Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES...
[linux-2.6/mini2440.git] / mm / page_alloc.c
blobf7873a47fa8e3e73dd696c2c7c4b4d4cccd8e787
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
50 * Array of node states.
52 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
55 #ifndef CONFIG_NUMA
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
57 #ifdef CONFIG_HIGHMEM
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
59 #endif
60 [N_CPU] = { { [0] = 1UL } },
61 #endif /* NUMA */
63 EXPORT_SYMBOL(node_states);
65 unsigned long totalram_pages __read_mostly;
66 unsigned long totalreserve_pages __read_mostly;
67 long nr_swap_pages;
68 int percpu_pagelist_fraction;
70 static void __free_pages_ok(struct page *page, unsigned int order);
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
83 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
84 #ifdef CONFIG_ZONE_DMA
85 256,
86 #endif
87 #ifdef CONFIG_ZONE_DMA32
88 256,
89 #endif
90 #ifdef CONFIG_HIGHMEM
91 32,
92 #endif
93 32,
96 EXPORT_SYMBOL(totalram_pages);
98 static char * const zone_names[MAX_NR_ZONES] = {
99 #ifdef CONFIG_ZONE_DMA
100 "DMA",
101 #endif
102 #ifdef CONFIG_ZONE_DMA32
103 "DMA32",
104 #endif
105 "Normal",
106 #ifdef CONFIG_HIGHMEM
107 "HighMem",
108 #endif
109 "Movable",
112 int min_free_kbytes = 1024;
114 unsigned long __meminitdata nr_kernel_pages;
115 unsigned long __meminitdata nr_all_pages;
116 static unsigned long __meminitdata dma_reserve;
118 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
129 #else
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
133 #else
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
136 #endif
137 #endif
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
143 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
146 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
147 unsigned long __initdata required_kernelcore;
148 unsigned long __initdata required_movablecore;
149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
152 int movable_zone;
153 EXPORT_SYMBOL(movable_zone);
154 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
156 #if MAX_NUMNODES > 1
157 int nr_node_ids __read_mostly = MAX_NUMNODES;
158 EXPORT_SYMBOL(nr_node_ids);
159 #endif
161 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
162 int page_group_by_mobility_disabled __read_mostly;
164 static inline int get_pageblock_migratetype(struct page *page)
166 if (unlikely(page_group_by_mobility_disabled))
167 return MIGRATE_UNMOVABLE;
169 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
178 static inline int allocflags_to_migratetype(gfp_t gfp_flags, int order)
180 WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
182 if (unlikely(page_group_by_mobility_disabled))
183 return MIGRATE_UNMOVABLE;
185 /* Cluster high-order atomic allocations together */
186 if (unlikely(order > 0) &&
187 (!(gfp_flags & __GFP_WAIT) || in_interrupt()))
188 return MIGRATE_HIGHATOMIC;
190 /* Cluster based on mobility */
191 return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |
192 ((gfp_flags & __GFP_RECLAIMABLE) != 0);
195 #else
196 static inline int get_pageblock_migratetype(struct page *page)
198 return MIGRATE_UNMOVABLE;
201 static void set_pageblock_migratetype(struct page *page, int migratetype)
205 static inline int allocflags_to_migratetype(gfp_t gfp_flags, int order)
207 return MIGRATE_UNMOVABLE;
209 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
211 #ifdef CONFIG_DEBUG_VM
212 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
214 int ret = 0;
215 unsigned seq;
216 unsigned long pfn = page_to_pfn(page);
218 do {
219 seq = zone_span_seqbegin(zone);
220 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
221 ret = 1;
222 else if (pfn < zone->zone_start_pfn)
223 ret = 1;
224 } while (zone_span_seqretry(zone, seq));
226 return ret;
229 static int page_is_consistent(struct zone *zone, struct page *page)
231 if (!pfn_valid_within(page_to_pfn(page)))
232 return 0;
233 if (zone != page_zone(page))
234 return 0;
236 return 1;
239 * Temporary debugging check for pages not lying within a given zone.
241 static int bad_range(struct zone *zone, struct page *page)
243 if (page_outside_zone_boundaries(zone, page))
244 return 1;
245 if (!page_is_consistent(zone, page))
246 return 1;
248 return 0;
250 #else
251 static inline int bad_range(struct zone *zone, struct page *page)
253 return 0;
255 #endif
257 static void bad_page(struct page *page)
259 printk(KERN_EMERG "Bad page state in process '%s'\n"
260 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
261 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
262 KERN_EMERG "Backtrace:\n",
263 current->comm, page, (int)(2*sizeof(unsigned long)),
264 (unsigned long)page->flags, page->mapping,
265 page_mapcount(page), page_count(page));
266 dump_stack();
267 page->flags &= ~(1 << PG_lru |
268 1 << PG_private |
269 1 << PG_locked |
270 1 << PG_active |
271 1 << PG_dirty |
272 1 << PG_reclaim |
273 1 << PG_slab |
274 1 << PG_swapcache |
275 1 << PG_writeback |
276 1 << PG_buddy );
277 set_page_count(page, 0);
278 reset_page_mapcount(page);
279 page->mapping = NULL;
280 add_taint(TAINT_BAD_PAGE);
284 * Higher-order pages are called "compound pages". They are structured thusly:
286 * The first PAGE_SIZE page is called the "head page".
288 * The remaining PAGE_SIZE pages are called "tail pages".
290 * All pages have PG_compound set. All pages have their ->private pointing at
291 * the head page (even the head page has this).
293 * The first tail page's ->lru.next holds the address of the compound page's
294 * put_page() function. Its ->lru.prev holds the order of allocation.
295 * This usage means that zero-order pages may not be compound.
298 static void free_compound_page(struct page *page)
300 __free_pages_ok(page, compound_order(page));
303 static void prep_compound_page(struct page *page, unsigned long order)
305 int i;
306 int nr_pages = 1 << order;
308 set_compound_page_dtor(page, free_compound_page);
309 set_compound_order(page, order);
310 __SetPageHead(page);
311 for (i = 1; i < nr_pages; i++) {
312 struct page *p = page + i;
314 __SetPageTail(p);
315 p->first_page = page;
319 static void destroy_compound_page(struct page *page, unsigned long order)
321 int i;
322 int nr_pages = 1 << order;
324 if (unlikely(compound_order(page) != order))
325 bad_page(page);
327 if (unlikely(!PageHead(page)))
328 bad_page(page);
329 __ClearPageHead(page);
330 for (i = 1; i < nr_pages; i++) {
331 struct page *p = page + i;
333 if (unlikely(!PageTail(p) |
334 (p->first_page != page)))
335 bad_page(page);
336 __ClearPageTail(p);
340 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
342 int i;
344 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
355 * function for dealing with page's order in buddy system.
356 * zone->lock is already acquired when we use these.
357 * So, we don't need atomic page->flags operations here.
359 static inline unsigned long page_order(struct page *page)
361 return page_private(page);
364 static inline void set_page_order(struct page *page, int order)
366 set_page_private(page, order);
367 __SetPageBuddy(page);
370 static inline void rmv_page_order(struct page *page)
372 __ClearPageBuddy(page);
373 set_page_private(page, 0);
377 * Locate the struct page for both the matching buddy in our
378 * pair (buddy1) and the combined O(n+1) page they form (page).
380 * 1) Any buddy B1 will have an order O twin B2 which satisfies
381 * the following equation:
382 * B2 = B1 ^ (1 << O)
383 * For example, if the starting buddy (buddy2) is #8 its order
384 * 1 buddy is #10:
385 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
387 * 2) Any buddy B will have an order O+1 parent P which
388 * satisfies the following equation:
389 * P = B & ~(1 << O)
391 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
393 static inline struct page *
394 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
396 unsigned long buddy_idx = page_idx ^ (1 << order);
398 return page + (buddy_idx - page_idx);
401 static inline unsigned long
402 __find_combined_index(unsigned long page_idx, unsigned int order)
404 return (page_idx & ~(1 << order));
408 * This function checks whether a page is free && is the buddy
409 * we can do coalesce a page and its buddy if
410 * (a) the buddy is not in a hole &&
411 * (b) the buddy is in the buddy system &&
412 * (c) a page and its buddy have the same order &&
413 * (d) a page and its buddy are in the same zone.
415 * For recording whether a page is in the buddy system, we use PG_buddy.
416 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
418 * For recording page's order, we use page_private(page).
420 static inline int page_is_buddy(struct page *page, struct page *buddy,
421 int order)
423 if (!pfn_valid_within(page_to_pfn(buddy)))
424 return 0;
426 if (page_zone_id(page) != page_zone_id(buddy))
427 return 0;
429 if (PageBuddy(buddy) && page_order(buddy) == order) {
430 BUG_ON(page_count(buddy) != 0);
431 return 1;
433 return 0;
437 * Freeing function for a buddy system allocator.
439 * The concept of a buddy system is to maintain direct-mapped table
440 * (containing bit values) for memory blocks of various "orders".
441 * The bottom level table contains the map for the smallest allocatable
442 * units of memory (here, pages), and each level above it describes
443 * pairs of units from the levels below, hence, "buddies".
444 * At a high level, all that happens here is marking the table entry
445 * at the bottom level available, and propagating the changes upward
446 * as necessary, plus some accounting needed to play nicely with other
447 * parts of the VM system.
448 * At each level, we keep a list of pages, which are heads of continuous
449 * free pages of length of (1 << order) and marked with PG_buddy. Page's
450 * order is recorded in page_private(page) field.
451 * So when we are allocating or freeing one, we can derive the state of the
452 * other. That is, if we allocate a small block, and both were
453 * free, the remainder of the region must be split into blocks.
454 * If a block is freed, and its buddy is also free, then this
455 * triggers coalescing into a block of larger size.
