USB: usbtmc: fix switch statment
[linux-2.6/mini2440.git] / mm / vmalloc.c
blob520a7598026995c1aafe82dfbf523e9fcb7143a2
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/bootmem.h>
28 #include <asm/atomic.h>
29 #include <asm/uaccess.h>
30 #include <asm/tlbflush.h>
33 /*** Page table manipulation functions ***/
35 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37 pte_t *pte;
39 pte = pte_offset_kernel(pmd, addr);
40 do {
41 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
42 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
43 } while (pte++, addr += PAGE_SIZE, addr != end);
46 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48 pmd_t *pmd;
49 unsigned long next;
51 pmd = pmd_offset(pud, addr);
52 do {
53 next = pmd_addr_end(addr, end);
54 if (pmd_none_or_clear_bad(pmd))
55 continue;
56 vunmap_pte_range(pmd, addr, next);
57 } while (pmd++, addr = next, addr != end);
60 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62 pud_t *pud;
63 unsigned long next;
65 pud = pud_offset(pgd, addr);
66 do {
67 next = pud_addr_end(addr, end);
68 if (pud_none_or_clear_bad(pud))
69 continue;
70 vunmap_pmd_range(pud, addr, next);
71 } while (pud++, addr = next, addr != end);
74 static void vunmap_page_range(unsigned long addr, unsigned long end)
76 pgd_t *pgd;
77 unsigned long next;
79 BUG_ON(addr >= end);
80 pgd = pgd_offset_k(addr);
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
89 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
90 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 pte_t *pte;
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
99 pte = pte_alloc_kernel(pmd, addr);
100 if (!pte)
101 return -ENOMEM;
102 do {
103 struct page *page = pages[*nr];
105 if (WARN_ON(!pte_none(*pte)))
106 return -EBUSY;
107 if (WARN_ON(!page))
108 return -ENOMEM;
109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
110 (*nr)++;
111 } while (pte++, addr += PAGE_SIZE, addr != end);
112 return 0;
115 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 pmd_t *pmd;
119 unsigned long next;
121 pmd = pmd_alloc(&init_mm, pud, addr);
122 if (!pmd)
123 return -ENOMEM;
124 do {
125 next = pmd_addr_end(addr, end);
126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
127 return -ENOMEM;
128 } while (pmd++, addr = next, addr != end);
129 return 0;
132 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 pud_t *pud;
136 unsigned long next;
138 pud = pud_alloc(&init_mm, pgd, addr);
139 if (!pud)
140 return -ENOMEM;
141 do {
142 next = pud_addr_end(addr, end);
143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
144 return -ENOMEM;
145 } while (pud++, addr = next, addr != end);
146 return 0;
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 static int vmap_page_range(unsigned long start, unsigned long end,
156 pgprot_t prot, struct page **pages)
158 pgd_t *pgd;
159 unsigned long next;
160 unsigned long addr = start;
161 int err = 0;
162 int nr = 0;
164 BUG_ON(addr >= end);
165 pgd = pgd_offset_k(addr);
166 do {
167 next = pgd_addr_end(addr, end);
168 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
169 if (err)
170 break;
171 } while (pgd++, addr = next, addr != end);
172 flush_cache_vmap(start, end);
174 if (unlikely(err))
175 return err;
176 return nr;
179 static inline int is_vmalloc_or_module_addr(const void *x)
182 * ARM, x86-64 and sparc64 put modules in a special place,
183 * and fall back on vmalloc() if that fails. Others
184 * just put it in the vmalloc space.
186 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
187 unsigned long addr = (unsigned long)x;
188 if (addr >= MODULES_VADDR && addr < MODULES_END)
189 return 1;
190 #endif
191 return is_vmalloc_addr(x);
195 * Walk a vmap address to the struct page it maps.
197 struct page *vmalloc_to_page(const void *vmalloc_addr)
199 unsigned long addr = (unsigned long) vmalloc_addr;
200 struct page *page = NULL;
201 pgd_t *pgd = pgd_offset_k(addr);
204 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
205 * architectures that do not vmalloc module space
207 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
209 if (!pgd_none(*pgd)) {
210 pud_t *pud = pud_offset(pgd, addr);
211 if (!pud_none(*pud)) {
212 pmd_t *pmd = pmd_offset(pud, addr);
213 if (!pmd_none(*pmd)) {
214 pte_t *ptep, pte;
216 ptep = pte_offset_map(pmd, addr);
217 pte = *ptep;
218 if (pte_present(pte))
219 page = pte_page(pte);
220 pte_unmap(ptep);
224 return page;
226 EXPORT_SYMBOL(vmalloc_to_page);
229 * Map a vmalloc()-space virtual address to the physical page frame number.
