struct futex_pi_state **ps)
512 struct futex_pi_state *pi_state = NULL;
513 struct futex_q *this, *next;
514 struct plist_head *head;
515 struct task_struct *p;
516 pid_t pid = uval & FUTEX_TID_MASK;
518 head = &hb->chain;
520 plist_for_each_entry_safe(this, next, head, list) {
521 if (match_futex(&this->key, key)) {
523 * Another waiter already exists - bump up
524 * the refcount and return its pi_state:
526 pi_state = this->pi_state;
528 * Userspace might have messed up non PI and PI futexes
530 if (unlikely(!pi_state))
531 return -EINVAL;
533 WARN_ON(!atomic_read(&pi_state->refcount));
534 WARN_ON(pid && pi_state->owner &&
535 pi_state->owner->pid != pid);
537 atomic_inc(&pi_state->refcount);
538 *ps = pi_state;
540 return 0;
545 * We are the first waiter - try to look up the real owner and attach
546 * the new pi_state to it, but bail out when TID = 0
548 if (!pid)
549 return -ESRCH;
550 p = futex_find_get_task(pid);
551 if (IS_ERR(p))
552 return PTR_ERR(p);
555 * We need to look at the task state flags to figure out,
556 * whether the task is exiting. To protect against the do_exit
557 * change of the task flags, we do this protected by
558 * p->pi_lock:
560 spin_lock_irq(&p->pi_lock);
561 if (unlikely(p->flags & PF_EXITING)) {
563 * The task is on the way out. When PF_EXITPIDONE is
564 * set, we know that the task has finished the
565 * cleanup:
567 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
569 spin_unlock_irq(&p->pi_lock);
570 put_task_struct(p);
571 return ret;
574 pi_state = alloc_pi_state();
577 * Initialize the pi_mutex in locked state and make 'p'
578 * the owner of it:
580 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
582 /* Store the key for possible exit cleanups: */
583 pi_state->key = *key;
585 WARN_ON(!list_empty(&pi_state->list));
586 list_add(&pi_state->list, &p->pi_state_list);
587 pi_state->owner = p;
588 spin_unlock_irq(&p->pi_lock);
590 put_task_struct(p);
592 *ps = pi_state;
594 return 0;
598 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
599 * @uaddr: the pi futex user address
600 * @hb: the pi futex hash bucket
601 * @key: the futex key associated with uaddr and hb
602 * @ps: the pi_state pointer where we store the result of the
603 * lookup
604 * @task: the task to perform the atomic lock work for. This will
605 * be "current" except in the case of requeue pi.
606 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
608 * Returns:
609 * 0 - ready to wait
610 * 1 - acquired the lock
611 * <0 - error
613 * The hb->lock and futex_key refs shall be held by the caller.
615 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
616 union futex_key *key,
617 struct futex_pi_state **ps,
618 struct task_struct *task, int set_waiters)
620 int lock_taken, ret, ownerdied = 0;
621 u32 uval, newval, curval;
623 retry:
624 ret = lock_taken = 0;
627 * To avoid races, we attempt to take the lock here again
628 * (by doing a 0 -> TID atomic cmpxchg), while holding all
629 * the locks. It will most likely not succeed.
631 newval = task_pid_vnr(task);
632 if (set_waiters)
633 newval |= FUTEX_WAITERS;
635 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
637 if (unlikely(curval == -EFAULT))
638 return -EFAULT;
641 * Detect deadlocks.
643 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
644 return -EDEADLK;
647 * Surprise - we got the lock. Just return to userspace:
649 if (unlikely(!curval))
650 return 1;
652 uval = curval;
655 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
656 * to wake at the next unlock.
658 newval = curval | FUTEX_WAITERS;
661 * There are two cases, where a futex might have no owner (the
662 * owner TID is 0): OWNER_DIED. We take over the futex in this
663 * case. We also do an unconditional take over, when the owner
664 * of the futex died.
666 * This is safe as we are protected by the hash bucket lock !
668 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
669 /* Keep the OWNER_DIED bit */
670 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
671 ownerdied = 0;
672 lock_taken = 1;
675 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
677 if (unlikely(curval == -EFAULT))
678 return -EFAULT;
679 if (unlikely(curval != uval))
680 goto retry;
683 * We took the lock due to owner died take over.
685 if (unlikely(lock_taken))
686 return 1;
689 * We dont have the lock. Look up the PI state (or create it if
690 * we are the first waiter):
692 ret = lookup_pi_state(uval, hb, key, ps);
694 if (unlikely(ret)) {
695 switch (ret) {
696 case -ESRCH:
698 * No owner found for this futex. Check if the
699 * OWNER_DIED bit is set to figure out whether
700 * this is a robust futex or not.
702 if (get_futex_value_locked(&curval, uaddr))
703 return -EFAULT;
706 * We simply start over in case of a robust
707 * futex. The code above will take the futex
708 * and return happy.
710 if (curval & FUTEX_OWNER_DIED) {
711 ownerdied = 1;
712 goto retry;
714 default:
715 break;
719 return ret;
723 * The hash bucket lock must be held when this is called.
724 * Afterwards, the futex_q must not be accessed.
726 static void wake_futex(struct futex_q *q)
728 struct task_struct *p = q->task;
731 * We set q->lock_ptr = NULL _before_ we wake up the task. If
732 * a non futex wake up happens on another CPU then the task
733 * might exit and p would dereference a non existing task
734 * struct. Prevent this by holding a reference on p across the
735 * wake up.
737 get_task_struct(p);
739 plist_del(&q->list, &q->list.plist);
741 * The waiting task can free the futex_q as soon as
742 * q->lock_ptr = NULL is written, without taking any locks. A
743 * memory barrier is required here to prevent the following
744 * store to lock_ptr from getting ahead of the plist_del.
746 smp_wmb();
747 q->lock_ptr = NULL;
749 wake_up_state(p, TASK_NORMAL);
750 put_task_struct(p);
753 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
755 struct task_struct *new_owner;
756 struct futex_pi_state *pi_state = this->pi_state;
757 u32 curval, newval;
759 if (!pi_state)
760 return -EINVAL;
762 spin_lock(&pi_state->pi_mutex.wait_lock);
763 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
766 * This happens when we have stolen the lock and the original
767 * pending owner did not enqueue itself back on the rt_mutex.
768 * Thats not a tragedy. We know that way, that a lock waiter
769 * is on the fly. We make the futex_q waiter the pending owner.
771 if (!new_owner)
772 new_owner = this->task;
775 * We pass it to the next owner. (The WAITERS bit is always
776 * kept enabled while there is PI state around. We must also
777 * preserve the owner died bit.)