457 * -- wli
460 static inline void __free_one_page(struct page *page,
461 struct zone *zone, unsigned int order)
463 unsigned long page_idx;
464 int order_size = 1 << order;
465 int migratetype = get_pageblock_migratetype(page);
467 if (unlikely(PageCompound(page)))
468 destroy_compound_page(page, order);
470 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
472 VM_BUG_ON(page_idx & (order_size - 1));
473 VM_BUG_ON(bad_range(zone, page));
475 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
476 while (order < MAX_ORDER-1) {
477 unsigned long combined_idx;
478 struct page *buddy;
480 buddy = __page_find_buddy(page, page_idx, order);
481 if (!page_is_buddy(page, buddy, order))
482 break; /* Move the buddy up one level. */
484 list_del(&buddy->lru);
485 zone->free_area[order].nr_free--;
486 rmv_page_order(buddy);
487 combined_idx = __find_combined_index(page_idx, order);
488 page = page + (combined_idx - page_idx);
489 page_idx = combined_idx;
490 order++;
492 set_page_order(page, order);
493 list_add(&page->lru,
494 &zone->free_area[order].free_list[migratetype]);
495 zone->free_area[order].nr_free++;
498 static inline int free_pages_check(struct page *page)
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
502 (page_count(page) != 0) |
503 (page->flags & (
504 1 << PG_lru |
505 1 << PG_private |
506 1 << PG_locked |
507 1 << PG_active |
508 1 << PG_slab |
509 1 << PG_swapcache |
510 1 << PG_writeback |
511 1 << PG_reserved |
512 1 << PG_buddy ))))
513 bad_page(page);
514 if (PageDirty(page))
515 __ClearPageDirty(page);
517 * For now, we report if PG_reserved was found set, but do not
518 * clear it, and do not free the page. But we shall soon need
519 * to do more, for when the ZERO_PAGE count wraps negative.
521 return PageReserved(page);
525 * Frees a list of pages.
526 * Assumes all pages on list are in same zone, and of same order.
527 * count is the number of pages to free.
529 * If the zone was previously in an "all pages pinned" state then look to
530 * see if this freeing clears that state.
532 * And clear the zone's pages_scanned counter, to hold off the "all pages are
533 * pinned" detection logic.
535 static void free_pages_bulk(struct zone *zone, int count,
536 struct list_head *list, int order)
538 spin_lock(&zone->lock);
539 zone->all_unreclaimable = 0;
540 zone->pages_scanned = 0;
541 while (count--) {
542 struct page *page;
544 VM_BUG_ON(list_empty(list));
545 page = list_entry(list->prev, struct page, lru);
546 /* have to delete it as __free_one_page list manipulates */
547 list_del(&page->lru);
548 __free_one_page(page, zone, order);
550 spin_unlock(&zone->lock);
553 static void free_one_page(struct zone *zone, struct page *page, int order)
555 spin_lock(&zone->lock);
556 zone->all_unreclaimable = 0;
557 zone->pages_scanned = 0;
558 __free_one_page(page, zone, order);
559 spin_unlock(&zone->lock);
562 static void __free_pages_ok(struct page *page, unsigned int order)
564 unsigned long flags;
565 int i;
566 int reserved = 0;
568 for (i = 0 ; i < (1 << order) ; ++i)
569 reserved += free_pages_check(page + i);
570 if (reserved)
571 return;
573 if (!PageHighMem(page))
574 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
575 arch_free_page(page, order);
576 kernel_map_pages(page, 1 << order, 0);
578 local_irq_save(flags);
579 __count_vm_events(PGFREE, 1 << order);
580 free_one_page(page_zone(page), page, order);
581 local_irq_restore(flags);
585 * permit the bootmem allocator to evade page validation on high-order frees
587 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
589 if (order == 0) {
590 __ClearPageReserved(page);
591 set_page_count(page, 0);
592 set_page_refcounted(page);
593 __free_page(page);
594 } else {
595 int loop;
597 prefetchw(page);
598 for (loop = 0; loop < BITS_PER_LONG; loop++) {
599 struct page *p = &page[loop];
601 if (loop + 1 < BITS_PER_LONG)
602 prefetchw(p + 1);
603 __ClearPageReserved(p);
604 set_page_count(p, 0);
607 set_page_refcounted(page);
608 __free_pages(page, order);
614 * The order of subdivision here is critical for the IO subsystem.
615 * Please do not alter this order without good reasons and regression
616 * testing. Specifically, as large blocks of memory are subdivided,
617 * the order in which smaller blocks are delivered depends on the order
618 * they're subdivided in this function. This is the primary factor
619 * influencing the order in which pages are delivered to the IO
620 * subsystem according to empirical testing, and this is also justified
621 * by considering the behavior of a buddy system containing a single
622 * large block of memory acted on by a series of small allocations.
623 * This behavior is a critical factor in sglist merging's success.
625 * -- wli
627 static inline void expand(struct zone *zone, struct page *page,
628 int low, int high, struct free_area *area,
629 int migratetype)
631 unsigned long size = 1 << high;
633 while (high > low) {
634 area--;
635 high--;
636 size >>= 1;
637 VM_BUG_ON(bad_range(zone, &page[size]));
638 list_add(&page[size].lru, &area->free_list[migratetype]);
639 area->nr_free++;
640 set_page_order(&page[size], high);
645 * This page is about to be returned from the page allocator
647 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
649 if (unlikely(page_mapcount(page) |
650 (page->mapping != NULL) |
651 (page_count(page) != 0) |
652 (page->flags & (
653 1 << PG_lru |
654 1 << PG_private |
655 1 << PG_locked |
656 1 << PG_active |
657 1 << PG_dirty |
658 1 << PG_slab |
659 1 << PG_swapcache |
660 1 << PG_writeback |
661 1 << PG_reserved |
662 1 << PG_buddy ))))
663 bad_page(page);
666 * For now, we report if PG_reserved was found set, but do not
667 * clear it, and do not allocate the page: as a safety net.
669 if (PageReserved(page))
670 return 1;
672 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
673 1 << PG_referenced | 1 << PG_arch_1 |
674 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
675 set_page_private(page, 0);
676 set_page_refcounted(page);
678 arch_alloc_page(page, order);
679 kernel_map_pages(page, 1 << order, 1);
681 if (gfp_flags & __GFP_ZERO)
682 prep_zero_page(page, order, gfp_flags);
684 if (order && (gfp_flags & __GFP_COMP))
685 prep_compound_page(page, order);
687 return 0;
691 * Go through the free lists for the given migratetype and remove
692 * the smallest available page from the freelists
694 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
695 int migratetype)
697 unsigned int current_order;
698 struct free_area * area;
699 struct page *page;
701 /* Find a page of the appropriate size in the preferred list */
702 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
703 area = &(zone->free_area[current_order]);
704 if (list_empty(&area->free_list[migratetype]))
705 continue;
707 page = list_entry(area->free_list[migratetype].next,
708 struct page, lru);
709 list_del(&page->lru);
710 rmv_page_order(page);
711 area->nr_free--;
712 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
713 expand(zone, page, order, current_order, area, migratetype);
714 return page;
717 return NULL;
721 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
723 * This array describes the order lists are fallen back to when
724 * the free lists for the desirable migrate type are depleted
726 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
727 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_HIGHATOMIC, MIGRATE_RESERVE },
728 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_HIGHATOMIC, MIGRATE_RESERVE },
729 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_HIGHATOMIC, MIGRATE_RESERVE },
730 [MIGRATE_HIGHATOMIC] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
731 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
735 * Move the free pages in a range to the free lists of the requested type.
736 * Note that start_page and end_pages are not aligned in a MAX_ORDER_NR_PAGES
737 * boundary. If alignment is required, use move_freepages_block()
739 int move_freepages(struct zone *zone,
740 struct page *start_page, struct page *end_page,
741 int migratetype)
743 struct page *page;
744 unsigned long order;
745 int blocks_moved = 0;
747 #ifndef CONFIG_HOLES_IN_ZONE
749 * page_zone is not safe to call in this context when
750 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
751 * anyway as we check zone boundaries in move_freepages_block().