231 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
233 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
235 EXPORT_SYMBOL(vmalloc_to_pfn);
238 /*** Global kva allocator ***/
240 #define VM_LAZY_FREE 0x01
241 #define VM_LAZY_FREEING 0x02
242 #define VM_VM_AREA 0x04
244 struct vmap_area {
245 unsigned long va_start;
246 unsigned long va_end;
247 unsigned long flags;
248 struct rb_node rb_node; /* address sorted rbtree */
249 struct list_head list; /* address sorted list */
250 struct list_head purge_list; /* "lazy purge" list */
251 void *private;
252 struct rcu_head rcu_head;
255 static DEFINE_SPINLOCK(vmap_area_lock);
256 static struct rb_root vmap_area_root = RB_ROOT;
257 static LIST_HEAD(vmap_area_list);
259 static struct vmap_area *__find_vmap_area(unsigned long addr)
261 struct rb_node *n = vmap_area_root.rb_node;
263 while (n) {
264 struct vmap_area *va;
266 va = rb_entry(n, struct vmap_area, rb_node);
267 if (addr < va->va_start)
268 n = n->rb_left;
269 else if (addr > va->va_start)
270 n = n->rb_right;
271 else
272 return va;
275 return NULL;
278 static void __insert_vmap_area(struct vmap_area *va)
280 struct rb_node **p = &vmap_area_root.rb_node;
281 struct rb_node *parent = NULL;
282 struct rb_node *tmp;
284 while (*p) {
285 struct vmap_area *tmp;
287 parent = *p;
288 tmp = rb_entry(parent, struct vmap_area, rb_node);
289 if (va->va_start < tmp->va_end)
290 p = &(*p)->rb_left;
291 else if (va->va_end > tmp->va_start)
292 p = &(*p)->rb_right;
293 else
294 BUG();
297 rb_link_node(&va->rb_node, parent, p);
298 rb_insert_color(&va->rb_node, &vmap_area_root);
300 /* address-sort this list so it is usable like the vmlist */
301 tmp = rb_prev(&va->rb_node);
302 if (tmp) {
303 struct vmap_area *prev;
304 prev = rb_entry(tmp, struct vmap_area, rb_node);
305 list_add_rcu(&va->list, &prev->list);
306 } else
307 list_add_rcu(&va->list, &vmap_area_list);
310 static void purge_vmap_area_lazy(void);
313 * Allocate a region of KVA of the specified size and alignment, within the
314 * vstart and vend.
316 static struct vmap_area *alloc_vmap_area(unsigned long size,
317 unsigned long align,
318 unsigned long vstart, unsigned long vend,
319 int node, gfp_t gfp_mask)
321 struct vmap_area *va;
322 struct rb_node *n;
323 unsigned long addr;
324 int purged = 0;
326 BUG_ON(!size);
327 BUG_ON(size & ~PAGE_MASK);
329 va = kmalloc_node(sizeof(struct vmap_area),
330 gfp_mask & GFP_RECLAIM_MASK, node);
331 if (unlikely(!va))
332 return ERR_PTR(-ENOMEM);
334 retry:
335 addr = ALIGN(vstart, align);
337 spin_lock(&vmap_area_lock);
338 if (addr + size - 1 < addr)
339 goto overflow;
341 /* XXX: could have a last_hole cache */
342 n = vmap_area_root.rb_node;
343 if (n) {
344 struct vmap_area *first = NULL;
346 do {
347 struct vmap_area *tmp;
348 tmp = rb_entry(n, struct vmap_area, rb_node);
349 if (tmp->va_end >= addr) {
350 if (!first && tmp->va_start < addr + size)
351 first = tmp;
352 n = n->rb_left;
353 } else {
354 first = tmp;
355 n = n->rb_right;
357 } while (n);
359 if (!first)
360 goto found;
362 if (first->va_end < addr) {
363 n = rb_next(&first->rb_node);
364 if (n)
365 first = rb_entry(n, struct vmap_area, rb_node);
366 else
367 goto found;
370 while (addr + size > first->va_start && addr + size <= vend) {
371 addr = ALIGN(first->va_end + PAGE_SIZE, align);
372 if (addr + size - 1 < addr)
373 goto overflow;
375 n = rb_next(&first->rb_node);
376 if (n)
377 first = rb_entry(n, struct vmap_area, rb_node);
378 else
379 goto found;
382 found:
383 if (addr + size > vend) {
384 overflow:
385 spin_unlock(&vmap_area_lock);
386 if (!purged) {
387 purge_vmap_area_lazy();
388 purged = 1;
389 goto retry;
391 if (printk_ratelimit())
392 printk(KERN_WARNING
393 "vmap allocation for size %lu failed: "
394 "use vmalloc=<size> to increase size.\n", size);
395 return ERR_PTR(-EBUSY);
398 BUG_ON(addr & (align-1));
400 va->va_start = addr;
401 va->va_end = addr + size;
402 va->flags = 0;
403 __insert_vmap_area(va);
404 spin_unlock(&vmap_area_lock);
406 return va;
409 static void rcu_free_va(struct rcu_head *head)
411 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
413 kfree(va);
416 static void __free_vmap_area(struct vmap_area *va)
418 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
419 rb_erase(&va->rb_node, &vmap_area_root);
420 RB_CLEAR_NODE(&va->rb_node);
421 list_del_rcu(&va->list);
423 call_rcu(&va->rcu_head, rcu_free_va);
427 * Free a region of KVA allocated by alloc_vmap_area
429 static void free_vmap_area(struct vmap_area *va)
431 spin_lock(&vmap_area_lock);
432 __free_vmap_area(va);
433 spin_unlock(&vmap_area_lock);
437 * Clear the pagetable entries of a given vmap_area
439 static void unmap_vmap_area(struct vmap_area *va)
441 vunmap_page_range(va->va_start, va->va_end);
444 static void vmap_debug_free_range(unsigned long start, unsigned long end)
447 * Unmap page tables and force a TLB flush immediately if
448 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
449 * bugs similarly to those in linear kernel virtual address
450 * space after a page has been freed.
452 * All the lazy freeing logic is still retained, in order to
453 * minimise intrusiveness of this debugging feature.
455 * This is going to be *slow* (linear kernel virtual address
456 * debugging doesn't do a broadcast TLB flush so it is a lot
457 * faster).
459 #ifdef CONFIG_DEBUG_PAGEALLOC
460 vunmap_page_range(start, end);
461 flush_tlb_kernel_range(start, end);
462 #endif
466 * lazy_max_pages is the maximum amount of virtual address space we gather up
467 * before attempting to purge with a TLB flush.
469 * There is a tradeoff here: a larger number will cover more kernel page tables
470 * and take slightly longer to purge, but it will linearly reduce the number of
471 * global TLB flushes that must be performed. It would seem natural to scale
472 * this number up linearly with the number of CPUs (because vmapping activity
473 * could also scale linearly with the number of CPUs), however it is likely
474 * that in practice, workloads might be constrained in other ways that mean
475 * vmap activity will not scale linearly with CPUs. Also, I want to be
476 * conservative and not introduce a big latency on huge systems, so go with
477 * a less aggressive log scale. It will still be an improvement over the old
478 * code, and it will be simple to change the scale factor if we find that it
479 * becomes a problem on bigger systems.