779 if (!(uval & FUTEX_OWNER_DIED)) {
780 int ret = 0;
782 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
784 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
786 if (curval == -EFAULT)
787 ret = -EFAULT;
788 else if (curval != uval)
789 ret = -EINVAL;
790 if (ret) {
791 spin_unlock(&pi_state->pi_mutex.wait_lock);
792 return ret;
796 spin_lock_irq(&pi_state->owner->pi_lock);
797 WARN_ON(list_empty(&pi_state->list));
798 list_del_init(&pi_state->list);
799 spin_unlock_irq(&pi_state->owner->pi_lock);
801 spin_lock_irq(&new_owner->pi_lock);
802 WARN_ON(!list_empty(&pi_state->list));
803 list_add(&pi_state->list, &new_owner->pi_state_list);
804 pi_state->owner = new_owner;
805 spin_unlock_irq(&new_owner->pi_lock);
807 spin_unlock(&pi_state->pi_mutex.wait_lock);
808 rt_mutex_unlock(&pi_state->pi_mutex);
810 return 0;
813 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
815 u32 oldval;
818 * There is no waiter, so we unlock the futex. The owner died
819 * bit has not to be preserved here. We are the owner:
821 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
823 if (oldval == -EFAULT)
824 return oldval;
825 if (oldval != uval)
826 return -EAGAIN;
828 return 0;
832 * Express the locking dependencies for lockdep:
834 static inline void
835 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
837 if (hb1 <= hb2) {
838 spin_lock(&hb1->lock);
839 if (hb1 < hb2)
840 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
841 } else { /* hb1 > hb2 */
842 spin_lock(&hb2->lock);
843 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
847 static inline void
848 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
850 spin_unlock(&hb1->lock);
851 if (hb1 != hb2)
852 spin_unlock(&hb2->lock);
856 * Wake up waiters matching bitset queued on this futex (uaddr).
858 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
860 struct futex_hash_bucket *hb;
861 struct futex_q *this, *next;
862 struct plist_head *head;
863 union futex_key key = FUTEX_KEY_INIT;
864 int ret;
866 if (!bitset)
867 return -EINVAL;
869 ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
870 if (unlikely(ret != 0))
871 goto out;
873 hb = hash_futex(&key);
874 spin_lock(&hb->lock);
875 head = &hb->chain;
877 plist_for_each_entry_safe(this, next, head, list) {
878 if (match_futex (&this->key, &key)) {
879 if (this->pi_state || this->rt_waiter) {
880 ret = -EINVAL;
881 break;
884 /* Check if one of the bits is set in both bitsets */
885 if (!(this->bitset & bitset))
886 continue;
888 wake_futex(this);
889 if (++ret >= nr_wake)
890 break;
894 spin_unlock(&hb->lock);
895 put_futex_key(fshared, &key);
896 out:
897 return ret;
901 * Wake up all waiters hashed on the physical page that is mapped
902 * to this virtual address:
904 static int
905 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
906 int nr_wake, int nr_wake2, int op)
908 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
909 struct futex_hash_bucket *hb1, *hb2;
910 struct plist_head *head;
911 struct futex_q *this, *next;
912 int ret, op_ret;
914 retry:
915 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
916 if (unlikely(ret != 0))
917 goto out;
918 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
919 if (unlikely(ret != 0))
920 goto out_put_key1;
922 hb1 = hash_futex(&key1);
923 hb2 = hash_futex(&key2);
925 retry_private:
926 double_lock_hb(hb1, hb2);
927 op_ret = futex_atomic_op_inuser(op, uaddr2);
928 if (unlikely(op_ret < 0)) {
930 double_unlock_hb(hb1, hb2);
932 #ifndef CONFIG_MMU
934 * we don't get EFAULT from MMU faults if we don't have an MMU,
935 * but we might get them from range checking
937 ret = op_ret;
938 goto out_put_keys;
939 #endif
941 if (unlikely(op_ret != -EFAULT)) {
942 ret = op_ret;
943 goto out_put_keys;
946 ret = fault_in_user_writeable(uaddr2);
947 if (ret)
948 goto out_put_keys;
950 if (!fshared)
951 goto retry_private;
953 put_futex_key(fshared, &key2);
954 put_futex_key(fshared, &key1);
955 goto retry;
958 head = &hb1->chain;
960 plist_for_each_entry_safe(this, next, head, list) {
961 if (match_futex (&this->key, &key1)) {
962 wake_futex(this);
963 if (++ret >= nr_wake)
964 break;
968 if (op_ret > 0) {
969 head = &hb2->chain;
971 op_ret = 0;
972 plist_for_each_entry_safe(this, next, head, list) {
973 if (match_futex (&this->key, &key2)) {
974 wake_futex(this);
975 if (++op_ret >= nr_wake2)
976 break;
979 ret += op_ret;
982 double_unlock_hb(hb1, hb2);
983 out_put_keys:
984 put_futex_key(fshared, &key2);
985 out_put_key1:
986 put_futex_key(fshared, &key1);
987 out:
988 return ret;
992 * requeue_futex() - Requeue a futex_q from one hb to another
993 * @q: the futex_q to requeue
994 * @hb1: the source hash_bucket
995 * @hb2: the target hash_bucket
996 * @key2: the new key for the requeued futex_q
998 static inline
999 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1000 struct futex_hash_bucket *hb2, union futex_key *key2)
1004 * If key1 and key2 hash to the same bucket, no need to
1005 * requeue.
1007 if (likely(&hb1->chain != &hb2->chain)) {
1008 plist_del(&q->list, &hb1->chain);
1009 plist_add(&q->list, &hb2->chain);
1010 q->lock_ptr = &hb2->lock;
1011 #ifdef CONFIG_DEBUG_PI_LIST
1012 q->list.plist.lock = &hb2->lock;
1013 #endif
1015 get_futex_key_refs(key2);
1016 q->key = *key2;
1020 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1021 * q: the futex_q
1022 * key: the key of the requeue target futex
1023 * hb: the hash_bucket of the requeue target futex
1025 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1026 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1027 * to the requeue target futex so the waiter can detect the wakeup on the right
1028 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1029 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1030 * to protect access to the pi_state to fixup the owner later. Must be called
1031 * with both q->lock_ptr and hb->lock held.
1033 static inline
1034 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1035 struct futex_hash_bucket *hb)
1037 get_futex_key_refs(key);
1038 q->key = *key;
1040 WARN_ON(plist_node_empty(&q->list));
1041 plist_del(&q->list, &q->list.plist);
1043 WARN_ON(!q->rt_waiter);
1044 q->rt_waiter = NULL;
1046 q->lock_ptr = &hb->lock;
1047 #ifdef CONFIG_DEBUG_PI_LIST
1048 q->list.plist.lock = &hb->lock;
1049 #endif
1051 wake_up_state(q->task, TASK_NORMAL);
1055 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1056 * @pifutex: the user address of the to futex
1057 * @hb1: the from futex hash bucket, must be locked by the caller
1058 * @hb2: the to futex hash bucket, must be locked by the caller
1059 * @key1: the from futex key
1060 * @key2: the to futex key
1061 * @ps: address to store the pi_state pointer
1062 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1064 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1065 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1066 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1067 * hb1 and hb2 must be held by the caller.
1069 * Returns:
1070 * 0 - failed to acquire the lock atomicly
1071 * 1 - acquired the lock
1072 * <0 - error
1074 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1075 struct futex_hash_bucket *hb1,
1076 struct futex_hash_bucket *hb2,
1077 union futex_key *key1, union futex_key *key2,
1078 struct futex_pi_state **ps, int set_waiters)
1080 struct futex_q *top_waiter = NULL;
1081 u32 curval;
1082 int ret;
1084 if (get_futex_value_locked(&curval, pifutex))
1085 return -EFAULT;
1088 * Find the top_waiter and determine if there are additional waiters.