752 * Remove at a later date when no bug reports exist related to
753 * CONFIG_PAGE_GROUP_BY_MOBILITY
755 BUG_ON(page_zone(start_page) != page_zone(end_page));
756 #endif
758 for (page = start_page; page <= end_page;) {
759 if (!pfn_valid_within(page_to_pfn(page))) {
760 page++;
761 continue;
764 if (!PageBuddy(page)) {
765 page++;
766 continue;
769 order = page_order(page);
770 list_del(&page->lru);
771 list_add(&page->lru,
772 &zone->free_area[order].free_list[migratetype]);
773 page += 1 << order;
774 blocks_moved++;
777 return blocks_moved;
780 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
782 unsigned long start_pfn, end_pfn;
783 struct page *start_page, *end_page;
785 start_pfn = page_to_pfn(page);
786 start_pfn = start_pfn & ~(MAX_ORDER_NR_PAGES-1);
787 start_page = pfn_to_page(start_pfn);
788 end_page = start_page + MAX_ORDER_NR_PAGES - 1;
789 end_pfn = start_pfn + MAX_ORDER_NR_PAGES - 1;
791 /* Do not cross zone boundaries */
792 if (start_pfn < zone->zone_start_pfn)
793 start_page = page;
794 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
795 return 0;
797 return move_freepages(zone, start_page, end_page, migratetype);
800 /* Return the page with the lowest PFN in the list */
801 static struct page *min_page(struct list_head *list)
803 unsigned long min_pfn = -1UL;
804 struct page *min_page = NULL, *page;;
806 list_for_each_entry(page, list, lru) {
807 unsigned long pfn = page_to_pfn(page);
808 if (pfn < min_pfn) {
809 min_pfn = pfn;
810 min_page = page;
814 return min_page;
817 /* Remove an element from the buddy allocator from the fallback list */
818 static struct page *__rmqueue_fallback(struct zone *zone, int order,
819 int start_migratetype)
821 struct free_area * area;
822 int current_order;
823 struct page *page;
824 int migratetype, i;
825 int nonatomic_fallback_atomic = 0;
827 retry:
828 /* Find the largest possible block of pages in the other list */
829 for (current_order = MAX_ORDER-1; current_order >= order;
830 --current_order) {
831 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
832 migratetype = fallbacks[start_migratetype][i];
834 /* MIGRATE_RESERVE handled later if necessary */
835 if (migratetype == MIGRATE_RESERVE)
836 continue;
838 * Make it hard to fallback to blocks used for
839 * high-order atomic allocations
841 if (migratetype == MIGRATE_HIGHATOMIC &&
842 start_migratetype != MIGRATE_UNMOVABLE &&
843 !nonatomic_fallback_atomic)
844 continue;
846 area = &(zone->free_area[current_order]);
847 if (list_empty(&area->free_list[migratetype]))
848 continue;
850 /* Bias kernel allocations towards low pfns */
851 page = list_entry(area->free_list[migratetype].next,
852 struct page, lru);
853 if (unlikely(start_migratetype != MIGRATE_MOVABLE))
854 page = min_page(&area->free_list[migratetype]);
855 area->nr_free--;
858 * If breaking a large block of pages, move all free
859 * pages to the preferred allocation list. If falling
860 * back for a reclaimable kernel allocation, be more
861 * agressive about taking ownership of free pages
863 if (unlikely(current_order >= MAX_ORDER / 2) ||
864 start_migratetype == MIGRATE_RECLAIMABLE) {
865 unsigned long pages;
866 pages = move_freepages_block(zone, page,
867 start_migratetype);
869 /* Claim the whole block if over half of it is free */
870 if ((pages << current_order) >= (1 << (MAX_ORDER-2)) &&
871 migratetype != MIGRATE_HIGHATOMIC)
872 set_pageblock_migratetype(page,
873 start_migratetype);
875 migratetype = start_migratetype;
878 /* Remove the page from the freelists */
879 list_del(&page->lru);
880 rmv_page_order(page);
881 __mod_zone_page_state(zone, NR_FREE_PAGES,
882 -(1UL << order));
884 if (current_order == MAX_ORDER - 1)
885 set_pageblock_migratetype(page,
886 start_migratetype);
888 expand(zone, page, order, current_order, area, migratetype);
889 return page;
893 /* Allow fallback to high-order atomic blocks if memory is that low */
894 if (!nonatomic_fallback_atomic) {
895 nonatomic_fallback_atomic = 1;
896 goto retry;
899 /* Use MIGRATE_RESERVE rather than fail an allocation */
900 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
902 #else
903 static struct page *__rmqueue_fallback(struct zone *zone, int order,
904 int start_migratetype)
906 return NULL;
908 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
911 * Do the hard work of removing an element from the buddy allocator.
912 * Call me with the zone->lock already held.
914 static struct page *__rmqueue(struct zone *zone, unsigned int order,
915 int migratetype)
917 struct page *page;
919 page = __rmqueue_smallest(zone, order, migratetype);
921 if (unlikely(!page))
922 page = __rmqueue_fallback(zone, order, migratetype);
924 return page;
928 * Obtain a specified number of elements from the buddy allocator, all under
929 * a single hold of the lock, for efficiency. Add them to the supplied list.
930 * Returns the number of new pages which were placed at *list.
932 static int rmqueue_bulk(struct zone *zone, unsigned int order,
933 unsigned long count, struct list_head *list,
934 int migratetype)
936 int i;
938 spin_lock(&zone->lock);
939 for (i = 0; i < count; ++i) {
940 struct page *page = __rmqueue(zone, order, migratetype);
941 if (unlikely(page == NULL))
942 break;
943 list_add(&page->lru, list);
944 set_page_private(page, migratetype);
946 spin_unlock(&zone->lock);
947 return i;
950 #ifdef CONFIG_NUMA
952 * Called from the vmstat counter updater to drain pagesets of this
953 * currently executing processor on remote nodes after they have
954 * expired.
956 * Note that this function must be called with the thread pinned to
957 * a single processor.
959 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
961 unsigned long flags;
962 int to_drain;
964 local_irq_save(flags);
965 if (pcp->count >= pcp->batch)
966 to_drain = pcp->batch;
967 else
968 to_drain = pcp->count;
969 free_pages_bulk(zone, to_drain, &pcp->list, 0);
970 pcp->count -= to_drain;
971 local_irq_restore(flags);
973 #endif
975 static void __drain_pages(unsigned int cpu)
977 unsigned long flags;
978 struct zone *zone;
979 int i;
981 for_each_zone(zone) {
982 struct per_cpu_pageset *pset;
984 if (!populated_zone(zone))
985 continue;
987 pset = zone_pcp(zone, cpu);
988 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
989 struct per_cpu_pages *pcp;
991 pcp = &pset->pcp[i];
992 local_irq_save(flags);
993 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
994 pcp->count = 0;
995 local_irq_restore(flags);
1000 #ifdef CONFIG_HIBERNATION
1002 void mark_free_pages(struct zone *zone)
1004 unsigned long pfn, max_zone_pfn;
1005 unsigned long flags;
1006 int order, t;
1007 struct list_head *curr;
1009 if (!zone->spanned_pages)
1010 return;
1012 spin_lock_irqsave(&zone->lock, flags);
1014 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1015 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1016 if (pfn_valid(pfn)) {
1017 struct page *page = pfn_to_page(pfn);
1019 if (!swsusp_page_is_forbidden(page))
1020 swsusp_unset_page_free(page);
1023 for_each_migratetype_order(order, t) {
1024 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1025 unsigned long i;
1027 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1028 for (i = 0; i < (1UL << order); i++)
1029 swsusp_set_page_free(pfn_to_page(pfn + i));
1032 spin_unlock_irqrestore(&zone->lock, flags);
1034 #endif /* CONFIG_PM */
1036 #if defined(CONFIG_HIBERNATION) || defined(CONFIG_PAGE_GROUP_BY_MOBILITY)
1038 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1040 void drain_local_pages(void)
1042 unsigned long flags;
1044 local_irq_save(flags);
1045 __drain_pages(smp_processor_id());
1046 local_irq_restore(flags);
1049 void smp_drain_local_pages(void *arg)
1051 drain_local_pages();
1055 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1057 void drain_all_local_pages(void)
1059 unsigned long flags;
1061 local_irq_save(flags);
1062 __drain_pages(smp_processor_id());
1063 local_irq_restore(flags);
1065 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
1067 #else
1068 void drain_all_local_pages(void) {}
1069 #endif /* CONFIG_HIBERNATION || CONFIG_PAGE_GROUP_BY_MOBILITY */
1072 * Free a 0-order page
1074 static void fastcall free_hot_cold_page(struct page *page, int cold)
1076 struct zone *zone = page_zone(page);
1077 struct per_cpu_pages *pcp;
1078 unsigned long flags;
1080 if (PageAnon(page))
1081 page->mapping = NULL;
1082 if (free_pages_check(page))
1083 return;
1085 if (!PageHighMem(page))
1086 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1087 arch_free_page(page, 0);
1088 kernel_map_pages(page, 1, 0);
1090 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1091 local_irq_save(flags);
1092 __count_vm_event(PGFREE);
1093 list_add(&page->lru, &pcp->list);
1094 set_page_private(page, get_pageblock_migratetype(page));
1095 pcp->count++;
1096 if (pcp->count >= pcp->high) {
1097 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1098 pcp->count -= pcp->batch;
1100 local_irq_restore(flags);
1101 put_cpu();
1104 void fastcall free_hot_page(struct page *page)
1106 free_hot_cold_page(page, 0);
1109 void fastcall free_cold_page(struct page *page)
1111 free_hot_cold_page(page, 1);
1115 * split_page takes a non-compound higher-order page, and splits it into
1116 * n (1<<order) sub-pages: page[0..n]
1117 * Each sub-page must be freed individually.
1119 * Note: this is probably too low level an operation for use in drivers.
1120 * Please consult with lkml before using this in your driver.
1122 void split_page(struct page *page, unsigned int order)
1124 int i;
1126 VM_BUG_ON(PageCompound(page));
1127 VM_BUG_ON(!page_count(page));
1128 for (i = 1; i < (1 << order); i++)
1129 set_page_refcounted(page + i);
1133 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1134 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1135 * or two.
