mm: add add_to_swap stub
[linux-2.6/mini2440.git] / mm / vmscan.c
blobf350523a8eeea47060358c5ada1b13c36b6b20e4
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
49 #include "internal.h"
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
55 /* This context's GFP mask */
56 gfp_t gfp_mask;
58 int may_writepage;
60 /* Can pages be swapped as part of reclaim? */
61 int may_swap;
63 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
64 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
65 * In this context, it doesn't matter that we scan the
66 * whole list at once. */
67 int swap_cluster_max;
69 int swappiness;
71 int all_unreclaimable;
73 int order;
75 /* Which cgroup do we reclaim from */
76 struct mem_cgroup *mem_cgroup;
78 /* Pluggable isolate pages callback */
79 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
80 unsigned long *scanned, int order, int mode,
81 struct zone *z, struct mem_cgroup *mem_cont,
82 int active, int file);
85 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
87 #ifdef ARCH_HAS_PREFETCH
88 #define prefetch_prev_lru_page(_page, _base, _field) \
89 do { \
90 if ((_page)->lru.prev != _base) { \
91 struct page *prev; \
93 prev = lru_to_page(&(_page->lru)); \
94 prefetch(&prev->_field); \
95 } \
96 } while (0)
97 #else
98 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
99 #endif
101 #ifdef ARCH_HAS_PREFETCHW
102 #define prefetchw_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetchw(&prev->_field); \
110 } while (0)
111 #else
112 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
116 * From 0 .. 100. Higher means more swappy.
118 int vm_swappiness = 60;
119 long vm_total_pages; /* The total number of pages which the VM controls */
121 static LIST_HEAD(shrinker_list);
122 static DECLARE_RWSEM(shrinker_rwsem);
124 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
125 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
126 #else
127 #define scan_global_lru(sc) (1)
128 #endif
131 * Add a shrinker callback to be called from the vm
133 void register_shrinker(struct shrinker *shrinker)
135 shrinker->nr = 0;
136 down_write(&shrinker_rwsem);
137 list_add_tail(&shrinker->list, &shrinker_list);
138 up_write(&shrinker_rwsem);
140 EXPORT_SYMBOL(register_shrinker);
143 * Remove one
145 void unregister_shrinker(struct shrinker *shrinker)
147 down_write(&shrinker_rwsem);
148 list_del(&shrinker->list);
149 up_write(&shrinker_rwsem);
151 EXPORT_SYMBOL(unregister_shrinker);
153 #define SHRINK_BATCH 128
155 * Call the shrink functions to age shrinkable caches
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object. With this in mind we age equal
159 * percentages of the lru and ageable caches. This should balance the seeks
160 * generated by these structures.
162 * If the vm encountered mapped pages on the LRU it increase the pressure on
163 * slab to avoid swapping.
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt. It is used for balancing
169 * slab reclaim versus page reclaim.
171 * Returns the number of slab objects which we shrunk.
173 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
174 unsigned long lru_pages)
176 struct shrinker *shrinker;
177 unsigned long ret = 0;
179 if (scanned == 0)
180 scanned = SWAP_CLUSTER_MAX;
182 if (!down_read_trylock(&shrinker_rwsem))
183 return 1; /* Assume we'll be able to shrink next time */
185 list_for_each_entry(shrinker, &shrinker_list, list) {
186 unsigned long long delta;
187 unsigned long total_scan;
188 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
190 delta = (4 * scanned) / shrinker->seeks;
191 delta *= max_pass;
192 do_div(delta, lru_pages + 1);
193 shrinker->nr += delta;
194 if (shrinker->nr < 0) {
195 printk(KERN_ERR "%s: nr=%ld\n",
196 __func__, shrinker->nr);
197 shrinker->nr = max_pass;
201 * Avoid risking looping forever due to too large nr value:
202 * never try to free more than twice the estimate number of
203 * freeable entries.
205 if (shrinker->nr > max_pass * 2)
206 shrinker->nr = max_pass * 2;
208 total_scan = shrinker->nr;
209 shrinker->nr = 0;
211 while (total_scan >= SHRINK_BATCH) {
212 long this_scan = SHRINK_BATCH;
213 int shrink_ret;
214 int nr_before;
216 nr_before = (*shrinker->shrink)(0, gfp_mask);
217 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
218 if (shrink_ret == -1)
219 break;
220 if (shrink_ret < nr_before)
221 ret += nr_before - shrink_ret;
222 count_vm_events(SLABS_SCANNED, this_scan);
223 total_scan -= this_scan;
225 cond_resched();
228 shrinker->nr += total_scan;
230 up_read(&shrinker_rwsem);
231 return ret;
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page *page)
237 struct address_space *mapping;
239 /* Page is in somebody's page tables. */
240 if (page_mapped(page))
241 return 1;
243 /* Be more reluctant to reclaim swapcache than pagecache */
244 if (PageSwapCache(page))
245 return 1;
247 mapping = page_mapping(page);
248 if (!mapping)
249 return 0;
251 /* File is mmap'd by somebody? */
252 return mapping_mapped(mapping);
255 static inline int is_page_cache_freeable(struct page *page)
257 return page_count(page) - !!PagePrivate(page) == 2;
260 static int may_write_to_queue(struct backing_dev_info *bdi)
262 if (current->flags & PF_SWAPWRITE)
263 return 1;
264 if (!bdi_write_congested(bdi))
265 return 1;
266 if (bdi == current->backing_dev_info)
267 return 1;
268 return 0;
272 * We detected a synchronous write error writing a page out. Probably
273 * -ENOSPC. We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up. But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
280 * We're allowed to run sleeping lock_page() here because we know the caller has
281 * __GFP_FS.
283 static void handle_write_error(struct address_space *mapping,
284 struct page *page, int error)
286 lock_page(page);
287 if (page_mapping(page) == mapping)
288 mapping_set_error(mapping, error);
289 unlock_page(page);
292 /* Request for sync pageout. */
293 enum pageout_io {
294 PAGEOUT_IO_ASYNC,
295 PAGEOUT_IO_SYNC,
298 /* possible outcome of pageout() */
299 typedef enum {
300 /* failed to write page out, page is locked */
301 PAGE_KEEP,
302 /* move page to the active list, page is locked */
303 PAGE_ACTIVATE,
304 /* page has been sent to the disk successfully, page is unlocked */
305 PAGE_SUCCESS,
306 /* page is clean and locked */
307 PAGE_CLEAN,
308 } pageout_t;
311 * pageout is called by shrink_page_list() for each dirty page.
312 * Calls ->writepage().
314 static pageout_t pageout(struct page *page, struct address_space *mapping,
315 enum pageout_io sync_writeback)
318 * If the page is dirty, only perform writeback if that write
319 * will be non-blocking. To prevent this allocation from being
320 * stalled by pagecache activity. But note that there may be
321 * stalls if we need to run get_block(). We could test
322 * PagePrivate for that.
324 * If this process is currently in generic_file_write() against
325 * this page's queue, we can perform writeback even if that
326 * will block.
328 * If the page is swapcache, write it back even if that would
329 * block, for some throttling. This happens by accident, because
330 * swap_backing_dev_info is bust: it doesn't reflect the
331 * congestion state of the swapdevs. Easy to fix, if needed.
332 * See swapfile.c:page_queue_congested().
334 if (!is_page_cache_freeable(page))
335 return PAGE_KEEP;
336 if (!mapping) {
338 * Some data journaling orphaned pages can have
339 * page->mapping == NULL while being dirty with clean buffers.
341 if (PagePrivate(page)) {
342 if (try_to_free_buffers(page)) {
343 ClearPageDirty(page);
344 printk("%s: orphaned page\n", __func__);
345 return PAGE_CLEAN;
348 return PAGE_KEEP;
350 if (mapping->a_ops->writepage == NULL)
351 return PAGE_ACTIVATE;
352 if (!may_write_to_queue(mapping->backing_dev_info))
353 return PAGE_KEEP;
355 if (clear_page_dirty_for_io(page)) {
356 int res;
357 struct writeback_control wbc = {
358 .sync_mode = WB_SYNC_NONE,
359 .nr_to_write = SWAP_CLUSTER_MAX,
360 .range_start = 0,
361 .range_end = LLONG_MAX,
362 .nonblocking = 1,
363 .for_reclaim = 1,
366 SetPageReclaim(page);
367 res = mapping->a_ops->writepage(page, &wbc);
368 if (res < 0)
369 handle_write_error(mapping, page, res);
370 if (res == AOP_WRITEPAGE_ACTIVATE) {
371 ClearPageReclaim(page);
372 return PAGE_ACTIVATE;
376 * Wait on writeback if requested to. This happens when
377 * direct reclaiming a large contiguous area and the
378 * first attempt to free a range of pages fails.