481 static unsigned long lazy_max_pages(void)
483 unsigned int log;
485 log = fls(num_online_cpus());
487 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
490 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
493 * Purges all lazily-freed vmap areas.
495 * If sync is 0 then don't purge if there is already a purge in progress.
496 * If force_flush is 1, then flush kernel TLBs between *start and *end even
497 * if we found no lazy vmap areas to unmap (callers can use this to optimise
498 * their own TLB flushing).
499 * Returns with *start = min(*start, lowest purged address)
500 * *end = max(*end, highest purged address)
502 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
503 int sync, int force_flush)
505 static DEFINE_SPINLOCK(purge_lock);
506 LIST_HEAD(valist);
507 struct vmap_area *va;
508 struct vmap_area *n_va;
509 int nr = 0;
512 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
513 * should not expect such behaviour. This just simplifies locking for
514 * the case that isn't actually used at the moment anyway.
516 if (!sync && !force_flush) {
517 if (!spin_trylock(&purge_lock))
518 return;
519 } else
520 spin_lock(&purge_lock);
522 rcu_read_lock();
523 list_for_each_entry_rcu(va, &vmap_area_list, list) {
524 if (va->flags & VM_LAZY_FREE) {
525 if (va->va_start < *start)
526 *start = va->va_start;
527 if (va->va_end > *end)
528 *end = va->va_end;
529 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
530 unmap_vmap_area(va);
531 list_add_tail(&va->purge_list, &valist);
532 va->flags |= VM_LAZY_FREEING;
533 va->flags &= ~VM_LAZY_FREE;
536 rcu_read_unlock();
538 if (nr) {
539 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
540 atomic_sub(nr, &vmap_lazy_nr);
543 if (nr || force_flush)
544 flush_tlb_kernel_range(*start, *end);
546 if (nr) {
547 spin_lock(&vmap_area_lock);
548 list_for_each_entry_safe(va, n_va, &valist, purge_list)
549 __free_vmap_area(va);
550 spin_unlock(&vmap_area_lock);
552 spin_unlock(&purge_lock);
556 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
557 * is already purging.
559 static void try_purge_vmap_area_lazy(void)
561 unsigned long start = ULONG_MAX, end = 0;
563 __purge_vmap_area_lazy(&start, &end, 0, 0);
567 * Kick off a purge of the outstanding lazy areas.
569 static void purge_vmap_area_lazy(void)
571 unsigned long start = ULONG_MAX, end = 0;
573 __purge_vmap_area_lazy(&start, &end, 1, 0);
577 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
578 * called for the correct range previously.
580 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
582 va->flags |= VM_LAZY_FREE;
583 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
584 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
585 try_purge_vmap_area_lazy();
589 * Free and unmap a vmap area
591 static void free_unmap_vmap_area(struct vmap_area *va)
593 flush_cache_vunmap(va->va_start, va->va_end);
594 free_unmap_vmap_area_noflush(va);
597 static struct vmap_area *find_vmap_area(unsigned long addr)
599 struct vmap_area *va;
601 spin_lock(&vmap_area_lock);
602 va = __find_vmap_area(addr);
603 spin_unlock(&vmap_area_lock);
605 return va;
608 static void free_unmap_vmap_area_addr(unsigned long addr)
610 struct vmap_area *va;
612 va = find_vmap_area(addr);
613 BUG_ON(!va);
614 free_unmap_vmap_area(va);
618 /*** Per cpu kva allocator ***/
621 * vmap space is limited especially on 32 bit architectures. Ensure there is
622 * room for at least 16 percpu vmap blocks per CPU.
625 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
626 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
627 * instead (we just need a rough idea)
629 #if BITS_PER_LONG == 32
630 #define VMALLOC_SPACE (128UL*1024*1024)
631 #else
632 #define VMALLOC_SPACE (128UL*1024*1024*1024)
633 #endif
635 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
636 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
637 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
638 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
639 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
640 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
641 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
642 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
643 VMALLOC_PAGES / NR_CPUS / 16))
645 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
647 static bool vmap_initialized __read_mostly = false;
649 struct vmap_block_queue {
650 spinlock_t lock;
651 struct list_head free;
652 struct list_head dirty;
653 unsigned int nr_dirty;
656 struct vmap_block {
657 spinlock_t lock;
658 struct vmap_area *va;
659 struct vmap_block_queue *vbq;
660 unsigned long free, dirty;
661 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
662 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
663 union {
664 struct {
665 struct list_head free_list;
666 struct list_head dirty_list;
668 struct rcu_head rcu_head;
672 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
673 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
676 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
677 * in the free path. Could get rid of this if we change the API to return a
678 * "cookie" from alloc, to be passed to free. But no big deal yet.
680 static DEFINE_SPINLOCK(vmap_block_tree_lock);
681 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
684 * We should probably have a fallback mechanism to allocate virtual memory
685 * out of partially filled vmap blocks. However vmap block sizing should be
686 * fairly reasonable according to the vmalloc size, so it shouldn't be a
687 * big problem.
