Linux 2.6.32-rc8
[linux-2.6/mini2440.git] / crypto / vmac.c
blob0a9468e575ded17f6af418eef071d5d730891312
1 /*
2 * Modified to interface to the Linux kernel
3 * Copyright (c) 2009, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
19 /* --------------------------------------------------------------------------
20 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
21 * This implementation is herby placed in the public domain.
22 * The authors offers no warranty. Use at your own risk.
23 * Please send bug reports to the authors.
24 * Last modified: 17 APR 08, 1700 PDT
25 * ----------------------------------------------------------------------- */
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/crypto.h>
30 #include <linux/scatterlist.h>
31 #include <asm/byteorder.h>
32 #include <crypto/scatterwalk.h>
33 #include <crypto/vmac.h>
34 #include <crypto/internal/hash.h>
37 * Constants and masks
39 #define UINT64_C(x) x##ULL
40 const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
41 const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
42 const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
43 const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */
44 const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */
46 #ifdef __LITTLE_ENDIAN
47 #define INDEX_HIGH 1
48 #define INDEX_LOW 0
49 #else
50 #define INDEX_HIGH 0
51 #define INDEX_LOW 1
52 #endif
55 * The following routines are used in this implementation. They are
56 * written via macros to simulate zero-overhead call-by-reference.
58 * MUL64: 64x64->128-bit multiplication
59 * PMUL64: assumes top bits cleared on inputs
60 * ADD128: 128x128->128-bit addition
63 #define ADD128(rh, rl, ih, il) \
64 do { \
65 u64 _il = (il); \
66 (rl) += (_il); \
67 if ((rl) < (_il)) \
68 (rh)++; \
69 (rh) += (ih); \
70 } while (0)
72 #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2))
74 #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \
75 do { \
76 u64 _i1 = (i1), _i2 = (i2); \
77 u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \
78 rh = MUL32(_i1>>32, _i2>>32); \
79 rl = MUL32(_i1, _i2); \
80 ADD128(rh, rl, (m >> 32), (m << 32)); \
81 } while (0)
83 #define MUL64(rh, rl, i1, i2) \
84 do { \
85 u64 _i1 = (i1), _i2 = (i2); \
86 u64 m1 = MUL32(_i1, _i2>>32); \
87 u64 m2 = MUL32(_i1>>32, _i2); \
88 rh = MUL32(_i1>>32, _i2>>32); \
89 rl = MUL32(_i1, _i2); \
90 ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \
91 ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \
92 } while (0)
95 * For highest performance the L1 NH and L2 polynomial hashes should be
96 * carefully implemented to take advantage of one's target architechture.
97 * Here these two hash functions are defined multiple time; once for
98 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
99 * for the rest (32-bit) architectures.
100 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
101 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
102 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
103 * NH computations at once).
106 #ifdef CONFIG_64BIT
108 #define nh_16(mp, kp, nw, rh, rl) \
109 do { \
110 int i; u64 th, tl; \
111 rh = rl = 0; \
112 for (i = 0; i < nw; i += 2) { \
113 MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \
114 le64_to_cpup((mp)+i+1)+(kp)[i+1]); \
115 ADD128(rh, rl, th, tl); \
117 } while (0)
119 #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
120 do { \
121 int i; u64 th, tl; \
122 rh1 = rl1 = rh = rl = 0; \
123 for (i = 0; i < nw; i += 2) { \
124 MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \
125 le64_to_cpup((mp)+i+1)+(kp)[i+1]); \
126 ADD128(rh, rl, th, tl); \
127 MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2], \
128 le64_to_cpup((mp)+i+1)+(kp)[i+3]); \
