md: Fix unfortunate interaction with evms
[linux-2.6/mini2440.git] / fs / ubifs / budget.c
blobeaf6d891d46f642b4351230119ea4358ce30dea6
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements the budgeting sub-system which is responsible for UBIFS
25 * space management.
27 * Factors such as compression, wasted space at the ends of LEBs, space in other
28 * journal heads, the effect of updates on the index, and so on, make it
29 * impossible to accurately predict the amount of space needed. Consequently
30 * approximations are used.
33 #include "ubifs.h"
34 #include <linux/writeback.h>
35 #include <linux/math64.h>
38 * When pessimistic budget calculations say that there is no enough space,
39 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
40 * or committing. The below constant defines maximum number of times UBIFS
41 * repeats the operations.
43 #define MAX_MKSPC_RETRIES 3
46 * The below constant defines amount of dirty pages which should be written
47 * back at when trying to shrink the liability.
49 #define NR_TO_WRITE 16
51 /**
52 * shrink_liability - write-back some dirty pages/inodes.
53 * @c: UBIFS file-system description object
54 * @nr_to_write: how many dirty pages to write-back
56 * This function shrinks UBIFS liability by means of writing back some amount
57 * of dirty inodes and their pages. Returns the amount of pages which were
58 * written back. The returned value does not include dirty inodes which were
59 * synchronized.
61 * Note, this function synchronizes even VFS inodes which are locked
62 * (@i_mutex) by the caller of the budgeting function, because write-back does
63 * not touch @i_mutex.
65 static int shrink_liability(struct ubifs_info *c, int nr_to_write)
67 int nr_written;
68 struct writeback_control wbc = {
69 .sync_mode = WB_SYNC_NONE,
70 .range_end = LLONG_MAX,
71 .nr_to_write = nr_to_write,
74 generic_sync_sb_inodes(c->vfs_sb, &wbc);
75 nr_written = nr_to_write - wbc.nr_to_write;
77 if (!nr_written) {
79 * Re-try again but wait on pages/inodes which are being
80 * written-back concurrently (e.g., by pdflush).
82 memset(&wbc, 0, sizeof(struct writeback_control));
83 wbc.sync_mode = WB_SYNC_ALL;
84 wbc.range_end = LLONG_MAX;
85 wbc.nr_to_write = nr_to_write;
86 generic_sync_sb_inodes(c->vfs_sb, &wbc);
87 nr_written = nr_to_write - wbc.nr_to_write;
90 dbg_budg("%d pages were written back", nr_written);
91 return nr_written;
94 /**
95 * run_gc - run garbage collector.
96 * @c: UBIFS file-system description object
98 * This function runs garbage collector to make some more free space. Returns
99 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
100 * negative error code in case of failure.
102 static int run_gc(struct ubifs_info *c)
104 int err, lnum;
106 /* Make some free space by garbage-collecting dirty space */
107 down_read(&c->commit_sem);
108 lnum = ubifs_garbage_collect(c, 1);
109 up_read(&c->commit_sem);
110 if (lnum < 0)
111 return lnum;
113 /* GC freed one LEB, return it to lprops */
114 dbg_budg("GC freed LEB %d", lnum);
115 err = ubifs_return_leb(c, lnum);
116 if (err)
117 return err;
118 return 0;
122 * get_liability - calculate current liability.
123 * @c: UBIFS file-system description object
125 * This function calculates and returns current UBIFS liability, i.e. the
126 * amount of bytes UBIFS has "promised" to write to the media.
128 static long long get_liability(struct ubifs_info *c)
130 long long liab;
132 spin_lock(&c->space_lock);
133 liab = c->budg_idx_growth + c->budg_data_growth + c->budg_dd_growth;
134 spin_unlock(&c->space_lock);
135 return liab;
139 * make_free_space - make more free space on the file-system.
