powerpc/ps3: Printing fixups for l64 to ll64 conversion arch/powerpc
[linux-2.6/mini2440.git] / Documentation / lguest / lguest.c
blobf2dbbf3bdeaba7a5c6d58e1ccb3f8a686ade88ed
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include <limits.h>
38 #include <stddef.h>
39 #include <signal.h>
40 #include "linux/lguest_launcher.h"
41 #include "linux/virtio_config.h"
42 #include "linux/virtio_net.h"
43 #include "linux/virtio_blk.h"
44 #include "linux/virtio_console.h"
45 #include "linux/virtio_rng.h"
46 #include "linux/virtio_ring.h"
47 #include "asm/bootparam.h"
48 /*L:110 We can ignore the 39 include files we need for this program, but I do
49 * want to draw attention to the use of kernel-style types.
51 * As Linus said, "C is a Spartan language, and so should your naming be." I
52 * like these abbreviations, so we define them here. Note that u64 is always
53 * unsigned long long, which works on all Linux systems: this means that we can
54 * use %llu in printf for any u64. */
55 typedef unsigned long long u64;
56 typedef uint32_t u32;
57 typedef uint16_t u16;
58 typedef uint8_t u8;
59 /*:*/
61 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
62 #define NET_PEERNUM 1
63 #define BRIDGE_PFX "bridge:"
64 #ifndef SIOCBRADDIF
65 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
66 #endif
67 /* We can have up to 256 pages for devices. */
68 #define DEVICE_PAGES 256
69 /* This will occupy 3 pages: it must be a power of 2. */
70 #define VIRTQUEUE_NUM 256
72 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
73 * this, and although I wouldn't recommend it, it works quite nicely here. */
74 static bool verbose;
75 #define verbose(args...) \
76 do { if (verbose) printf(args); } while(0)
77 /*:*/
79 /* File descriptors for the Waker. */
80 struct {
81 int pipe[2];
82 int lguest_fd;
83 } waker_fds;
85 /* The pointer to the start of guest memory. */
86 static void *guest_base;
87 /* The maximum guest physical address allowed, and maximum possible. */
88 static unsigned long guest_limit, guest_max;
89 /* The pipe for signal hander to write to. */
90 static int timeoutpipe[2];
91 static unsigned int timeout_usec = 500;
93 /* a per-cpu variable indicating whose vcpu is currently running */
94 static unsigned int __thread cpu_id;
96 /* This is our list of devices. */
97 struct device_list
99 /* Summary information about the devices in our list: ready to pass to
100 * select() to ask which need servicing.*/
101 fd_set infds;
102 int max_infd;
104 /* Counter to assign interrupt numbers. */
105 unsigned int next_irq;
107 /* Counter to print out convenient device numbers. */
108 unsigned int device_num;
110 /* The descriptor page for the devices. */
111 u8 *descpage;
113 /* A single linked list of devices. */
114 struct device *dev;
115 /* And a pointer to the last device for easy append and also for
116 * configuration appending. */
117 struct device *lastdev;
120 /* The list of Guest devices, based on command line arguments. */
121 static struct device_list devices;
123 /* The device structure describes a single device. */
124 struct device
126 /* The linked-list pointer. */
127 struct device *next;
129 /* The this device's descriptor, as mapped into the Guest. */
130 struct lguest_device_desc *desc;
132 /* The name of this device, for --verbose. */
133 const char *name;
135 /* If handle_input is set, it wants to be called when this file
136 * descriptor is ready. */
137 int fd;
138 bool (*handle_input)(int fd, struct device *me);
140 /* Any queues attached to this device */
141 struct virtqueue *vq;
143 /* Handle status being finalized (ie. feature bits stable). */
144 void (*ready)(struct device *me);
146 /* Device-specific data. */
147 void *priv;
150 /* The virtqueue structure describes a queue attached to a device. */
151 struct virtqueue
153 struct virtqueue *next;
155 /* Which device owns me. */
156 struct device *dev;
158 /* The configuration for this queue. */
159 struct lguest_vqconfig config;
161 /* The actual ring of buffers. */
162 struct vring vring;
164 /* Last available index we saw. */
165 u16 last_avail_idx;
167 /* The routine to call when the Guest pings us, or timeout. */
168 void (*handle_output)(int fd, struct virtqueue *me, bool timeout);
170 /* Outstanding buffers */
171 unsigned int inflight;
173 /* Is this blocked awaiting a timer? */
174 bool blocked;
177 /* Remember the arguments to the program so we can "reboot" */
178 static char **main_args;
180 /* Since guest is UP and we don't run at the same time, we don't need barriers.
181 * But I include them in the code in case others copy it. */
182 #define wmb()
184 /* Convert an iovec element to the given type.
186 * This is a fairly ugly trick: we need to know the size of the type and
187 * alignment requirement to check the pointer is kosher. It's also nice to
188 * have the name of the type in case we report failure.
190 * Typing those three things all the time is cumbersome and error prone, so we
191 * have a macro which sets them all up and passes to the real function. */
192 #define convert(iov, type) \
193 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
195 static void *_convert(struct iovec *iov, size_t size, size_t align,
196 const char *name)
198 if (iov->iov_len != size)
199 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
200 if ((unsigned long)iov->iov_base % align != 0)
201 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
202 return iov->iov_base;
205 /* Wrapper for the last available index. Makes it easier to change. */
206 #define lg_last_avail(vq) ((vq)->last_avail_idx)
208 /* The virtio configuration space is defined to be little-endian. x86 is
209 * little-endian too, but it's nice to be explicit so we have these helpers. */
210 #define cpu_to_le16(v16) (v16)
211 #define cpu_to_le32(v32) (v32)
212 #define cpu_to_le64(v64) (v64)
213 #define le16_to_cpu(v16) (v16)
214 #define le32_to_cpu(v32) (v32)
215 #define le64_to_cpu(v64) (v64)
217 /* Is this iovec empty? */
218 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
220 unsigned int i;
222 for (i = 0; i < num_iov; i++)
223 if (iov[i].iov_len)
224 return false;
225 return true;
228 /* Take len bytes from the front of this iovec. */
229 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
231 unsigned int i;
233 for (i = 0; i < num_iov; i++) {
234 unsigned int used;
236 used = iov[i].iov_len < len ? iov[i].iov_len : len;
237 iov[i].iov_base += used;
238 iov[i].iov_len -= used;
239 len -= used;
241 assert(len == 0);
244 /* The device virtqueue descriptors are followed by feature bitmasks. */
245 static u8 *get_feature_bits(struct device *dev)
247 return (u8 *)(dev->desc + 1)
248 + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
251 /*L:100 The Launcher code itself takes us out into userspace, that scary place
252 * where pointers run wild and free! Unfortunately, like most userspace
253 * programs, it's quite boring (which is why everyone likes to hack on the
254 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
255 * will get you through this section. Or, maybe not.
257 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
258 * memory and stores it in "guest_base". In other words, Guest physical ==
259 * Launcher virtual with an offset.
261 * This can be tough to get your head around, but usually it just means that we
262 * use these trivial conversion functions when the Guest gives us it's
263 * "physical" addresses: */
264 static void *from_guest_phys(unsigned long addr)
266 return guest_base + addr;
269 static unsigned long to_guest_phys(const void *addr)
271 return (addr - guest_base);
274 /*L:130
275 * Loading the Kernel.