129 ADD128(rh1, rl1, th, tl); \
131 } while (0)
133 #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
134 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
135 do { \
136 int i; u64 th, tl; \
137 rh = rl = 0; \
138 for (i = 0; i < nw; i += 8) { \
139 MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \
140 le64_to_cpup((mp)+i+1)+(kp)[i+1]); \
141 ADD128(rh, rl, th, tl); \
142 MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2], \
143 le64_to_cpup((mp)+i+3)+(kp)[i+3]); \
144 ADD128(rh, rl, th, tl); \
145 MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4], \
146 le64_to_cpup((mp)+i+5)+(kp)[i+5]); \
147 ADD128(rh, rl, th, tl); \
148 MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6], \
149 le64_to_cpup((mp)+i+7)+(kp)[i+7]); \
150 ADD128(rh, rl, th, tl); \
152 } while (0)
154 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
155 do { \
156 int i; u64 th, tl; \
157 rh1 = rl1 = rh = rl = 0; \
158 for (i = 0; i < nw; i += 8) { \
159 MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \
160 le64_to_cpup((mp)+i+1)+(kp)[i+1]); \
161 ADD128(rh, rl, th, tl); \
162 MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2], \
163 le64_to_cpup((mp)+i+1)+(kp)[i+3]); \
164 ADD128(rh1, rl1, th, tl); \
165 MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2], \
166 le64_to_cpup((mp)+i+3)+(kp)[i+3]); \
167 ADD128(rh, rl, th, tl); \
168 MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+4], \
169 le64_to_cpup((mp)+i+3)+(kp)[i+5]); \
170 ADD128(rh1, rl1, th, tl); \
171 MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4], \
172 le64_to_cpup((mp)+i+5)+(kp)[i+5]); \
173 ADD128(rh, rl, th, tl); \
174 MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+6], \
175 le64_to_cpup((mp)+i+5)+(kp)[i+7]); \
176 ADD128(rh1, rl1, th, tl); \
177 MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6], \
178 le64_to_cpup((mp)+i+7)+(kp)[i+7]); \
179 ADD128(rh, rl, th, tl); \
180 MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+8], \
181 le64_to_cpup((mp)+i+7)+(kp)[i+9]); \
182 ADD128(rh1, rl1, th, tl); \
184 } while (0)
185 #endif
187 #define poly_step(ah, al, kh, kl, mh, ml) \
188 do { \
189 u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \
190 /* compute ab*cd, put bd into result registers */ \
191 PMUL64(t3h, t3l, al, kh); \
192 PMUL64(t2h, t2l, ah, kl); \
193 PMUL64(t1h, t1l, ah, 2*kh); \
194 PMUL64(ah, al, al, kl); \
195 /* add 2 * ac to result */ \
196 ADD128(ah, al, t1h, t1l); \
197 /* add together ad + bc */ \
198 ADD128(t2h, t2l, t3h, t3l); \
199 /* now (ah,al), (t2l,2*t2h) need summing */ \
200 /* first add the high registers, carrying into t2h */ \
201 ADD128(t2h, ah, z, t2l); \
202 /* double t2h and add top bit of ah */ \
203 t2h = 2 * t2h + (ah >> 63); \
204 ah &= m63; \
205 /* now add the low registers */ \
206 ADD128(ah, al, mh, ml); \
207 ADD128(ah, al, z, t2h); \
208 } while (0)
210 #else /* ! CONFIG_64BIT */
212 #ifndef nh_16
213 #define nh_16(mp, kp, nw, rh, rl) \
214 do { \
215 u64 t1, t2, m1, m2, t; \
216 int i; \
217 rh = rl = t = 0; \
218 for (i = 0; i < nw; i += 2) { \
219 t1 = le64_to_cpup(mp+i) + kp[i]; \
220 t2 = le64_to_cpup(mp+i+1) + kp[i+1]; \
221 m2 = MUL32(t1 >> 32, t2); \
222 m1 = MUL32(t1, t2 >> 32); \
223 ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \
224 MUL32(t1, t2)); \
225 rh += (u64)(u32)(m1 >> 32) \
226 + (u32)(m2 >> 32); \
227 t += (u64)(u32)m1 + (u32)m2; \
229 ADD128(rh, rl, (t >> 32), (t << 32)); \
230 } while (0)
231 #endif
233 static void poly_step_func(u64 *ahi, u64 *alo,
234 const u64 *kh, const u64 *kl,
235 const u64 *mh, const u64 *ml)
237 #define a0 (*(((u32 *)alo)+INDEX_LOW))
238 #define a1 (*(((u32 *)alo)+INDEX_HIGH))
239 #define a2 (*(((u32 *)ahi)+INDEX_LOW))