690 static unsigned long addr_to_vb_idx(unsigned long addr)
692 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
693 addr /= VMAP_BLOCK_SIZE;
694 return addr;
697 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
699 struct vmap_block_queue *vbq;
700 struct vmap_block *vb;
701 struct vmap_area *va;
702 unsigned long vb_idx;
703 int node, err;
705 node = numa_node_id();
707 vb = kmalloc_node(sizeof(struct vmap_block),
708 gfp_mask & GFP_RECLAIM_MASK, node);
709 if (unlikely(!vb))
710 return ERR_PTR(-ENOMEM);
712 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
713 VMALLOC_START, VMALLOC_END,
714 node, gfp_mask);
715 if (unlikely(IS_ERR(va))) {
716 kfree(vb);
717 return ERR_PTR(PTR_ERR(va));
720 err = radix_tree_preload(gfp_mask);
721 if (unlikely(err)) {
722 kfree(vb);
723 free_vmap_area(va);
724 return ERR_PTR(err);
727 spin_lock_init(&vb->lock);
728 vb->va = va;
729 vb->free = VMAP_BBMAP_BITS;
730 vb->dirty = 0;
731 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
732 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
733 INIT_LIST_HEAD(&vb->free_list);
734 INIT_LIST_HEAD(&vb->dirty_list);
736 vb_idx = addr_to_vb_idx(va->va_start);
737 spin_lock(&vmap_block_tree_lock);
738 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
739 spin_unlock(&vmap_block_tree_lock);
740 BUG_ON(err);
741 radix_tree_preload_end();
743 vbq = &get_cpu_var(vmap_block_queue);
744 vb->vbq = vbq;
745 spin_lock(&vbq->lock);
746 list_add(&vb->free_list, &vbq->free);
747 spin_unlock(&vbq->lock);
748 put_cpu_var(vmap_cpu_blocks);
750 return vb;
753 static void rcu_free_vb(struct rcu_head *head)
755 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
757 kfree(vb);
760 static void free_vmap_block(struct vmap_block *vb)
762 struct vmap_block *tmp;
763 unsigned long vb_idx;
765 spin_lock(&vb->vbq->lock);
766 if (!list_empty(&vb->free_list))
767 list_del(&vb->free_list);
768 if (!list_empty(&vb->dirty_list))
769 list_del(&vb->dirty_list);
770 spin_unlock(&vb->vbq->lock);
772 vb_idx = addr_to_vb_idx(vb->va->va_start);
773 spin_lock(&vmap_block_tree_lock);
774 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
775 spin_unlock(&vmap_block_tree_lock);
776 BUG_ON(tmp != vb);
778 free_unmap_vmap_area_noflush(vb->va);
779 call_rcu(&vb->rcu_head, rcu_free_vb);
782 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
784 struct vmap_block_queue *vbq;
785 struct vmap_block *vb;
786 unsigned long addr = 0;
787 unsigned int order;
789 BUG_ON(size & ~PAGE_MASK);
790 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
791 order = get_order(size);
793 again:
794 rcu_read_lock();
795 vbq = &get_cpu_var(vmap_block_queue);
796 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
797 int i;
799 spin_lock(&vb->lock);
800 i = bitmap_find_free_region(vb->alloc_map,
801 VMAP_BBMAP_BITS, order);
803 if (i >= 0) {
804 addr = vb->va->va_start + (i << PAGE_SHIFT);
805 BUG_ON(addr_to_vb_idx(addr) !=
806 addr_to_vb_idx(vb->va->va_start));
807 vb->free -= 1UL << order;
808 if (vb->free == 0) {
809 spin_lock(&vbq->lock);
810 list_del_init(&vb->free_list);
811 spin_unlock(&vbq->lock);
813 spin_unlock(&vb->lock);
814 break;
816 spin_unlock(&vb->lock);
818 put_cpu_var(vmap_cpu_blocks);
819 rcu_read_unlock();
821 if (!addr) {
822 vb = new_vmap_block(gfp_mask);
823 if (IS_ERR(vb))
824 return vb;
825 goto again;
828 return (void *)addr;
831 static void vb_free(const void *addr, unsigned long size)
833 unsigned long offset;
834 unsigned long vb_idx;
835 unsigned int order;
836 struct vmap_block *vb;
838 BUG_ON(size & ~PAGE_MASK);
839 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
841 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
843 order = get_order(size);
845 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
847 vb_idx = addr_to_vb_idx((unsigned long)addr);
848 rcu_read_lock();
849 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
850 rcu_read_unlock();
851 BUG_ON(!vb);
853 spin_lock(&vb->lock);
854 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
855 if (!vb->dirty) {
856 spin_lock(&vb->vbq->lock);
857 list_add(&vb->dirty_list, &vb->vbq->dirty);
858 spin_unlock(&vb->vbq->lock);
860 vb->dirty += 1UL << order;
861 if (vb->dirty == VMAP_BBMAP_BITS) {
862 BUG_ON(vb->free || !list_empty(&vb->free_list));
863 spin_unlock(&vb->lock);
864 free_vmap_block(vb);
865 } else
866 spin_unlock(&vb->lock);
870 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
872 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
873 * to amortize TLB flushing overheads. What this means is that any page you
874 * have now, may, in a former life, have been mapped into kernel virtual
875 * address by the vmap layer and so there might be some CPUs with TLB entries
876 * still referencing that page (additional to the regular 1:1 kernel mapping).
878 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
879 * be sure that none of the pages we have control over will have any aliases
880 * from the vmap layer.