1089 * If the caller intends to requeue more than 1 waiter to pifutex,
1090 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1091 * as we have means to handle the possible fault. If not, don't set
1092 * the bit unecessarily as it will force the subsequent unlock to enter
1093 * the kernel.
1095 top_waiter = futex_top_waiter(hb1, key1);
1097 /* There are no waiters, nothing for us to do. */
1098 if (!top_waiter)
1099 return 0;
1101 /* Ensure we requeue to the expected futex. */
1102 if (!match_futex(top_waiter->requeue_pi_key, key2))
1103 return -EINVAL;
1106 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1107 * the contended case or if set_waiters is 1. The pi_state is returned
1108 * in ps in contended cases.
1110 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1111 set_waiters);
1112 if (ret == 1)
1113 requeue_pi_wake_futex(top_waiter, key2, hb2);
1115 return ret;
1119 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1120 * uaddr1: source futex user address
1121 * uaddr2: target futex user address
1122 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1123 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1124 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1125 * pi futex (pi to pi requeue is not supported)
1127 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1128 * uaddr2 atomically on behalf of the top waiter.
1130 * Returns:
1131 * >=0 - on success, the number of tasks requeued or woken
1132 * <0 - on error
1134 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1135 int nr_wake, int nr_requeue, u32 *cmpval,
1136 int requeue_pi)
1138 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1139 int drop_count = 0, task_count = 0, ret;
1140 struct futex_pi_state *pi_state = NULL;
1141 struct futex_hash_bucket *hb1, *hb2;
1142 struct plist_head *head1;
1143 struct futex_q *this, *next;
1144 u32 curval2;
1146 if (requeue_pi) {
1148 * requeue_pi requires a pi_state, try to allocate it now
1149 * without any locks in case it fails.
1151 if (refill_pi_state_cache())
1152 return -ENOMEM;
1154 * requeue_pi must wake as many tasks as it can, up to nr_wake
1155 * + nr_requeue, since it acquires the rt_mutex prior to
1156 * returning to userspace, so as to not leave the rt_mutex with
1157 * waiters and no owner. However, second and third wake-ups
1158 * cannot be predicted as they involve race conditions with the
1159 * first wake and a fault while looking up the pi_state. Both
1160 * pthread_cond_signal() and pthread_cond_broadcast() should
1161 * use nr_wake=1.
1163 if (nr_wake != 1)
1164 return -EINVAL;
1167 retry:
1168 if (pi_state != NULL) {
1170 * We will have to lookup the pi_state again, so free this one
1171 * to keep the accounting correct.
1173 free_pi_state(pi_state);
1174 pi_state = NULL;
1177 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1178 if (unlikely(ret != 0))
1179 goto out;
1180 ret = get_futex_key(uaddr2, fshared, &key2,
1181 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1182 if (unlikely(ret != 0))
1183 goto out_put_key1;
1185 hb1 = hash_futex(&key1);
1186 hb2 = hash_futex(&key2);
1188 retry_private:
1189 double_lock_hb(hb1, hb2);
1191 if (likely(cmpval != NULL)) {
1192 u32 curval;
1194 ret = get_futex_value_locked(&curval, uaddr1);
1196 if (unlikely(ret)) {
1197 double_unlock_hb(hb1, hb2);
1199 ret = get_user(curval, uaddr1);
1200 if (ret)
1201 goto out_put_keys;
1203 if (!fshared)
1204 goto retry_private;
1206 put_futex_key(fshared, &key2);
1207 put_futex_key(fshared, &key1);
1208 goto retry;
1210 if (curval != *cmpval) {
1211 ret = -EAGAIN;
1212 goto out_unlock;
1216 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1218 * Attempt to acquire uaddr2 and wake the top waiter. If we
1219 * intend to requeue waiters, force setting the FUTEX_WAITERS
1220 * bit. We force this here where we are able to easily handle
1221 * faults rather in the requeue loop below.
1223 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1224 &key2, &pi_state, nr_requeue);
1227 * At this point the top_waiter has either taken uaddr2 or is
1228 * waiting on it. If the former, then the pi_state will not
1229 * exist yet, look it up one more time to ensure we have a
1230 * reference to it.
1232 if (ret == 1) {
1233 WARN_ON(pi_state);
1234 drop_count++;
1235 task_count++;
1236 ret = get_futex_value_locked(&curval2, uaddr2);
1237 if (!ret)
1238 ret = lookup_pi_state(curval2, hb2, &key2,
1239 &pi_state);
1242 switch (ret) {
1243 case 0:
1244 break;
1245 case -EFAULT:
1246 double_unlock_hb(hb1, hb2);
1247 put_futex_key(fshared, &key2);
1248 put_futex_key(fshared, &key1);
1249 ret = fault_in_user_writeable(uaddr2);
1250 if (!ret)
1251 goto retry;
1252 goto out;
1253 case -EAGAIN:
1254 /* The owner was exiting, try again. */
1255 double_unlock_hb(hb1, hb2);
1256 put_futex_key(fshared, &key2);
1257 put_futex_key(fshared, &key1);
1258 cond_resched();
1259 goto retry;
1260 default:
1261 goto out_unlock;
1265 head1 = &hb1->chain;
1266 plist_for_each_entry_safe(this, next, head1, list) {
1267 if (task_count - nr_wake >= nr_requeue)
1268 break;
1270 if (!match_futex(&this->key, &key1))
1271 continue;
1274 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1275 * be paired with each other and no other futex ops.
1277 if ((requeue_pi && !this->rt_waiter) ||
1278 (!requeue_pi && this->rt_waiter)) {
1279 ret = -EINVAL;
1280 break;
1284 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1285 * lock, we already woke the top_waiter. If not, it will be
1286 * woken by futex_unlock_pi().
1288 if (++task_count <= nr_wake && !requeue_pi) {
1289 wake_futex(this);
1290 continue;
1293 /* Ensure we requeue to the expected futex for requeue_pi. */
1294 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1295 ret = -EINVAL;
1296 break;
1300 * Requeue nr_requeue waiters and possibly one more in the case
1301 * of requeue_pi if we couldn't acquire the lock atomically.
1303 if (requeue_pi) {
1304 /* Prepare the waiter to take the rt_mutex. */
1305 atomic_inc(&pi_state->refcount);
1306 this->pi_state = pi_state;
1307 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1308 this->rt_waiter,
1309 this->task, 1);
1310 if (ret == 1) {
1311 /* We got the lock. */
1312 requeue_pi_wake_futex(this, &key2, hb2);
1313 drop_count++;
1314 continue;
1315 } else if (ret) {
1316 /* -EDEADLK */
1317 this->pi_state = NULL;
1318 free_pi_state(pi_state);
1319 goto out_unlock;
1322 requeue_futex(this, hb1, hb2, &key2);
1323 drop_count++;
1326 out_unlock:
1327 double_unlock_hb(hb1, hb2);
1330 * drop_futex_key_refs() must be called outside the spinlocks. During
1331 * the requeue we moved futex_q's from the hash bucket at key1 to the
1332 * one at key2 and updated their key pointer. We no longer need to
1333 * hold the references to key1.