277 * We start with couple of simple helper routines. open_or_die() avoids
278 * error-checking code cluttering the callers: */
279 static int open_or_die(const char *name, int flags)
281 int fd = open(name, flags);
282 if (fd < 0)
283 err(1, "Failed to open %s", name);
284 return fd;
287 /* map_zeroed_pages() takes a number of pages. */
288 static void *map_zeroed_pages(unsigned int num)
290 int fd = open_or_die("/dev/zero", O_RDONLY);
291 void *addr;
293 /* We use a private mapping (ie. if we write to the page, it will be
294 * copied). */
295 addr = mmap(NULL, getpagesize() * num,
296 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
297 if (addr == MAP_FAILED)
298 err(1, "Mmaping %u pages of /dev/zero", num);
299 close(fd);
301 return addr;
304 /* Get some more pages for a device. */
305 static void *get_pages(unsigned int num)
307 void *addr = from_guest_phys(guest_limit);
309 guest_limit += num * getpagesize();
310 if (guest_limit > guest_max)
311 errx(1, "Not enough memory for devices");
312 return addr;
315 /* This routine is used to load the kernel or initrd. It tries mmap, but if
316 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
317 * it falls back to reading the memory in. */
318 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
320 ssize_t r;
322 /* We map writable even though for some segments are marked read-only.
323 * The kernel really wants to be writable: it patches its own
324 * instructions.
326 * MAP_PRIVATE means that the page won't be copied until a write is
327 * done to it. This allows us to share untouched memory between
328 * Guests. */
329 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
330 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
331 return;
333 /* pread does a seek and a read in one shot: saves a few lines. */
334 r = pread(fd, addr, len, offset);
335 if (r != len)
336 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
339 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
340 * the Guest memory. ELF = Embedded Linking Format, which is the format used
341 * by all modern binaries on Linux including the kernel.
343 * The ELF headers give *two* addresses: a physical address, and a virtual
344 * address. We use the physical address; the Guest will map itself to the
345 * virtual address.
347 * We return the starting address. */
348 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
350 Elf32_Phdr phdr[ehdr->e_phnum];
351 unsigned int i;
353 /* Sanity checks on the main ELF header: an x86 executable with a
354 * reasonable number of correctly-sized program headers. */
355 if (ehdr->e_type != ET_EXEC
356 || ehdr->e_machine != EM_386
357 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
358 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
359 errx(1, "Malformed elf header");
361 /* An ELF executable contains an ELF header and a number of "program"
362 * headers which indicate which parts ("segments") of the program to
363 * load where. */
365 /* We read in all the program headers at once: */
366 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
367 err(1, "Seeking to program headers");
368 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
369 err(1, "Reading program headers");
371 /* Try all the headers: there are usually only three. A read-only one,
372 * a read-write one, and a "note" section which we don't load. */
373 for (i = 0; i < ehdr->e_phnum; i++) {
374 /* If this isn't a loadable segment, we ignore it */
375 if (phdr[i].p_type != PT_LOAD)
376 continue;
378 verbose("Section %i: size %i addr %p\n",
379 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
381 /* We map this section of the file at its physical address. */
382 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
383 phdr[i].p_offset, phdr[i].p_filesz);
386 /* The entry point is given in the ELF header. */
387 return ehdr->e_entry;
390 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
391 * supposed to jump into it and it will unpack itself. We used to have to
392 * perform some hairy magic because the unpacking code scared me.
394 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
395 * a small patch to jump over the tricky bits in the Guest, so now we just read
396 * the funky header so we know where in the file to load, and away we go! */
397 static unsigned long load_bzimage(int fd)
399 struct boot_params boot;
400 int r;
401 /* Modern bzImages get loaded at 1M. */
402 void *p = from_guest_phys(0x100000);
404 /* Go back to the start of the file and read the header. It should be
405 * a Linux boot header (see Documentation/x86/i386/boot.txt) */
406 lseek(fd, 0, SEEK_SET);
407 read(fd, &boot, sizeof(boot));
409 /* Inside the setup_hdr, we expect the magic "HdrS" */
410 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
411 errx(1, "This doesn't look like a bzImage to me");
413 /* Skip over the extra sectors of the header. */
414 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
416 /* Now read everything into memory. in nice big chunks. */
417 while ((r = read(fd, p, 65536)) > 0)
418 p += r;
420 /* Finally, code32_start tells us where to enter the kernel. */
421 return boot.hdr.code32_start;
424 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
425 * come wrapped up in the self-decompressing "bzImage" format. With a little
426 * work, we can load those, too. */
427 static unsigned long load_kernel(int fd)
429 Elf32_Ehdr hdr;
431 /* Read in the first few bytes. */
432 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
433 err(1, "Reading kernel");
435 /* If it's an ELF file, it starts with "\177ELF" */
436 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
437 return map_elf(fd, &hdr);
439 /* Otherwise we assume it's a bzImage, and try to load it. */
440 return load_bzimage(fd);
443 /* This is a trivial little helper to align pages. Andi Kleen hated it because
444 * it calls getpagesize() twice: "it's dumb code."
446 * Kernel guys get really het up about optimization, even when it's not
447 * necessary. I leave this code as a reaction against that. */
448 static inline unsigned long page_align(unsigned long addr)
450 /* Add upwards and truncate downwards. */
451 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
454 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
455 * the kernel which the kernel can use to boot from without needing any
456 * drivers. Most distributions now use this as standard: the initrd contains
457 * the code to load the appropriate driver modules for the current machine.
459 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
460 * kernels. He sent me this (and tells me when I break it). */
461 static unsigned long load_initrd(const char *name, unsigned long mem)
463 int ifd;
464 struct stat st;
465 unsigned long len;
467 ifd = open_or_die(name, O_RDONLY);
468 /* fstat() is needed to get the file size. */
469 if (fstat(ifd, &st) < 0)
470 err(1, "fstat() on initrd '%s'", name);
472 /* We map the initrd at the top of memory, but mmap wants it to be
473 * page-aligned, so we round the size up for that. */
474 len = page_align(st.st_size);
475 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
476 /* Once a file is mapped, you can close the file descriptor. It's a
477 * little odd, but quite useful. */
478 close(ifd);
479 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
481 /* We return the initrd size. */
482 return len;
484 /*:*/
486 /* Simple routine to roll all the commandline arguments together with spaces
487 * between them. */
488 static void concat(char *dst, char *args[])
490 unsigned int i, len = 0;
492 for (i = 0; args[i]; i++) {
493 if (i) {
494 strcat(dst+len, " ");
495 len++;
497 strcpy(dst+len, args[i]);
498 len += strlen(args[i]);
500 /* In case it's empty. */
501 dst[len] = '\0';
504 /*L:185 This is where we actually tell the kernel to initialize the Guest. We
505 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
506 * the base of Guest "physical" memory, the top physical page to allow and the
507 * entry point for the Guest. */
508 static int tell_kernel(unsigned long start)
510 unsigned long args[] = { LHREQ_INITIALIZE,
511 (unsigned long)guest_base,
512 guest_limit / getpagesize(), start };
513 int fd;
515 verbose("Guest: %p - %p (%#lx)\n",
516 guest_base, guest_base + guest_limit, guest_limit);
517 fd = open_or_die("/dev/lguest", O_RDWR);
518 if (write(fd, args, sizeof(args)) < 0)
519 err(1, "Writing to /dev/lguest");
521 /* We return the /dev/lguest file descriptor to control this Guest */
522 return fd;
524 /*:*/
526 static void add_device_fd(int fd)
528 FD_SET(fd, &devices.infds);
529 if (fd > devices.max_infd)
530 devices.max_infd = fd;
533 /*L:200
534 * The Waker.
536 * With console, block and network devices, we can have lots of input which we
537 * need to process. We could try to tell the kernel what file descriptors to
538 * watch, but handing a file descriptor mask through to the kernel is fairly
539 * icky.
541 * Instead, we clone off a thread which watches the file descriptors and writes
542 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
543 * stop running the Guest. This causes the Launcher to return from the
544 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
545 * the LHREQ_BREAK and wake us up again.
547 * This, of course, is merely a different *kind* of icky.
549 * Given my well-known antipathy to threads, I'd prefer to use processes. But
550 * it's easier to share Guest memory with threads, and trivial to share the
551 * devices.infds as the Launcher changes it.