882 void vm_unmap_aliases(void)
884 unsigned long start = ULONG_MAX, end = 0;
885 int cpu;
886 int flush = 0;
888 if (unlikely(!vmap_initialized))
889 return;
891 for_each_possible_cpu(cpu) {
892 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
893 struct vmap_block *vb;
895 rcu_read_lock();
896 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
897 int i;
899 spin_lock(&vb->lock);
900 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
901 while (i < VMAP_BBMAP_BITS) {
902 unsigned long s, e;
903 int j;
904 j = find_next_zero_bit(vb->dirty_map,
905 VMAP_BBMAP_BITS, i);
907 s = vb->va->va_start + (i << PAGE_SHIFT);
908 e = vb->va->va_start + (j << PAGE_SHIFT);
909 vunmap_page_range(s, e);
910 flush = 1;
912 if (s < start)
913 start = s;
914 if (e > end)
915 end = e;
917 i = j;
918 i = find_next_bit(vb->dirty_map,
919 VMAP_BBMAP_BITS, i);
921 spin_unlock(&vb->lock);
923 rcu_read_unlock();
926 __purge_vmap_area_lazy(&start, &end, 1, flush);
928 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
931 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
932 * @mem: the pointer returned by vm_map_ram
933 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
935 void vm_unmap_ram(const void *mem, unsigned int count)
937 unsigned long size = count << PAGE_SHIFT;
938 unsigned long addr = (unsigned long)mem;
940 BUG_ON(!addr);
941 BUG_ON(addr < VMALLOC_START);
942 BUG_ON(addr > VMALLOC_END);
943 BUG_ON(addr & (PAGE_SIZE-1));
945 debug_check_no_locks_freed(mem, size);
946 vmap_debug_free_range(addr, addr+size);
948 if (likely(count <= VMAP_MAX_ALLOC))
949 vb_free(mem, size);
950 else
951 free_unmap_vmap_area_addr(addr);
953 EXPORT_SYMBOL(vm_unmap_ram);
956 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
957 * @pages: an array of pointers to the pages to be mapped
958 * @count: number of pages
959 * @node: prefer to allocate data structures on this node
960 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
962 * Returns: a pointer to the address that has been mapped, or %NULL on failure
964 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
966 unsigned long size = count << PAGE_SHIFT;
967 unsigned long addr;
968 void *mem;
970 if (likely(count <= VMAP_MAX_ALLOC)) {
971 mem = vb_alloc(size, GFP_KERNEL);
972 if (IS_ERR(mem))
973 return NULL;
974 addr = (unsigned long)mem;
975 } else {
976 struct vmap_area *va;
977 va = alloc_vmap_area(size, PAGE_SIZE,
978 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
979 if (IS_ERR(va))
980 return NULL;
982 addr = va->va_start;
983 mem = (void *)addr;
985 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
986 vm_unmap_ram(mem, count);
987 return NULL;
989 return mem;
991 EXPORT_SYMBOL(vm_map_ram);
993 void __init vmalloc_init(void)
995 struct vmap_area *va;
996 struct vm_struct *tmp;
997 int i;
999 for_each_possible_cpu(i) {
1000 struct vmap_block_queue *vbq;
1002 vbq = &per_cpu(vmap_block_queue, i);
1003 spin_lock_init(&vbq->lock);
1004 INIT_LIST_HEAD(&vbq->free);
1005 INIT_LIST_HEAD(&vbq->dirty);
1006 vbq->nr_dirty = 0;
1009 /* Import existing vmlist entries. */
1010 for (tmp = vmlist; tmp; tmp = tmp->next) {
1011 va = alloc_bootmem(sizeof(struct vmap_area));
1012 va->flags = tmp->flags | VM_VM_AREA;
1013 va->va_start = (unsigned long)tmp->addr;
1014 va->va_end = va->va_start + tmp->size;
1015 __insert_vmap_area(va);
1017 vmap_initialized = true;
1020 void unmap_kernel_range(unsigned long addr, unsigned long size)
1022 unsigned long end = addr + size;
1024 flush_cache_vunmap(addr, end);
1025 vunmap_page_range(addr, end);
1026 flush_tlb_kernel_range(addr, end);
1029 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1031 unsigned long addr = (unsigned long)area->addr;
1032 unsigned long end = addr + area->size - PAGE_SIZE;
1033 int err;
1035 err = vmap_page_range(addr, end, prot, *pages);
1036 if (err > 0) {
1037 *pages += err;
1038 err = 0;
1041 return err;
1043 EXPORT_SYMBOL_GPL(map_vm_area);
1045 /*** Old vmalloc interfaces ***/
1046 DEFINE_RWLOCK(vmlist_lock);
1047 struct vm_struct *vmlist;
1049 static struct vm_struct *__get_vm_area_node(unsigned long size,
1050 unsigned long flags, unsigned long start, unsigned long end,
1051 int node, gfp_t gfp_mask, void *caller)
1053 static struct vmap_area *va;
1054 struct vm_struct *area;
1055 struct vm_struct *tmp, **p;
1056 unsigned long align = 1;
1058 BUG_ON(in_interrupt());
1059 if (flags & VM_IOREMAP) {
1060 int bit = fls(size);
1062 if (bit > IOREMAP_MAX_ORDER)
1063 bit = IOREMAP_MAX_ORDER;
1064 else if (bit < PAGE_SHIFT)
1065 bit = PAGE_SHIFT;
1067 align = 1ul << bit;
1070 size = PAGE_ALIGN(size);
1071 if (unlikely(!size))
1072 return NULL;
1074 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1075 if (unlikely(!area))
1076 return NULL;
1079 * We always allocate a guard page.
1081 size += PAGE_SIZE;
1083 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1084 if (IS_ERR(va)) {
1085 kfree(area);
1086 return NULL;
1089 area->flags = flags;
1090 area->addr = (void *)va->va_start;
1091 area->size = size;
1092 area->pages = NULL;
1093 area->nr_pages = 0;
1094 area->phys_addr = 0;
1095 area->caller = caller;
1096 va->private = area;
1097 va->flags |= VM_VM_AREA;
1099 write_lock(&vmlist_lock);
1100 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1101 if (tmp->addr >= area->addr)
1102 break;
1104 area->next = *p;
1105 *p = area;
1106 write_unlock(&vmlist_lock);
1108 return area;
1111 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1112 unsigned long start, unsigned long end)
1114 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1115 __builtin_return_address(0));
1117 EXPORT_SYMBOL_GPL(__get_vm_area);
1119 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1120 unsigned long start, unsigned long end,
1121 void *caller)
1123 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1124 caller);
1128 * get_vm_area - reserve a contiguous kernel virtual area
1129 * @size: size of the area
1130 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1132 * Search an area of @size in the kernel virtual mapping area,
1133 * and reserved it for out purposes. Returns the area descriptor
1134 * on success or %NULL on failure.