1137 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1138 struct zone *zone, int order, gfp_t gfp_flags)
1140 unsigned long flags;
1141 struct page *page;
1142 int cold = !!(gfp_flags & __GFP_COLD);
1143 int cpu;
1144 int migratetype = allocflags_to_migratetype(gfp_flags, order);
1146 again:
1147 cpu = get_cpu();
1148 if (likely(order == 0)) {
1149 struct per_cpu_pages *pcp;
1151 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1152 local_irq_save(flags);
1153 if (!pcp->count) {
1154 pcp->count = rmqueue_bulk(zone, 0,
1155 pcp->batch, &pcp->list, migratetype);
1156 if (unlikely(!pcp->count))
1157 goto failed;
1160 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
1161 /* Find a page of the appropriate migrate type */
1162 list_for_each_entry(page, &pcp->list, lru)
1163 if (page_private(page) == migratetype)
1164 break;
1166 /* Allocate more to the pcp list if necessary */
1167 if (unlikely(&page->lru == &pcp->list)) {
1168 pcp->count += rmqueue_bulk(zone, 0,
1169 pcp->batch, &pcp->list, migratetype);
1170 page = list_entry(pcp->list.next, struct page, lru);
1172 #else
1173 page = list_entry(pcp->list.next, struct page, lru);
1174 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
1176 list_del(&page->lru);
1177 pcp->count--;
1178 } else {
1179 spin_lock_irqsave(&zone->lock, flags);
1180 page = __rmqueue(zone, order, migratetype);
1181 spin_unlock(&zone->lock);
1182 if (!page)
1183 goto failed;
1186 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1187 zone_statistics(zonelist, zone);
1188 local_irq_restore(flags);
1189 put_cpu();
1191 VM_BUG_ON(bad_range(zone, page));
1192 if (prep_new_page(page, order, gfp_flags))
1193 goto again;
1194 return page;
1196 failed:
1197 local_irq_restore(flags);
1198 put_cpu();
1199 return NULL;
1202 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1203 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1204 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1205 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1206 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1207 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1208 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1210 #ifdef CONFIG_FAIL_PAGE_ALLOC
1212 static struct fail_page_alloc_attr {
1213 struct fault_attr attr;
1215 u32 ignore_gfp_highmem;
1216 u32 ignore_gfp_wait;
1217 u32 min_order;
1219 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1221 struct dentry *ignore_gfp_highmem_file;
1222 struct dentry *ignore_gfp_wait_file;
1223 struct dentry *min_order_file;
1225 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1227 } fail_page_alloc = {
1228 .attr = FAULT_ATTR_INITIALIZER,
1229 .ignore_gfp_wait = 1,
1230 .ignore_gfp_highmem = 1,
1231 .min_order = 1,
1234 static int __init setup_fail_page_alloc(char *str)
1236 return setup_fault_attr(&fail_page_alloc.attr, str);
1238 __setup("fail_page_alloc=", setup_fail_page_alloc);
1240 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1242 if (order < fail_page_alloc.min_order)
1243 return 0;
1244 if (gfp_mask & __GFP_NOFAIL)
1245 return 0;
1246 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1247 return 0;
1248 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1249 return 0;
1251 return should_fail(&fail_page_alloc.attr, 1 << order);
1254 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1256 static int __init fail_page_alloc_debugfs(void)
1258 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1259 struct dentry *dir;
1260 int err;
1262 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1263 "fail_page_alloc");
1264 if (err)
1265 return err;
1266 dir = fail_page_alloc.attr.dentries.dir;
1268 fail_page_alloc.ignore_gfp_wait_file =
1269 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1270 &fail_page_alloc.ignore_gfp_wait);
1272 fail_page_alloc.ignore_gfp_highmem_file =
1273 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1274 &fail_page_alloc.ignore_gfp_highmem);
1275 fail_page_alloc.min_order_file =
1276 debugfs_create_u32("min-order", mode, dir,
1277 &fail_page_alloc.min_order);
1279 if (!fail_page_alloc.ignore_gfp_wait_file ||
1280 !fail_page_alloc.ignore_gfp_highmem_file ||
1281 !fail_page_alloc.min_order_file) {
1282 err = -ENOMEM;
1283 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1284 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1285 debugfs_remove(fail_page_alloc.min_order_file);
1286 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1289 return err;
1292 late_initcall(fail_page_alloc_debugfs);
1294 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1296 #else /* CONFIG_FAIL_PAGE_ALLOC */
1298 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1300 return 0;
1303 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1306 * Return 1 if free pages are above 'mark'. This takes into account the order
1307 * of the allocation.
1309 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1310 int classzone_idx, int alloc_flags)
1312 /* free_pages my go negative - that's OK */
1313 long min = mark;
1314 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1315 int o;
1317 if (alloc_flags & ALLOC_HIGH)
1318 min -= min / 2;
1319 if (alloc_flags & ALLOC_HARDER)
1320 min -= min / 4;
1322 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1323 return 0;
1324 for (o = 0; o < order; o++) {
1325 /* At the next order, this order's pages become unavailable */
1326 free_pages -= z->free_area[o].nr_free << o;
1328 /* Require fewer higher order pages to be free */
1329 min >>= 1;
1331 if (free_pages <= min)
1332 return 0;
1334 return 1;
1337 #ifdef CONFIG_NUMA
1339 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1340 * skip over zones that are not allowed by the cpuset, or that have
1341 * been recently (in last second) found to be nearly full. See further
1342 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1343 * that have to skip over alot of full or unallowed zones.
1345 * If the zonelist cache is present in the passed in zonelist, then
1346 * returns a pointer to the allowed node mask (either the current
1347 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1349 * If the zonelist cache is not available for this zonelist, does
1350 * nothing and returns NULL.
1352 * If the fullzones BITMAP in the zonelist cache is stale (more than
1353 * a second since last zap'd) then we zap it out (clear its bits.)
1355 * We hold off even calling zlc_setup, until after we've checked the
1356 * first zone in the zonelist, on the theory that most allocations will
1357 * be satisfied from that first zone, so best to examine that zone as
1358 * quickly as we can.
1360 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1362 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1363 nodemask_t *allowednodes; /* zonelist_cache approximation */
1365 zlc = zonelist->zlcache_ptr;
1366 if (!zlc)
1367 return NULL;
1369 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1370 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1371 zlc->last_full_zap = jiffies;
1374 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1375 &cpuset_current_mems_allowed :
1376 &node_states[N_HIGH_MEMORY];
1377 return allowednodes;
1381 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1382 * if it is worth looking at further for free memory:
1383 * 1) Check that the zone isn't thought to be full (doesn't have its
1384 * bit set in the zonelist_cache fullzones BITMAP).
1385 * 2) Check that the zones node (obtained from the zonelist_cache
1386 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1387 * Return true (non-zero) if zone is worth looking at further, or
1388 * else return false (zero) if it is not.
1390 * This check -ignores- the distinction between various watermarks,
1391 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1392 * found to be full for any variation of these watermarks, it will
1393 * be considered full for up to one second by all requests, unless
1394 * we are so low on memory on all allowed nodes that we are forced
1395 * into the second scan of the zonelist.
1397 * In the second scan we ignore this zonelist cache and exactly
1398 * apply the watermarks to all zones, even it is slower to do so.
1399 * We are low on memory in the second scan, and should leave no stone
1400 * unturned looking for a free page.
1402 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1403 nodemask_t *allowednodes)
1405 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1406 int i; /* index of *z in zonelist zones */
1407 int n; /* node that zone *z is on */
1409 zlc = zonelist->zlcache_ptr;
1410 if (!zlc)
1411 return 1;
1413 i = z - zonelist->zones;
1414 n = zlc->z_to_n[i];
1416 /* This zone is worth trying if it is allowed but not full */
1417 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1421 * Given 'z' scanning a zonelist, set the corresponding bit in
1422 * zlc->fullzones, so that subsequent attempts to allocate a page
1423 * from that zone don't waste time re-examining it.
1425 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1427 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1428 int i; /* index of *z in zonelist zones */
1430 zlc = zonelist->zlcache_ptr;
1431 if (!zlc)
1432 return;
1434 i = z - zonelist->zones;
1436 set_bit(i, zlc->fullzones);
1439 #else /* CONFIG_NUMA */
1441 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1443 return NULL;
1446 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1447 nodemask_t *allowednodes)
1449 return 1;
1452 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1455 #endif /* CONFIG_NUMA */
1458 * get_page_from_freelist goes through the zonelist trying to allocate
1459 * a page.
1461 static struct page *
1462 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1463 struct zonelist *zonelist, int alloc_flags)
1465 struct zone **z;
1466 struct page *page = NULL;
1467 int classzone_idx = zone_idx(zonelist->zones[0]);
1468 struct zone *zone;
1469 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1470 int zlc_active = 0; /* set if using zonelist_cache */
1471 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1472 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1474 zonelist_scan:
1476 * Scan zonelist, looking for a zone with enough free.
1477 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1479 z = zonelist->zones;
1481 do {
1483 * In NUMA, this could be a policy zonelist which contains
1484 * zones that may not be allowed by the current gfp_mask.
1485 * Check the zone is allowed by the current flags
1487 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1488 if (highest_zoneidx == -1)
1489 highest_zoneidx = gfp_zone(gfp_mask);
1490 if (zone_idx(*z) > highest_zoneidx)
1491 continue;
1494 if (NUMA_BUILD && zlc_active &&
1495 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1496 continue;
1497 zone = *z;
1498 if ((alloc_flags & ALLOC_CPUSET) &&
1499 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1500 goto try_next_zone;
1502 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1503 unsigned long mark;
1504 if (alloc_flags & ALLOC_WMARK_MIN)
1505 mark = zone->pages_min;
1506 else if (alloc_flags & ALLOC_WMARK_LOW)
1507 mark = zone->pages_low;
1508 else
1509 mark = zone->pages_high;
1510 if (!zone_watermark_ok(zone, order, mark,
1511 classzone_idx, alloc_flags)) {
1512 if (!zone_reclaim_mode ||
1513 !zone_reclaim(zone, gfp_mask, order))
1514 goto this_zone_full;
1518 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1519 if (page)
1520 break;
1521 this_zone_full:
1522 if (NUMA_BUILD)
1523 zlc_mark_zone_full(zonelist, z);
1524 try_next_zone:
1525 if (NUMA_BUILD && !did_zlc_setup) {
1526 /* we do zlc_setup after the first zone is tried */
1527 allowednodes = zlc_setup(zonelist, alloc_flags);
1528 zlc_active = 1;
1529 did_zlc_setup = 1;
1531 } while (*(++z) != NULL);
1533 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1534 /* Disable zlc cache for second zonelist scan */
1535 zlc_active = 0;
1536 goto zonelist_scan;
1538 return page;
1542 * This is the 'heart' of the zoned buddy allocator.
1544 struct page * fastcall
1545 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1546 struct zonelist *zonelist)
1548 const gfp_t wait = gfp_mask & __GFP_WAIT;
1549 struct zone **z;
1550 struct page *page;
1551 struct reclaim_state reclaim_state;
1552 struct task_struct *p = current;
1553 int do_retry;
1554 int alloc_flags;
1555 int did_some_progress;
1557 might_sleep_if(wait);
1559 if (should_fail_alloc_page(gfp_mask, order))
1560 return NULL;
1562 restart:
1563 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1565 if (unlikely(*z == NULL)) {
1567 * Happens if we have an empty zonelist as a result of
1568 * GFP_THISNODE being used on a memoryless node
1570 return NULL;
1573 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1574 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1575 if (page)
1576 goto got_pg;
1579 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1580 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1581 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1582 * using a larger set of nodes after it has established that the
1583 * allowed per node queues are empty and that nodes are
1584 * over allocated.
1586 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1587 goto nopage;
1589 for (z = zonelist->zones; *z; z++)
1590 wakeup_kswapd(*z, order);
1593 * OK, we're below the kswapd watermark and have kicked background
1594 * reclaim. Now things get more complex, so set up alloc_flags according
1595 * to how we want to proceed.