140 * @c: UBIFS file-system description object
142 * This function is called when an operation cannot be budgeted because there
143 * is supposedly no free space. But in most cases there is some free space:
144 * o budgeting is pessimistic, so it always budgets more than it is actually
145 * needed, so shrinking the liability is one way to make free space - the
146 * cached data will take less space then it was budgeted for;
147 * o GC may turn some dark space into free space (budgeting treats dark space
148 * as not available);
149 * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
151 * So this function tries to do the above. Returns %-EAGAIN if some free space
152 * was presumably made and the caller has to re-try budgeting the operation.
153 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
154 * codes on failures.
156 static int make_free_space(struct ubifs_info *c)
158 int err, retries = 0;
159 long long liab1, liab2;
161 do {
162 liab1 = get_liability(c);
164 * We probably have some dirty pages or inodes (liability), try
165 * to write them back.
167 dbg_budg("liability %lld, run write-back", liab1);
168 shrink_liability(c, NR_TO_WRITE);
170 liab2 = get_liability(c);
171 if (liab2 < liab1)
172 return -EAGAIN;
174 dbg_budg("new liability %lld (not shrinked)", liab2);
176 /* Liability did not shrink again, try GC */
177 dbg_budg("Run GC");
178 err = run_gc(c);
179 if (!err)
180 return -EAGAIN;
182 if (err != -EAGAIN && err != -ENOSPC)
183 /* Some real error happened */
184 return err;
186 dbg_budg("Run commit (retries %d)", retries);
187 err = ubifs_run_commit(c);
188 if (err)
189 return err;
190 } while (retries++ < MAX_MKSPC_RETRIES);
192 return -ENOSPC;
196 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
197 * @c: UBIFS file-system description object
199 * This function calculates and returns the number of LEBs which should be kept
200 * for index usage.
202 int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
204 int idx_lebs;
205 long long idx_size;
207 idx_size = c->old_idx_sz + c->budg_idx_growth + c->budg_uncommitted_idx;
208 /* And make sure we have thrice the index size of space reserved */
209 idx_size += idx_size << 1;
211 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
212 * pair, nor similarly the two variables for the new index size, so we
213 * have to do this costly 64-bit division on fast-path.
215 idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
217 * The index head is not available for the in-the-gaps method, so add an
218 * extra LEB to compensate.
220 idx_lebs += 1;
221 if (idx_lebs < MIN_INDEX_LEBS)
222 idx_lebs = MIN_INDEX_LEBS;
223 return idx_lebs;
227 * ubifs_calc_available - calculate available FS space.
228 * @c: UBIFS file-system description object
229 * @min_idx_lebs: minimum number of LEBs reserved for the index
231 * This function calculates and returns amount of FS space available for use.
233 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
235 int subtract_lebs;
236 long long available;
238 available = c->main_bytes - c->lst.total_used;
241 * Now 'available' contains theoretically available flash space
242 * assuming there is no index, so we have to subtract the space which
243 * is reserved for the index.
245 subtract_lebs = min_idx_lebs;
247 /* Take into account that GC reserves one LEB for its own needs */
248 subtract_lebs += 1;
251 * The GC journal head LEB is not really accessible. And since
252 * different write types go to different heads, we may count only on
253 * one head's space.
255 subtract_lebs += c->jhead_cnt - 1;
257 /* We also reserve one LEB for deletions, which bypass budgeting */
258 subtract_lebs += 1;
260 available -= (long long)subtract_lebs * c->leb_size;
262 /* Subtract the dead space which is not available for use */
263 available -= c->lst.total_dead;
266 * Subtract dark space, which might or might not be usable - it depends
267 * on the data which we have on the media and which will be written. If
268 * this is a lot of uncompressed or not-compressible data, the dark
269 * space cannot be used.
271 available -= c->lst.total_dark;
274 * However, there is more dark space. The index may be bigger than
275 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
276 * their dark space is not included in total_dark, so it is subtracted
277 * here.
279 if (c->lst.idx_lebs > min_idx_lebs) {
280 subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
281 available -= subtract_lebs * c->dark_wm;
284 /* The calculations are rough and may end up with a negative number */
285 return available > 0 ? available : 0;
289 * can_use_rp - check whether the user is allowed to use reserved pool.