1335 while (--drop_count >= 0)
1336 drop_futex_key_refs(&key1);
1338 out_put_keys:
1339 put_futex_key(fshared, &key2);
1340 out_put_key1:
1341 put_futex_key(fshared, &key1);
1342 out:
1343 if (pi_state != NULL)
1344 free_pi_state(pi_state);
1345 return ret ? ret : task_count;
1348 /* The key must be already stored in q->key. */
1349 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1351 struct futex_hash_bucket *hb;
1353 get_futex_key_refs(&q->key);
1354 hb = hash_futex(&q->key);
1355 q->lock_ptr = &hb->lock;
1357 spin_lock(&hb->lock);
1358 return hb;
1361 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1363 int prio;
1366 * The priority used to register this element is
1367 * - either the real thread-priority for the real-time threads
1368 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1369 * - or MAX_RT_PRIO for non-RT threads.
1370 * Thus, all RT-threads are woken first in priority order, and
1371 * the others are woken last, in FIFO order.
1373 prio = min(current->normal_prio, MAX_RT_PRIO);
1375 plist_node_init(&q->list, prio);
1376 #ifdef CONFIG_DEBUG_PI_LIST
1377 q->list.plist.lock = &hb->lock;
1378 #endif
1379 plist_add(&q->list, &hb->chain);
1380 q->task = current;
1381 spin_unlock(&hb->lock);
1384 static inline void
1385 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1387 spin_unlock(&hb->lock);
1388 drop_futex_key_refs(&q->key);
1392 * queue_me and unqueue_me must be called as a pair, each
1393 * exactly once. They are called with the hashed spinlock held.
1396 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1397 static int unqueue_me(struct futex_q *q)
1399 spinlock_t *lock_ptr;
1400 int ret = 0;
1402 /* In the common case we don't take the spinlock, which is nice. */
1403 retry:
1404 lock_ptr = q->lock_ptr;
1405 barrier();
1406 if (lock_ptr != NULL) {
1407 spin_lock(lock_ptr);
1409 * q->lock_ptr can change between reading it and
1410 * spin_lock(), causing us to take the wrong lock. This
1411 * corrects the race condition.
1413 * Reasoning goes like this: if we have the wrong lock,
1414 * q->lock_ptr must have changed (maybe several times)
1415 * between reading it and the spin_lock(). It can
1416 * change again after the spin_lock() but only if it was
1417 * already changed before the spin_lock(). It cannot,
1418 * however, change back to the original value. Therefore
1419 * we can detect whether we acquired the correct lock.
1421 if (unlikely(lock_ptr != q->lock_ptr)) {
1422 spin_unlock(lock_ptr);
1423 goto retry;
1425 WARN_ON(plist_node_empty(&q->list));
1426 plist_del(&q->list, &q->list.plist);
1428 BUG_ON(q->pi_state);
1430 spin_unlock(lock_ptr);
1431 ret = 1;
1434 drop_futex_key_refs(&q->key);
1435 return ret;
1439 * PI futexes can not be requeued and must remove themself from the
1440 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1441 * and dropped here.
1443 static void unqueue_me_pi(struct futex_q *q)
1445 WARN_ON(plist_node_empty(&q->list));
1446 plist_del(&q->list, &q->list.plist);
1448 BUG_ON(!q->pi_state);
1449 free_pi_state(q->pi_state);
1450 q->pi_state = NULL;
1452 spin_unlock(q->lock_ptr);
1454 drop_futex_key_refs(&q->key);
1458 * Fixup the pi_state owner with the new owner.
1460 * Must be called with hash bucket lock held and mm->sem held for non
1461 * private futexes.
1463 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1464 struct task_struct *newowner, int fshared)
1466 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1467 struct futex_pi_state *pi_state = q->pi_state;
1468 struct task_struct *oldowner = pi_state->owner;
1469 u32 uval, curval, newval;
1470 int ret;
1472 /* Owner died? */
1473 if (!pi_state->owner)
1474 newtid |= FUTEX_OWNER_DIED;
1477 * We are here either because we stole the rtmutex from the
1478 * pending owner or we are the pending owner which failed to
1479 * get the rtmutex. We have to replace the pending owner TID
1480 * in the user space variable. This must be atomic as we have
1481 * to preserve the owner died bit here.
1483 * Note: We write the user space value _before_ changing the pi_state
1484 * because we can fault here. Imagine swapped out pages or a fork
1485 * that marked all the anonymous memory readonly for cow.
1487 * Modifying pi_state _before_ the user space value would
1488 * leave the pi_state in an inconsistent state when we fault
1489 * here, because we need to drop the hash bucket lock to
1490 * handle the fault. This might be observed in the PID check
1491 * in lookup_pi_state.
1493 retry:
1494 if (get_futex_value_locked(&uval, uaddr))
1495 goto handle_fault;
1497 while (1) {
1498 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1500 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1502 if (curval == -EFAULT)
1503 goto handle_fault;
1504 if (curval == uval)
1505 break;
1506 uval = curval;
1510 * We fixed up user space. Now we need to fix the pi_state
1511 * itself.
1513 if (pi_state->owner != NULL) {
1514 spin_lock_irq(&pi_state->owner->pi_lock);
1515 WARN_ON(list_empty(&pi_state->list));
1516 list_del_init(&pi_state->list);
1517 spin_unlock_irq(&pi_state->owner->pi_lock);
1520 pi_state->owner = newowner;
1522 spin_lock_irq(&newowner->pi_lock);
1523 WARN_ON(!list_empty(&pi_state->list));
1524 list_add(&pi_state->list, &newowner->pi_state_list);
1525 spin_unlock_irq(&newowner->pi_lock);
1526 return 0;
1529 * To handle the page fault we need to drop the hash bucket
1530 * lock here. That gives the other task (either the pending
1531 * owner itself or the task which stole the rtmutex) the
1532 * chance to try the fixup of the pi_state. So once we are
1533 * back from handling the fault we need to check the pi_state
1534 * after reacquiring the hash bucket lock and before trying to
1535 * do another fixup. When the fixup has been done already we
1536 * simply return.
1538 handle_fault:
1539 spin_unlock(q->lock_ptr);
1541 ret = fault_in_user_writeable(uaddr);
1543 spin_lock(q->lock_ptr);
1546 * Check if someone else fixed it for us:
1548 if (pi_state->owner != oldowner)
1549 return 0;
1551 if (ret)
1552 return ret;
1554 goto retry;
1558 * In case we must use restart_block to restart a futex_wait,
1559 * we encode in the 'flags' shared capability
1561 #define FLAGS_SHARED 0x01
1562 #define FLAGS_CLOCKRT 0x02
1563 #define FLAGS_HAS_TIMEOUT 0x04
1565 static long futex_wait_restart(struct restart_block *restart);
1568 * fixup_owner() - Post lock pi_state and corner case management
1569 * @uaddr: user address of the futex
1570 * @fshared: whether the futex is shared (1) or not (0)
1571 * @q: futex_q (contains pi_state and access to the rt_mutex)
1572 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1574 * After attempting to lock an rt_mutex, this function is called to cleanup
1575 * the pi_state owner as well as handle race conditions that may allow us to
1576 * acquire the lock. Must be called with the hb lock held.