553 static int waker(void *unused)
555 /* Close the write end of the pipe: only the Launcher has it open. */
556 close(waker_fds.pipe[1]);
558 for (;;) {
559 fd_set rfds = devices.infds;
560 unsigned long args[] = { LHREQ_BREAK, 1 };
561 unsigned int maxfd = devices.max_infd;
563 /* We also listen to the pipe from the Launcher. */
564 FD_SET(waker_fds.pipe[0], &rfds);
565 if (waker_fds.pipe[0] > maxfd)
566 maxfd = waker_fds.pipe[0];
568 /* Wait until input is ready from one of the devices. */
569 select(maxfd+1, &rfds, NULL, NULL, NULL);
571 /* Message from Launcher? */
572 if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
573 char c;
574 /* If this fails, then assume Launcher has exited.
575 * Don't do anything on exit: we're just a thread! */
576 if (read(waker_fds.pipe[0], &c, 1) != 1)
577 _exit(0);
578 continue;
581 /* Send LHREQ_BREAK command to snap the Launcher out of it. */
582 pwrite(waker_fds.lguest_fd, args, sizeof(args), cpu_id);
584 return 0;
587 /* This routine just sets up a pipe to the Waker process. */
588 static void setup_waker(int lguest_fd)
590 /* This pipe is closed when Launcher dies, telling Waker. */
591 if (pipe(waker_fds.pipe) != 0)
592 err(1, "Creating pipe for Waker");
594 /* Waker also needs to know the lguest fd */
595 waker_fds.lguest_fd = lguest_fd;
597 if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
598 err(1, "Creating Waker");
602 * Device Handling.
604 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
605 * We need to make sure it's not trying to reach into the Launcher itself, so
606 * we have a convenient routine which checks it and exits with an error message
607 * if something funny is going on:
609 static void *_check_pointer(unsigned long addr, unsigned int size,
610 unsigned int line)
612 /* We have to separately check addr and addr+size, because size could
613 * be huge and addr + size might wrap around. */
614 if (addr >= guest_limit || addr + size >= guest_limit)
615 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
616 /* We return a pointer for the caller's convenience, now we know it's
617 * safe to use. */
618 return from_guest_phys(addr);
620 /* A macro which transparently hands the line number to the real function. */
621 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
623 /* Each buffer in the virtqueues is actually a chain of descriptors. This
624 * function returns the next descriptor in the chain, or vq->vring.num if we're
625 * at the end. */
626 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
628 unsigned int next;
630 /* If this descriptor says it doesn't chain, we're done. */
631 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
632 return vq->vring.num;
634 /* Check they're not leading us off end of descriptors. */
635 next = vq->vring.desc[i].next;
636 /* Make sure compiler knows to grab that: we don't want it changing! */
637 wmb();
639 if (next >= vq->vring.num)
640 errx(1, "Desc next is %u", next);
642 return next;
645 /* This looks in the virtqueue and for the first available buffer, and converts
646 * it to an iovec for convenient access. Since descriptors consist of some
647 * number of output then some number of input descriptors, it's actually two
648 * iovecs, but we pack them into one and note how many of each there were.
650 * This function returns the descriptor number found, or vq->vring.num (which
651 * is never a valid descriptor number) if none was found. */
652 static unsigned get_vq_desc(struct virtqueue *vq,
653 struct iovec iov[],
654 unsigned int *out_num, unsigned int *in_num)
656 unsigned int i, head;
657 u16 last_avail;
659 /* Check it isn't doing very strange things with descriptor numbers. */
660 last_avail = lg_last_avail(vq);
661 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
662 errx(1, "Guest moved used index from %u to %u",
663 last_avail, vq->vring.avail->idx);
665 /* If there's nothing new since last we looked, return invalid. */
666 if (vq->vring.avail->idx == last_avail)
667 return vq->vring.num;
669 /* Grab the next descriptor number they're advertising, and increment
670 * the index we've seen. */
671 head = vq->vring.avail->ring[last_avail % vq->vring.num];
672 lg_last_avail(vq)++;
674 /* If their number is silly, that's a fatal mistake. */
675 if (head >= vq->vring.num)
676 errx(1, "Guest says index %u is available", head);
678 /* When we start there are none of either input nor output. */
679 *out_num = *in_num = 0;
681 i = head;
682 do {
683 /* Grab the first descriptor, and check it's OK. */
684 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
685 iov[*out_num + *in_num].iov_base
686 = check_pointer(vq->vring.desc[i].addr,
687 vq->vring.desc[i].len);
688 /* If this is an input descriptor, increment that count. */
689 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
690 (*in_num)++;
691 else {
692 /* If it's an output descriptor, they're all supposed
693 * to come before any input descriptors. */
694 if (*in_num)
695 errx(1, "Descriptor has out after in");
696 (*out_num)++;
699 /* If we've got too many, that implies a descriptor loop. */
700 if (*out_num + *in_num > vq->vring.num)
701 errx(1, "Looped descriptor");
702 } while ((i = next_desc(vq, i)) != vq->vring.num);
704 vq->inflight++;
705 return head;
708 /* After we've used one of their buffers, we tell them about it. We'll then
709 * want to send them an interrupt, using trigger_irq(). */
710 static void add_used(struct virtqueue *vq, unsigned int head, int len)
712 struct vring_used_elem *used;
714 /* The virtqueue contains a ring of used buffers. Get a pointer to the
715 * next entry in that used ring. */
716 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
717 used->id = head;
718 used->len = len;
719 /* Make sure buffer is written before we update index. */
720 wmb();
721 vq->vring.used->idx++;
722 vq->inflight--;
725 /* This actually sends the interrupt for this virtqueue */
726 static void trigger_irq(int fd, struct virtqueue *vq)
728 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
730 /* If they don't want an interrupt, don't send one, unless empty. */
731 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
732 && vq->inflight)
733 return;
735 /* Send the Guest an interrupt tell them we used something up. */
736 if (write(fd, buf, sizeof(buf)) != 0)
737 err(1, "Triggering irq %i", vq->config.irq);
740 /* And here's the combo meal deal. Supersize me! */
741 static void add_used_and_trigger(int fd, struct virtqueue *vq,
742 unsigned int head, int len)
744 add_used(vq, head, len);
745 trigger_irq(fd, vq);
749 * The Console
751 * Here is the input terminal setting we save, and the routine to restore them
752 * on exit so the user gets their terminal back. */
753 static struct termios orig_term;
754 static void restore_term(void)
756 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
759 /* We associate some data with the console for our exit hack. */
760 struct console_abort
762 /* How many times have they hit ^C? */
763 int count;
764 /* When did they start? */
765 struct timeval start;
768 /* This is the routine which handles console input (ie. stdin). */
769 static bool handle_console_input(int fd, struct device *dev)
771 int len;
772 unsigned int head, in_num, out_num;
773 struct iovec iov[dev->vq->vring.num];
774 struct console_abort *abort = dev->priv;
776 /* First we need a console buffer from the Guests's input virtqueue. */
777 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
779 /* If they're not ready for input, stop listening to this file
780 * descriptor. We'll start again once they add an input buffer. */
781 if (head == dev->vq->vring.num)
782 return false;
784 if (out_num)
785 errx(1, "Output buffers in console in queue?");
787 /* This is why we convert to iovecs: the readv() call uses them, and so
788 * it reads straight into the Guest's buffer. */
789 len = readv(dev->fd, iov, in_num);
790 if (len <= 0) {
791 /* This implies that the console is closed, is /dev/null, or
792 * something went terribly wrong. */
793 warnx("Failed to get console input, ignoring console.");
794 /* Put the input terminal back. */
795 restore_term();
796 /* Remove callback from input vq, so it doesn't restart us. */
797 dev->vq->handle_output = NULL;
798 /* Stop listening to this fd: don't call us again. */
799 return false;
802 /* Tell the Guest about the new input. */
803 add_used_and_trigger(fd, dev->vq, head, len);
805 /* Three ^C within one second? Exit.