240 #define a3 (*(((u32 *)ahi)+INDEX_HIGH))
241 #define k0 (*(((u32 *)kl)+INDEX_LOW))
242 #define k1 (*(((u32 *)kl)+INDEX_HIGH))
243 #define k2 (*(((u32 *)kh)+INDEX_LOW))
244 #define k3 (*(((u32 *)kh)+INDEX_HIGH))
246 u64 p, q, t;
247 u32 t2;
249 p = MUL32(a3, k3);
250 p += p;
251 p += *(u64 *)mh;
252 p += MUL32(a0, k2);
253 p += MUL32(a1, k1);
254 p += MUL32(a2, k0);
255 t = (u32)(p);
256 p >>= 32;
257 p += MUL32(a0, k3);
258 p += MUL32(a1, k2);
259 p += MUL32(a2, k1);
260 p += MUL32(a3, k0);
261 t |= ((u64)((u32)p & 0x7fffffff)) << 32;
262 p >>= 31;
263 p += (u64)(((u32 *)ml)[INDEX_LOW]);
264 p += MUL32(a0, k0);
265 q = MUL32(a1, k3);
266 q += MUL32(a2, k2);
267 q += MUL32(a3, k1);
268 q += q;
269 p += q;
270 t2 = (u32)(p);
271 p >>= 32;
272 p += (u64)(((u32 *)ml)[INDEX_HIGH]);
273 p += MUL32(a0, k1);
274 p += MUL32(a1, k0);
275 q = MUL32(a2, k3);
276 q += MUL32(a3, k2);
277 q += q;
278 p += q;
279 *(u64 *)(alo) = (p << 32) | t2;
280 p >>= 32;
281 *(u64 *)(ahi) = p + t;
283 #undef a0
284 #undef a1
285 #undef a2
286 #undef a3
287 #undef k0
288 #undef k1
289 #undef k2
290 #undef k3
293 #define poly_step(ah, al, kh, kl, mh, ml) \
294 poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
296 #endif /* end of specialized NH and poly definitions */
298 /* At least nh_16 is defined. Defined others as needed here */
299 #ifndef nh_16_2
300 #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
301 do { \
302 nh_16(mp, kp, nw, rh, rl); \
303 nh_16(mp, ((kp)+2), nw, rh2, rl2); \
304 } while (0)
305 #endif
306 #ifndef nh_vmac_nhbytes
307 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
308 nh_16(mp, kp, nw, rh, rl)
309 #endif
310 #ifndef nh_vmac_nhbytes_2
311 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
312 do { \
313 nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
314 nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
315 } while (0)
316 #endif
318 static void vhash_abort(struct vmac_ctx *ctx)
320 ctx->polytmp[0] = ctx->polykey[0] ;
321 ctx->polytmp[1] = ctx->polykey[1] ;
322 ctx->first_block_processed = 0;
325 static u64 l3hash(u64 p1, u64 p2,
326 u64 k1, u64 k2, u64 len)
328 u64 rh, rl, t, z = 0;
330 /* fully reduce (p1,p2)+(len,0) mod p127 */
331 t = p1 >> 63;
332 p1 &= m63;
333 ADD128(p1, p2, len, t);
334 /* At this point, (p1,p2) is at most 2^127+(len<<64) */
335 t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
336 ADD128(p1, p2, z, t);
337 p1 &= m63;
339 /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
340 t = p1 + (p2 >> 32);
341 t += (t >> 32);
342 t += (u32)t > 0xfffffffeu;
343 p1 += (t >> 32);
344 p2 += (p1 << 32);
346 /* compute (p1+k1)%p64 and (p2+k2)%p64 */
347 p1 += k1;
348 p1 += (0 - (p1 < k1)) & 257;
349 p2 += k2;
350 p2 += (0 - (p2 < k2)) & 257;
352 /* compute (p1+k1)*(p2+k2)%p64 */
353 MUL64(rh, rl, p1, p2);
354 t = rh >> 56;
355 ADD128(t, rl, z, rh);
356 rh <<= 8;
357 ADD128(t, rl, z, rh);
358 t += t << 8;
359 rl += t;
360 rl += (0 - (rl < t)) & 257;
361 rl += (0 - (rl > p64-1)) & 257;
362 return rl;
365 static void vhash_update(const unsigned char *m,
366 unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
367 struct vmac_ctx *ctx)
369 u64 rh, rl, *mptr;
370 const u64 *kptr = (u64 *)ctx->nhkey;
371 int i;
372 u64 ch, cl;
373 u64 pkh = ctx->polykey[0];
374 u64 pkl = ctx->polykey[1];
376 mptr = (u64 *)m;
377 i = mbytes / VMAC_NHBYTES; /* Must be non-zero */
379 ch = ctx->polytmp[0];
380 cl = ctx->polytmp[1];
382 if (!ctx->first_block_processed) {
383 ctx->first_block_processed = 1;
384 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
385 rh &= m62;
386 ADD128(ch, cl, rh, rl);
387 mptr += (VMAC_NHBYTES/sizeof(u64));
388 i--;
391 while (i--) {
392 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
393 rh &= m62;