1578 * Returns:
1579 * 1 - success, lock taken
1580 * 0 - success, lock not taken
1581 * <0 - on error (-EFAULT)
1583 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1584 int locked)
1586 struct task_struct *owner;
1587 int ret = 0;
1589 if (locked) {
1591 * Got the lock. We might not be the anticipated owner if we
1592 * did a lock-steal - fix up the PI-state in that case:
1594 if (q->pi_state->owner != current)
1595 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1596 goto out;
1600 * Catch the rare case, where the lock was released when we were on the
1601 * way back before we locked the hash bucket.
1603 if (q->pi_state->owner == current) {
1605 * Try to get the rt_mutex now. This might fail as some other
1606 * task acquired the rt_mutex after we removed ourself from the
1607 * rt_mutex waiters list.
1609 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1610 locked = 1;
1611 goto out;
1615 * pi_state is incorrect, some other task did a lock steal and
1616 * we returned due to timeout or signal without taking the
1617 * rt_mutex. Too late. We can access the rt_mutex_owner without
1618 * locking, as the other task is now blocked on the hash bucket
1619 * lock. Fix the state up.
1621 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1622 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1623 goto out;
1627 * Paranoia check. If we did not take the lock, then we should not be
1628 * the owner, nor the pending owner, of the rt_mutex.
1630 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1631 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1632 "pi-state %p\n", ret,
1633 q->pi_state->pi_mutex.owner,
1634 q->pi_state->owner);
1636 out:
1637 return ret ? ret : locked;
1641 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1642 * @hb: the futex hash bucket, must be locked by the caller
1643 * @q: the futex_q to queue up on
1644 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1646 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1647 struct hrtimer_sleeper *timeout)
1649 set_current_state(TASK_INTERRUPTIBLE);
1650 queue_me(q, hb);
1652 /* Arm the timer */
1653 if (timeout) {
1654 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1655 if (!hrtimer_active(&timeout->timer))
1656 timeout->task = NULL;
1660 * If we have been removed from the hash list, then another task
1661 * has tried to wake us, and we can skip the call to schedule().
1663 if (likely(!plist_node_empty(&q->list))) {
1665 * If the timer has already expired, current will already be
1666 * flagged for rescheduling. Only call schedule if there
1667 * is no timeout, or if it has yet to expire.
1669 if (!timeout || timeout->task)
1670 schedule();
1672 __set_current_state(TASK_RUNNING);
1676 * futex_wait_setup() - Prepare to wait on a futex
1677 * @uaddr: the futex userspace address
1678 * @val: the expected value
1679 * @fshared: whether the futex is shared (1) or not (0)
1680 * @q: the associated futex_q
1681 * @hb: storage for hash_bucket pointer to be returned to caller
1683 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1684 * compare it with the expected value. Handle atomic faults internally.
1685 * Return with the hb lock held and a q.key reference on success, and unlocked
1686 * with no q.key reference on failure.
1688 * Returns:
1689 * 0 - uaddr contains val and hb has been locked
1690 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1692 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1693 struct futex_q *q, struct futex_hash_bucket **hb)
1695 u32 uval;
1696 int ret;
1699 * Access the page AFTER the hash-bucket is locked.
1700 * Order is important:
1702 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1703 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1705 * The basic logical guarantee of a futex is that it blocks ONLY
1706 * if cond(var) is known to be true at the time of blocking, for
1707 * any cond. If we queued after testing *uaddr, that would open
1708 * a race condition where we could block indefinitely with
1709 * cond(var) false, which would violate the guarantee.
1711 * A consequence is that futex_wait() can return zero and absorb
1712 * a wakeup when *uaddr != val on entry to the syscall. This is
1713 * rare, but normal.
1715 retry:
1716 q->key = FUTEX_KEY_INIT;
1717 ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1718 if (unlikely(ret != 0))
1719 return ret;
1721 retry_private:
1722 *hb = queue_lock(q);
1724 ret = get_futex_value_locked(&uval, uaddr);
1726 if (ret) {
1727 queue_unlock(q, *hb);
1729 ret = get_user(uval, uaddr);
1730 if (ret)
1731 goto out;
1733 if (!fshared)
1734 goto retry_private;
1736 put_futex_key(fshared, &q->key);
1737 goto retry;
1740 if (uval != val) {
1741 queue_unlock(q, *hb);
1742 ret = -EWOULDBLOCK;
1745 out:
1746 if (ret)
1747 put_futex_key(fshared, &q->key);
1748 return ret;
1751 static int futex_wait(u32 __user *uaddr, int fshared,
1752 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1754 struct hrtimer_sleeper timeout, *to = NULL;
1755 struct restart_block *restart;
1756 struct futex_hash_bucket *hb;
1757 struct futex_q q;
1758 int ret;
1760 if (!bitset)
1761 return -EINVAL;
1763 q.pi_state = NULL;
1764 q.bitset = bitset;
1765 q.rt_waiter = NULL;
1766 q.requeue_pi_key = NULL;
1768 if (abs_time) {
1769 to = &timeout;
1771 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1772 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1773 hrtimer_init_sleeper(to, current);
1774 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1775 current->timer_slack_ns);
1778 retry:
1779 /* Prepare to wait on uaddr. */
1780 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1781 if (ret)
1782 goto out;
1784 /* queue_me and wait for wakeup, timeout, or a signal. */
1785 futex_wait_queue_me(hb, &q, to);
1787 /* If we were woken (and unqueued), we succeeded, whatever. */
1788 ret = 0;
1789 if (!unqueue_me(&q))
1790 goto out_put_key;
1791 ret = -ETIMEDOUT;
1792 if (to && !to->task)
1793 goto out_put_key;
1796 * We expect signal_pending(current), but we might be the
1797 * victim of a spurious wakeup as well.
1799 if (!signal_pending(current)) {
1800 put_futex_key(fshared, &q.key);
1801 goto retry;
1804 ret = -ERESTARTSYS;
1805 if (!abs_time)
1806 goto out_put_key;
1808 restart = &current_thread_info()->restart_block;
1809 restart->fn = futex_wait_restart;
1810 restart->futex.uaddr = (u32 *)uaddr;
1811 restart->futex.val = val;
1812 restart->futex.time = abs_time->tv64;
1813 restart->futex.bitset = bitset;
1814 restart->futex.flags = FLAGS_HAS_TIMEOUT;
1816 if (fshared)
1817 restart->futex.flags |= FLAGS_SHARED;
1818 if (clockrt)
1819 restart->futex.flags |= FLAGS_CLOCKRT;
1821 ret = -ERESTART_RESTARTBLOCK;
1823 out_put_key:
1824 put_futex_key(fshared, &q.key);
1825 out:
1826 if (to) {
1827 hrtimer_cancel(&to->timer);
1828 destroy_hrtimer_on_stack(&to->timer);
1830 return ret;
1834 static long futex_wait_restart(struct restart_block *restart)
1836 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1837 int fshared = 0;
1838 ktime_t t, *tp = NULL;
1840 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1841 t.tv64 = restart->futex.time;
1842 tp = &t;
1844 restart->fn = do_no_restart_syscall;
1845 if (restart->futex.flags & FLAGS_SHARED)
1846 fshared = 1;
1847 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1848 restart->futex.bitset,
1849 restart->futex.flags & FLAGS_CLOCKRT);
1854 * Userspace tried a 0 -> TID atomic transition of the futex value
1855 * and failed. The kernel side here does the whole locking operation:
1856 * if there are waiters then it will block, it does PI, etc. (Due to
1857 * races the kernel might see a 0 value of the futex too.)