807 * This is such a hack, but works surprisingly well. Each ^C has to be
808 * in a buffer by itself, so they can't be too fast. But we check that
809 * we get three within about a second, so they can't be too slow. */
810 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
811 if (!abort->count++)
812 gettimeofday(&abort->start, NULL);
813 else if (abort->count == 3) {
814 struct timeval now;
815 gettimeofday(&now, NULL);
816 if (now.tv_sec <= abort->start.tv_sec+1) {
817 unsigned long args[] = { LHREQ_BREAK, 0 };
818 /* Close the fd so Waker will know it has to
819 * exit. */
820 close(waker_fds.pipe[1]);
821 /* Just in case Waker is blocked in BREAK, send
822 * unbreak now. */
823 write(fd, args, sizeof(args));
824 exit(2);
826 abort->count = 0;
828 } else
829 /* Any other key resets the abort counter. */
830 abort->count = 0;
832 /* Everything went OK! */
833 return true;
836 /* Handling output for console is simple: we just get all the output buffers
837 * and write them to stdout. */
838 static void handle_console_output(int fd, struct virtqueue *vq, bool timeout)
840 unsigned int head, out, in;
841 int len;
842 struct iovec iov[vq->vring.num];
844 /* Keep getting output buffers from the Guest until we run out. */
845 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
846 if (in)
847 errx(1, "Input buffers in output queue?");
848 len = writev(STDOUT_FILENO, iov, out);
849 add_used_and_trigger(fd, vq, head, len);
853 /* This is called when we no longer want to hear about Guest changes to a
854 * virtqueue. This is more efficient in high-traffic cases, but it means we
855 * have to set a timer to check if any more changes have occurred. */
856 static void block_vq(struct virtqueue *vq)
858 struct itimerval itm;
860 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
861 vq->blocked = true;
863 itm.it_interval.tv_sec = 0;
864 itm.it_interval.tv_usec = 0;
865 itm.it_value.tv_sec = 0;
866 itm.it_value.tv_usec = timeout_usec;
868 setitimer(ITIMER_REAL, &itm, NULL);
872 * The Network
874 * Handling output for network is also simple: we get all the output buffers
875 * and write them (ignoring the first element) to this device's file descriptor
876 * (/dev/net/tun).
878 static void handle_net_output(int fd, struct virtqueue *vq, bool timeout)
880 unsigned int head, out, in, num = 0;
881 int len;
882 struct iovec iov[vq->vring.num];
883 static int last_timeout_num;
885 /* Keep getting output buffers from the Guest until we run out. */
886 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
887 if (in)
888 errx(1, "Input buffers in output queue?");
889 len = writev(vq->dev->fd, iov, out);
890 if (len < 0)
891 err(1, "Writing network packet to tun");
892 add_used_and_trigger(fd, vq, head, len);
893 num++;
896 /* Block further kicks and set up a timer if we saw anything. */
897 if (!timeout && num)
898 block_vq(vq);
900 /* We never quite know how long should we wait before we check the
901 * queue again for more packets. We start at 500 microseconds, and if
902 * we get fewer packets than last time, we assume we made the timeout
903 * too small and increase it by 10 microseconds. Otherwise, we drop it
904 * by one microsecond every time. It seems to work well enough. */
905 if (timeout) {
906 if (num < last_timeout_num)
907 timeout_usec += 10;
908 else if (timeout_usec > 1)
909 timeout_usec--;
910 last_timeout_num = num;
914 /* This is where we handle a packet coming in from the tun device to our
915 * Guest. */
916 static bool handle_tun_input(int fd, struct device *dev)
918 unsigned int head, in_num, out_num;
919 int len;
920 struct iovec iov[dev->vq->vring.num];
922 /* First we need a network buffer from the Guests's recv virtqueue. */
923 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
924 if (head == dev->vq->vring.num) {
925 /* Now, it's expected that if we try to send a packet too
926 * early, the Guest won't be ready yet. Wait until the device
927 * status says it's ready. */
928 /* FIXME: Actually want DRIVER_ACTIVE here. */
930 /* Now tell it we want to know if new things appear. */
931 dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
932 wmb();
934 /* We'll turn this back on if input buffers are registered. */
935 return false;
936 } else if (out_num)
937 errx(1, "Output buffers in network recv queue?");
939 /* Read the packet from the device directly into the Guest's buffer. */
940 len = readv(dev->fd, iov, in_num);
941 if (len <= 0)
942 err(1, "reading network");
944 /* Tell the Guest about the new packet. */
945 add_used_and_trigger(fd, dev->vq, head, len);
947 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
948 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
949 head != dev->vq->vring.num ? "sent" : "discarded");
951 /* All good. */
952 return true;
955 /*L:215 This is the callback attached to the network and console input
956 * virtqueues: it ensures we try again, in case we stopped console or net
957 * delivery because Guest didn't have any buffers. */
958 static void enable_fd(int fd, struct virtqueue *vq, bool timeout)
960 add_device_fd(vq->dev->fd);
961 /* Snap the Waker out of its select loop. */
962 write(waker_fds.pipe[1], "", 1);
965 static void net_enable_fd(int fd, struct virtqueue *vq, bool timeout)
967 /* We don't need to know again when Guest refills receive buffer. */
968 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
969 enable_fd(fd, vq, timeout);
972 /* When the Guest tells us they updated the status field, we handle it. */
973 static void update_device_status(struct device *dev)
975 struct virtqueue *vq;
977 /* This is a reset. */
978 if (dev->desc->status == 0) {
979 verbose("Resetting device %s\n", dev->name);
981 /* Clear any features they've acked. */
982 memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
983 dev->desc->feature_len);
985 /* Zero out the virtqueues. */
986 for (vq = dev->vq; vq; vq = vq->next) {
987 memset(vq->vring.desc, 0,
988 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
989 lg_last_avail(vq) = 0;
991 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
992 warnx("Device %s configuration FAILED", dev->name);
993 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
994 unsigned int i;
996 verbose("Device %s OK: offered", dev->name);
997 for (i = 0; i < dev->desc->feature_len; i++)
998 verbose(" %02x", get_feature_bits(dev)[i]);
999 verbose(", accepted");
1000 for (i = 0; i < dev->desc->feature_len; i++)
1001 verbose(" %02x", get_feature_bits(dev)
1002 [dev->desc->feature_len+i]);
1004 if (dev->ready)
1005 dev->ready(dev);
1009 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
1010 static void handle_output(int fd, unsigned long addr)
1012 struct device *i;
1013 struct virtqueue *vq;
1015 /* Check each device and virtqueue. */
1016 for (i = devices.dev; i; i = i->next) {
1017 /* Notifications to device descriptors update device status. */
1018 if (from_guest_phys(addr) == i->desc) {
1019 update_device_status(i);
1020 return;
1023 /* Notifications to virtqueues mean output has occurred. */
1024 for (vq = i->vq; vq; vq = vq->next) {
1025 if (vq->config.pfn != addr/getpagesize())
1026 continue;
1028 /* Guest should acknowledge (and set features!) before
1029 * using the device. */
1030 if (i->desc->status == 0) {
1031 warnx("%s gave early output", i->name);
1032 return;
1035 if (strcmp(vq->dev->name, "console") != 0)
1036 verbose("Output to %s\n", vq->dev->name);
1037 if (vq->handle_output)
1038 vq->handle_output(fd, vq, false);
1039 return;
1043 /* Early console write is done using notify on a nul-terminated string
1044 * in Guest memory. */
1045 if (addr >= guest_limit)
1046 errx(1, "Bad NOTIFY %#lx", addr);
1048 write(STDOUT_FILENO, from_guest_phys(addr),
1049 strnlen(from_guest_phys(addr), guest_limit - addr));
1052 static void handle_timeout(int fd)
1054 char buf[32];
1055 struct device *i;
1056 struct virtqueue *vq;
1058 /* Clear the pipe */
1059 read(timeoutpipe[0], buf, sizeof(buf));
1061 /* Check each device and virtqueue: flush blocked ones. */
1062 for (i = devices.dev; i; i = i->next) {
1063 for (vq = i->vq; vq; vq = vq->next) {
1064 if (!vq->blocked)
1065 continue;
1067 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
1068 vq->blocked = false;
1069 if (vq->handle_output)
1070 vq->handle_output(fd, vq, true);
1075 /* This is called when the Waker wakes us up: check for incoming file
1076 * descriptors. */
1077 static void handle_input(int fd)
1079 /* select() wants a zeroed timeval to mean "don't wait". */
1080 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1082 for (;;) {
1083 struct device *i;
1084 fd_set fds = devices.infds;
1085 int num;
1087 num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
1088 /* Could get interrupted */
1089 if (num < 0)
1090 continue;
1091 /* If nothing is ready, we're done. */
1092 if (num == 0)
1093 break;
1095 /* Otherwise, call the device(s) which have readable file
1096 * descriptors and a method of handling them. */
1097 for (i = devices.dev; i; i = i->next) {
1098 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1099 if (i->handle_input(fd, i))
1100 continue;
1102 /* If handle_input() returns false, it means we
1103 * should no longer service it. Networking and
1104 * console do this when there's no input
1105 * buffers to deliver into. Console also uses
1106 * it when it discovers that stdin is closed. */
1107 FD_CLR(i->fd, &devices.infds);
1111 /* Is this the timeout fd? */
1112 if (FD_ISSET(timeoutpipe[0], &fds))
1113 handle_timeout(fd);
1117 /*L:190
1118 * Device Setup
1120 * All devices need a descriptor so the Guest knows it exists, and a "struct
1121 * device" so the Launcher can keep track of it. We have common helper
1122 * routines to allocate and manage them.