290 * @c: UBIFS file-system description object
292 * UBIFS has so-called "reserved pool" which is flash space reserved
293 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
294 * This function checks whether current user is allowed to use reserved pool.
295 * Returns %1 current user is allowed to use reserved pool and %0 otherwise.
297 static int can_use_rp(struct ubifs_info *c)
299 if (current_fsuid() == c->rp_uid || capable(CAP_SYS_RESOURCE) ||
300 (c->rp_gid != 0 && in_group_p(c->rp_gid)))
301 return 1;
302 return 0;
306 * do_budget_space - reserve flash space for index and data growth.
307 * @c: UBIFS file-system description object
309 * This function makes sure UBIFS has enough free LEBs for index growth and
310 * data.
312 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
313 * would take if it was consolidated and written to the flash. This guarantees
314 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
315 * be able to commit dirty index. So this function basically adds amount of
316 * budgeted index space to the size of the current index, multiplies this by 3,
317 * and makes sure this does not exceed the amount of free LEBs.
319 * Notes about @c->min_idx_lebs and @c->lst.idx_lebs variables:
320 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
321 * be large, because UBIFS does not do any index consolidation as long as
322 * there is free space. IOW, the index may take a lot of LEBs, but the LEBs
323 * will contain a lot of dirt.
324 * o @c->min_idx_lebs is the number of LEBS the index presumably takes. IOW,
325 * the index may be consolidated to take up to @c->min_idx_lebs LEBs.
327 * This function returns zero in case of success, and %-ENOSPC in case of
328 * failure.
330 static int do_budget_space(struct ubifs_info *c)
332 long long outstanding, available;
333 int lebs, rsvd_idx_lebs, min_idx_lebs;
335 /* First budget index space */
336 min_idx_lebs = ubifs_calc_min_idx_lebs(c);
338 /* Now 'min_idx_lebs' contains number of LEBs to reserve */
339 if (min_idx_lebs > c->lst.idx_lebs)
340 rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
341 else
342 rsvd_idx_lebs = 0;
345 * The number of LEBs that are available to be used by the index is:
347 * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
348 * @c->lst.taken_empty_lebs
350 * @c->lst.empty_lebs are available because they are empty.
351 * @c->freeable_cnt are available because they contain only free and
352 * dirty space, @c->idx_gc_cnt are available because they are index
353 * LEBs that have been garbage collected and are awaiting the commit
354 * before they can be used. And the in-the-gaps method will grab these
355 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
356 * already been allocated for some purpose.
358 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
359 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
360 * are taken until after the commit).
362 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
363 * because of the way we serialize LEB allocations and budgeting. See a
364 * comment in 'ubifs_find_free_space()'.
366 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
367 c->lst.taken_empty_lebs;
368 if (unlikely(rsvd_idx_lebs > lebs)) {
369 dbg_budg("out of indexing space: min_idx_lebs %d (old %d), "
370 "rsvd_idx_lebs %d", min_idx_lebs, c->min_idx_lebs,
371 rsvd_idx_lebs);
372 return -ENOSPC;
375 available = ubifs_calc_available(c, min_idx_lebs);
376 outstanding = c->budg_data_growth + c->budg_dd_growth;
378 if (unlikely(available < outstanding)) {
379 dbg_budg("out of data space: available %lld, outstanding %lld",
380 available, outstanding);
381 return -ENOSPC;
384 if (available - outstanding <= c->rp_size && !can_use_rp(c))
385 return -ENOSPC;
387 c->min_idx_lebs = min_idx_lebs;
388 return 0;
392 * calc_idx_growth - calculate approximate index growth from budgeting request.
393 * @c: UBIFS file-system description object
394 * @req: budgeting request
396 * For now we assume each new node adds one znode. But this is rather poor
397 * approximation, though.
399 static int calc_idx_growth(const struct ubifs_info *c,
400 const struct ubifs_budget_req *req)
402 int znodes;
404 znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
405 req->new_dent;
406 return znodes * c->max_idx_node_sz;
410 * calc_data_growth - calculate approximate amount of new data from budgeting
411 * request.