1859 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1860 int detect, ktime_t *time, int trylock)
1862 struct hrtimer_sleeper timeout, *to = NULL;
1863 struct futex_hash_bucket *hb;
1864 struct futex_q q;
1865 int res, ret;
1867 if (refill_pi_state_cache())
1868 return -ENOMEM;
1870 if (time) {
1871 to = &timeout;
1872 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1873 HRTIMER_MODE_ABS);
1874 hrtimer_init_sleeper(to, current);
1875 hrtimer_set_expires(&to->timer, *time);
1878 q.pi_state = NULL;
1879 q.rt_waiter = NULL;
1880 q.requeue_pi_key = NULL;
1881 retry:
1882 q.key = FUTEX_KEY_INIT;
1883 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1884 if (unlikely(ret != 0))
1885 goto out;
1887 retry_private:
1888 hb = queue_lock(&q);
1890 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1891 if (unlikely(ret)) {
1892 switch (ret) {
1893 case 1:
1894 /* We got the lock. */
1895 ret = 0;
1896 goto out_unlock_put_key;
1897 case -EFAULT:
1898 goto uaddr_faulted;
1899 case -EAGAIN:
1901 * Task is exiting and we just wait for the
1902 * exit to complete.
1904 queue_unlock(&q, hb);
1905 put_futex_key(fshared, &q.key);
1906 cond_resched();
1907 goto retry;
1908 default:
1909 goto out_unlock_put_key;
1914 * Only actually queue now that the atomic ops are done:
1916 queue_me(&q, hb);
1918 WARN_ON(!q.pi_state);
1920 * Block on the PI mutex:
1922 if (!trylock)
1923 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1924 else {
1925 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1926 /* Fixup the trylock return value: */
1927 ret = ret ? 0 : -EWOULDBLOCK;
1930 spin_lock(q.lock_ptr);
1932 * Fixup the pi_state owner and possibly acquire the lock if we
1933 * haven't already.
1935 res = fixup_owner(uaddr, fshared, &q, !ret);
1937 * If fixup_owner() returned an error, proprogate that. If it acquired
1938 * the lock, clear our -ETIMEDOUT or -EINTR.
1940 if (res)
1941 ret = (res < 0) ? res : 0;
1944 * If fixup_owner() faulted and was unable to handle the fault, unlock
1945 * it and return the fault to userspace.
1947 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1948 rt_mutex_unlock(&q.pi_state->pi_mutex);
1950 /* Unqueue and drop the lock */
1951 unqueue_me_pi(&q);
1953 goto out;
1955 out_unlock_put_key:
1956 queue_unlock(&q, hb);
1958 out_put_key:
1959 put_futex_key(fshared, &q.key);
1960 out:
1961 if (to)
1962 destroy_hrtimer_on_stack(&to->timer);
1963 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1965 uaddr_faulted:
1966 queue_unlock(&q, hb);
1968 ret = fault_in_user_writeable(uaddr);
1969 if (ret)
1970 goto out_put_key;
1972 if (!fshared)
1973 goto retry_private;
1975 put_futex_key(fshared, &q.key);
1976 goto retry;
1980 * Userspace attempted a TID -> 0 atomic transition, and failed.
1981 * This is the in-kernel slowpath: we look up the PI state (if any),
1982 * and do the rt-mutex unlock.
1984 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1986 struct futex_hash_bucket *hb;
1987 struct futex_q *this, *next;
1988 u32 uval;
1989 struct plist_head *head;
1990 union futex_key key = FUTEX_KEY_INIT;
1991 int ret;
1993 retry:
1994 if (get_user(uval, uaddr))
1995 return -EFAULT;
1997 * We release only a lock we actually own:
1999 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2000 return -EPERM;
2002 ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
2003 if (unlikely(ret != 0))
2004 goto out;
2006 hb = hash_futex(&key);
2007 spin_lock(&hb->lock);
2010 * To avoid races, try to do the TID -> 0 atomic transition
2011 * again. If it succeeds then we can return without waking
2012 * anyone else up:
2014 if (!(uval & FUTEX_OWNER_DIED))
2015 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2018 if (unlikely(uval == -EFAULT))
2019 goto pi_faulted;
2021 * Rare case: we managed to release the lock atomically,
2022 * no need to wake anyone else up:
2024 if (unlikely(uval == task_pid_vnr(current)))
2025 goto out_unlock;
2028 * Ok, other tasks may need to be woken up - check waiters
2029 * and do the wakeup if necessary:
2031 head = &hb->chain;
2033 plist_for_each_entry_safe(this, next, head, list) {
2034 if (!match_futex (&this->key, &key))
2035 continue;
2036 ret = wake_futex_pi(uaddr, uval, this);
2038 * The atomic access to the futex value
2039 * generated a pagefault, so retry the
2040 * user-access and the wakeup:
2042 if (ret == -EFAULT)
2043 goto pi_faulted;
2044 goto out_unlock;
2047 * No waiters - kernel unlocks the futex:
2049 if (!(uval & FUTEX_OWNER_DIED)) {
2050 ret = unlock_futex_pi(uaddr, uval);
2051 if (ret == -EFAULT)
2052 goto pi_faulted;
2055 out_unlock:
2056 spin_unlock(&hb->lock);
2057 put_futex_key(fshared, &key);
2059 out:
2060 return ret;
2062 pi_faulted:
2063 spin_unlock(&hb->lock);
2064 put_futex_key(fshared, &key);
2066 ret = fault_in_user_writeable(uaddr);
2067 if (!ret)
2068 goto retry;
2070 return ret;
2074 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2075 * @hb: the hash_bucket futex_q was original enqueued on
2076 * @q: the futex_q woken while waiting to be requeued
2077 * @key2: the futex_key of the requeue target futex
2078 * @timeout: the timeout associated with the wait (NULL if none)
2080 * Detect if the task was woken on the initial futex as opposed to the requeue
2081 * target futex. If so, determine if it was a timeout or a signal that caused
2082 * the wakeup and return the appropriate error code to the caller. Must be
2083 * called with the hb lock held.
2085 * Returns
2086 * 0 - no early wakeup detected
2087 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2089 static inline
2090 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2091 struct futex_q *q, union futex_key *key2,
2092 struct hrtimer_sleeper *timeout)
2094 int ret = 0;
2097 * With the hb lock held, we avoid races while we process the wakeup.
2098 * We only need to hold hb (and not hb2) to ensure atomicity as the
2099 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2100 * It can't be requeued from uaddr2 to something else since we don't
2101 * support a PI aware source futex for requeue.
2103 if (!match_futex(&q->key, key2)) {
2104 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2106 * We were woken prior to requeue by a timeout or a signal.
2107 * Unqueue the futex_q and determine which it was.