1125 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1126 * number of virtqueue descriptors, then two sets of feature bits, then an
1127 * array of configuration bytes. This routine returns the configuration
1128 * pointer. */
1129 static u8 *device_config(const struct device *dev)
1131 return (void *)(dev->desc + 1)
1132 + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
1133 + dev->desc->feature_len * 2;
1136 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1137 * table page just above the Guest's normal memory. It returns a pointer to
1138 * that descriptor. */
1139 static struct lguest_device_desc *new_dev_desc(u16 type)
1141 struct lguest_device_desc d = { .type = type };
1142 void *p;
1144 /* Figure out where the next device config is, based on the last one. */
1145 if (devices.lastdev)
1146 p = device_config(devices.lastdev)
1147 + devices.lastdev->desc->config_len;
1148 else
1149 p = devices.descpage;
1151 /* We only have one page for all the descriptors. */
1152 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1153 errx(1, "Too many devices");
1155 /* p might not be aligned, so we memcpy in. */
1156 return memcpy(p, &d, sizeof(d));
1159 /* Each device descriptor is followed by the description of its virtqueues. We
1160 * specify how many descriptors the virtqueue is to have. */
1161 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1162 void (*handle_output)(int, struct virtqueue *, bool))
1164 unsigned int pages;
1165 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1166 void *p;
1168 /* First we need some memory for this virtqueue. */
1169 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1170 / getpagesize();
1171 p = get_pages(pages);
1173 /* Initialize the virtqueue */
1174 vq->next = NULL;
1175 vq->last_avail_idx = 0;
1176 vq->dev = dev;
1177 vq->inflight = 0;
1178 vq->blocked = false;
1180 /* Initialize the configuration. */
1181 vq->config.num = num_descs;
1182 vq->config.irq = devices.next_irq++;
1183 vq->config.pfn = to_guest_phys(p) / getpagesize();
1185 /* Initialize the vring. */
1186 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1188 /* Append virtqueue to this device's descriptor. We use
1189 * device_config() to get the end of the device's current virtqueues;
1190 * we check that we haven't added any config or feature information
1191 * yet, otherwise we'd be overwriting them. */
1192 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1193 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1194 dev->desc->num_vq++;
1196 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1198 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1199 * second. */
1200 for (i = &dev->vq; *i; i = &(*i)->next);
1201 *i = vq;
1203 /* Set the routine to call when the Guest does something to this
1204 * virtqueue. */
1205 vq->handle_output = handle_output;
1207 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1208 * don't have a handler */
1209 if (!handle_output)
1210 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1213 /* The first half of the feature bitmask is for us to advertise features. The
1214 * second half is for the Guest to accept features. */
1215 static void add_feature(struct device *dev, unsigned bit)
1217 u8 *features = get_feature_bits(dev);
1219 /* We can't extend the feature bits once we've added config bytes */
1220 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1221 assert(dev->desc->config_len == 0);
1222 dev->desc->feature_len = (bit / CHAR_BIT) + 1;
1225 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1228 /* This routine sets the configuration fields for an existing device's
1229 * descriptor. It only works for the last device, but that's OK because that's
1230 * how we use it. */
1231 static void set_config(struct device *dev, unsigned len, const void *conf)
1233 /* Check we haven't overflowed our single page. */
1234 if (device_config(dev) + len > devices.descpage + getpagesize())
1235 errx(1, "Too many devices");
1237 /* Copy in the config information, and store the length. */
1238 memcpy(device_config(dev), conf, len);
1239 dev->desc->config_len = len;
1242 /* This routine does all the creation and setup of a new device, including
1243 * calling new_dev_desc() to allocate the descriptor and device memory.
1245 * See what I mean about userspace being boring? */
1246 static struct device *new_device(const char *name, u16 type, int fd,
1247 bool (*handle_input)(int, struct device *))
1249 struct device *dev = malloc(sizeof(*dev));
1251 /* Now we populate the fields one at a time. */
1252 dev->fd = fd;
1253 /* If we have an input handler for this file descriptor, then we add it
1254 * to the device_list's fdset and maxfd. */
1255 if (handle_input)
1256 add_device_fd(dev->fd);
1257 dev->desc = new_dev_desc(type);
1258 dev->handle_input = handle_input;
1259 dev->name = name;
1260 dev->vq = NULL;
1261 dev->ready = NULL;
1263 /* Append to device list. Prepending to a single-linked list is
1264 * easier, but the user expects the devices to be arranged on the bus
1265 * in command-line order. The first network device on the command line
1266 * is eth0, the first block device /dev/vda, etc. */
1267 if (devices.lastdev)
1268 devices.lastdev->next = dev;
1269 else
1270 devices.dev = dev;
1271 devices.lastdev = dev;
1273 return dev;
1276 /* Our first setup routine is the console. It's a fairly simple device, but
1277 * UNIX tty handling makes it uglier than it could be. */
1278 static void setup_console(void)
1280 struct device *dev;
1282 /* If we can save the initial standard input settings... */
1283 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1284 struct termios term = orig_term;
1285 /* Then we turn off echo, line buffering and ^C etc. We want a
1286 * raw input stream to the Guest. */
1287 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1288 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1289 /* If we exit gracefully, the original settings will be
1290 * restored so the user can see what they're typing. */
1291 atexit(restore_term);
1294 dev = new_device("console", VIRTIO_ID_CONSOLE,
1295 STDIN_FILENO, handle_console_input);
1296 /* We store the console state in dev->priv, and initialize it. */
1297 dev->priv = malloc(sizeof(struct console_abort));
1298 ((struct console_abort *)dev->priv)->count = 0;
1300 /* The console needs two virtqueues: the input then the output. When
1301 * they put something the input queue, we make sure we're listening to
1302 * stdin. When they put something in the output queue, we write it to
1303 * stdout. */
1304 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1305 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1307 verbose("device %u: console\n", devices.device_num++);
1309 /*:*/
1311 static void timeout_alarm(int sig)
1313 write(timeoutpipe[1], "", 1);
1316 static void setup_timeout(void)
1318 if (pipe(timeoutpipe) != 0)
1319 err(1, "Creating timeout pipe");
1321 if (fcntl(timeoutpipe[1], F_SETFL,
1322 fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
1323 err(1, "Making timeout pipe nonblocking");
1325 add_device_fd(timeoutpipe[0]);
1326 signal(SIGALRM, timeout_alarm);
1329 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1330 * --sharenet=<name> option which opens or creates a named pipe. This can be
1331 * used to send packets to another guest in a 1:1 manner.