412 * @c: UBIFS file-system description object
413 * @req: budgeting request
415 static int calc_data_growth(const struct ubifs_info *c,
416 const struct ubifs_budget_req *req)
418 int data_growth;
420 data_growth = req->new_ino ? c->inode_budget : 0;
421 if (req->new_page)
422 data_growth += c->page_budget;
423 if (req->new_dent)
424 data_growth += c->dent_budget;
425 data_growth += req->new_ino_d;
426 return data_growth;
430 * calc_dd_growth - calculate approximate amount of data which makes other data
431 * dirty from budgeting request.
432 * @c: UBIFS file-system description object
433 * @req: budgeting request
435 static int calc_dd_growth(const struct ubifs_info *c,
436 const struct ubifs_budget_req *req)
438 int dd_growth;
440 dd_growth = req->dirtied_page ? c->page_budget : 0;
442 if (req->dirtied_ino)
443 dd_growth += c->inode_budget << (req->dirtied_ino - 1);
444 if (req->mod_dent)
445 dd_growth += c->dent_budget;
446 dd_growth += req->dirtied_ino_d;
447 return dd_growth;
451 * ubifs_budget_space - ensure there is enough space to complete an operation.
452 * @c: UBIFS file-system description object
453 * @req: budget request
455 * This function allocates budget for an operation. It uses pessimistic
456 * approximation of how much flash space the operation needs. The goal of this
457 * function is to make sure UBIFS always has flash space to flush all dirty
458 * pages, dirty inodes, and dirty znodes (liability). This function may force
459 * commit, garbage-collection or write-back. Returns zero in case of success,
460 * %-ENOSPC if there is no free space and other negative error codes in case of
461 * failures.
463 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
465 int uninitialized_var(cmt_retries), uninitialized_var(wb_retries);
466 int err, idx_growth, data_growth, dd_growth, retried = 0;
468 ubifs_assert(req->new_page <= 1);
469 ubifs_assert(req->dirtied_page <= 1);
470 ubifs_assert(req->new_dent <= 1);
471 ubifs_assert(req->mod_dent <= 1);
472 ubifs_assert(req->new_ino <= 1);
473 ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
474 ubifs_assert(req->dirtied_ino <= 4);
475 ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
476 ubifs_assert(!(req->new_ino_d & 7));
477 ubifs_assert(!(req->dirtied_ino_d & 7));
479 data_growth = calc_data_growth(c, req);
480 dd_growth = calc_dd_growth(c, req);
481 if (!data_growth && !dd_growth)
482 return 0;
483 idx_growth = calc_idx_growth(c, req);
485 again:
486 spin_lock(&c->space_lock);
487 ubifs_assert(c->budg_idx_growth >= 0);
488 ubifs_assert(c->budg_data_growth >= 0);
489 ubifs_assert(c->budg_dd_growth >= 0);
491 if (unlikely(c->nospace) && (c->nospace_rp || !can_use_rp(c))) {
492 dbg_budg("no space");
493 spin_unlock(&c->space_lock);
494 return -ENOSPC;
497 c->budg_idx_growth += idx_growth;
498 c->budg_data_growth += data_growth;
499 c->budg_dd_growth += dd_growth;
501 err = do_budget_space(c);
502 if (likely(!err)) {
503 req->idx_growth = idx_growth;
504 req->data_growth = data_growth;
505 req->dd_growth = dd_growth;
506 spin_unlock(&c->space_lock);
507 return 0;
510 /* Restore the old values */
511 c->budg_idx_growth -= idx_growth;
512 c->budg_data_growth -= data_growth;
513 c->budg_dd_growth -= dd_growth;
514 spin_unlock(&c->space_lock);
516 if (req->fast) {
517 dbg_budg("no space for fast budgeting");
518 return err;
521 err = make_free_space(c);
522 cond_resched();
523 if (err == -EAGAIN) {
524 dbg_budg("try again");
525 goto again;
526 } else if (err == -ENOSPC) {
527 if (!retried) {
528 retried = 1;
529 dbg_budg("-ENOSPC, but anyway try once again");
530 goto again;
532 dbg_budg("FS is full, -ENOSPC");
533 c->nospace = 1;
534 if (can_use_rp(c) || c->rp_size == 0)
535 c->nospace_rp = 1;
536 smp_wmb();
537 } else
538 ubifs_err("cannot budget space, error %d", err);
539 return err;
543 * ubifs_release_budget - release budgeted free space.