380 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
381 wait_on_page_writeback(page);
383 if (!PageWriteback(page)) {
384 /* synchronous write or broken a_ops? */
385 ClearPageReclaim(page);
387 inc_zone_page_state(page, NR_VMSCAN_WRITE);
388 return PAGE_SUCCESS;
391 return PAGE_CLEAN;
395 * Same as remove_mapping, but if the page is removed from the mapping, it
396 * gets returned with a refcount of 0.
398 static int __remove_mapping(struct address_space *mapping, struct page *page)
400 BUG_ON(!PageLocked(page));
401 BUG_ON(mapping != page_mapping(page));
403 spin_lock_irq(&mapping->tree_lock);
405 * The non racy check for a busy page.
407 * Must be careful with the order of the tests. When someone has
408 * a ref to the page, it may be possible that they dirty it then
409 * drop the reference. So if PageDirty is tested before page_count
410 * here, then the following race may occur:
412 * get_user_pages(&page);
413 * [user mapping goes away]
414 * write_to(page);
415 * !PageDirty(page) [good]
416 * SetPageDirty(page);
417 * put_page(page);
418 * !page_count(page) [good, discard it]
420 * [oops, our write_to data is lost]
422 * Reversing the order of the tests ensures such a situation cannot
423 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 * load is not satisfied before that of page->_count.
426 * Note that if SetPageDirty is always performed via set_page_dirty,
427 * and thus under tree_lock, then this ordering is not required.
429 if (!page_freeze_refs(page, 2))
430 goto cannot_free;
431 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
432 if (unlikely(PageDirty(page))) {
433 page_unfreeze_refs(page, 2);
434 goto cannot_free;
437 if (PageSwapCache(page)) {
438 swp_entry_t swap = { .val = page_private(page) };
439 __delete_from_swap_cache(page);
440 spin_unlock_irq(&mapping->tree_lock);
441 swap_free(swap);
442 } else {
443 __remove_from_page_cache(page);
444 spin_unlock_irq(&mapping->tree_lock);
447 return 1;
449 cannot_free:
450 spin_unlock_irq(&mapping->tree_lock);
451 return 0;
455 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
456 * someone else has a ref on the page, abort and return 0. If it was
457 * successfully detached, return 1. Assumes the caller has a single ref on
458 * this page.
460 int remove_mapping(struct address_space *mapping, struct page *page)
462 if (__remove_mapping(mapping, page)) {
464 * Unfreezing the refcount with 1 rather than 2 effectively
465 * drops the pagecache ref for us without requiring another
466 * atomic operation.
468 page_unfreeze_refs(page, 1);
469 return 1;
471 return 0;
475 * putback_lru_page - put previously isolated page onto appropriate LRU list
476 * @page: page to be put back to appropriate lru list
478 * Add previously isolated @page to appropriate LRU list.
479 * Page may still be unevictable for other reasons.
481 * lru_lock must not be held, interrupts must be enabled.
483 #ifdef CONFIG_UNEVICTABLE_LRU
484 void putback_lru_page(struct page *page)
486 int lru;
487 int active = !!TestClearPageActive(page);
488 int was_unevictable = PageUnevictable(page);
490 VM_BUG_ON(PageLRU(page));
492 redo:
493 ClearPageUnevictable(page);
495 if (page_evictable(page, NULL)) {
497 * For evictable pages, we can use the cache.
498 * In event of a race, worst case is we end up with an
499 * unevictable page on [in]active list.
500 * We know how to handle that.
502 lru = active + page_is_file_cache(page);
503 lru_cache_add_lru(page, lru);
504 } else {
506 * Put unevictable pages directly on zone's unevictable
507 * list.
509 lru = LRU_UNEVICTABLE;
510 add_page_to_unevictable_list(page);
512 mem_cgroup_move_lists(page, lru);
515 * page's status can change while we move it among lru. If an evictable
516 * page is on unevictable list, it never be freed. To avoid that,
517 * check after we added it to the list, again.
519 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
520 if (!isolate_lru_page(page)) {
521 put_page(page);
522 goto redo;
524 /* This means someone else dropped this page from LRU
525 * So, it will be freed or putback to LRU again. There is
526 * nothing to do here.
530 if (was_unevictable && lru != LRU_UNEVICTABLE)
531 count_vm_event(UNEVICTABLE_PGRESCUED);
532 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
533 count_vm_event(UNEVICTABLE_PGCULLED);
535 put_page(page); /* drop ref from isolate */
538 #else /* CONFIG_UNEVICTABLE_LRU */
540 void putback_lru_page(struct page *page)
542 int lru;
543 VM_BUG_ON(PageLRU(page));
545 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
546 lru_cache_add_lru(page, lru);
547 mem_cgroup_move_lists(page, lru);
548 put_page(page);
550 #endif /* CONFIG_UNEVICTABLE_LRU */
554 * shrink_page_list() returns the number of reclaimed pages
556 static unsigned long shrink_page_list(struct list_head *page_list,
557 struct scan_control *sc,
558 enum pageout_io sync_writeback)
560 LIST_HEAD(ret_pages);
561 struct pagevec freed_pvec;
562 int pgactivate = 0;
563 unsigned long nr_reclaimed = 0;
565 cond_resched();
567 pagevec_init(&freed_pvec, 1);
568 while (!list_empty(page_list)) {
569 struct address_space *mapping;
570 struct page *page;
571 int may_enter_fs;
572 int referenced;
574 cond_resched();
576 page = lru_to_page(page_list);
577 list_del(&page->lru);
579 if (!trylock_page(page))
580 goto keep;
582 VM_BUG_ON(PageActive(page));
584 sc->nr_scanned++;
586 if (unlikely(!page_evictable(page, NULL)))
587 goto cull_mlocked;
589 if (!sc->may_swap && page_mapped(page))
590 goto keep_locked;
592 /* Double the slab pressure for mapped and swapcache pages */
593 if (page_mapped(page) || PageSwapCache(page))
594 sc->nr_scanned++;
596 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
597 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
599 if (PageWriteback(page)) {
601 * Synchronous reclaim is performed in two passes,
602 * first an asynchronous pass over the list to
603 * start parallel writeback, and a second synchronous
604 * pass to wait for the IO to complete. Wait here
605 * for any page for which writeback has already
606 * started.
608 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
609 wait_on_page_writeback(page);
610 else
611 goto keep_locked;
614 referenced = page_referenced(page, 1, sc->mem_cgroup);
615 /* In active use or really unfreeable? Activate it. */
616 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
617 referenced && page_mapping_inuse(page))
618 goto activate_locked;
621 * Anonymous process memory has backing store?
622 * Try to allocate it some swap space here.
624 if (PageAnon(page) && !PageSwapCache(page)) {
625 if (!(sc->gfp_mask & __GFP_IO))
626 goto keep_locked;
627 if (!add_to_swap(page))
628 goto activate_locked;
629 may_enter_fs = 1;
632 mapping = page_mapping(page);
635 * The page is mapped into the page tables of one or more
636 * processes. Try to unmap it here.
638 if (page_mapped(page) && mapping) {
639 switch (try_to_unmap(page, 0)) {
640 case SWAP_FAIL:
641 goto activate_locked;
642 case SWAP_AGAIN:
643 goto keep_locked;
644 case SWAP_MLOCK:
645 goto cull_mlocked;
646 case SWAP_SUCCESS:
647 ; /* try to free the page below */
651 if (PageDirty(page)) {
652 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
653 goto keep_locked;
654 if (!may_enter_fs)
655 goto keep_locked;
656 if (!sc->may_writepage)
657 goto keep_locked;
659 /* Page is dirty, try to write it out here */
660 switch (pageout(page, mapping, sync_writeback)) {
661 case PAGE_KEEP:
662 goto keep_locked;
663 case PAGE_ACTIVATE:
664 goto activate_locked;
665 case PAGE_SUCCESS:
666 if (PageWriteback(page) || PageDirty(page))
667 goto keep;
669 * A synchronous write - probably a ramdisk. Go
670 * ahead and try to reclaim the page.
672 if (!trylock_page(page))
673 goto keep;
674 if (PageDirty(page) || PageWriteback(page))
675 goto keep_locked;
676 mapping = page_mapping(page);
677 case PAGE_CLEAN:
678 ; /* try to free the page below */
683 * If the page has buffers, try to free the buffer mappings
684 * associated with this page. If we succeed we try to free
685 * the page as well.
687 * We do this even if the page is PageDirty().
688 * try_to_release_page() does not perform I/O, but it is
689 * possible for a page to have PageDirty set, but it is actually
690 * clean (all its buffers are clean). This happens if the
691 * buffers were written out directly, with submit_bh(). ext3
692 * will do this, as well as the blockdev mapping.
693 * try_to_release_page() will discover that cleanness and will
694 * drop the buffers and mark the page clean - it can be freed.
696 * Rarely, pages can have buffers and no ->mapping. These are
697 * the pages which were not successfully invalidated in
698 * truncate_complete_page(). We try to drop those buffers here
699 * and if that worked, and the page is no longer mapped into
700 * process address space (page_count == 1) it can be freed.