1597 * The caller may dip into page reserves a bit more if the caller
1598 * cannot run direct reclaim, or if the caller has realtime scheduling
1599 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1600 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1602 alloc_flags = ALLOC_WMARK_MIN;
1603 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1604 alloc_flags |= ALLOC_HARDER;
1605 if (gfp_mask & __GFP_HIGH)
1606 alloc_flags |= ALLOC_HIGH;
1607 if (wait)
1608 alloc_flags |= ALLOC_CPUSET;
1611 * Go through the zonelist again. Let __GFP_HIGH and allocations
1612 * coming from realtime tasks go deeper into reserves.
1614 * This is the last chance, in general, before the goto nopage.
1615 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1616 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1618 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1619 if (page)
1620 goto got_pg;
1622 /* This allocation should allow future memory freeing. */
1624 rebalance:
1625 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1626 && !in_interrupt()) {
1627 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1628 nofail_alloc:
1629 /* go through the zonelist yet again, ignoring mins */
1630 page = get_page_from_freelist(gfp_mask, order,
1631 zonelist, ALLOC_NO_WATERMARKS);
1632 if (page)
1633 goto got_pg;
1634 if (gfp_mask & __GFP_NOFAIL) {
1635 congestion_wait(WRITE, HZ/50);
1636 goto nofail_alloc;
1639 goto nopage;
1642 /* Atomic allocations - we can't balance anything */
1643 if (!wait)
1644 goto nopage;
1646 cond_resched();
1648 /* We now go into synchronous reclaim */
1649 cpuset_memory_pressure_bump();
1650 p->flags |= PF_MEMALLOC;
1651 reclaim_state.reclaimed_slab = 0;
1652 p->reclaim_state = &reclaim_state;
1654 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1656 p->reclaim_state = NULL;
1657 p->flags &= ~PF_MEMALLOC;
1659 cond_resched();
1661 if (order != 0)
1662 drain_all_local_pages();
1664 if (likely(did_some_progress)) {
1665 page = get_page_from_freelist(gfp_mask, order,
1666 zonelist, alloc_flags);
1667 if (page)
1668 goto got_pg;
1669 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1671 * Go through the zonelist yet one more time, keep
1672 * very high watermark here, this is only to catch
1673 * a parallel oom killing, we must fail if we're still
1674 * under heavy pressure.
1676 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1677 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1678 if (page)
1679 goto got_pg;
1681 /* The OOM killer will not help higher order allocs so fail */
1682 if (order > PAGE_ALLOC_COSTLY_ORDER)
1683 goto nopage;
1685 out_of_memory(zonelist, gfp_mask, order);
1686 goto restart;
1690 * Don't let big-order allocations loop unless the caller explicitly
1691 * requests that. Wait for some write requests to complete then retry.
1693 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1694 * <= 3, but that may not be true in other implementations.
1696 do_retry = 0;
1697 if (!(gfp_mask & __GFP_NORETRY)) {
1698 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1699 (gfp_mask & __GFP_REPEAT))
1700 do_retry = 1;
1701 if (gfp_mask & __GFP_NOFAIL)
1702 do_retry = 1;
1704 if (do_retry) {
1705 congestion_wait(WRITE, HZ/50);
1706 goto rebalance;
1709 nopage:
1710 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1711 printk(KERN_WARNING "%s: page allocation failure."
1712 " order:%d, mode:0x%x\n",
1713 p->comm, order, gfp_mask);
1714 dump_stack();
1715 show_mem();
1717 got_pg:
1718 return page;
1721 EXPORT_SYMBOL(__alloc_pages);
1724 * Common helper functions.
1726 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1728 struct page * page;
1729 page = alloc_pages(gfp_mask, order);
1730 if (!page)
1731 return 0;
1732 return (unsigned long) page_address(page);
1735 EXPORT_SYMBOL(__get_free_pages);
1737 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1739 struct page * page;
1742 * get_zeroed_page() returns a 32-bit address, which cannot represent
1743 * a highmem page
1745 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1747 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1748 if (page)
1749 return (unsigned long) page_address(page);
1750 return 0;
1753 EXPORT_SYMBOL(get_zeroed_page);
1755 void __pagevec_free(struct pagevec *pvec)
1757 int i = pagevec_count(pvec);
1759 while (--i >= 0)
1760 free_hot_cold_page(pvec->pages[i], pvec->cold);
1763 fastcall void __free_pages(struct page *page, unsigned int order)
1765 if (put_page_testzero(page)) {
1766 if (order == 0)
1767 free_hot_page(page);
1768 else
1769 __free_pages_ok(page, order);
1773 EXPORT_SYMBOL(__free_pages);
1775 fastcall void free_pages(unsigned long addr, unsigned int order)
1777 if (addr != 0) {
1778 VM_BUG_ON(!virt_addr_valid((void *)addr));
1779 __free_pages(virt_to_page((void *)addr), order);
1783 EXPORT_SYMBOL(free_pages);
1785 static unsigned int nr_free_zone_pages(int offset)
1787 /* Just pick one node, since fallback list is circular */
1788 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1789 unsigned int sum = 0;
1791 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1792 struct zone **zonep = zonelist->zones;
1793 struct zone *zone;
1795 for (zone = *zonep++; zone; zone = *zonep++) {
1796 unsigned long size = zone->present_pages;
1797 unsigned long high = zone->pages_high;
1798 if (size > high)
1799 sum += size - high;
1802 return sum;
1806 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1808 unsigned int nr_free_buffer_pages(void)
1810 return nr_free_zone_pages(gfp_zone(GFP_USER));
1812 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1815 * Amount of free RAM allocatable within all zones
1817 unsigned int nr_free_pagecache_pages(void)
1819 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1822 static inline void show_node(struct zone *zone)
1824 if (NUMA_BUILD)
1825 printk("Node %d ", zone_to_nid(zone));
1828 void si_meminfo(struct sysinfo *val)
1830 val->totalram = totalram_pages;
1831 val->sharedram = 0;
1832 val->freeram = global_page_state(NR_FREE_PAGES);
1833 val->bufferram = nr_blockdev_pages();
1834 val->totalhigh = totalhigh_pages;
1835 val->freehigh = nr_free_highpages();
1836 val->mem_unit = PAGE_SIZE;
1839 EXPORT_SYMBOL(si_meminfo);
1841 #ifdef CONFIG_NUMA
1842 void si_meminfo_node(struct sysinfo *val, int nid)
1844 pg_data_t *pgdat = NODE_DATA(nid);
1846 val->totalram = pgdat->node_present_pages;
1847 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1848 #ifdef CONFIG_HIGHMEM
1849 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1850 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1851 NR_FREE_PAGES);
1852 #else
1853 val->totalhigh = 0;
1854 val->freehigh = 0;
1855 #endif
1856 val->mem_unit = PAGE_SIZE;
1858 #endif
1860 #define K(x) ((x) << (PAGE_SHIFT-10))
1863 * Show free area list (used inside shift_scroll-lock stuff)
1864 * We also calculate the percentage fragmentation. We do this by counting the
1865 * memory on each free list with the exception of the first item on the list.
1867 void show_free_areas(void)
1869 int cpu;
1870 struct zone *zone;
1872 for_each_zone(zone) {
1873 if (!populated_zone(zone))
1874 continue;
1876 show_node(zone);
1877 printk("%s per-cpu:\n", zone->name);
1879 for_each_online_cpu(cpu) {
1880 struct per_cpu_pageset *pageset;
1882 pageset = zone_pcp(zone, cpu);
1884 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1885 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1886 cpu, pageset->pcp[0].high,
1887 pageset->pcp[0].batch, pageset->pcp[0].count,
1888 pageset->pcp[1].high, pageset->pcp[1].batch,
1889 pageset->pcp[1].count);
1893 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1894 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1895 global_page_state(NR_ACTIVE),
1896 global_page_state(NR_INACTIVE),
1897 global_page_state(NR_FILE_DIRTY),
1898 global_page_state(NR_WRITEBACK),
1899 global_page_state(NR_UNSTABLE_NFS),
1900 global_page_state(NR_FREE_PAGES),
1901 global_page_state(NR_SLAB_RECLAIMABLE) +
1902 global_page_state(NR_SLAB_UNRECLAIMABLE),
1903 global_page_state(NR_FILE_MAPPED),
1904 global_page_state(NR_PAGETABLE),
1905 global_page_state(NR_BOUNCE));
1907 for_each_zone(zone) {
1908 int i;
1910 if (!populated_zone(zone))
1911 continue;
1913 show_node(zone);
1914 printk("%s"
1915 " free:%lukB"
1916 " min:%lukB"
1917 " low:%lukB"
1918 " high:%lukB"
1919 " active:%lukB"
1920 " inactive:%lukB"
1921 " present:%lukB"
1922 " pages_scanned:%lu"
1923 " all_unreclaimable? %s"
1924 "\n",
1925 zone->name,
1926 K(zone_page_state(zone, NR_FREE_PAGES)),
1927 K(zone->pages_min),
1928 K(zone->pages_low),
1929 K(zone->pages_high),
1930 K(zone_page_state(zone, NR_ACTIVE)),
1931 K(zone_page_state(zone, NR_INACTIVE)),
1932 K(zone->present_pages),
1933 zone->pages_scanned,
1934 (zone->all_unreclaimable ? "yes" : "no")
1936 printk("lowmem_reserve[]:");
1937 for (i = 0; i < MAX_NR_ZONES; i++)
1938 printk(" %lu", zone->lowmem_reserve[i]);
1939 printk("\n");
1942 for_each_zone(zone) {
1943 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1945 if (!populated_zone(zone))
1946 continue;
1948 show_node(zone);
1949 printk("%s: ", zone->name);
1951 spin_lock_irqsave(&zone->lock, flags);
1952 for (order = 0; order < MAX_ORDER; order++) {
1953 nr[order] = zone->free_area[order].nr_free;
1954 total += nr[order] << order;
1956 spin_unlock_irqrestore(&zone->lock, flags);
1957 for (order = 0; order < MAX_ORDER; order++)
1958 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1959 printk("= %lukB\n", K(total));
1962 show_swap_cache_info();
1966 * Builds allocation fallback zone lists.