1333 * More sopisticated is to use one of the tools developed for project like UML
1334 * to do networking.
1336 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1337 * completely generic ("here's my vring, attach to your vring") and would work
1338 * for any traffic. Of course, namespace and permissions issues need to be
1339 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1340 * multiple inter-guest channels behind one interface, although it would
1341 * require some manner of hotplugging new virtio channels.
1343 * Finally, we could implement a virtio network switch in the kernel. :*/
1345 static u32 str2ip(const char *ipaddr)
1347 unsigned int b[4];
1349 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1350 errx(1, "Failed to parse IP address '%s'", ipaddr);
1351 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1354 static void str2mac(const char *macaddr, unsigned char mac[6])
1356 unsigned int m[6];
1357 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1358 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1359 errx(1, "Failed to parse mac address '%s'", macaddr);
1360 mac[0] = m[0];
1361 mac[1] = m[1];
1362 mac[2] = m[2];
1363 mac[3] = m[3];
1364 mac[4] = m[4];
1365 mac[5] = m[5];
1368 /* This code is "adapted" from libbridge: it attaches the Host end of the
1369 * network device to the bridge device specified by the command line.
1371 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1372 * dislike bridging), and I just try not to break it. */
1373 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1375 int ifidx;
1376 struct ifreq ifr;
1378 if (!*br_name)
1379 errx(1, "must specify bridge name");
1381 ifidx = if_nametoindex(if_name);
1382 if (!ifidx)
1383 errx(1, "interface %s does not exist!", if_name);
1385 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1386 ifr.ifr_name[IFNAMSIZ-1] = '\0';
1387 ifr.ifr_ifindex = ifidx;
1388 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1389 err(1, "can't add %s to bridge %s", if_name, br_name);
1392 /* This sets up the Host end of the network device with an IP address, brings
1393 * it up so packets will flow, the copies the MAC address into the hwaddr
1394 * pointer. */
1395 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1397 struct ifreq ifr;
1398 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1400 memset(&ifr, 0, sizeof(ifr));
1401 strcpy(ifr.ifr_name, tapif);
1403 /* Don't read these incantations. Just cut & paste them like I did! */
1404 sin->sin_family = AF_INET;
1405 sin->sin_addr.s_addr = htonl(ipaddr);
1406 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1407 err(1, "Setting %s interface address", tapif);
1408 ifr.ifr_flags = IFF_UP;
1409 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1410 err(1, "Bringing interface %s up", tapif);
1413 static int get_tun_device(char tapif[IFNAMSIZ])
1415 struct ifreq ifr;
1416 int netfd;
1418 /* Start with this zeroed. Messy but sure. */
1419 memset(&ifr, 0, sizeof(ifr));
1421 /* We open the /dev/net/tun device and tell it we want a tap device. A
1422 * tap device is like a tun device, only somehow different. To tell
1423 * the truth, I completely blundered my way through this code, but it
1424 * works now! */
1425 netfd = open_or_die("/dev/net/tun", O_RDWR);
1426 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1427 strcpy(ifr.ifr_name, "tap%d");
1428 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1429 err(1, "configuring /dev/net/tun");
1431 if (ioctl(netfd, TUNSETOFFLOAD,
1432 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1433 err(1, "Could not set features for tun device");
1435 /* We don't need checksums calculated for packets coming in this
1436 * device: trust us! */
1437 ioctl(netfd, TUNSETNOCSUM, 1);
1439 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1440 return netfd;
1443 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1444 * routing, but the principle is the same: it uses the "tun" device to inject
1445 * packets into the Host as if they came in from a normal network card. We
1446 * just shunt packets between the Guest and the tun device. */
1447 static void setup_tun_net(char *arg)
1449 struct device *dev;
1450 int netfd, ipfd;
1451 u32 ip = INADDR_ANY;
1452 bool bridging = false;
1453 char tapif[IFNAMSIZ], *p;
1454 struct virtio_net_config conf;
1456 netfd = get_tun_device(tapif);
1458 /* First we create a new network device. */
1459 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1461 /* Network devices need a receive and a send queue, just like
1462 * console. */
1463 add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
1464 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1466 /* We need a socket to perform the magic network ioctls to bring up the
1467 * tap interface, connect to the bridge etc. Any socket will do! */
1468 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1469 if (ipfd < 0)
1470 err(1, "opening IP socket");
1472 /* If the command line was --tunnet=bridge:<name> do bridging. */
1473 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1474 arg += strlen(BRIDGE_PFX);
1475 bridging = true;
1478 /* A mac address may follow the bridge name or IP address */
1479 p = strchr(arg, ':');
1480 if (p) {
1481 str2mac(p+1, conf.mac);
1482 add_feature(dev, VIRTIO_NET_F_MAC);
1483 *p = '\0';
1486 /* arg is now either an IP address or a bridge name */
1487 if (bridging)
1488 add_to_bridge(ipfd, tapif, arg);
1489 else
1490 ip = str2ip(arg);
1492 /* Set up the tun device. */
1493 configure_device(ipfd, tapif, ip);
1495 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1496 /* Expect Guest to handle everything except UFO */
1497 add_feature(dev, VIRTIO_NET_F_CSUM);
1498 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1499 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1500 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1501 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1502 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1503 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1504 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1505 set_config(dev, sizeof(conf), &conf);
1507 /* We don't need the socket any more; setup is done. */
1508 close(ipfd);
1510 devices.device_num++;
1512 if (bridging)
1513 verbose("device %u: tun %s attached to bridge: %s\n",
1514 devices.device_num, tapif, arg);
1515 else
1516 verbose("device %u: tun %s: %s\n",
1517 devices.device_num, tapif, arg);
1520 /* Our block (disk) device should be really simple: the Guest asks for a block
1521 * number and we read or write that position in the file. Unfortunately, that
1522 * was amazingly slow: the Guest waits until the read is finished before
1523 * running anything else, even if it could have been doing useful work.
1525 * We could use async I/O, except it's reputed to suck so hard that characters
1526 * actually go missing from your code when you try to use it.
1528 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1530 /* This hangs off device->priv. */
1531 struct vblk_info
1533 /* The size of the file. */
1534 off64_t len;
1536 /* The file descriptor for the file. */
1537 int fd;
1539 /* IO thread listens on this file descriptor [0]. */
1540 int workpipe[2];
1542 /* IO thread writes to this file descriptor to mark it done, then
1543 * Launcher triggers interrupt to Guest. */
1544 int done_fd;
1547 /*L:210
1548 * The Disk
1550 * Remember that the block device is handled by a separate I/O thread. We head
1551 * straight into the core of that thread here:
1553 static bool service_io(struct device *dev)
1555 struct vblk_info *vblk = dev->priv;
1556 unsigned int head, out_num, in_num, wlen;
1557 int ret;
1558 u8 *in;
1559 struct virtio_blk_outhdr *out;
1560 struct iovec iov[dev->vq->vring.num];
1561 off64_t off;
1563 /* See if there's a request waiting. If not, nothing to do. */
1564 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1565 if (head == dev->vq->vring.num)
1566 return false;
1568 /* Every block request should contain at least one output buffer
1569 * (detailing the location on disk and the type of request) and one
1570 * input buffer (to hold the result). */
1571 if (out_num == 0 || in_num == 0)
1572 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1573 head, out_num, in_num);
1575 out = convert(&iov[0], struct virtio_blk_outhdr);
1576 in = convert(&iov[out_num+in_num-1], u8);
1577 off = out->sector * 512;
1579 /* The block device implements "barriers", where the Guest indicates
1580 * that it wants all previous writes to occur before this write. We
1581 * don't have a way of asking our kernel to do a barrier, so we just
1582 * synchronize all the data in the file. Pretty poor, no? */
1583 if (out->type & VIRTIO_BLK_T_BARRIER)
1584 fdatasync(vblk->fd);
1586 /* In general the virtio block driver is allowed to try SCSI commands.