701 * Otherwise, leave the page on the LRU so it is swappable.
703 if (PagePrivate(page)) {
704 if (!try_to_release_page(page, sc->gfp_mask))
705 goto activate_locked;
706 if (!mapping && page_count(page) == 1) {
707 unlock_page(page);
708 if (put_page_testzero(page))
709 goto free_it;
710 else {
712 * rare race with speculative reference.
713 * the speculative reference will free
714 * this page shortly, so we may
715 * increment nr_reclaimed here (and
716 * leave it off the LRU).
718 nr_reclaimed++;
719 continue;
724 if (!mapping || !__remove_mapping(mapping, page))
725 goto keep_locked;
728 * At this point, we have no other references and there is
729 * no way to pick any more up (removed from LRU, removed
730 * from pagecache). Can use non-atomic bitops now (and
731 * we obviously don't have to worry about waking up a process
732 * waiting on the page lock, because there are no references.
734 __clear_page_locked(page);
735 free_it:
736 nr_reclaimed++;
737 if (!pagevec_add(&freed_pvec, page)) {
738 __pagevec_free(&freed_pvec);
739 pagevec_reinit(&freed_pvec);
741 continue;
743 cull_mlocked:
744 if (PageSwapCache(page))
745 try_to_free_swap(page);
746 unlock_page(page);
747 putback_lru_page(page);
748 continue;
750 activate_locked:
751 /* Not a candidate for swapping, so reclaim swap space. */
752 if (PageSwapCache(page) && vm_swap_full())
753 try_to_free_swap(page);
754 VM_BUG_ON(PageActive(page));
755 SetPageActive(page);
756 pgactivate++;
757 keep_locked:
758 unlock_page(page);
759 keep:
760 list_add(&page->lru, &ret_pages);
761 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
763 list_splice(&ret_pages, page_list);
764 if (pagevec_count(&freed_pvec))
765 __pagevec_free(&freed_pvec);
766 count_vm_events(PGACTIVATE, pgactivate);
767 return nr_reclaimed;
770 /* LRU Isolation modes. */
771 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
772 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
773 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
776 * Attempt to remove the specified page from its LRU. Only take this page
777 * if it is of the appropriate PageActive status. Pages which are being
778 * freed elsewhere are also ignored.
780 * page: page to consider
781 * mode: one of the LRU isolation modes defined above
783 * returns 0 on success, -ve errno on failure.
785 int __isolate_lru_page(struct page *page, int mode, int file)
787 int ret = -EINVAL;
789 /* Only take pages on the LRU. */
790 if (!PageLRU(page))
791 return ret;
794 * When checking the active state, we need to be sure we are
795 * dealing with comparible boolean values. Take the logical not
796 * of each.
798 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
799 return ret;
801 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
802 return ret;
805 * When this function is being called for lumpy reclaim, we
806 * initially look into all LRU pages, active, inactive and
807 * unevictable; only give shrink_page_list evictable pages.
809 if (PageUnevictable(page))
810 return ret;
812 ret = -EBUSY;
813 if (likely(get_page_unless_zero(page))) {
815 * Be careful not to clear PageLRU until after we're
816 * sure the page is not being freed elsewhere -- the
817 * page release code relies on it.
819 ClearPageLRU(page);
820 ret = 0;
823 return ret;
827 * zone->lru_lock is heavily contended. Some of the functions that
828 * shrink the lists perform better by taking out a batch of pages
829 * and working on them outside the LRU lock.
831 * For pagecache intensive workloads, this function is the hottest
832 * spot in the kernel (apart from copy_*_user functions).
834 * Appropriate locks must be held before calling this function.
836 * @nr_to_scan: The number of pages to look through on the list.
837 * @src: The LRU list to pull pages off.
838 * @dst: The temp list to put pages on to.
839 * @scanned: The number of pages that were scanned.
840 * @order: The caller's attempted allocation order
841 * @mode: One of the LRU isolation modes
842 * @file: True [1] if isolating file [!anon] pages
844 * returns how many pages were moved onto *@dst.
846 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
847 struct list_head *src, struct list_head *dst,
848 unsigned long *scanned, int order, int mode, int file)
850 unsigned long nr_taken = 0;
851 unsigned long scan;
853 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
854 struct page *page;
855 unsigned long pfn;
856 unsigned long end_pfn;
857 unsigned long page_pfn;
858 int zone_id;
860 page = lru_to_page(src);
861 prefetchw_prev_lru_page(page, src, flags);
863 VM_BUG_ON(!PageLRU(page));
865 switch (__isolate_lru_page(page, mode, file)) {
866 case 0:
867 list_move(&page->lru, dst);
868 nr_taken++;
869 break;
871 case -EBUSY:
872 /* else it is being freed elsewhere */
873 list_move(&page->lru, src);
874 continue;
876 default:
877 BUG();
880 if (!order)
881 continue;
884 * Attempt to take all pages in the order aligned region
885 * surrounding the tag page. Only take those pages of
886 * the same active state as that tag page. We may safely
887 * round the target page pfn down to the requested order
888 * as the mem_map is guarenteed valid out to MAX_ORDER,
889 * where that page is in a different zone we will detect
890 * it from its zone id and abort this block scan.
892 zone_id = page_zone_id(page);
893 page_pfn = page_to_pfn(page);
894 pfn = page_pfn & ~((1 << order) - 1);
895 end_pfn = pfn + (1 << order);
896 for (; pfn < end_pfn; pfn++) {
897 struct page *cursor_page;
899 /* The target page is in the block, ignore it. */
900 if (unlikely(pfn == page_pfn))
901 continue;
903 /* Avoid holes within the zone. */
904 if (unlikely(!pfn_valid_within(pfn)))
905 break;
907 cursor_page = pfn_to_page(pfn);
909 /* Check that we have not crossed a zone boundary. */
910 if (unlikely(page_zone_id(cursor_page) != zone_id))
911 continue;
912 switch (__isolate_lru_page(cursor_page, mode, file)) {
913 case 0:
914 list_move(&cursor_page->lru, dst);
915 nr_taken++;
916 scan++;
917 break;
919 case -EBUSY:
920 /* else it is being freed elsewhere */
921 list_move(&cursor_page->lru, src);
922 default:
923 break; /* ! on LRU or wrong list */
928 *scanned = scan;
929 return nr_taken;
932 static unsigned long isolate_pages_global(unsigned long nr,
933 struct list_head *dst,
934 unsigned long *scanned, int order,
935 int mode, struct zone *z,
936 struct mem_cgroup *mem_cont,
937 int active, int file)
939 int lru = LRU_BASE;
940 if (active)
941 lru += LRU_ACTIVE;
942 if (file)
943 lru += LRU_FILE;
944 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
945 mode, !!file);
949 * clear_active_flags() is a helper for shrink_active_list(), clearing
950 * any active bits from the pages in the list.
952 static unsigned long clear_active_flags(struct list_head *page_list,
953 unsigned int *count)
955 int nr_active = 0;
956 int lru;
957 struct page *page;
959 list_for_each_entry(page, page_list, lru) {
960 lru = page_is_file_cache(page);
961 if (PageActive(page)) {
962 lru += LRU_ACTIVE;
963 ClearPageActive(page);
964 nr_active++;
966 count[lru]++;
969 return nr_active;
973 * isolate_lru_page - tries to isolate a page from its LRU list
974 * @page: page to isolate from its LRU list
976 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
977 * vmstat statistic corresponding to whatever LRU list the page was on.
979 * Returns 0 if the page was removed from an LRU list.
980 * Returns -EBUSY if the page was not on an LRU list.
982 * The returned page will have PageLRU() cleared. If it was found on
983 * the active list, it will have PageActive set. If it was found on
984 * the unevictable list, it will have the PageUnevictable bit set. That flag
985 * may need to be cleared by the caller before letting the page go.
987 * The vmstat statistic corresponding to the list on which the page was
988 * found will be decremented.
990 * Restrictions:
991 * (1) Must be called with an elevated refcount on the page. This is a
992 * fundamentnal difference from isolate_lru_pages (which is called
993 * without a stable reference).
994 * (2) the lru_lock must not be held.
995 * (3) interrupts must be enabled.