394 poly_step(ch, cl, pkh, pkl, rh, rl);
395 mptr += (VMAC_NHBYTES/sizeof(u64));
398 ctx->polytmp[0] = ch;
399 ctx->polytmp[1] = cl;
402 static u64 vhash(unsigned char m[], unsigned int mbytes,
403 u64 *tagl, struct vmac_ctx *ctx)
405 u64 rh, rl, *mptr;
406 const u64 *kptr = (u64 *)ctx->nhkey;
407 int i, remaining;
408 u64 ch, cl;
409 u64 pkh = ctx->polykey[0];
410 u64 pkl = ctx->polykey[1];
412 mptr = (u64 *)m;
413 i = mbytes / VMAC_NHBYTES;
414 remaining = mbytes % VMAC_NHBYTES;
416 if (ctx->first_block_processed) {
417 ch = ctx->polytmp[0];
418 cl = ctx->polytmp[1];
419 } else if (i) {
420 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
421 ch &= m62;
422 ADD128(ch, cl, pkh, pkl);
423 mptr += (VMAC_NHBYTES/sizeof(u64));
424 i--;
425 } else if (remaining) {
426 nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
427 ch &= m62;
428 ADD128(ch, cl, pkh, pkl);
429 mptr += (VMAC_NHBYTES/sizeof(u64));
430 goto do_l3;
431 } else {/* Empty String */
432 ch = pkh; cl = pkl;
433 goto do_l3;
436 while (i--) {
437 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
438 rh &= m62;
439 poly_step(ch, cl, pkh, pkl, rh, rl);
440 mptr += (VMAC_NHBYTES/sizeof(u64));
442 if (remaining) {
443 nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
444 rh &= m62;
445 poly_step(ch, cl, pkh, pkl, rh, rl);
448 do_l3:
449 vhash_abort(ctx);
450 remaining *= 8;
451 return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
454 static u64 vmac(unsigned char m[], unsigned int mbytes,
455 unsigned char n[16], u64 *tagl,
456 struct vmac_ctx_t *ctx)
458 u64 *in_n, *out_p;
459 u64 p, h;
460 int i;
462 in_n = ctx->__vmac_ctx.cached_nonce;
463 out_p = ctx->__vmac_ctx.cached_aes;
465 i = n[15] & 1;
466 if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
467 in_n[0] = *(u64 *)(n);
468 in_n[1] = *(u64 *)(n+8);
469 ((unsigned char *)in_n)[15] &= 0xFE;
470 crypto_cipher_encrypt_one(ctx->child,
471 (unsigned char *)out_p, (unsigned char *)in_n);
473 ((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
475 p = be64_to_cpup(out_p + i);
476 h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
477 return p + h;
480 static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx)
482 u64 in[2] = {0}, out[2];
483 unsigned i;
484 int err = 0;
486 err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
487 if (err)
488 return err;
490 /* Fill nh key */
491 ((unsigned char *)in)[0] = 0x80;
492 for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) {
493 crypto_cipher_encrypt_one(ctx->child,
494 (unsigned char *)out, (unsigned char *)in);
495 ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out);
496 ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1);
497 ((unsigned char *)in)[15] += 1;
500 /* Fill poly key */
501 ((unsigned char *)in)[0] = 0xC0;
502 in[1] = 0;
503 for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) {
504 crypto_cipher_encrypt_one(ctx->child,
505 (unsigned char *)out, (unsigned char *)in);
506 ctx->__vmac_ctx.polytmp[i] =
507 ctx->__vmac_ctx.polykey[i] =
508 be64_to_cpup(out) & mpoly;
509 ctx->__vmac_ctx.polytmp[i+1] =
510 ctx->__vmac_ctx.polykey[i+1] =
511 be64_to_cpup(out+1) & mpoly;
512 ((unsigned char *)in)[15] += 1;
515 /* Fill ip key */
516 ((unsigned char *)in)[0] = 0xE0;
517 in[1] = 0;
518 for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) {
519 do {
520 crypto_cipher_encrypt_one(ctx->child,
521 (unsigned char *)out, (unsigned char *)in);
522 ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out);
523 ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1);
524 ((unsigned char *)in)[15] += 1;
525 } while (ctx->__vmac_ctx.l3key[i] >= p64
526 || ctx->__vmac_ctx.l3key[i+1] >= p64);
529 /* Invalidate nonce/aes cache and reset other elements */