1587 * It'd be nice if we supported eject, for example, but we don't. */
1588 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1589 fprintf(stderr, "Scsi commands unsupported\n");
1590 *in = VIRTIO_BLK_S_UNSUPP;
1591 wlen = sizeof(*in);
1592 } else if (out->type & VIRTIO_BLK_T_OUT) {
1593 /* Write */
1595 /* Move to the right location in the block file. This can fail
1596 * if they try to write past end. */
1597 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1598 err(1, "Bad seek to sector %llu", out->sector);
1600 ret = writev(vblk->fd, iov+1, out_num-1);
1601 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1603 /* Grr... Now we know how long the descriptor they sent was, we
1604 * make sure they didn't try to write over the end of the block
1605 * file (possibly extending it). */
1606 if (ret > 0 && off + ret > vblk->len) {
1607 /* Trim it back to the correct length */
1608 ftruncate64(vblk->fd, vblk->len);
1609 /* Die, bad Guest, die. */
1610 errx(1, "Write past end %llu+%u", off, ret);
1612 wlen = sizeof(*in);
1613 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1614 } else {
1615 /* Read */
1617 /* Move to the right location in the block file. This can fail
1618 * if they try to read past end. */
1619 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1620 err(1, "Bad seek to sector %llu", out->sector);
1622 ret = readv(vblk->fd, iov+1, in_num-1);
1623 verbose("READ from sector %llu: %i\n", out->sector, ret);
1624 if (ret >= 0) {
1625 wlen = sizeof(*in) + ret;
1626 *in = VIRTIO_BLK_S_OK;
1627 } else {
1628 wlen = sizeof(*in);
1629 *in = VIRTIO_BLK_S_IOERR;
1633 /* We can't trigger an IRQ, because we're not the Launcher. It does
1634 * that when we tell it we're done. */
1635 add_used(dev->vq, head, wlen);
1636 return true;
1639 /* This is the thread which actually services the I/O. */
1640 static int io_thread(void *_dev)
1642 struct device *dev = _dev;
1643 struct vblk_info *vblk = dev->priv;
1644 char c;
1646 /* Close other side of workpipe so we get 0 read when main dies. */
1647 close(vblk->workpipe[1]);
1648 /* Close the other side of the done_fd pipe. */
1649 close(dev->fd);
1651 /* When this read fails, it means Launcher died, so we follow. */
1652 while (read(vblk->workpipe[0], &c, 1) == 1) {
1653 /* We acknowledge each request immediately to reduce latency,
1654 * rather than waiting until we've done them all. I haven't
1655 * measured to see if it makes any difference.
1657 * That would be an interesting test, wouldn't it? You could
1658 * also try having more than one I/O thread. */
1659 while (service_io(dev))
1660 write(vblk->done_fd, &c, 1);
1662 return 0;
1665 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1666 * when that thread tells us it's completed some I/O. */
1667 static bool handle_io_finish(int fd, struct device *dev)
1669 char c;
1671 /* If the I/O thread died, presumably it printed the error, so we
1672 * simply exit. */
1673 if (read(dev->fd, &c, 1) != 1)
1674 exit(1);
1676 /* It did some work, so trigger the irq. */
1677 trigger_irq(fd, dev->vq);
1678 return true;
1681 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
1682 static void handle_virtblk_output(int fd, struct virtqueue *vq, bool timeout)
1684 struct vblk_info *vblk = vq->dev->priv;
1685 char c = 0;
1687 /* Wake up I/O thread and tell it to go to work! */
1688 if (write(vblk->workpipe[1], &c, 1) != 1)
1689 /* Presumably it indicated why it died. */
1690 exit(1);
1693 /*L:198 This actually sets up a virtual block device. */
1694 static void setup_block_file(const char *filename)
1696 int p[2];
1697 struct device *dev;
1698 struct vblk_info *vblk;
1699 void *stack;
1700 struct virtio_blk_config conf;
1702 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1703 pipe(p);
1705 /* The device responds to return from I/O thread. */
1706 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1708 /* The device has one virtqueue, where the Guest places requests. */
1709 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1711 /* Allocate the room for our own bookkeeping */
1712 vblk = dev->priv = malloc(sizeof(*vblk));
1714 /* First we open the file and store the length. */
1715 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1716 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1718 /* We support barriers. */
1719 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1721 /* Tell Guest how many sectors this device has. */
1722 conf.capacity = cpu_to_le64(vblk->len / 512);
1724 /* Tell Guest not to put in too many descriptors at once: two are used
1725 * for the in and out elements. */
1726 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1727 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1729 set_config(dev, sizeof(conf), &conf);
1731 /* The I/O thread writes to this end of the pipe when done. */
1732 vblk->done_fd = p[1];
1734 /* This is the second pipe, which is how we tell the I/O thread about
1735 * more work. */
1736 pipe(vblk->workpipe);
1738 /* Create stack for thread and run it. Since stack grows upwards, we
1739 * point the stack pointer to the end of this region. */
1740 stack = malloc(32768);
1741 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1742 * becoming a zombie. */
1743 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
1744 err(1, "Creating clone");
1746 /* We don't need to keep the I/O thread's end of the pipes open. */
1747 close(vblk->done_fd);
1748 close(vblk->workpipe[0]);
1750 verbose("device %u: virtblock %llu sectors\n",
1751 devices.device_num, le64_to_cpu(conf.capacity));
1754 /* Our random number generator device reads from /dev/random into the Guest's
1755 * input buffers. The usual case is that the Guest doesn't want random numbers
1756 * and so has no buffers although /dev/random is still readable, whereas
1757 * console is the reverse.
1759 * The same logic applies, however. */
1760 static bool handle_rng_input(int fd, struct device *dev)
1762 int len;
1763 unsigned int head, in_num, out_num, totlen = 0;
1764 struct iovec iov[dev->vq->vring.num];
1766 /* First we need a buffer from the Guests's virtqueue. */
1767 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1769 /* If they're not ready for input, stop listening to this file
1770 * descriptor. We'll start again once they add an input buffer. */
1771 if (head == dev->vq->vring.num)
1772 return false;
1774 if (out_num)
1775 errx(1, "Output buffers in rng?");
1777 /* This is why we convert to iovecs: the readv() call uses them, and so
1778 * it reads straight into the Guest's buffer. We loop to make sure we
1779 * fill it. */
1780 while (!iov_empty(iov, in_num)) {
1781 len = readv(dev->fd, iov, in_num);
1782 if (len <= 0)
1783 err(1, "Read from /dev/random gave %i", len);
1784 iov_consume(iov, in_num, len);
1785 totlen += len;
1788 /* Tell the Guest about the new input. */
1789 add_used_and_trigger(fd, dev->vq, head, totlen);
1791 /* Everything went OK! */
1792 return true;
1795 /* And this creates a "hardware" random number device for the Guest. */
1796 static void setup_rng(void)
1798 struct device *dev;
1799 int fd;
1801 fd = open_or_die("/dev/random", O_RDONLY);
1803 /* The device responds to return from I/O thread. */
1804 dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
1806 /* The device has one virtqueue, where the Guest places inbufs. */
1807 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1809 verbose("device %u: rng\n", devices.device_num++);
1811 /* That's the end of device setup. */
1813 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1814 static void __attribute__((noreturn)) restart_guest(void)
1816 unsigned int i;
1818 /* Since we don't track all open fds, we simply close everything beyond
1819 * stderr. */
1820 for (i = 3; i < FD_SETSIZE; i++)
1821 close(i);
1823 /* The exec automatically gets rid of the I/O and Waker threads. */
1824 execv(main_args[0], main_args);
1825 err(1, "Could not exec %s", main_args[0]);
1828 /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
1829 * its input and output, and finally, lays it to rest. */
1830 static void __attribute__((noreturn)) run_guest(int lguest_fd)
1832 for (;;) {
1833 unsigned long args[] = { LHREQ_BREAK, 0 };
1834 unsigned long notify_addr;
1835 int readval;
1837 /* We read from the /dev/lguest device to run the Guest. */
1838 readval = pread(lguest_fd, &notify_addr,
1839 sizeof(notify_addr), cpu_id);
1841 /* One unsigned long means the Guest did HCALL_NOTIFY */
1842 if (readval == sizeof(notify_addr)) {
1843 verbose("Notify on address %#lx\n", notify_addr);
1844 handle_output(lguest_fd, notify_addr);
1845 continue;
1846 /* ENOENT means the Guest died. Reading tells us why. */
1847 } else if (errno == ENOENT) {
1848 char reason[1024] = { 0 };
1849 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1850 errx(1, "%s", reason);
1851 /* ERESTART means that we need to reboot the guest */
1852 } else if (errno == ERESTART) {
1853 restart_guest();
1854 /* EAGAIN means a signal (timeout).