997 int isolate_lru_page(struct page *page)
999 int ret = -EBUSY;
1001 if (PageLRU(page)) {
1002 struct zone *zone = page_zone(page);
1004 spin_lock_irq(&zone->lru_lock);
1005 if (PageLRU(page) && get_page_unless_zero(page)) {
1006 int lru = page_lru(page);
1007 ret = 0;
1008 ClearPageLRU(page);
1010 del_page_from_lru_list(zone, page, lru);
1012 spin_unlock_irq(&zone->lru_lock);
1014 return ret;
1018 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1019 * of reclaimed pages
1021 static unsigned long shrink_inactive_list(unsigned long max_scan,
1022 struct zone *zone, struct scan_control *sc,
1023 int priority, int file)
1025 LIST_HEAD(page_list);
1026 struct pagevec pvec;
1027 unsigned long nr_scanned = 0;
1028 unsigned long nr_reclaimed = 0;
1030 pagevec_init(&pvec, 1);
1032 lru_add_drain();
1033 spin_lock_irq(&zone->lru_lock);
1034 do {
1035 struct page *page;
1036 unsigned long nr_taken;
1037 unsigned long nr_scan;
1038 unsigned long nr_freed;
1039 unsigned long nr_active;
1040 unsigned int count[NR_LRU_LISTS] = { 0, };
1041 int mode = ISOLATE_INACTIVE;
1044 * If we need a large contiguous chunk of memory, or have
1045 * trouble getting a small set of contiguous pages, we
1046 * will reclaim both active and inactive pages.
1048 * We use the same threshold as pageout congestion_wait below.
1050 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1051 mode = ISOLATE_BOTH;
1052 else if (sc->order && priority < DEF_PRIORITY - 2)
1053 mode = ISOLATE_BOTH;
1055 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1056 &page_list, &nr_scan, sc->order, mode,
1057 zone, sc->mem_cgroup, 0, file);
1058 nr_active = clear_active_flags(&page_list, count);
1059 __count_vm_events(PGDEACTIVATE, nr_active);
1061 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1062 -count[LRU_ACTIVE_FILE]);
1063 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1064 -count[LRU_INACTIVE_FILE]);
1065 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1066 -count[LRU_ACTIVE_ANON]);
1067 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1068 -count[LRU_INACTIVE_ANON]);
1070 if (scan_global_lru(sc)) {
1071 zone->pages_scanned += nr_scan;
1072 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1073 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1074 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1075 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1077 spin_unlock_irq(&zone->lru_lock);
1079 nr_scanned += nr_scan;
1080 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1083 * If we are direct reclaiming for contiguous pages and we do
1084 * not reclaim everything in the list, try again and wait
1085 * for IO to complete. This will stall high-order allocations
1086 * but that should be acceptable to the caller
1088 if (nr_freed < nr_taken && !current_is_kswapd() &&
1089 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1090 congestion_wait(WRITE, HZ/10);
1093 * The attempt at page out may have made some
1094 * of the pages active, mark them inactive again.
1096 nr_active = clear_active_flags(&page_list, count);
1097 count_vm_events(PGDEACTIVATE, nr_active);
1099 nr_freed += shrink_page_list(&page_list, sc,
1100 PAGEOUT_IO_SYNC);
1103 nr_reclaimed += nr_freed;
1104 local_irq_disable();
1105 if (current_is_kswapd()) {
1106 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1107 __count_vm_events(KSWAPD_STEAL, nr_freed);
1108 } else if (scan_global_lru(sc))
1109 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1111 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1113 if (nr_taken == 0)
1114 goto done;
1116 spin_lock(&zone->lru_lock);
1118 * Put back any unfreeable pages.
1120 while (!list_empty(&page_list)) {
1121 int lru;
1122 page = lru_to_page(&page_list);
1123 VM_BUG_ON(PageLRU(page));
1124 list_del(&page->lru);
1125 if (unlikely(!page_evictable(page, NULL))) {
1126 spin_unlock_irq(&zone->lru_lock);
1127 putback_lru_page(page);
1128 spin_lock_irq(&zone->lru_lock);
1129 continue;
1131 SetPageLRU(page);
1132 lru = page_lru(page);
1133 add_page_to_lru_list(zone, page, lru);
1134 mem_cgroup_move_lists(page, lru);
1135 if (PageActive(page) && scan_global_lru(sc)) {
1136 int file = !!page_is_file_cache(page);
1137 zone->recent_rotated[file]++;
1139 if (!pagevec_add(&pvec, page)) {
1140 spin_unlock_irq(&zone->lru_lock);
1141 __pagevec_release(&pvec);
1142 spin_lock_irq(&zone->lru_lock);
1145 } while (nr_scanned < max_scan);
1146 spin_unlock(&zone->lru_lock);
1147 done:
1148 local_irq_enable();
1149 pagevec_release(&pvec);
1150 return nr_reclaimed;
1154 * We are about to scan this zone at a certain priority level. If that priority
1155 * level is smaller (ie: more urgent) than the previous priority, then note
1156 * that priority level within the zone. This is done so that when the next
1157 * process comes in to scan this zone, it will immediately start out at this
1158 * priority level rather than having to build up its own scanning priority.
1159 * Here, this priority affects only the reclaim-mapped threshold.
1161 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1163 if (priority < zone->prev_priority)
1164 zone->prev_priority = priority;
1167 static inline int zone_is_near_oom(struct zone *zone)
1169 return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1173 * This moves pages from the active list to the inactive list.
1175 * We move them the other way if the page is referenced by one or more
1176 * processes, from rmap.
1178 * If the pages are mostly unmapped, the processing is fast and it is
1179 * appropriate to hold zone->lru_lock across the whole operation. But if
1180 * the pages are mapped, the processing is slow (page_referenced()) so we
1181 * should drop zone->lru_lock around each page. It's impossible to balance
1182 * this, so instead we remove the pages from the LRU while processing them.
1183 * It is safe to rely on PG_active against the non-LRU pages in here because
1184 * nobody will play with that bit on a non-LRU page.
1186 * The downside is that we have to touch page->_count against each page.
1187 * But we had to alter page->flags anyway.
1191 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1192 struct scan_control *sc, int priority, int file)
1194 unsigned long pgmoved;
1195 int pgdeactivate = 0;
1196 unsigned long pgscanned;
1197 LIST_HEAD(l_hold); /* The pages which were snipped off */
1198 LIST_HEAD(l_inactive);
1199 struct page *page;
1200 struct pagevec pvec;
1201 enum lru_list lru;
1203 lru_add_drain();
1204 spin_lock_irq(&zone->lru_lock);
1205 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1206 ISOLATE_ACTIVE, zone,
1207 sc->mem_cgroup, 1, file);
1209 * zone->pages_scanned is used for detect zone's oom
1210 * mem_cgroup remembers nr_scan by itself.
1212 if (scan_global_lru(sc)) {
1213 zone->pages_scanned += pgscanned;
1214 zone->recent_scanned[!!file] += pgmoved;
1217 if (file)
1218 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1219 else
1220 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1221 spin_unlock_irq(&zone->lru_lock);
1223 pgmoved = 0;
1224 while (!list_empty(&l_hold)) {
1225 cond_resched();
1226 page = lru_to_page(&l_hold);
1227 list_del(&page->lru);
1229 if (unlikely(!page_evictable(page, NULL))) {
1230 putback_lru_page(page);
1231 continue;
1234 /* page_referenced clears PageReferenced */
1235 if (page_mapping_inuse(page) &&
1236 page_referenced(page, 0, sc->mem_cgroup))
1237 pgmoved++;
1239 list_add(&page->lru, &l_inactive);
1242 spin_lock_irq(&zone->lru_lock);
1244 * Count referenced pages from currently used mappings as
1245 * rotated, even though they are moved to the inactive list.
1246 * This helps balance scan pressure between file and anonymous
1247 * pages in get_scan_ratio.
1249 zone->recent_rotated[!!file] += pgmoved;
1252 * Move the pages to the [file or anon] inactive list.
1254 pagevec_init(&pvec, 1);
1256 pgmoved = 0;
1257 lru = LRU_BASE + file * LRU_FILE;
1258 while (!list_empty(&l_inactive)) {
1259 page = lru_to_page(&l_inactive);
1260 prefetchw_prev_lru_page(page, &l_inactive, flags);
1261 VM_BUG_ON(PageLRU(page));
1262 SetPageLRU(page);
1263 VM_BUG_ON(!PageActive(page));
1264 ClearPageActive(page);
1266 list_move(&page->lru, &zone->lru[lru].list);
1267 mem_cgroup_move_lists(page, lru);
1268 pgmoved++;
1269 if (!pagevec_add(&pvec, page)) {
1270 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1271 spin_unlock_irq(&zone->lru_lock);
1272 pgdeactivate += pgmoved;
1273 pgmoved = 0;
1274 if (buffer_heads_over_limit)
1275 pagevec_strip(&pvec);
1276 __pagevec_release(&pvec);
1277 spin_lock_irq(&zone->lru_lock);
1280 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1281 pgdeactivate += pgmoved;
1282 if (buffer_heads_over_limit) {
1283 spin_unlock_irq(&zone->lru_lock);
1284 pagevec_strip(&pvec);
1285 spin_lock_irq(&zone->lru_lock);
1287 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1288 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1289 spin_unlock_irq(&zone->lru_lock);
1290 if (vm_swap_full())
1291 pagevec_swap_free(&pvec);
1293 pagevec_release(&pvec);
1296 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1297 struct zone *zone, struct scan_control *sc, int priority)
1299 int file = is_file_lru(lru);
1301 if (lru == LRU_ACTIVE_FILE) {
1302 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1303 return 0;
1306 if (lru == LRU_ACTIVE_ANON &&
1307 (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
1308 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1309 return 0;
1311 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1315 * Determine how aggressively the anon and file LRU lists should be
1316 * scanned. The relative value of each set of LRU lists is determined
1317 * by looking at the fraction of the pages scanned we did rotate back
1318 * onto the active list instead of evict.