530 ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
531 ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */
532 ctx->__vmac_ctx.first_block_processed = 0;
534 return err;
537 static int vmac_setkey(struct crypto_shash *parent,
538 const u8 *key, unsigned int keylen)
540 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
542 if (keylen != VMAC_KEY_LEN) {
543 crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
544 return -EINVAL;
547 return vmac_set_key((u8 *)key, ctx);
550 static int vmac_init(struct shash_desc *pdesc)
552 struct crypto_shash *parent = pdesc->tfm;
553 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
555 memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
556 return 0;
559 static int vmac_update(struct shash_desc *pdesc, const u8 *p,
560 unsigned int len)
562 struct crypto_shash *parent = pdesc->tfm;
563 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
565 vhash_update(p, len, &ctx->__vmac_ctx);
567 return 0;
570 static int vmac_final(struct shash_desc *pdesc, u8 *out)
572 struct crypto_shash *parent = pdesc->tfm;
573 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
574 vmac_t mac;
575 u8 nonce[16] = {};
577 mac = vmac(NULL, 0, nonce, NULL, ctx);
578 memcpy(out, &mac, sizeof(vmac_t));
579 memset(&mac, 0, sizeof(vmac_t));
580 memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
581 return 0;
584 static int vmac_init_tfm(struct crypto_tfm *tfm)
586 struct crypto_cipher *cipher;
587 struct crypto_instance *inst = (void *)tfm->__crt_alg;
588 struct crypto_spawn *spawn = crypto_instance_ctx(inst);
589 struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
591 cipher = crypto_spawn_cipher(spawn);
592 if (IS_ERR(cipher))
593 return PTR_ERR(cipher);
595 ctx->child = cipher;
596 return 0;
599 static void vmac_exit_tfm(struct crypto_tfm *tfm)
601 struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
602 crypto_free_cipher(ctx->child);
605 static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
607 struct shash_instance *inst;
608 struct crypto_alg *alg;
609 int err;
611 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
612 if (err)
613 return err;
615 alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
616 CRYPTO_ALG_TYPE_MASK);
617 if (IS_ERR(alg))
618 return PTR_ERR(alg);
620 inst = shash_alloc_instance("vmac", alg);
621 err = PTR_ERR(inst);
622 if (IS_ERR(inst))
623 goto out_put_alg;
625 err = crypto_init_spawn(shash_instance_ctx(inst), alg,
626 shash_crypto_instance(inst),
627 CRYPTO_ALG_TYPE_MASK);
628 if (err)
629 goto out_free_inst;
631 inst->alg.base.cra_priority = alg->cra_priority;
632 inst->alg.base.cra_blocksize = alg->cra_blocksize;
633 inst->alg.base.cra_alignmask = alg->cra_alignmask;
635 inst->alg.digestsize = sizeof(vmac_t);
636 inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
637 inst->alg.base.cra_init = vmac_init_tfm;
638 inst->alg.base.cra_exit = vmac_exit_tfm;
640 inst->alg.init = vmac_init;
641 inst->alg.update = vmac_update;
642 inst->alg.final = vmac_final;
643 inst->alg.setkey = vmac_setkey;
645 err = shash_register_instance(tmpl, inst);
646 if (err) {
647 out_free_inst:
648 shash_free_instance(shash_crypto_instance(inst));
651 out_put_alg:
652 crypto_mod_put(alg);
653 return err;
656 static struct crypto_template vmac_tmpl = {
657 .name = "vmac",
658 .create = vmac_create,
659 .free = shash_free_instance,
660 .module = THIS_MODULE,
663 static int __init vmac_module_init(void)
665 return crypto_register_template(&vmac_tmpl);
668 static void __exit vmac_module_exit(void)
670 crypto_unregister_template(&vmac_tmpl);
673 module_init(vmac_module_init);
674 module_exit(vmac_module_exit);
676 MODULE_LICENSE("GPL");
677 MODULE_DESCRIPTION("VMAC hash algorithm");