544 * @c: UBIFS file-system description object
545 * @req: budget request
547 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
548 * since the index changes (which were budgeted for in @req->idx_growth) will
549 * only be written to the media on commit, this function moves the index budget
550 * from @c->budg_idx_growth to @c->budg_uncommitted_idx. The latter will be
551 * zeroed by the commit operation.
553 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
555 ubifs_assert(req->new_page <= 1);
556 ubifs_assert(req->dirtied_page <= 1);
557 ubifs_assert(req->new_dent <= 1);
558 ubifs_assert(req->mod_dent <= 1);
559 ubifs_assert(req->new_ino <= 1);
560 ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
561 ubifs_assert(req->dirtied_ino <= 4);
562 ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
563 ubifs_assert(!(req->new_ino_d & 7));
564 ubifs_assert(!(req->dirtied_ino_d & 7));
565 if (!req->recalculate) {
566 ubifs_assert(req->idx_growth >= 0);
567 ubifs_assert(req->data_growth >= 0);
568 ubifs_assert(req->dd_growth >= 0);
571 if (req->recalculate) {
572 req->data_growth = calc_data_growth(c, req);
573 req->dd_growth = calc_dd_growth(c, req);
574 req->idx_growth = calc_idx_growth(c, req);
577 if (!req->data_growth && !req->dd_growth)
578 return;
580 c->nospace = c->nospace_rp = 0;
581 smp_wmb();
583 spin_lock(&c->space_lock);
584 c->budg_idx_growth -= req->idx_growth;
585 c->budg_uncommitted_idx += req->idx_growth;
586 c->budg_data_growth -= req->data_growth;
587 c->budg_dd_growth -= req->dd_growth;
588 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
590 ubifs_assert(c->budg_idx_growth >= 0);
591 ubifs_assert(c->budg_data_growth >= 0);
592 ubifs_assert(c->budg_dd_growth >= 0);
593 ubifs_assert(c->min_idx_lebs < c->main_lebs);
594 ubifs_assert(!(c->budg_idx_growth & 7));
595 ubifs_assert(!(c->budg_data_growth & 7));
596 ubifs_assert(!(c->budg_dd_growth & 7));
597 spin_unlock(&c->space_lock);
601 * ubifs_convert_page_budget - convert budget of a new page.
602 * @c: UBIFS file-system description object
604 * This function converts budget which was allocated for a new page of data to
605 * the budget of changing an existing page of data. The latter is smaller than
606 * the former, so this function only does simple re-calculation and does not
607 * involve any write-back.
609 void ubifs_convert_page_budget(struct ubifs_info *c)
611 spin_lock(&c->space_lock);
612 /* Release the index growth reservation */
613 c->budg_idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
614 /* Release the data growth reservation */
615 c->budg_data_growth -= c->page_budget;
616 /* Increase the dirty data growth reservation instead */
617 c->budg_dd_growth += c->page_budget;
618 /* And re-calculate the indexing space reservation */
619 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
620 spin_unlock(&c->space_lock);
624 * ubifs_release_dirty_inode_budget - release dirty inode budget.
625 * @c: UBIFS file-system description object
626 * @ui: UBIFS inode to release the budget for
628 * This function releases budget corresponding to a dirty inode. It is usually
629 * called when after the inode has been written to the media and marked as
630 * clean. It also causes the "no space" flags to be cleared.
632 void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
633 struct ubifs_inode *ui)
635 struct ubifs_budget_req req;
637 memset(&req, 0, sizeof(struct ubifs_budget_req));
638 /* The "no space" flags will be cleared because dd_growth is > 0 */
639 req.dd_growth = c->inode_budget + ALIGN(ui->data_len, 8);
640 ubifs_release_budget(c, &req);
644 * ubifs_reported_space - calculate reported free space.