1320 * percent[0] specifies how much pressure to put on ram/swap backed
1321 * memory, while percent[1] determines pressure on the file LRUs.
1323 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1324 unsigned long *percent)
1326 unsigned long anon, file, free;
1327 unsigned long anon_prio, file_prio;
1328 unsigned long ap, fp;
1330 anon = zone_page_state(zone, NR_ACTIVE_ANON) +
1331 zone_page_state(zone, NR_INACTIVE_ANON);
1332 file = zone_page_state(zone, NR_ACTIVE_FILE) +
1333 zone_page_state(zone, NR_INACTIVE_FILE);
1334 free = zone_page_state(zone, NR_FREE_PAGES);
1336 /* If we have no swap space, do not bother scanning anon pages. */
1337 if (nr_swap_pages <= 0) {
1338 percent[0] = 0;
1339 percent[1] = 100;
1340 return;
1343 /* If we have very few page cache pages, force-scan anon pages. */
1344 if (unlikely(file + free <= zone->pages_high)) {
1345 percent[0] = 100;
1346 percent[1] = 0;
1347 return;
1351 * OK, so we have swap space and a fair amount of page cache
1352 * pages. We use the recently rotated / recently scanned
1353 * ratios to determine how valuable each cache is.
1355 * Because workloads change over time (and to avoid overflow)
1356 * we keep these statistics as a floating average, which ends
1357 * up weighing recent references more than old ones.
1359 * anon in [0], file in [1]
1361 if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1362 spin_lock_irq(&zone->lru_lock);
1363 zone->recent_scanned[0] /= 2;
1364 zone->recent_rotated[0] /= 2;
1365 spin_unlock_irq(&zone->lru_lock);
1368 if (unlikely(zone->recent_scanned[1] > file / 4)) {
1369 spin_lock_irq(&zone->lru_lock);
1370 zone->recent_scanned[1] /= 2;
1371 zone->recent_rotated[1] /= 2;
1372 spin_unlock_irq(&zone->lru_lock);
1376 * With swappiness at 100, anonymous and file have the same priority.
1377 * This scanning priority is essentially the inverse of IO cost.
1379 anon_prio = sc->swappiness;
1380 file_prio = 200 - sc->swappiness;
1383 * The amount of pressure on anon vs file pages is inversely
1384 * proportional to the fraction of recently scanned pages on
1385 * each list that were recently referenced and in active use.
1387 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1388 ap /= zone->recent_rotated[0] + 1;
1390 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1391 fp /= zone->recent_rotated[1] + 1;
1393 /* Normalize to percentages */
1394 percent[0] = 100 * ap / (ap + fp + 1);
1395 percent[1] = 100 - percent[0];
1400 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1402 static unsigned long shrink_zone(int priority, struct zone *zone,
1403 struct scan_control *sc)
1405 unsigned long nr[NR_LRU_LISTS];
1406 unsigned long nr_to_scan;
1407 unsigned long nr_reclaimed = 0;
1408 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1409 enum lru_list l;
1411 get_scan_ratio(zone, sc, percent);
1413 for_each_evictable_lru(l) {
1414 if (scan_global_lru(sc)) {
1415 int file = is_file_lru(l);
1416 int scan;
1418 scan = zone_page_state(zone, NR_LRU_BASE + l);
1419 if (priority) {
1420 scan >>= priority;
1421 scan = (scan * percent[file]) / 100;
1423 zone->lru[l].nr_scan += scan;
1424 nr[l] = zone->lru[l].nr_scan;
1425 if (nr[l] >= sc->swap_cluster_max)
1426 zone->lru[l].nr_scan = 0;
1427 else
1428 nr[l] = 0;
1429 } else {
1431 * This reclaim occurs not because zone memory shortage
1432 * but because memory controller hits its limit.
1433 * Don't modify zone reclaim related data.
1435 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1436 priority, l);
1440 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1441 nr[LRU_INACTIVE_FILE]) {
1442 for_each_evictable_lru(l) {
1443 if (nr[l]) {
1444 nr_to_scan = min(nr[l],
1445 (unsigned long)sc->swap_cluster_max);
1446 nr[l] -= nr_to_scan;
1448 nr_reclaimed += shrink_list(l, nr_to_scan,
1449 zone, sc, priority);
1455 * Even if we did not try to evict anon pages at all, we want to
1456 * rebalance the anon lru active/inactive ratio.
1458 if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1459 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1460 else if (!scan_global_lru(sc))
1461 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1463 throttle_vm_writeout(sc->gfp_mask);
1464 return nr_reclaimed;
1468 * This is the direct reclaim path, for page-allocating processes. We only
1469 * try to reclaim pages from zones which will satisfy the caller's allocation
1470 * request.
1472 * We reclaim from a zone even if that zone is over pages_high. Because:
1473 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1474 * allocation or
1475 * b) The zones may be over pages_high but they must go *over* pages_high to
1476 * satisfy the `incremental min' zone defense algorithm.
1478 * Returns the number of reclaimed pages.
1480 * If a zone is deemed to be full of pinned pages then just give it a light
1481 * scan then give up on it.
1483 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1484 struct scan_control *sc)
1486 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1487 unsigned long nr_reclaimed = 0;
1488 struct zoneref *z;
1489 struct zone *zone;
1491 sc->all_unreclaimable = 1;
1492 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1493 if (!populated_zone(zone))
1494 continue;
1496 * Take care memory controller reclaiming has small influence
1497 * to global LRU.
1499 if (scan_global_lru(sc)) {
1500 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1501 continue;
1502 note_zone_scanning_priority(zone, priority);
1504 if (zone_is_all_unreclaimable(zone) &&
1505 priority != DEF_PRIORITY)
1506 continue; /* Let kswapd poll it */
1507 sc->all_unreclaimable = 0;
1508 } else {
1510 * Ignore cpuset limitation here. We just want to reduce
1511 * # of used pages by us regardless of memory shortage.
1513 sc->all_unreclaimable = 0;
1514 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1515 priority);
1518 nr_reclaimed += shrink_zone(priority, zone, sc);
1521 return nr_reclaimed;
1525 * This is the main entry point to direct page reclaim.
1527 * If a full scan of the inactive list fails to free enough memory then we
1528 * are "out of memory" and something needs to be killed.
1530 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1531 * high - the zone may be full of dirty or under-writeback pages, which this
1532 * caller can't do much about. We kick pdflush and take explicit naps in the
1533 * hope that some of these pages can be written. But if the allocating task
1534 * holds filesystem locks which prevent writeout this might not work, and the
1535 * allocation attempt will fail.
1537 * returns: 0, if no pages reclaimed
1538 * else, the number of pages reclaimed
1540 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1541 struct scan_control *sc)
1543 int priority;
1544 unsigned long ret = 0;
1545 unsigned long total_scanned = 0;
1546 unsigned long nr_reclaimed = 0;
1547 struct reclaim_state *reclaim_state = current->reclaim_state;
1548 unsigned long lru_pages = 0;
1549 struct zoneref *z;
1550 struct zone *zone;
1551 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1553 delayacct_freepages_start();
1555 if (scan_global_lru(sc))
1556 count_vm_event(ALLOCSTALL);
1558 * mem_cgroup will not do shrink_slab.
1560 if (scan_global_lru(sc)) {
1561 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1563 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1564 continue;
1566 lru_pages += zone_lru_pages(zone);
1570 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1571 sc->nr_scanned = 0;
1572 if (!priority)
1573 disable_swap_token();
1574 nr_reclaimed += shrink_zones(priority, zonelist, sc);
1576 * Don't shrink slabs when reclaiming memory from
1577 * over limit cgroups
1579 if (scan_global_lru(sc)) {
1580 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1581 if (reclaim_state) {
1582 nr_reclaimed += reclaim_state->reclaimed_slab;
1583 reclaim_state->reclaimed_slab = 0;
1586 total_scanned += sc->nr_scanned;
1587 if (nr_reclaimed >= sc->swap_cluster_max) {
1588 ret = nr_reclaimed;
1589 goto out;
1593 * Try to write back as many pages as we just scanned. This
1594 * tends to cause slow streaming writers to write data to the
1595 * disk smoothly, at the dirtying rate, which is nice. But
1596 * that's undesirable in laptop mode, where we *want* lumpy
1597 * writeout. So in laptop mode, write out the whole world.