1136 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1138 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1139 -1, GFP_KERNEL, __builtin_return_address(0));
1142 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1143 void *caller)
1145 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1146 -1, GFP_KERNEL, caller);
1149 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1150 int node, gfp_t gfp_mask)
1152 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1153 gfp_mask, __builtin_return_address(0));
1156 static struct vm_struct *find_vm_area(const void *addr)
1158 struct vmap_area *va;
1160 va = find_vmap_area((unsigned long)addr);
1161 if (va && va->flags & VM_VM_AREA)
1162 return va->private;
1164 return NULL;
1168 * remove_vm_area - find and remove a continuous kernel virtual area
1169 * @addr: base address
1171 * Search for the kernel VM area starting at @addr, and remove it.
1172 * This function returns the found VM area, but using it is NOT safe
1173 * on SMP machines, except for its size or flags.
1175 struct vm_struct *remove_vm_area(const void *addr)
1177 struct vmap_area *va;
1179 va = find_vmap_area((unsigned long)addr);
1180 if (va && va->flags & VM_VM_AREA) {
1181 struct vm_struct *vm = va->private;
1182 struct vm_struct *tmp, **p;
1184 vmap_debug_free_range(va->va_start, va->va_end);
1185 free_unmap_vmap_area(va);
1186 vm->size -= PAGE_SIZE;
1188 write_lock(&vmlist_lock);
1189 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1191 *p = tmp->next;
1192 write_unlock(&vmlist_lock);
1194 return vm;
1196 return NULL;
1199 static void __vunmap(const void *addr, int deallocate_pages)
1201 struct vm_struct *area;
1203 if (!addr)
1204 return;
1206 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1207 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1208 return;
1211 area = remove_vm_area(addr);
1212 if (unlikely(!area)) {
1213 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1214 addr);
1215 return;
1218 debug_check_no_locks_freed(addr, area->size);
1219 debug_check_no_obj_freed(addr, area->size);
1221 if (deallocate_pages) {
1222 int i;
1224 for (i = 0; i < area->nr_pages; i++) {
1225 struct page *page = area->pages[i];
1227 BUG_ON(!page);
1228 __free_page(page);
1231 if (area->flags & VM_VPAGES)
1232 vfree(area->pages);
1233 else
1234 kfree(area->pages);
1237 kfree(area);
1238 return;
1242 * vfree - release memory allocated by vmalloc()
1243 * @addr: memory base address
1245 * Free the virtually continuous memory area starting at @addr, as
1246 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1247 * NULL, no operation is performed.
1249 * Must not be called in interrupt context.
1251 void vfree(const void *addr)
1253 BUG_ON(in_interrupt());
1254 __vunmap(addr, 1);
1256 EXPORT_SYMBOL(vfree);
1259 * vunmap - release virtual mapping obtained by vmap()
1260 * @addr: memory base address
1262 * Free the virtually contiguous memory area starting at @addr,
1263 * which was created from the page array passed to vmap().
1265 * Must not be called in interrupt context.
1267 void vunmap(const void *addr)
1269 BUG_ON(in_interrupt());
1270 __vunmap(addr, 0);
1272 EXPORT_SYMBOL(vunmap);
1275 * vmap - map an array of pages into virtually contiguous space
1276 * @pages: array of page pointers
1277 * @count: number of pages to map
1278 * @flags: vm_area->flags
1279 * @prot: page protection for the mapping
1281 * Maps @count pages from @pages into contiguous kernel virtual
1282 * space.
1284 void *vmap(struct page **pages, unsigned int count,
1285 unsigned long flags, pgprot_t prot)
1287 struct vm_struct *area;
1289 if (count > num_physpages)
1290 return NULL;
1292 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1293 __builtin_return_address(0));
1294 if (!area)
1295 return NULL;
1297 if (map_vm_area(area, prot, &pages)) {
1298 vunmap(area->addr);
1299 return NULL;
1302 return area->addr;
1304 EXPORT_SYMBOL(vmap);
1306 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1307 int node, void *caller);
1308 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1309 pgprot_t prot, int node, void *caller)
1311 struct page **pages;
1312 unsigned int nr_pages, array_size, i;
1314 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1315 array_size = (nr_pages * sizeof(struct page *));
1317 area->nr_pages = nr_pages;
1318 /* Please note that the recursion is strictly bounded. */
1319 if (array_size > PAGE_SIZE) {
1320 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1321 PAGE_KERNEL, node, caller);
1322 area->flags |= VM_VPAGES;
1323 } else {
1324 pages = kmalloc_node(array_size,
1325 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1326 node);
1328 area->pages = pages;
1329 area->caller = caller;
1330 if (!area->pages) {
1331 remove_vm_area(area->addr);
1332 kfree(area);
1333 return NULL;
1336 for (i = 0; i < area->nr_pages; i++) {
1337 struct page *page;
1339 if (node < 0)
1340 page = alloc_page(gfp_mask);
1341 else
1342 page = alloc_pages_node(node, gfp_mask, 0);
1344 if (unlikely(!page)) {
1345 /* Successfully allocated i pages, free them in __vunmap() */
1346 area->nr_pages = i;
1347 goto fail;
1349 area->pages[i] = page;
1352 if (map_vm_area(area, prot, &pages))
1353 goto fail;
1354 return area->addr;
1356 fail:
1357 vfree(area->addr);
1358 return NULL;
1361 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1363 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1364 __builtin_return_address(0));
1368 * __vmalloc_node - allocate virtually contiguous memory
1369 * @size: allocation size
1370 * @gfp_mask: flags for the page level allocator
1371 * @prot: protection mask for the allocated pages
1372 * @node: node to use for allocation or -1
1373 * @caller: caller's return address
1375 * Allocate enough pages to cover @size from the page level
1376 * allocator with @gfp_mask flags. Map them into contiguous
1377 * kernel virtual space, using a pagetable protection of @prot.