1968 * Add all populated zones of a node to the zonelist.
1970 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1971 int nr_zones, enum zone_type zone_type)
1973 struct zone *zone;
1975 BUG_ON(zone_type >= MAX_NR_ZONES);
1976 zone_type++;
1978 do {
1979 zone_type--;
1980 zone = pgdat->node_zones + zone_type;
1981 if (populated_zone(zone)) {
1982 zonelist->zones[nr_zones++] = zone;
1983 check_highest_zone(zone_type);
1986 } while (zone_type);
1987 return nr_zones;
1992 * zonelist_order:
1993 * 0 = automatic detection of better ordering.
1994 * 1 = order by ([node] distance, -zonetype)
1995 * 2 = order by (-zonetype, [node] distance)
1997 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1998 * the same zonelist. So only NUMA can configure this param.
2000 #define ZONELIST_ORDER_DEFAULT 0
2001 #define ZONELIST_ORDER_NODE 1
2002 #define ZONELIST_ORDER_ZONE 2
2004 /* zonelist order in the kernel.
2005 * set_zonelist_order() will set this to NODE or ZONE.
2007 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2008 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2011 #ifdef CONFIG_NUMA
2012 /* The value user specified ....changed by config */
2013 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2014 /* string for sysctl */
2015 #define NUMA_ZONELIST_ORDER_LEN 16
2016 char numa_zonelist_order[16] = "default";
2019 * interface for configure zonelist ordering.
2020 * command line option "numa_zonelist_order"
2021 * = "[dD]efault - default, automatic configuration.
2022 * = "[nN]ode - order by node locality, then by zone within node
2023 * = "[zZ]one - order by zone, then by locality within zone
2026 static int __parse_numa_zonelist_order(char *s)
2028 if (*s == 'd' || *s == 'D') {
2029 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2030 } else if (*s == 'n' || *s == 'N') {
2031 user_zonelist_order = ZONELIST_ORDER_NODE;
2032 } else if (*s == 'z' || *s == 'Z') {
2033 user_zonelist_order = ZONELIST_ORDER_ZONE;
2034 } else {
2035 printk(KERN_WARNING
2036 "Ignoring invalid numa_zonelist_order value: "
2037 "%s\n", s);
2038 return -EINVAL;
2040 return 0;
2043 static __init int setup_numa_zonelist_order(char *s)
2045 if (s)
2046 return __parse_numa_zonelist_order(s);
2047 return 0;
2049 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2052 * sysctl handler for numa_zonelist_order
2054 int numa_zonelist_order_handler(ctl_table *table, int write,
2055 struct file *file, void __user *buffer, size_t *length,
2056 loff_t *ppos)
2058 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2059 int ret;
2061 if (write)
2062 strncpy(saved_string, (char*)table->data,
2063 NUMA_ZONELIST_ORDER_LEN);
2064 ret = proc_dostring(table, write, file, buffer, length, ppos);
2065 if (ret)
2066 return ret;
2067 if (write) {
2068 int oldval = user_zonelist_order;
2069 if (__parse_numa_zonelist_order((char*)table->data)) {
2071 * bogus value. restore saved string
2073 strncpy((char*)table->data, saved_string,
2074 NUMA_ZONELIST_ORDER_LEN);
2075 user_zonelist_order = oldval;
2076 } else if (oldval != user_zonelist_order)
2077 build_all_zonelists();
2079 return 0;
2083 #define MAX_NODE_LOAD (num_online_nodes())
2084 static int node_load[MAX_NUMNODES];
2087 * find_next_best_node - find the next node that should appear in a given node's fallback list
2088 * @node: node whose fallback list we're appending
2089 * @used_node_mask: nodemask_t of already used nodes
2091 * We use a number of factors to determine which is the next node that should
2092 * appear on a given node's fallback list. The node should not have appeared
2093 * already in @node's fallback list, and it should be the next closest node
2094 * according to the distance array (which contains arbitrary distance values
2095 * from each node to each node in the system), and should also prefer nodes
2096 * with no CPUs, since presumably they'll have very little allocation pressure
2097 * on them otherwise.
2098 * It returns -1 if no node is found.
2100 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2102 int n, val;
2103 int min_val = INT_MAX;
2104 int best_node = -1;
2106 /* Use the local node if we haven't already */
2107 if (!node_isset(node, *used_node_mask)) {
2108 node_set(node, *used_node_mask);
2109 return node;
2112 for_each_node_state(n, N_HIGH_MEMORY) {
2113 cpumask_t tmp;
2115 /* Don't want a node to appear more than once */
2116 if (node_isset(n, *used_node_mask))
2117 continue;
2119 /* Use the distance array to find the distance */
2120 val = node_distance(node, n);
2122 /* Penalize nodes under us ("prefer the next node") */
2123 val += (n < node);
2125 /* Give preference to headless and unused nodes */
2126 tmp = node_to_cpumask(n);
2127 if (!cpus_empty(tmp))
2128 val += PENALTY_FOR_NODE_WITH_CPUS;
2130 /* Slight preference for less loaded node */
2131 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2132 val += node_load[n];
2134 if (val < min_val) {
2135 min_val = val;
2136 best_node = n;
2140 if (best_node >= 0)
2141 node_set(best_node, *used_node_mask);
2143 return best_node;
2148 * Build zonelists ordered by node and zones within node.
2149 * This results in maximum locality--normal zone overflows into local
2150 * DMA zone, if any--but risks exhausting DMA zone.
2152 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2154 enum zone_type i;
2155 int j;
2156 struct zonelist *zonelist;
2158 for (i = 0; i < MAX_NR_ZONES; i++) {
2159 zonelist = pgdat->node_zonelists + i;
2160 for (j = 0; zonelist->zones[j] != NULL; j++)
2162 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2163 zonelist->zones[j] = NULL;
2168 * Build gfp_thisnode zonelists
2170 static void build_thisnode_zonelists(pg_data_t *pgdat)
2172 enum zone_type i;
2173 int j;
2174 struct zonelist *zonelist;
2176 for (i = 0; i < MAX_NR_ZONES; i++) {
2177 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2178 j = build_zonelists_node(pgdat, zonelist, 0, i);
2179 zonelist->zones[j] = NULL;
2184 * Build zonelists ordered by zone and nodes within zones.
2185 * This results in conserving DMA zone[s] until all Normal memory is
2186 * exhausted, but results in overflowing to remote node while memory
2187 * may still exist in local DMA zone.
2189 static int node_order[MAX_NUMNODES];
2191 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2193 enum zone_type i;
2194 int pos, j, node;
2195 int zone_type; /* needs to be signed */
2196 struct zone *z;
2197 struct zonelist *zonelist;
2199 for (i = 0; i < MAX_NR_ZONES; i++) {
2200 zonelist = pgdat->node_zonelists + i;
2201 pos = 0;
2202 for (zone_type = i; zone_type >= 0; zone_type--) {
2203 for (j = 0; j < nr_nodes; j++) {
2204 node = node_order[j];
2205 z = &NODE_DATA(node)->node_zones[zone_type];
2206 if (populated_zone(z)) {
2207 zonelist->zones[pos++] = z;
2208 check_highest_zone(zone_type);
2212 zonelist->zones[pos] = NULL;
2216 static int default_zonelist_order(void)
2218 int nid, zone_type;
2219 unsigned long low_kmem_size,total_size;
2220 struct zone *z;
2221 int average_size;
2223 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2224 * If they are really small and used heavily, the system can fall
2225 * into OOM very easily.
2226 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2228 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2229 low_kmem_size = 0;
2230 total_size = 0;
2231 for_each_online_node(nid) {
2232 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2233 z = &NODE_DATA(nid)->node_zones[zone_type];
2234 if (populated_zone(z)) {
2235 if (zone_type < ZONE_NORMAL)
2236 low_kmem_size += z->present_pages;
2237 total_size += z->present_pages;
2241 if (!low_kmem_size || /* there are no DMA area. */
2242 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2243 return ZONELIST_ORDER_NODE;
2245 * look into each node's config.
2246 * If there is a node whose DMA/DMA32 memory is very big area on
2247 * local memory, NODE_ORDER may be suitable.
2249 average_size = total_size /
2250 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2251 for_each_online_node(nid) {
2252 low_kmem_size = 0;
2253 total_size = 0;
2254 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2255 z = &NODE_DATA(nid)->node_zones[zone_type];
2256 if (populated_zone(z)) {
2257 if (zone_type < ZONE_NORMAL)
2258 low_kmem_size += z->present_pages;
2259 total_size += z->present_pages;
2262 if (low_kmem_size &&
2263 total_size > average_size && /* ignore small node */
2264 low_kmem_size > total_size * 70/100)
2265 return ZONELIST_ORDER_NODE;
2267 return ZONELIST_ORDER_ZONE;
2270 static void set_zonelist_order(void)
2272 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2273 current_zonelist_order = default_zonelist_order();
2274 else
2275 current_zonelist_order = user_zonelist_order;
2278 static void build_zonelists(pg_data_t *pgdat)
2280 int j, node, load;
2281 enum zone_type i;
2282 nodemask_t used_mask;
2283 int local_node, prev_node;
2284 struct zonelist *zonelist;
2285 int order = current_zonelist_order;
2287 /* initialize zonelists */
2288 for (i = 0; i < MAX_ZONELISTS; i++) {
2289 zonelist = pgdat->node_zonelists + i;
2290 zonelist->zones[0] = NULL;
2293 /* NUMA-aware ordering of nodes */
2294 local_node = pgdat->node_id;
2295 load = num_online_nodes();
2296 prev_node = local_node;
2297 nodes_clear(used_mask);
2299 memset(node_load, 0, sizeof(node_load));
2300 memset(node_order, 0, sizeof(node_order));
2301 j = 0;
2303 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2304 int distance = node_distance(local_node, node);
2307 * If another node is sufficiently far away then it is better
2308 * to reclaim pages in a zone before going off node.