1599 if (total_scanned > sc->swap_cluster_max +
1600 sc->swap_cluster_max / 2) {
1601 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1602 sc->may_writepage = 1;
1605 /* Take a nap, wait for some writeback to complete */
1606 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1607 congestion_wait(WRITE, HZ/10);
1609 /* top priority shrink_zones still had more to do? don't OOM, then */
1610 if (!sc->all_unreclaimable && scan_global_lru(sc))
1611 ret = nr_reclaimed;
1612 out:
1614 * Now that we've scanned all the zones at this priority level, note
1615 * that level within the zone so that the next thread which performs
1616 * scanning of this zone will immediately start out at this priority
1617 * level. This affects only the decision whether or not to bring
1618 * mapped pages onto the inactive list.
1620 if (priority < 0)
1621 priority = 0;
1623 if (scan_global_lru(sc)) {
1624 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1626 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1627 continue;
1629 zone->prev_priority = priority;
1631 } else
1632 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1634 delayacct_freepages_end();
1636 return ret;
1639 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1640 gfp_t gfp_mask)
1642 struct scan_control sc = {
1643 .gfp_mask = gfp_mask,
1644 .may_writepage = !laptop_mode,
1645 .swap_cluster_max = SWAP_CLUSTER_MAX,
1646 .may_swap = 1,
1647 .swappiness = vm_swappiness,
1648 .order = order,
1649 .mem_cgroup = NULL,
1650 .isolate_pages = isolate_pages_global,
1653 return do_try_to_free_pages(zonelist, &sc);
1656 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1658 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1659 gfp_t gfp_mask)
1661 struct scan_control sc = {
1662 .may_writepage = !laptop_mode,
1663 .may_swap = 1,
1664 .swap_cluster_max = SWAP_CLUSTER_MAX,
1665 .swappiness = vm_swappiness,
1666 .order = 0,
1667 .mem_cgroup = mem_cont,
1668 .isolate_pages = mem_cgroup_isolate_pages,
1670 struct zonelist *zonelist;
1672 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1673 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1674 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1675 return do_try_to_free_pages(zonelist, &sc);
1677 #endif
1680 * For kswapd, balance_pgdat() will work across all this node's zones until
1681 * they are all at pages_high.
1683 * Returns the number of pages which were actually freed.
1685 * There is special handling here for zones which are full of pinned pages.
1686 * This can happen if the pages are all mlocked, or if they are all used by
1687 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1688 * What we do is to detect the case where all pages in the zone have been
1689 * scanned twice and there has been zero successful reclaim. Mark the zone as
1690 * dead and from now on, only perform a short scan. Basically we're polling
1691 * the zone for when the problem goes away.
1693 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1694 * zones which have free_pages > pages_high, but once a zone is found to have
1695 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1696 * of the number of free pages in the lower zones. This interoperates with
1697 * the page allocator fallback scheme to ensure that aging of pages is balanced
1698 * across the zones.
1700 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1702 int all_zones_ok;
1703 int priority;
1704 int i;
1705 unsigned long total_scanned;
1706 unsigned long nr_reclaimed;
1707 struct reclaim_state *reclaim_state = current->reclaim_state;
1708 struct scan_control sc = {
1709 .gfp_mask = GFP_KERNEL,
1710 .may_swap = 1,
1711 .swap_cluster_max = SWAP_CLUSTER_MAX,
1712 .swappiness = vm_swappiness,
1713 .order = order,
1714 .mem_cgroup = NULL,
1715 .isolate_pages = isolate_pages_global,
1718 * temp_priority is used to remember the scanning priority at which
1719 * this zone was successfully refilled to free_pages == pages_high.
1721 int temp_priority[MAX_NR_ZONES];
1723 loop_again:
1724 total_scanned = 0;
1725 nr_reclaimed = 0;
1726 sc.may_writepage = !laptop_mode;
1727 count_vm_event(PAGEOUTRUN);
1729 for (i = 0; i < pgdat->nr_zones; i++)
1730 temp_priority[i] = DEF_PRIORITY;
1732 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1733 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1734 unsigned long lru_pages = 0;
1736 /* The swap token gets in the way of swapout... */
1737 if (!priority)
1738 disable_swap_token();
1740 all_zones_ok = 1;
1743 * Scan in the highmem->dma direction for the highest
1744 * zone which needs scanning
1746 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1747 struct zone *zone = pgdat->node_zones + i;
1749 if (!populated_zone(zone))
1750 continue;
1752 if (zone_is_all_unreclaimable(zone) &&
1753 priority != DEF_PRIORITY)
1754 continue;
1757 * Do some background aging of the anon list, to give
1758 * pages a chance to be referenced before reclaiming.
1760 if (inactive_anon_is_low(zone))
1761 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1762 &sc, priority, 0);
1764 if (!zone_watermark_ok(zone, order, zone->pages_high,
1765 0, 0)) {
1766 end_zone = i;
1767 break;
1770 if (i < 0)
1771 goto out;
1773 for (i = 0; i <= end_zone; i++) {
1774 struct zone *zone = pgdat->node_zones + i;
1776 lru_pages += zone_lru_pages(zone);
1780 * Now scan the zone in the dma->highmem direction, stopping
1781 * at the last zone which needs scanning.
1783 * We do this because the page allocator works in the opposite
1784 * direction. This prevents the page allocator from allocating
1785 * pages behind kswapd's direction of progress, which would
1786 * cause too much scanning of the lower zones.
1788 for (i = 0; i <= end_zone; i++) {
1789 struct zone *zone = pgdat->node_zones + i;
1790 int nr_slab;
1792 if (!populated_zone(zone))
1793 continue;
1795 if (zone_is_all_unreclaimable(zone) &&
1796 priority != DEF_PRIORITY)
1797 continue;
1799 if (!zone_watermark_ok(zone, order, zone->pages_high,
1800 end_zone, 0))
1801 all_zones_ok = 0;
1802 temp_priority[i] = priority;
1803 sc.nr_scanned = 0;
1804 note_zone_scanning_priority(zone, priority);
1806 * We put equal pressure on every zone, unless one
1807 * zone has way too many pages free already.
1809 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1810 end_zone, 0))
1811 nr_reclaimed += shrink_zone(priority, zone, &sc);
1812 reclaim_state->reclaimed_slab = 0;
1813 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1814 lru_pages);
1815 nr_reclaimed += reclaim_state->reclaimed_slab;
1816 total_scanned += sc.nr_scanned;
1817 if (zone_is_all_unreclaimable(zone))
1818 continue;
1819 if (nr_slab == 0 && zone->pages_scanned >=
1820 (zone_lru_pages(zone) * 6))
1821 zone_set_flag(zone,
1822 ZONE_ALL_UNRECLAIMABLE);
1824 * If we've done a decent amount of scanning and
1825 * the reclaim ratio is low, start doing writepage
1826 * even in laptop mode
1828 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1829 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1830 sc.may_writepage = 1;
1832 if (all_zones_ok)
1833 break; /* kswapd: all done */
1835 * OK, kswapd is getting into trouble. Take a nap, then take
1836 * another pass across the zones.
1838 if (total_scanned && priority < DEF_PRIORITY - 2)
1839 congestion_wait(WRITE, HZ/10);
1842 * We do this so kswapd doesn't build up large priorities for
1843 * example when it is freeing in parallel with allocators. It
1844 * matches the direct reclaim path behaviour in terms of impact
1845 * on zone->*_priority.
1847 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1848 break;
1850 out:
1852 * Note within each zone the priority level at which this zone was
1853 * brought into a happy state. So that the next thread which scans this
1854 * zone will start out at that priority level.
1856 for (i = 0; i < pgdat->nr_zones; i++) {
1857 struct zone *zone = pgdat->node_zones + i;
1859 zone->prev_priority = temp_priority[i];
1861 if (!all_zones_ok) {
1862 cond_resched();
1864 try_to_freeze();
1866 goto loop_again;
1869 return nr_reclaimed;
1873 * The background pageout daemon, started as a kernel thread
1874 * from the init process.
1876 * This basically trickles out pages so that we have _some_
1877 * free memory available even if there is no other activity
1878 * that frees anything up. This is needed for things like routing
1879 * etc, where we otherwise might have all activity going on in
1880 * asynchronous contexts that cannot page things out.
1882 * If there are applications that are active memory-allocators
1883 * (most normal use), this basically shouldn't matter.
1885 static int kswapd(void *p)
1887 unsigned long order;
1888 pg_data_t *pgdat = (pg_data_t*)p;
1889 struct task_struct *tsk = current;
1890 DEFINE_WAIT(wait);
1891 struct reclaim_state reclaim_state = {
1892 .reclaimed_slab = 0,
1894 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1896 if (!cpumask_empty(cpumask))
1897 set_cpus_allowed_ptr(tsk, cpumask);
1898 current->reclaim_state = &reclaim_state;
1901 * Tell the memory management that we're a "memory allocator",
1902 * and that if we need more memory we should get access to it
1903 * regardless (see "__alloc_pages()"). "kswapd" should
1904 * never get caught in the normal page freeing logic.