2109 plist_del(&q->list, &q->list.plist);
2111 /* Handle spurious wakeups gracefully */
2112 ret = -EWOULDBLOCK;
2113 if (timeout && !timeout->task)
2114 ret = -ETIMEDOUT;
2115 else if (signal_pending(current))
2116 ret = -ERESTARTNOINTR;
2118 return ret;
2122 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2123 * @uaddr: the futex we initialyl wait on (non-pi)
2124 * @fshared: whether the futexes are shared (1) or not (0). They must be
2125 * the same type, no requeueing from private to shared, etc.
2126 * @val: the expected value of uaddr
2127 * @abs_time: absolute timeout
2128 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all.
2129 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2130 * @uaddr2: the pi futex we will take prior to returning to user-space
2132 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2133 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2134 * complete the acquisition of the rt_mutex prior to returning to userspace.
2135 * This ensures the rt_mutex maintains an owner when it has waiters; without
2136 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2137 * need to.
2139 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2140 * via the following:
2141 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2142 * 2) wakeup on uaddr2 after a requeue and subsequent unlock
2143 * 3) signal (before or after requeue)
2144 * 4) timeout (before or after requeue)
2146 * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function.
2148 * If 2, we may then block on trying to take the rt_mutex and return via:
2149 * 5) successful lock
2150 * 6) signal
2151 * 7) timeout
2152 * 8) other lock acquisition failure
2154 * If 6, we setup a restart_block with futex_lock_pi() as the function.
2156 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2158 * Returns:
2159 * 0 - On success
2160 * <0 - On error
2162 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2163 u32 val, ktime_t *abs_time, u32 bitset,
2164 int clockrt, u32 __user *uaddr2)
2166 struct hrtimer_sleeper timeout, *to = NULL;
2167 struct rt_mutex_waiter rt_waiter;
2168 struct rt_mutex *pi_mutex = NULL;
2169 struct futex_hash_bucket *hb;
2170 union futex_key key2;
2171 struct futex_q q;
2172 int res, ret;
2174 if (!bitset)
2175 return -EINVAL;
2177 if (abs_time) {
2178 to = &timeout;
2179 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2180 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2181 hrtimer_init_sleeper(to, current);
2182 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2183 current->timer_slack_ns);
2187 * The waiter is allocated on our stack, manipulated by the requeue
2188 * code while we sleep on uaddr.
2190 debug_rt_mutex_init_waiter(&rt_waiter);
2191 rt_waiter.task = NULL;
2193 key2 = FUTEX_KEY_INIT;
2194 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2195 if (unlikely(ret != 0))
2196 goto out;
2198 q.pi_state = NULL;
2199 q.bitset = bitset;
2200 q.rt_waiter = &rt_waiter;
2201 q.requeue_pi_key = &key2;
2203 /* Prepare to wait on uaddr. */
2204 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2205 if (ret)
2206 goto out_key2;
2208 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2209 futex_wait_queue_me(hb, &q, to);
2211 spin_lock(&hb->lock);
2212 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2213 spin_unlock(&hb->lock);
2214 if (ret)
2215 goto out_put_keys;
2218 * In order for us to be here, we know our q.key == key2, and since
2219 * we took the hb->lock above, we also know that futex_requeue() has
2220 * completed and we no longer have to concern ourselves with a wakeup
2221 * race with the atomic proxy lock acquition by the requeue code.
2224 /* Check if the requeue code acquired the second futex for us. */
2225 if (!q.rt_waiter) {
2227 * Got the lock. We might not be the anticipated owner if we
2228 * did a lock-steal - fix up the PI-state in that case.
2230 if (q.pi_state && (q.pi_state->owner != current)) {
2231 spin_lock(q.lock_ptr);
2232 ret = fixup_pi_state_owner(uaddr2, &q, current,
2233 fshared);
2234 spin_unlock(q.lock_ptr);
2236 } else {
2238 * We have been woken up by futex_unlock_pi(), a timeout, or a
2239 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2240 * the pi_state.
2242 WARN_ON(!&q.pi_state);
2243 pi_mutex = &q.pi_state->pi_mutex;
2244 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2245 debug_rt_mutex_free_waiter(&rt_waiter);
2247 spin_lock(q.lock_ptr);
2249 * Fixup the pi_state owner and possibly acquire the lock if we
2250 * haven't already.
2252 res = fixup_owner(uaddr2, fshared, &q, !ret);
2254 * If fixup_owner() returned an error, proprogate that. If it
2255 * acquired the lock, clear our -ETIMEDOUT or -EINTR.
2257 if (res)
2258 ret = (res < 0) ? res : 0;
2260 /* Unqueue and drop the lock. */
2261 unqueue_me_pi(&q);
2265 * If fixup_pi_state_owner() faulted and was unable to handle the
2266 * fault, unlock the rt_mutex and return the fault to userspace.
2268 if (ret == -EFAULT) {
2269 if (rt_mutex_owner(pi_mutex) == current)
2270 rt_mutex_unlock(pi_mutex);
2271 } else if (ret == -EINTR) {
2273 * We've already been requeued, but we have no way to
2274 * restart by calling futex_lock_pi() directly. We
2275 * could restart the syscall, but that will look at
2276 * the user space value and return right away. So we
2277 * drop back with EWOULDBLOCK to tell user space that
2278 * "val" has been changed. That's the same what the
2279 * restart of the syscall would do in
2280 * futex_wait_setup().
2282 ret = -EWOULDBLOCK;
2285 out_put_keys:
2286 put_futex_key(fshared, &q.key);
2287 out_key2:
2288 put_futex_key(fshared, &key2);
2290 out:
2291 if (to) {
2292 hrtimer_cancel(&to->timer);
2293 destroy_hrtimer_on_stack(&to->timer);
2295 return ret;
2299 * Support for robust futexes: the kernel cleans up held futexes at
2300 * thread exit time.
2302 * Implementation: user-space maintains a per-thread list of locks it
2303 * is holding. Upon do_exit(), the kernel carefully walks this list,
2304 * and marks all locks that are owned by this thread with the
2305 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2306 * always manipulated with the lock held, so the list is private and
2307 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2308 * field, to allow the kernel to clean up if the thread dies after
2309 * acquiring the lock, but just before it could have added itself to
2310 * the list. There can only be one such pending lock.