1379 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1380 int node, void *caller)
1382 struct vm_struct *area;
1384 size = PAGE_ALIGN(size);
1385 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1386 return NULL;
1388 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1389 node, gfp_mask, caller);
1391 if (!area)
1392 return NULL;
1394 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1397 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1399 return __vmalloc_node(size, gfp_mask, prot, -1,
1400 __builtin_return_address(0));
1402 EXPORT_SYMBOL(__vmalloc);
1405 * vmalloc - allocate virtually contiguous memory
1406 * @size: allocation size
1407 * Allocate enough pages to cover @size from the page level
1408 * allocator and map them into contiguous kernel virtual space.
1410 * For tight control over page level allocator and protection flags
1411 * use __vmalloc() instead.
1413 void *vmalloc(unsigned long size)
1415 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1416 -1, __builtin_return_address(0));
1418 EXPORT_SYMBOL(vmalloc);
1421 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1422 * @size: allocation size
1424 * The resulting memory area is zeroed so it can be mapped to userspace
1425 * without leaking data.
1427 void *vmalloc_user(unsigned long size)
1429 struct vm_struct *area;
1430 void *ret;
1432 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1433 PAGE_KERNEL, -1, __builtin_return_address(0));
1434 if (ret) {
1435 area = find_vm_area(ret);
1436 area->flags |= VM_USERMAP;
1438 return ret;
1440 EXPORT_SYMBOL(vmalloc_user);
1443 * vmalloc_node - allocate memory on a specific node
1444 * @size: allocation size
1445 * @node: numa node
1447 * Allocate enough pages to cover @size from the page level
1448 * allocator and map them into contiguous kernel virtual space.
1450 * For tight control over page level allocator and protection flags
1451 * use __vmalloc() instead.
1453 void *vmalloc_node(unsigned long size, int node)
1455 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1456 node, __builtin_return_address(0));
1458 EXPORT_SYMBOL(vmalloc_node);
1460 #ifndef PAGE_KERNEL_EXEC
1461 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1462 #endif
1465 * vmalloc_exec - allocate virtually contiguous, executable memory
1466 * @size: allocation size
1468 * Kernel-internal function to allocate enough pages to cover @size
1469 * the page level allocator and map them into contiguous and
1470 * executable kernel virtual space.
1472 * For tight control over page level allocator and protection flags
1473 * use __vmalloc() instead.
1476 void *vmalloc_exec(unsigned long size)
1478 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1479 -1, __builtin_return_address(0));
1482 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1483 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1484 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1485 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1486 #else
1487 #define GFP_VMALLOC32 GFP_KERNEL
1488 #endif
1491 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1492 * @size: allocation size
1494 * Allocate enough 32bit PA addressable pages to cover @size from the
1495 * page level allocator and map them into contiguous kernel virtual space.
1497 void *vmalloc_32(unsigned long size)
1499 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1500 -1, __builtin_return_address(0));
1502 EXPORT_SYMBOL(vmalloc_32);
1505 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1506 * @size: allocation size
1508 * The resulting memory area is 32bit addressable and zeroed so it can be
1509 * mapped to userspace without leaking data.
1511 void *vmalloc_32_user(unsigned long size)
1513 struct vm_struct *area;
1514 void *ret;
1516 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1517 -1, __builtin_return_address(0));
1518 if (ret) {
1519 area = find_vm_area(ret);
1520 area->flags |= VM_USERMAP;
1522 return ret;
1524 EXPORT_SYMBOL(vmalloc_32_user);
1526 long vread(char *buf, char *addr, unsigned long count)
1528 struct vm_struct *tmp;
1529 char *vaddr, *buf_start = buf;
1530 unsigned long n;
1532 /* Don't allow overflow */
1533 if ((unsigned long) addr + count < count)
1534 count = -(unsigned long) addr;
1536 read_lock(&vmlist_lock);
1537 for (tmp = vmlist; tmp; tmp = tmp->next) {
1538 vaddr = (char *) tmp->addr;
1539 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1540 continue;
1541 while (addr < vaddr) {
1542 if (count == 0)
1543 goto finished;
1544 *buf = '\0';
1545 buf++;
1546 addr++;
1547 count--;
1549 n = vaddr + tmp->size - PAGE_SIZE - addr;
1550 do {
1551 if (count == 0)
1552 goto finished;
1553 *buf = *addr;
1554 buf++;
1555 addr++;
1556 count--;
1557 } while (--n > 0);
1559 finished:
1560 read_unlock(&vmlist_lock);
1561 return buf - buf_start;
1564 long vwrite(char *buf, char *addr, unsigned long count)
1566 struct vm_struct *tmp;
1567 char *vaddr, *buf_start = buf;
1568 unsigned long n;
1570 /* Don't allow overflow */
1571 if ((unsigned long) addr + count < count)
1572 count = -(unsigned long) addr;
1574 read_lock(&vmlist_lock);
1575 for (tmp = vmlist; tmp; tmp = tmp->next) {
1576 vaddr = (char *) tmp->addr;
1577 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1578 continue;
1579 while (addr < vaddr) {
1580 if (count == 0)
1581 goto finished;
1582 buf++;
1583 addr++;
1584 count--;
1586 n = vaddr + tmp->size - PAGE_SIZE - addr;
1587 do {
1588 if (count == 0)
1589 goto finished;
1590 *addr = *buf;
1591 buf++;
1592 addr++;
1593 count--;
1594 } while (--n > 0);
1596 finished:
1597 read_unlock(&vmlist_lock);
1598 return buf - buf_start;
1602 * remap_vmalloc_range - map vmalloc pages to userspace
1603 * @vma: vma to cover (map full range of vma)
1604 * @addr: vmalloc memory
1605 * @pgoff: number of pages into addr before first page to map
1607 * Returns: 0 for success, -Exxx on failure
1609 * This function checks that addr is a valid vmalloc'ed area, and
1610 * that it is big enough to cover the vma. Will return failure if
1611 * that criteria isn't met.