1906 * (Kswapd normally doesn't need memory anyway, but sometimes
1907 * you need a small amount of memory in order to be able to
1908 * page out something else, and this flag essentially protects
1909 * us from recursively trying to free more memory as we're
1910 * trying to free the first piece of memory in the first place).
1912 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1913 set_freezable();
1915 order = 0;
1916 for ( ; ; ) {
1917 unsigned long new_order;
1919 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1920 new_order = pgdat->kswapd_max_order;
1921 pgdat->kswapd_max_order = 0;
1922 if (order < new_order) {
1924 * Don't sleep if someone wants a larger 'order'
1925 * allocation
1927 order = new_order;
1928 } else {
1929 if (!freezing(current))
1930 schedule();
1932 order = pgdat->kswapd_max_order;
1934 finish_wait(&pgdat->kswapd_wait, &wait);
1936 if (!try_to_freeze()) {
1937 /* We can speed up thawing tasks if we don't call
1938 * balance_pgdat after returning from the refrigerator
1940 balance_pgdat(pgdat, order);
1943 return 0;
1947 * A zone is low on free memory, so wake its kswapd task to service it.
1949 void wakeup_kswapd(struct zone *zone, int order)
1951 pg_data_t *pgdat;
1953 if (!populated_zone(zone))
1954 return;
1956 pgdat = zone->zone_pgdat;
1957 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1958 return;
1959 if (pgdat->kswapd_max_order < order)
1960 pgdat->kswapd_max_order = order;
1961 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1962 return;
1963 if (!waitqueue_active(&pgdat->kswapd_wait))
1964 return;
1965 wake_up_interruptible(&pgdat->kswapd_wait);
1968 unsigned long global_lru_pages(void)
1970 return global_page_state(NR_ACTIVE_ANON)
1971 + global_page_state(NR_ACTIVE_FILE)
1972 + global_page_state(NR_INACTIVE_ANON)
1973 + global_page_state(NR_INACTIVE_FILE);
1976 #ifdef CONFIG_PM
1978 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1979 * from LRU lists system-wide, for given pass and priority, and returns the
1980 * number of reclaimed pages
1982 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1984 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1985 int pass, struct scan_control *sc)
1987 struct zone *zone;
1988 unsigned long nr_to_scan, ret = 0;
1989 enum lru_list l;
1991 for_each_zone(zone) {
1993 if (!populated_zone(zone))
1994 continue;
1996 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1997 continue;
1999 for_each_evictable_lru(l) {
2000 /* For pass = 0, we don't shrink the active list */
2001 if (pass == 0 &&
2002 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
2003 continue;
2005 zone->lru[l].nr_scan +=
2006 (zone_page_state(zone, NR_LRU_BASE + l)
2007 >> prio) + 1;
2008 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2009 zone->lru[l].nr_scan = 0;
2010 nr_to_scan = min(nr_pages,
2011 zone_page_state(zone,
2012 NR_LRU_BASE + l));
2013 ret += shrink_list(l, nr_to_scan, zone,
2014 sc, prio);
2015 if (ret >= nr_pages)
2016 return ret;
2021 return ret;
2025 * Try to free `nr_pages' of memory, system-wide, and return the number of
2026 * freed pages.
2028 * Rather than trying to age LRUs the aim is to preserve the overall
2029 * LRU order by reclaiming preferentially
2030 * inactive > active > active referenced > active mapped
2032 unsigned long shrink_all_memory(unsigned long nr_pages)
2034 unsigned long lru_pages, nr_slab;
2035 unsigned long ret = 0;
2036 int pass;
2037 struct reclaim_state reclaim_state;
2038 struct scan_control sc = {
2039 .gfp_mask = GFP_KERNEL,
2040 .may_swap = 0,
2041 .swap_cluster_max = nr_pages,
2042 .may_writepage = 1,
2043 .swappiness = vm_swappiness,
2044 .isolate_pages = isolate_pages_global,
2047 current->reclaim_state = &reclaim_state;
2049 lru_pages = global_lru_pages();
2050 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2051 /* If slab caches are huge, it's better to hit them first */
2052 while (nr_slab >= lru_pages) {
2053 reclaim_state.reclaimed_slab = 0;
2054 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2055 if (!reclaim_state.reclaimed_slab)
2056 break;
2058 ret += reclaim_state.reclaimed_slab;
2059 if (ret >= nr_pages)
2060 goto out;
2062 nr_slab -= reclaim_state.reclaimed_slab;
2066 * We try to shrink LRUs in 5 passes:
2067 * 0 = Reclaim from inactive_list only
2068 * 1 = Reclaim from active list but don't reclaim mapped
2069 * 2 = 2nd pass of type 1
2070 * 3 = Reclaim mapped (normal reclaim)
2071 * 4 = 2nd pass of type 3
2073 for (pass = 0; pass < 5; pass++) {
2074 int prio;
2076 /* Force reclaiming mapped pages in the passes #3 and #4 */
2077 if (pass > 2) {
2078 sc.may_swap = 1;
2079 sc.swappiness = 100;
2082 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2083 unsigned long nr_to_scan = nr_pages - ret;
2085 sc.nr_scanned = 0;
2086 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2087 if (ret >= nr_pages)
2088 goto out;
2090 reclaim_state.reclaimed_slab = 0;
2091 shrink_slab(sc.nr_scanned, sc.gfp_mask,
2092 global_lru_pages());
2093 ret += reclaim_state.reclaimed_slab;
2094 if (ret >= nr_pages)
2095 goto out;
2097 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2098 congestion_wait(WRITE, HZ / 10);
2103 * If ret = 0, we could not shrink LRUs, but there may be something
2104 * in slab caches
2106 if (!ret) {
2107 do {
2108 reclaim_state.reclaimed_slab = 0;
2109 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2110 ret += reclaim_state.reclaimed_slab;
2111 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2114 out:
2115 current->reclaim_state = NULL;
2117 return ret;
2119 #endif
2121 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2122 not required for correctness. So if the last cpu in a node goes
2123 away, we get changed to run anywhere: as the first one comes back,
2124 restore their cpu bindings. */
2125 static int __devinit cpu_callback(struct notifier_block *nfb,
2126 unsigned long action, void *hcpu)
2128 int nid;
2130 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2131 for_each_node_state(nid, N_HIGH_MEMORY) {
2132 pg_data_t *pgdat = NODE_DATA(nid);
2133 node_to_cpumask_ptr(mask, pgdat->node_id);
2135 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2136 /* One of our CPUs online: restore mask */
2137 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2140 return NOTIFY_OK;
2144 * This kswapd start function will be called by init and node-hot-add.
2145 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2147 int kswapd_run(int nid)
2149 pg_data_t *pgdat = NODE_DATA(nid);
2150 int ret = 0;
2152 if (pgdat->kswapd)
2153 return 0;
2155 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2156 if (IS_ERR(pgdat->kswapd)) {
2157 /* failure at boot is fatal */
2158 BUG_ON(system_state == SYSTEM_BOOTING);
2159 printk("Failed to start kswapd on node %d\n",nid);
2160 ret = -1;
2162 return ret;
2165 static int __init kswapd_init(void)
2167 int nid;
2169 swap_setup();
2170 for_each_node_state(nid, N_HIGH_MEMORY)
2171 kswapd_run(nid);
2172 hotcpu_notifier(cpu_callback, 0);
2173 return 0;
2176 module_init(kswapd_init)
2178 #ifdef CONFIG_NUMA
2180 * Zone reclaim mode
2182 * If non-zero call zone_reclaim when the number of free pages falls below
2183 * the watermarks.
2185 int zone_reclaim_mode __read_mostly;
2187 #define RECLAIM_OFF 0
2188 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2189 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2190 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2193 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2194 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2195 * a zone.
2197 #define ZONE_RECLAIM_PRIORITY 4
2200 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2201 * occur.
2203 int sysctl_min_unmapped_ratio = 1;
2206 * If the number of slab pages in a zone grows beyond this percentage then
2207 * slab reclaim needs to occur.
2209 int sysctl_min_slab_ratio = 5;
2212 * Try to free up some pages from this zone through reclaim.
2214 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2216 /* Minimum pages needed in order to stay on node */
2217 const unsigned long nr_pages = 1 << order;
2218 struct task_struct *p = current;
2219 struct reclaim_state reclaim_state;
2220 int priority;
2221 unsigned long nr_reclaimed = 0;
2222 struct scan_control sc = {
2223 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2224 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2225 .swap_cluster_max = max_t(unsigned long, nr_pages,
2226 SWAP_CLUSTER_MAX),
2227 .gfp_mask = gfp_mask,
2228 .swappiness = vm_swappiness,
2229 .isolate_pages = isolate_pages_global,
2231 unsigned long slab_reclaimable;
2233 disable_swap_token();
2234 cond_resched();
2236 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2237 * and we also need to be able to write out pages for RECLAIM_WRITE
2238 * and RECLAIM_SWAP.