2310 if (distance > RECLAIM_DISTANCE)
2311 zone_reclaim_mode = 1;
2314 * We don't want to pressure a particular node.
2315 * So adding penalty to the first node in same
2316 * distance group to make it round-robin.
2318 if (distance != node_distance(local_node, prev_node))
2319 node_load[node] = load;
2321 prev_node = node;
2322 load--;
2323 if (order == ZONELIST_ORDER_NODE)
2324 build_zonelists_in_node_order(pgdat, node);
2325 else
2326 node_order[j++] = node; /* remember order */
2329 if (order == ZONELIST_ORDER_ZONE) {
2330 /* calculate node order -- i.e., DMA last! */
2331 build_zonelists_in_zone_order(pgdat, j);
2334 build_thisnode_zonelists(pgdat);
2337 /* Construct the zonelist performance cache - see further mmzone.h */
2338 static void build_zonelist_cache(pg_data_t *pgdat)
2340 int i;
2342 for (i = 0; i < MAX_NR_ZONES; i++) {
2343 struct zonelist *zonelist;
2344 struct zonelist_cache *zlc;
2345 struct zone **z;
2347 zonelist = pgdat->node_zonelists + i;
2348 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2349 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2350 for (z = zonelist->zones; *z; z++)
2351 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2356 #else /* CONFIG_NUMA */
2358 static void set_zonelist_order(void)
2360 current_zonelist_order = ZONELIST_ORDER_ZONE;
2363 static void build_zonelists(pg_data_t *pgdat)
2365 int node, local_node;
2366 enum zone_type i,j;
2368 local_node = pgdat->node_id;
2369 for (i = 0; i < MAX_NR_ZONES; i++) {
2370 struct zonelist *zonelist;
2372 zonelist = pgdat->node_zonelists + i;
2374 j = build_zonelists_node(pgdat, zonelist, 0, i);
2376 * Now we build the zonelist so that it contains the zones
2377 * of all the other nodes.
2378 * We don't want to pressure a particular node, so when
2379 * building the zones for node N, we make sure that the
2380 * zones coming right after the local ones are those from
2381 * node N+1 (modulo N)
2383 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2384 if (!node_online(node))
2385 continue;
2386 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2388 for (node = 0; node < local_node; node++) {
2389 if (!node_online(node))
2390 continue;
2391 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2394 zonelist->zones[j] = NULL;
2398 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2399 static void build_zonelist_cache(pg_data_t *pgdat)
2401 int i;
2403 for (i = 0; i < MAX_NR_ZONES; i++)
2404 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2407 #endif /* CONFIG_NUMA */
2409 /* return values int ....just for stop_machine_run() */
2410 static int __build_all_zonelists(void *dummy)
2412 int nid;
2414 for_each_online_node(nid) {
2415 pg_data_t *pgdat = NODE_DATA(nid);
2417 build_zonelists(pgdat);
2418 build_zonelist_cache(pgdat);
2420 return 0;
2423 void build_all_zonelists(void)
2425 set_zonelist_order();
2427 if (system_state == SYSTEM_BOOTING) {
2428 __build_all_zonelists(NULL);
2429 cpuset_init_current_mems_allowed();
2430 } else {
2431 /* we have to stop all cpus to guaranntee there is no user
2432 of zonelist */
2433 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2434 /* cpuset refresh routine should be here */
2436 vm_total_pages = nr_free_pagecache_pages();
2438 * Disable grouping by mobility if the number of pages in the
2439 * system is too low to allow the mechanism to work. It would be
2440 * more accurate, but expensive to check per-zone. This check is
2441 * made on memory-hotadd so a system can start with mobility
2442 * disabled and enable it later
2444 if (vm_total_pages < (MAX_ORDER_NR_PAGES * MIGRATE_TYPES))
2445 page_group_by_mobility_disabled = 1;
2446 else
2447 page_group_by_mobility_disabled = 0;
2449 printk("Built %i zonelists in %s order, mobility grouping %s. "
2450 "Total pages: %ld\n",
2451 num_online_nodes(),
2452 zonelist_order_name[current_zonelist_order],
2453 page_group_by_mobility_disabled ? "off" : "on",
2454 vm_total_pages);
2455 #ifdef CONFIG_NUMA
2456 printk("Policy zone: %s\n", zone_names[policy_zone]);
2457 #endif
2461 * Helper functions to size the waitqueue hash table.
2462 * Essentially these want to choose hash table sizes sufficiently
2463 * large so that collisions trying to wait on pages are rare.
2464 * But in fact, the number of active page waitqueues on typical
2465 * systems is ridiculously low, less than 200. So this is even
2466 * conservative, even though it seems large.
2468 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2469 * waitqueues, i.e. the size of the waitq table given the number of pages.
2471 #define PAGES_PER_WAITQUEUE 256
2473 #ifndef CONFIG_MEMORY_HOTPLUG
2474 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2476 unsigned long size = 1;
2478 pages /= PAGES_PER_WAITQUEUE;
2480 while (size < pages)
2481 size <<= 1;
2484 * Once we have dozens or even hundreds of threads sleeping
2485 * on IO we've got bigger problems than wait queue collision.
2486 * Limit the size of the wait table to a reasonable size.
2488 size = min(size, 4096UL);
2490 return max(size, 4UL);
2492 #else
2494 * A zone's size might be changed by hot-add, so it is not possible to determine
2495 * a suitable size for its wait_table. So we use the maximum size now.
2497 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2499 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2500 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2501 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2503 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2504 * or more by the traditional way. (See above). It equals:
2506 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2507 * ia64(16K page size) : = ( 8G + 4M)byte.
2508 * powerpc (64K page size) : = (32G +16M)byte.
2510 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2512 return 4096UL;
2514 #endif
2517 * This is an integer logarithm so that shifts can be used later
2518 * to extract the more random high bits from the multiplicative
2519 * hash function before the remainder is taken.
2521 static inline unsigned long wait_table_bits(unsigned long size)
2523 return ffz(~size);
2526 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2528 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
2530 * Mark a number of MAX_ORDER_NR_PAGES blocks as MIGRATE_RESERVE. The number
2531 * of blocks reserved is based on zone->pages_min. The memory within the
2532 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2533 * higher will lead to a bigger reserve which will get freed as contiguous
2534 * blocks as reclaim kicks in
2536 static void setup_zone_migrate_reserve(struct zone *zone)
2538 unsigned long start_pfn, pfn, end_pfn;
2539 struct page *page;
2540 unsigned long reserve, block_migratetype;
2542 /* Get the start pfn, end pfn and the number of blocks to reserve */
2543 start_pfn = zone->zone_start_pfn;
2544 end_pfn = start_pfn + zone->spanned_pages;
2545 reserve = roundup(zone->pages_min, MAX_ORDER_NR_PAGES) >> (MAX_ORDER-1);
2547 for (pfn = start_pfn; pfn < end_pfn; pfn += MAX_ORDER_NR_PAGES) {
2548 if (!pfn_valid(pfn))
2549 continue;
2550 page = pfn_to_page(pfn);
2552 /* Blocks with reserved pages will never free, skip them. */
2553 if (PageReserved(page))
2554 continue;
2556 block_migratetype = get_pageblock_migratetype(page);
2558 /* If this block is reserved, account for it */
2559 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2560 reserve--;
2561 continue;
2564 /* Suitable for reserving if this block is movable */
2565 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2566 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2567 move_freepages_block(zone, page, MIGRATE_RESERVE);
2568 reserve--;
2569 continue;
2573 * If the reserve is met and this is a previous reserved block,
2574 * take it back
2576 if (block_migratetype == MIGRATE_RESERVE) {
2577 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2578 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2582 #else
2583 static inline void setup_zone_migrate_reserve(struct zone *zone)
2586 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
2588 * Initially all pages are reserved - free ones are freed
2589 * up by free_all_bootmem() once the early boot process is
2590 * done. Non-atomic initialization, single-pass.
2592 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2593 unsigned long start_pfn, enum memmap_context context)
2595 struct page *page;
2596 unsigned long end_pfn = start_pfn + size;
2597 unsigned long pfn;
2599 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2601 * There can be holes in boot-time mem_map[]s
2602 * handed to this function. They do not
2603 * exist on hotplugged memory.
2605 if (context == MEMMAP_EARLY) {
2606 if (!early_pfn_valid(pfn))
2607 continue;
2608 if (!early_pfn_in_nid(pfn, nid))
2609 continue;
2611 page = pfn_to_page(pfn);
2612 set_page_links(page, zone, nid, pfn);
2613 init_page_count(page);
2614 reset_page_mapcount(page);
2615 SetPageReserved(page);
2618 * Mark the block movable so that blocks are reserved for
2619 * movable at startup. This will force kernel allocations
2620 * to reserve their blocks rather than leaking throughout
2621 * the address space during boot when many long-lived
2622 * kernel allocations are made. Later some blocks near
2623 * the start are marked MIGRATE_RESERVE by
2624 * setup_zone_migrate_reserve()
2626 if ((pfn & (MAX_ORDER_NR_PAGES-1)))
2627 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2629 INIT_LIST_HEAD(&page->lru);
2630 #ifdef WANT_PAGE_VIRTUAL
2631 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2632 if (!is_highmem_idx(zone))
2633 set_page_address(page, __va(pfn << PAGE_SHIFT));
2634 #endif
2638 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2639 struct zone *zone, unsigned long size)
2641 int order, t;
2642 for_each_migratetype_order(order, t) {
2643 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2644 zone->free_area[order].nr_free = 0;
2648 #ifndef __HAVE_ARCH_MEMMAP_INIT
2649 #define memmap_init(size, nid, zone, start_pfn) \
2650 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2651 #endif
2653 static int __devinit zone_batchsize(struct zone *zone)
2655 int batch;
2658 * The per-cpu-pages pools are set to around 1000th of the
2659 * size of the zone. But no more than 1/2 of a meg.