1855 * Anything else means a bug or incompatible change. */
1856 } else if (errno != EAGAIN)
1857 err(1, "Running guest failed");
1859 /* Only service input on thread for CPU 0. */
1860 if (cpu_id != 0)
1861 continue;
1863 /* Service input, then unset the BREAK to release the Waker. */
1864 handle_input(lguest_fd);
1865 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1866 err(1, "Resetting break");
1869 /*L:240
1870 * This is the end of the Launcher. The good news: we are over halfway
1871 * through! The bad news: the most fiendish part of the code still lies ahead
1872 * of us.
1874 * Are you ready? Take a deep breath and join me in the core of the Host, in
1875 * "make Host".
1878 static struct option opts[] = {
1879 { "verbose", 0, NULL, 'v' },
1880 { "tunnet", 1, NULL, 't' },
1881 { "block", 1, NULL, 'b' },
1882 { "rng", 0, NULL, 'r' },
1883 { "initrd", 1, NULL, 'i' },
1884 { NULL },
1886 static void usage(void)
1888 errx(1, "Usage: lguest [--verbose] "
1889 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1890 "|--block=<filename>|--initrd=<filename>]...\n"
1891 "<mem-in-mb> vmlinux [args...]");
1894 /*L:105 The main routine is where the real work begins: */
1895 int main(int argc, char *argv[])
1897 /* Memory, top-level pagetable, code startpoint and size of the
1898 * (optional) initrd. */
1899 unsigned long mem = 0, start, initrd_size = 0;
1900 /* Two temporaries and the /dev/lguest file descriptor. */
1901 int i, c, lguest_fd;
1902 /* The boot information for the Guest. */
1903 struct boot_params *boot;
1904 /* If they specify an initrd file to load. */
1905 const char *initrd_name = NULL;
1907 /* Save the args: we "reboot" by execing ourselves again. */
1908 main_args = argv;
1909 /* We don't "wait" for the children, so prevent them from becoming
1910 * zombies. */
1911 signal(SIGCHLD, SIG_IGN);
1913 /* First we initialize the device list. Since console and network
1914 * device receive input from a file descriptor, we keep an fdset
1915 * (infds) and the maximum fd number (max_infd) with the head of the
1916 * list. We also keep a pointer to the last device. Finally, we keep
1917 * the next interrupt number to use for devices (1: remember that 0 is
1918 * used by the timer). */
1919 FD_ZERO(&devices.infds);
1920 devices.max_infd = -1;
1921 devices.lastdev = NULL;
1922 devices.next_irq = 1;
1924 cpu_id = 0;
1925 /* We need to know how much memory so we can set up the device
1926 * descriptor and memory pages for the devices as we parse the command
1927 * line. So we quickly look through the arguments to find the amount
1928 * of memory now. */
1929 for (i = 1; i < argc; i++) {
1930 if (argv[i][0] != '-') {
1931 mem = atoi(argv[i]) * 1024 * 1024;
1932 /* We start by mapping anonymous pages over all of
1933 * guest-physical memory range. This fills it with 0,
1934 * and ensures that the Guest won't be killed when it
1935 * tries to access it. */
1936 guest_base = map_zeroed_pages(mem / getpagesize()
1937 + DEVICE_PAGES);
1938 guest_limit = mem;
1939 guest_max = mem + DEVICE_PAGES*getpagesize();
1940 devices.descpage = get_pages(1);
1941 break;
1945 /* The options are fairly straight-forward */
1946 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1947 switch (c) {
1948 case 'v':
1949 verbose = true;
1950 break;
1951 case 't':
1952 setup_tun_net(optarg);
1953 break;
1954 case 'b':
1955 setup_block_file(optarg);
1956 break;
1957 case 'r':
1958 setup_rng();
1959 break;
1960 case 'i':
1961 initrd_name = optarg;
1962 break;
1963 default:
1964 warnx("Unknown argument %s", argv[optind]);
1965 usage();
1968 /* After the other arguments we expect memory and kernel image name,
1969 * followed by command line arguments for the kernel. */
1970 if (optind + 2 > argc)
1971 usage();
1973 verbose("Guest base is at %p\n", guest_base);
1975 /* We always have a console device */
1976 setup_console();
1978 /* We can timeout waiting for Guest network transmit. */
1979 setup_timeout();
1981 /* Now we load the kernel */
1982 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1984 /* Boot information is stashed at physical address 0 */
1985 boot = from_guest_phys(0);
1987 /* Map the initrd image if requested (at top of physical memory) */
1988 if (initrd_name) {
1989 initrd_size = load_initrd(initrd_name, mem);
1990 /* These are the location in the Linux boot header where the
1991 * start and size of the initrd are expected to be found. */
1992 boot->hdr.ramdisk_image = mem - initrd_size;
1993 boot->hdr.ramdisk_size = initrd_size;
1994 /* The bootloader type 0xFF means "unknown"; that's OK. */
1995 boot->hdr.type_of_loader = 0xFF;
1998 /* The Linux boot header contains an "E820" memory map: ours is a
1999 * simple, single region. */
2000 boot->e820_entries = 1;
2001 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2002 /* The boot header contains a command line pointer: we put the command
2003 * line after the boot header. */
2004 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2005 /* We use a simple helper to copy the arguments separated by spaces. */
2006 concat((char *)(boot + 1), argv+optind+2);
2008 /* Boot protocol version: 2.07 supports the fields for lguest. */
2009 boot->hdr.version = 0x207;
2011 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2012 boot->hdr.hardware_subarch = 1;
2014 /* Tell the entry path not to try to reload segment registers. */
2015 boot->hdr.loadflags |= KEEP_SEGMENTS;
2017 /* We tell the kernel to initialize the Guest: this returns the open
2018 * /dev/lguest file descriptor. */
2019 lguest_fd = tell_kernel(start);
2021 /* We clone off a thread, which wakes the Launcher whenever one of the
2022 * input file descriptors needs attention. We call this the Waker, and
2023 * we'll cover it in a moment. */
2024 setup_waker(lguest_fd);
2026 /* Finally, run the Guest. This doesn't return. */
2027 run_guest(lguest_fd);
2029 /*:*/
2031 /*M:999
2032 * Mastery is done: you now know everything I do.
2034 * But surely you have seen code, features and bugs in your wanderings which
2035 * you now yearn to attack? That is the real game, and I look forward to you
2036 * patching and forking lguest into the Your-Name-Here-visor.
2038 * Farewell, and good coding!
2039 * Rusty Russell.