2240 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2241 reclaim_state.reclaimed_slab = 0;
2242 p->reclaim_state = &reclaim_state;
2244 if (zone_page_state(zone, NR_FILE_PAGES) -
2245 zone_page_state(zone, NR_FILE_MAPPED) >
2246 zone->min_unmapped_pages) {
2248 * Free memory by calling shrink zone with increasing
2249 * priorities until we have enough memory freed.
2251 priority = ZONE_RECLAIM_PRIORITY;
2252 do {
2253 note_zone_scanning_priority(zone, priority);
2254 nr_reclaimed += shrink_zone(priority, zone, &sc);
2255 priority--;
2256 } while (priority >= 0 && nr_reclaimed < nr_pages);
2259 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2260 if (slab_reclaimable > zone->min_slab_pages) {
2262 * shrink_slab() does not currently allow us to determine how
2263 * many pages were freed in this zone. So we take the current
2264 * number of slab pages and shake the slab until it is reduced
2265 * by the same nr_pages that we used for reclaiming unmapped
2266 * pages.
2268 * Note that shrink_slab will free memory on all zones and may
2269 * take a long time.
2271 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2272 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2273 slab_reclaimable - nr_pages)
2277 * Update nr_reclaimed by the number of slab pages we
2278 * reclaimed from this zone.
2280 nr_reclaimed += slab_reclaimable -
2281 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2284 p->reclaim_state = NULL;
2285 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2286 return nr_reclaimed >= nr_pages;
2289 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2291 int node_id;
2292 int ret;
2295 * Zone reclaim reclaims unmapped file backed pages and
2296 * slab pages if we are over the defined limits.
2298 * A small portion of unmapped file backed pages is needed for
2299 * file I/O otherwise pages read by file I/O will be immediately
2300 * thrown out if the zone is overallocated. So we do not reclaim
2301 * if less than a specified percentage of the zone is used by
2302 * unmapped file backed pages.
2304 if (zone_page_state(zone, NR_FILE_PAGES) -
2305 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2306 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2307 <= zone->min_slab_pages)
2308 return 0;
2310 if (zone_is_all_unreclaimable(zone))
2311 return 0;
2314 * Do not scan if the allocation should not be delayed.
2316 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2317 return 0;
2320 * Only run zone reclaim on the local zone or on zones that do not
2321 * have associated processors. This will favor the local processor
2322 * over remote processors and spread off node memory allocations
2323 * as wide as possible.
2325 node_id = zone_to_nid(zone);
2326 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2327 return 0;
2329 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2330 return 0;
2331 ret = __zone_reclaim(zone, gfp_mask, order);
2332 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2334 return ret;
2336 #endif
2338 #ifdef CONFIG_UNEVICTABLE_LRU
2340 * page_evictable - test whether a page is evictable
2341 * @page: the page to test
2342 * @vma: the VMA in which the page is or will be mapped, may be NULL
2344 * Test whether page is evictable--i.e., should be placed on active/inactive
2345 * lists vs unevictable list. The vma argument is !NULL when called from the
2346 * fault path to determine how to instantate a new page.
2348 * Reasons page might not be evictable:
2349 * (1) page's mapping marked unevictable
2350 * (2) page is part of an mlocked VMA
2353 int page_evictable(struct page *page, struct vm_area_struct *vma)
2356 if (mapping_unevictable(page_mapping(page)))
2357 return 0;
2359 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2360 return 0;
2362 return 1;
2366 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2367 * @page: page to check evictability and move to appropriate lru list
2368 * @zone: zone page is in
2370 * Checks a page for evictability and moves the page to the appropriate
2371 * zone lru list.
2373 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2374 * have PageUnevictable set.
2376 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2378 VM_BUG_ON(PageActive(page));
2380 retry:
2381 ClearPageUnevictable(page);
2382 if (page_evictable(page, NULL)) {
2383 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2385 __dec_zone_state(zone, NR_UNEVICTABLE);
2386 list_move(&page->lru, &zone->lru[l].list);
2387 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2388 __count_vm_event(UNEVICTABLE_PGRESCUED);
2389 } else {
2391 * rotate unevictable list
2393 SetPageUnevictable(page);
2394 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2395 if (page_evictable(page, NULL))
2396 goto retry;
2401 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2402 * @mapping: struct address_space to scan for evictable pages
2404 * Scan all pages in mapping. Check unevictable pages for
2405 * evictability and move them to the appropriate zone lru list.
2407 void scan_mapping_unevictable_pages(struct address_space *mapping)
2409 pgoff_t next = 0;
2410 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2411 PAGE_CACHE_SHIFT;
2412 struct zone *zone;
2413 struct pagevec pvec;
2415 if (mapping->nrpages == 0)
2416 return;
2418 pagevec_init(&pvec, 0);
2419 while (next < end &&
2420 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2421 int i;
2422 int pg_scanned = 0;
2424 zone = NULL;
2426 for (i = 0; i < pagevec_count(&pvec); i++) {
2427 struct page *page = pvec.pages[i];
2428 pgoff_t page_index = page->index;
2429 struct zone *pagezone = page_zone(page);
2431 pg_scanned++;
2432 if (page_index > next)
2433 next = page_index;
2434 next++;
2436 if (pagezone != zone) {
2437 if (zone)
2438 spin_unlock_irq(&zone->lru_lock);
2439 zone = pagezone;
2440 spin_lock_irq(&zone->lru_lock);
2443 if (PageLRU(page) && PageUnevictable(page))
2444 check_move_unevictable_page(page, zone);
2446 if (zone)
2447 spin_unlock_irq(&zone->lru_lock);
2448 pagevec_release(&pvec);
2450 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2456 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2457 * @zone - zone of which to scan the unevictable list
2459 * Scan @zone's unevictable LRU lists to check for pages that have become
2460 * evictable. Move those that have to @zone's inactive list where they
2461 * become candidates for reclaim, unless shrink_inactive_zone() decides
2462 * to reactivate them. Pages that are still unevictable are rotated
2463 * back onto @zone's unevictable list.
2465 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2466 void scan_zone_unevictable_pages(struct zone *zone)
2468 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2469 unsigned long scan;
2470 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2472 while (nr_to_scan > 0) {
2473 unsigned long batch_size = min(nr_to_scan,
2474 SCAN_UNEVICTABLE_BATCH_SIZE);
2476 spin_lock_irq(&zone->lru_lock);
2477 for (scan = 0; scan < batch_size; scan++) {
2478 struct page *page = lru_to_page(l_unevictable);
2480 if (!trylock_page(page))
2481 continue;
2483 prefetchw_prev_lru_page(page, l_unevictable, flags);
2485 if (likely(PageLRU(page) && PageUnevictable(page)))
2486 check_move_unevictable_page(page, zone);
2488 unlock_page(page);
2490 spin_unlock_irq(&zone->lru_lock);
2492 nr_to_scan -= batch_size;
2498 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2500 * A really big hammer: scan all zones' unevictable LRU lists to check for
2501 * pages that have become evictable. Move those back to the zones'
2502 * inactive list where they become candidates for reclaim.
2503 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2504 * and we add swap to the system. As such, it runs in the context of a task
2505 * that has possibly/probably made some previously unevictable pages
2506 * evictable.
2508 void scan_all_zones_unevictable_pages(void)
2510 struct zone *zone;
2512 for_each_zone(zone) {
2513 scan_zone_unevictable_pages(zone);
2518 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2519 * all nodes' unevictable lists for evictable pages
2521 unsigned long scan_unevictable_pages;
2523 int scan_unevictable_handler(struct ctl_table *table, int write,
2524 struct file *file, void __user *buffer,
2525 size_t *length, loff_t *ppos)
2527 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2529 if (write && *(unsigned long *)table->data)
2530 scan_all_zones_unevictable_pages();
2532 scan_unevictable_pages = 0;
2533 return 0;
2537 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2538 * a specified node's per zone unevictable lists for evictable pages.
2541 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2542 struct sysdev_attribute *attr,
2543 char *buf)
2545 return sprintf(buf, "0\n"); /* always zero; should fit... */
2548 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2549 struct sysdev_attribute *attr,
2550 const char *buf, size_t count)
2552 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2553 struct zone *zone;
2554 unsigned long res;
2555 unsigned long req = strict_strtoul(buf, 10, &res);
2557 if (!req)
2558 return 1; /* zero is no-op */
2560 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2561 if (!populated_zone(zone))
2562 continue;
2563 scan_zone_unevictable_pages(zone);
2565 return 1;
2569 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2570 read_scan_unevictable_node,
2571 write_scan_unevictable_node);
2573 int scan_unevictable_register_node(struct node *node)
2575 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2578 void scan_unevictable_unregister_node(struct node *node)
2580 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2583 #endif