1613 * Similar to remap_pfn_range() (see mm/memory.c)
1615 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1616 unsigned long pgoff)
1618 struct vm_struct *area;
1619 unsigned long uaddr = vma->vm_start;
1620 unsigned long usize = vma->vm_end - vma->vm_start;
1622 if ((PAGE_SIZE-1) & (unsigned long)addr)
1623 return -EINVAL;
1625 area = find_vm_area(addr);
1626 if (!area)
1627 return -EINVAL;
1629 if (!(area->flags & VM_USERMAP))
1630 return -EINVAL;
1632 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1633 return -EINVAL;
1635 addr += pgoff << PAGE_SHIFT;
1636 do {
1637 struct page *page = vmalloc_to_page(addr);
1638 int ret;
1640 ret = vm_insert_page(vma, uaddr, page);
1641 if (ret)
1642 return ret;
1644 uaddr += PAGE_SIZE;
1645 addr += PAGE_SIZE;
1646 usize -= PAGE_SIZE;
1647 } while (usize > 0);
1649 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1650 vma->vm_flags |= VM_RESERVED;
1652 return 0;
1654 EXPORT_SYMBOL(remap_vmalloc_range);
1657 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1658 * have one.
1660 void __attribute__((weak)) vmalloc_sync_all(void)
1665 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1667 /* apply_to_page_range() does all the hard work. */
1668 return 0;
1672 * alloc_vm_area - allocate a range of kernel address space
1673 * @size: size of the area
1675 * Returns: NULL on failure, vm_struct on success
1677 * This function reserves a range of kernel address space, and
1678 * allocates pagetables to map that range. No actual mappings
1679 * are created. If the kernel address space is not shared
1680 * between processes, it syncs the pagetable across all
1681 * processes.
1683 struct vm_struct *alloc_vm_area(size_t size)
1685 struct vm_struct *area;
1687 area = get_vm_area_caller(size, VM_IOREMAP,
1688 __builtin_return_address(0));
1689 if (area == NULL)
1690 return NULL;
1693 * This ensures that page tables are constructed for this region
1694 * of kernel virtual address space and mapped into init_mm.
1696 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1697 area->size, f, NULL)) {
1698 free_vm_area(area);
1699 return NULL;
1702 /* Make sure the pagetables are constructed in process kernel
1703 mappings */
1704 vmalloc_sync_all();
1706 return area;
1708 EXPORT_SYMBOL_GPL(alloc_vm_area);
1710 void free_vm_area(struct vm_struct *area)
1712 struct vm_struct *ret;
1713 ret = remove_vm_area(area->addr);
1714 BUG_ON(ret != area);
1715 kfree(area);
1717 EXPORT_SYMBOL_GPL(free_vm_area);
1720 #ifdef CONFIG_PROC_FS
1721 static void *s_start(struct seq_file *m, loff_t *pos)
1723 loff_t n = *pos;
1724 struct vm_struct *v;
1726 read_lock(&vmlist_lock);
1727 v = vmlist;
1728 while (n > 0 && v) {
1729 n--;
1730 v = v->next;
1732 if (!n)
1733 return v;
1735 return NULL;
1739 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1741 struct vm_struct *v = p;
1743 ++*pos;
1744 return v->next;
1747 static void s_stop(struct seq_file *m, void *p)
1749 read_unlock(&vmlist_lock);
1752 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1754 if (NUMA_BUILD) {
1755 unsigned int nr, *counters = m->private;
1757 if (!counters)
1758 return;
1760 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1762 for (nr = 0; nr < v->nr_pages; nr++)
1763 counters[page_to_nid(v->pages[nr])]++;
1765 for_each_node_state(nr, N_HIGH_MEMORY)
1766 if (counters[nr])
1767 seq_printf(m, " N%u=%u", nr, counters[nr]);
1771 static int s_show(struct seq_file *m, void *p)
1773 struct vm_struct *v = p;
1775 seq_printf(m, "0x%p-0x%p %7ld",
1776 v->addr, v->addr + v->size, v->size);
1778 if (v->caller) {
1779 char buff[KSYM_SYMBOL_LEN];
1781 seq_putc(m, ' ');
1782 sprint_symbol(buff, (unsigned long)v->caller);
1783 seq_puts(m, buff);
1786 if (v->nr_pages)
1787 seq_printf(m, " pages=%d", v->nr_pages);
1789 if (v->phys_addr)
1790 seq_printf(m, " phys=%lx", v->phys_addr);
1792 if (v->flags & VM_IOREMAP)
1793 seq_printf(m, " ioremap");
1795 if (v->flags & VM_ALLOC)
1796 seq_printf(m, " vmalloc");
1798 if (v->flags & VM_MAP)
1799 seq_printf(m, " vmap");
1801 if (v->flags & VM_USERMAP)
1802 seq_printf(m, " user");
1804 if (v->flags & VM_VPAGES)
1805 seq_printf(m, " vpages");
1807 show_numa_info(m, v);
1808 seq_putc(m, '\n');
1809 return 0;
1812 static const struct seq_operations vmalloc_op = {
1813 .start = s_start,
1814 .next = s_next,
1815 .stop = s_stop,
1816 .show = s_show,
1819 static int vmalloc_open(struct inode *inode, struct file *file)
1821 unsigned int *ptr = NULL;
1822 int ret;
1824 if (NUMA_BUILD)
1825 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1826 ret = seq_open(file, &vmalloc_op);
1827 if (!ret) {
1828 struct seq_file *m = file->private_data;
1829 m->private = ptr;
1830 } else
1831 kfree(ptr);
1832 return ret;
1835 static const struct file_operations proc_vmalloc_operations = {
1836 .open = vmalloc_open,
1837 .read = seq_read,
1838 .llseek = seq_lseek,
1839 .release = seq_release_private,
1842 static int __init proc_vmalloc_init(void)
1844 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1845 return 0;
1847 module_init(proc_vmalloc_init);
1848 #endif