2314 * sys_set_robust_list - set the robust-futex list head of a task
2315 * @head: pointer to the list-head
2316 * @len: length of the list-head, as userspace expects
2318 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2319 size_t, len)
2321 if (!futex_cmpxchg_enabled)
2322 return -ENOSYS;
2324 * The kernel knows only one size for now:
2326 if (unlikely(len != sizeof(*head)))
2327 return -EINVAL;
2329 current->robust_list = head;
2331 return 0;
2335 * sys_get_robust_list - get the robust-futex list head of a task
2336 * @pid: pid of the process [zero for current task]
2337 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2338 * @len_ptr: pointer to a length field, the kernel fills in the header size
2340 SYSCALL_DEFINE3(get_robust_list, int, pid,
2341 struct robust_list_head __user * __user *, head_ptr,
2342 size_t __user *, len_ptr)
2344 struct robust_list_head __user *head;
2345 unsigned long ret;
2346 const struct cred *cred = current_cred(), *pcred;
2348 if (!futex_cmpxchg_enabled)
2349 return -ENOSYS;
2351 if (!pid)
2352 head = current->robust_list;
2353 else {
2354 struct task_struct *p;
2356 ret = -ESRCH;
2357 rcu_read_lock();
2358 p = find_task_by_vpid(pid);
2359 if (!p)
2360 goto err_unlock;
2361 ret = -EPERM;
2362 pcred = __task_cred(p);
2363 if (cred->euid != pcred->euid &&
2364 cred->euid != pcred->uid &&
2365 !capable(CAP_SYS_PTRACE))
2366 goto err_unlock;
2367 head = p->robust_list;
2368 rcu_read_unlock();
2371 if (put_user(sizeof(*head), len_ptr))
2372 return -EFAULT;
2373 return put_user(head, head_ptr);
2375 err_unlock:
2376 rcu_read_unlock();
2378 return ret;
2382 * Process a futex-list entry, check whether it's owned by the
2383 * dying task, and do notification if so:
2385 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2387 u32 uval, nval, mval;
2389 retry:
2390 if (get_user(uval, uaddr))
2391 return -1;
2393 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2395 * Ok, this dying thread is truly holding a futex
2396 * of interest. Set the OWNER_DIED bit atomically
2397 * via cmpxchg, and if the value had FUTEX_WAITERS
2398 * set, wake up a waiter (if any). (We have to do a
2399 * futex_wake() even if OWNER_DIED is already set -
2400 * to handle the rare but possible case of recursive
2401 * thread-death.) The rest of the cleanup is done in
2402 * userspace.
2404 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2405 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2407 if (nval == -EFAULT)
2408 return -1;
2410 if (nval != uval)
2411 goto retry;
2414 * Wake robust non-PI futexes here. The wakeup of
2415 * PI futexes happens in exit_pi_state():
2417 if (!pi && (uval & FUTEX_WAITERS))
2418 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2420 return 0;
2424 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2426 static inline int fetch_robust_entry(struct robust_list __user **entry,
2427 struct robust_list __user * __user *head,
2428 int *pi)
2430 unsigned long uentry;
2432 if (get_user(uentry, (unsigned long __user *)head))
2433 return -EFAULT;
2435 *entry = (void __user *)(uentry & ~1UL);
2436 *pi = uentry & 1;
2438 return 0;
2442 * Walk curr->robust_list (very carefully, it's a userspace list!)
2443 * and mark any locks found there dead, and notify any waiters.
2445 * We silently return on any sign of list-walking problem.
2447 void exit_robust_list(struct task_struct *curr)
2449 struct robust_list_head __user *head = curr->robust_list;
2450 struct robust_list __user *entry, *next_entry, *pending;
2451 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2452 unsigned long futex_offset;
2453 int rc;
2455 if (!futex_cmpxchg_enabled)
2456 return;
2459 * Fetch the list head (which was registered earlier, via
2460 * sys_set_robust_list()):
2462 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2463 return;
2465 * Fetch the relative futex offset:
2467 if (get_user(futex_offset, &head->futex_offset))
2468 return;
2470 * Fetch any possibly pending lock-add first, and handle it
2471 * if it exists:
2473 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2474 return;
2476 next_entry = NULL; /* avoid warning with gcc */
2477 while (entry != &head->list) {
2479 * Fetch the next entry in the list before calling
2480 * handle_futex_death:
2482 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2484 * A pending lock might already be on the list, so
2485 * don't process it twice:
2487 if (entry != pending)
2488 if (handle_futex_death((void __user *)entry + futex_offset,
2489 curr, pi))
2490 return;
2491 if (rc)
2492 return;
2493 entry = next_entry;
2494 pi = next_pi;
2496 * Avoid excessively long or circular lists:
2498 if (!--limit)
2499 break;
2501 cond_resched();
2504 if (pending)
2505 handle_futex_death((void __user *)pending + futex_offset,
2506 curr, pip);
2509 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2510 u32 __user *uaddr2, u32 val2, u32 val3)
2512 int clockrt, ret = -ENOSYS;
2513 int cmd = op & FUTEX_CMD_MASK;
2514 int fshared = 0;
2516 if (!(op & FUTEX_PRIVATE_FLAG))
2517 fshared = 1;
2519 clockrt = op & FUTEX_CLOCK_REALTIME;
2520 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2521 return -ENOSYS;
2523 switch (cmd) {
2524 case FUTEX_WAIT:
2525 val3 = FUTEX_BITSET_MATCH_ANY;
2526 case FUTEX_WAIT_BITSET:
2527 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2528 break;
2529 case FUTEX_WAKE:
2530 val3 = FUTEX_BITSET_MATCH_ANY;
2531 case FUTEX_WAKE_BITSET:
2532 ret = futex_wake(uaddr, fshared, val, val3);
2533 break;
2534 case FUTEX_REQUEUE:
2535 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2536 break;
2537 case FUTEX_CMP_REQUEUE:
2538 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2540 break;
2541 case FUTEX_WAKE_OP:
2542 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2543 break;
2544 case FUTEX_LOCK_PI:
2545 if (futex_cmpxchg_enabled)
2546 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2547 break;
2548 case FUTEX_UNLOCK_PI:
2549 if (futex_cmpxchg_enabled)
2550 ret = futex_unlock_pi(uaddr, fshared);
2551 break;
2552 case FUTEX_TRYLOCK_PI:
2553 if (futex_cmpxchg_enabled)
2554 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2555 break;
2556 case FUTEX_WAIT_REQUEUE_PI:
2557 val3 = FUTEX_BITSET_MATCH_ANY;
2558 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2559 clockrt, uaddr2);
2560 break;
2561 case FUTEX_CMP_REQUEUE_PI:
2562 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2564 break;
2565 default:
2566 ret = -ENOSYS;
2568 return ret;
2572 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2573 struct timespec __user *, utime, u32 __user *, uaddr2,
2574 u32, val3)
2576 struct timespec ts;
2577 ktime_t t, *tp = NULL;
2578 u32 val2 = 0;
2579 int cmd = op & FUTEX_CMD_MASK;
2581 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2582 cmd == FUTEX_WAIT_BITSET ||
2583 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2584 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2585 return -EFAULT;
2586 if (!timespec_valid(&ts))
2587 return -EINVAL;
2589 t = timespec_to_ktime(ts);
2590 if (cmd == FUTEX_WAIT)
2591 t = ktime_add_safe(ktime_get(), t);
2592 tp = &t;
2595 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2596 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2598 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2599 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2600 val2 = (u32) (unsigned long) utime;
2602 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2605 static int __init futex_init(void)
2607 u32 curval;
2608 int i;
2611 * This will fail and we want it. Some arch implementations do
2612 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2613 * functionality. We want to know that before we call in any
2614 * of the complex code paths. Also we want to prevent
2615 * registration of robust lists in that case. NULL is
2616 * guaranteed to fault and we get -EFAULT on functional
2617 * implementation, the non functional ones will return
2618 * -ENOSYS.
2620 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2621 if (curval == -EFAULT)
2622 futex_cmpxchg_enabled = 1;
2624 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2625 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2626 spin_lock_init(&futex_queues[i].lock);
2629 return 0;
2631 __initcall(futex_init);