645 * @c: the UBIFS file-system description object
646 * @free: amount of free space
648 * This function calculates amount of free space which will be reported to
649 * user-space. User-space application tend to expect that if the file-system
650 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
651 * are able to write a file of size N. UBIFS attaches node headers to each data
652 * node and it has to write indexing nodes as well. This introduces additional
653 * overhead, and UBIFS has to report slightly less free space to meet the above
654 * expectations.
656 * This function assumes free space is made up of uncompressed data nodes and
657 * full index nodes (one per data node, tripled because we always allow enough
658 * space to write the index thrice).
660 * Note, the calculation is pessimistic, which means that most of the time
661 * UBIFS reports less space than it actually has.
663 long long ubifs_reported_space(const struct ubifs_info *c, long long free)
665 int divisor, factor, f;
668 * Reported space size is @free * X, where X is UBIFS block size
669 * divided by UBIFS block size + all overhead one data block
670 * introduces. The overhead is the node header + indexing overhead.
672 * Indexing overhead calculations are based on the following formula:
673 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
674 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
675 * as less than maximum fanout, we assume that each data node
676 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
677 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
678 * for the index.
680 f = c->fanout > 3 ? c->fanout >> 1 : 2;
681 factor = UBIFS_BLOCK_SIZE;
682 divisor = UBIFS_MAX_DATA_NODE_SZ;
683 divisor += (c->max_idx_node_sz * 3) / (f - 1);
684 free *= factor;
685 return div_u64(free, divisor);
689 * ubifs_get_free_space_nolock - return amount of free space.
690 * @c: UBIFS file-system description object
692 * This function calculates amount of free space to report to user-space.
694 * Because UBIFS may introduce substantial overhead (the index, node headers,
695 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
696 * free flash space it has (well, because not all dirty space is reclaimable,
697 * UBIFS does not actually know the real amount). If UBIFS did so, it would
698 * bread user expectations about what free space is. Users seem to accustomed
699 * to assume that if the file-system reports N bytes of free space, they would
700 * be able to fit a file of N bytes to the FS. This almost works for
701 * traditional file-systems, because they have way less overhead than UBIFS.
702 * So, to keep users happy, UBIFS tries to take the overhead into account.
704 long long ubifs_get_free_space_nolock(struct ubifs_info *c)
706 int rsvd_idx_lebs, lebs;
707 long long available, outstanding, free;
709 ubifs_assert(c->min_idx_lebs == ubifs_calc_min_idx_lebs(c));
710 outstanding = c->budg_data_growth + c->budg_dd_growth;
711 available = ubifs_calc_available(c, c->min_idx_lebs);
714 * When reporting free space to user-space, UBIFS guarantees that it is
715 * possible to write a file of free space size. This means that for
716 * empty LEBs we may use more precise calculations than
717 * 'ubifs_calc_available()' is using. Namely, we know that in empty
718 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
719 * Thus, amend the available space.
721 * Note, the calculations below are similar to what we have in
722 * 'do_budget_space()', so refer there for comments.
724 if (c->min_idx_lebs > c->lst.idx_lebs)
725 rsvd_idx_lebs = c->min_idx_lebs - c->lst.idx_lebs;
726 else
727 rsvd_idx_lebs = 0;
728 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
729 c->lst.taken_empty_lebs;
730 lebs -= rsvd_idx_lebs;
731 available += lebs * (c->dark_wm - c->leb_overhead);
733 if (available > outstanding)
734 free = ubifs_reported_space(c, available - outstanding);
735 else
736 free = 0;
737 return free;
741 * ubifs_get_free_space - return amount of free space.
742 * @c: UBIFS file-system description object
744 * This function calculates and retuns amount of free space to report to
745 * user-space.
747 long long ubifs_get_free_space(struct ubifs_info *c)
749 long long free;
751 spin_lock(&c->space_lock);
752 free = ubifs_get_free_space_nolock(c);
753 spin_unlock(&c->space_lock);
755 return free;