2661 * OK, so we don't know how big the cache is. So guess.
2663 batch = zone->present_pages / 1024;
2664 if (batch * PAGE_SIZE > 512 * 1024)
2665 batch = (512 * 1024) / PAGE_SIZE;
2666 batch /= 4; /* We effectively *= 4 below */
2667 if (batch < 1)
2668 batch = 1;
2671 * Clamp the batch to a 2^n - 1 value. Having a power
2672 * of 2 value was found to be more likely to have
2673 * suboptimal cache aliasing properties in some cases.
2675 * For example if 2 tasks are alternately allocating
2676 * batches of pages, one task can end up with a lot
2677 * of pages of one half of the possible page colors
2678 * and the other with pages of the other colors.
2680 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2682 return batch;
2685 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2687 struct per_cpu_pages *pcp;
2689 memset(p, 0, sizeof(*p));
2691 pcp = &p->pcp[0]; /* hot */
2692 pcp->count = 0;
2693 pcp->high = 6 * batch;
2694 pcp->batch = max(1UL, 1 * batch);
2695 INIT_LIST_HEAD(&pcp->list);
2697 pcp = &p->pcp[1]; /* cold*/
2698 pcp->count = 0;
2699 pcp->high = 2 * batch;
2700 pcp->batch = max(1UL, batch/2);
2701 INIT_LIST_HEAD(&pcp->list);
2705 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2706 * to the value high for the pageset p.
2709 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2710 unsigned long high)
2712 struct per_cpu_pages *pcp;
2714 pcp = &p->pcp[0]; /* hot list */
2715 pcp->high = high;
2716 pcp->batch = max(1UL, high/4);
2717 if ((high/4) > (PAGE_SHIFT * 8))
2718 pcp->batch = PAGE_SHIFT * 8;
2722 #ifdef CONFIG_NUMA
2724 * Boot pageset table. One per cpu which is going to be used for all
2725 * zones and all nodes. The parameters will be set in such a way
2726 * that an item put on a list will immediately be handed over to
2727 * the buddy list. This is safe since pageset manipulation is done
2728 * with interrupts disabled.
2730 * Some NUMA counter updates may also be caught by the boot pagesets.
2732 * The boot_pagesets must be kept even after bootup is complete for
2733 * unused processors and/or zones. They do play a role for bootstrapping
2734 * hotplugged processors.
2736 * zoneinfo_show() and maybe other functions do
2737 * not check if the processor is online before following the pageset pointer.
2738 * Other parts of the kernel may not check if the zone is available.
2740 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2743 * Dynamically allocate memory for the
2744 * per cpu pageset array in struct zone.
2746 static int __cpuinit process_zones(int cpu)
2748 struct zone *zone, *dzone;
2749 int node = cpu_to_node(cpu);
2751 node_set_state(node, N_CPU); /* this node has a cpu */
2753 for_each_zone(zone) {
2755 if (!populated_zone(zone))
2756 continue;
2758 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2759 GFP_KERNEL, node);
2760 if (!zone_pcp(zone, cpu))
2761 goto bad;
2763 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2765 if (percpu_pagelist_fraction)
2766 setup_pagelist_highmark(zone_pcp(zone, cpu),
2767 (zone->present_pages / percpu_pagelist_fraction));
2770 return 0;
2771 bad:
2772 for_each_zone(dzone) {
2773 if (!populated_zone(dzone))
2774 continue;
2775 if (dzone == zone)
2776 break;
2777 kfree(zone_pcp(dzone, cpu));
2778 zone_pcp(dzone, cpu) = NULL;
2780 return -ENOMEM;
2783 static inline void free_zone_pagesets(int cpu)
2785 struct zone *zone;
2787 for_each_zone(zone) {
2788 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2790 /* Free per_cpu_pageset if it is slab allocated */
2791 if (pset != &boot_pageset[cpu])
2792 kfree(pset);
2793 zone_pcp(zone, cpu) = NULL;
2797 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2798 unsigned long action,
2799 void *hcpu)
2801 int cpu = (long)hcpu;
2802 int ret = NOTIFY_OK;
2804 switch (action) {
2805 case CPU_UP_PREPARE:
2806 case CPU_UP_PREPARE_FROZEN:
2807 if (process_zones(cpu))
2808 ret = NOTIFY_BAD;
2809 break;
2810 case CPU_UP_CANCELED:
2811 case CPU_UP_CANCELED_FROZEN:
2812 case CPU_DEAD:
2813 case CPU_DEAD_FROZEN:
2814 free_zone_pagesets(cpu);
2815 break;
2816 default:
2817 break;
2819 return ret;
2822 static struct notifier_block __cpuinitdata pageset_notifier =
2823 { &pageset_cpuup_callback, NULL, 0 };
2825 void __init setup_per_cpu_pageset(void)
2827 int err;
2829 /* Initialize per_cpu_pageset for cpu 0.
2830 * A cpuup callback will do this for every cpu
2831 * as it comes online
2833 err = process_zones(smp_processor_id());
2834 BUG_ON(err);
2835 register_cpu_notifier(&pageset_notifier);
2838 #endif
2840 static noinline __init_refok
2841 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2843 int i;
2844 struct pglist_data *pgdat = zone->zone_pgdat;
2845 size_t alloc_size;
2848 * The per-page waitqueue mechanism uses hashed waitqueues
2849 * per zone.
2851 zone->wait_table_hash_nr_entries =
2852 wait_table_hash_nr_entries(zone_size_pages);
2853 zone->wait_table_bits =
2854 wait_table_bits(zone->wait_table_hash_nr_entries);
2855 alloc_size = zone->wait_table_hash_nr_entries
2856 * sizeof(wait_queue_head_t);
2858 if (system_state == SYSTEM_BOOTING) {
2859 zone->wait_table = (wait_queue_head_t *)
2860 alloc_bootmem_node(pgdat, alloc_size);
2861 } else {
2863 * This case means that a zone whose size was 0 gets new memory
2864 * via memory hot-add.
2865 * But it may be the case that a new node was hot-added. In
2866 * this case vmalloc() will not be able to use this new node's
2867 * memory - this wait_table must be initialized to use this new
2868 * node itself as well.
2869 * To use this new node's memory, further consideration will be
2870 * necessary.
2872 zone->wait_table = vmalloc(alloc_size);
2874 if (!zone->wait_table)
2875 return -ENOMEM;
2877 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2878 init_waitqueue_head(zone->wait_table + i);
2880 return 0;
2883 static __meminit void zone_pcp_init(struct zone *zone)
2885 int cpu;
2886 unsigned long batch = zone_batchsize(zone);
2888 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2889 #ifdef CONFIG_NUMA
2890 /* Early boot. Slab allocator not functional yet */
2891 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2892 setup_pageset(&boot_pageset[cpu],0);
2893 #else
2894 setup_pageset(zone_pcp(zone,cpu), batch);
2895 #endif
2897 if (zone->present_pages)
2898 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2899 zone->name, zone->present_pages, batch);
2902 __meminit int init_currently_empty_zone(struct zone *zone,
2903 unsigned long zone_start_pfn,
2904 unsigned long size,
2905 enum memmap_context context)
2907 struct pglist_data *pgdat = zone->zone_pgdat;
2908 int ret;
2909 ret = zone_wait_table_init(zone, size);
2910 if (ret)
2911 return ret;
2912 pgdat->nr_zones = zone_idx(zone) + 1;
2914 zone->zone_start_pfn = zone_start_pfn;
2916 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2918 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2920 return 0;
2923 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2925 * Basic iterator support. Return the first range of PFNs for a node
2926 * Note: nid == MAX_NUMNODES returns first region regardless of node
2928 static int __meminit first_active_region_index_in_nid(int nid)
2930 int i;
2932 for (i = 0; i < nr_nodemap_entries; i++)
2933 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2934 return i;
2936 return -1;
2940 * Basic iterator support. Return the next active range of PFNs for a node
2941 * Note: nid == MAX_NUMNODES returns next region regardles of node
2943 static int __meminit next_active_region_index_in_nid(int index, int nid)
2945 for (index = index + 1; index < nr_nodemap_entries; index++)
2946 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2947 return index;
2949 return -1;
2952 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2954 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2955 * Architectures may implement their own version but if add_active_range()
2956 * was used and there are no special requirements, this is a convenient
2957 * alternative
2959 int __meminit early_pfn_to_nid(unsigned long pfn)
2961 int i;
2963 for (i = 0; i < nr_nodemap_entries; i++) {
2964 unsigned long start_pfn = early_node_map[i].start_pfn;
2965 unsigned long end_pfn = early_node_map[i].end_pfn;
2967 if (start_pfn <= pfn && pfn < end_pfn)
2968 return early_node_map[i].nid;
2971 return 0;
2973 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2975 /* Basic iterator support to walk early_node_map[] */
2976 #define for_each_active_range_index_in_nid(i, nid) \
2977 for (i = first_active_region_index_in_nid(nid); i != -1; \
2978 i = next_active_region_index_in_nid(i, nid))
2981 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2982 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2983 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2985 * If an architecture guarantees that all ranges registered with
2986 * add_active_ranges() contain no holes and may be freed, this
2987 * this function may be used instead of calling free_bootmem() manually.
2989 void __init free_bootmem_with_active_regions(int nid,
2990 unsigned long max_low_pfn)
2992 int i;
2994 for_each_active_range_index_in_nid(i, nid) {
2995 unsigned long size_pages = 0;
2996 unsigned long end_pfn = early_node_map[i].end_pfn;
2998 if (early_node_map[i].start_pfn >= max_low_pfn)
2999 continue;
3001 if (end_pfn > max_low_pfn)
3002 end_pfn = max_low_pfn;
3004 size_pages = end_pfn - early_node_map[i].start_pfn;
3005 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3006 PFN_PHYS(early_node_map[i].start_pfn),
3007 size_pages << PAGE_SHIFT);
3012 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3013 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3015 * If an architecture guarantees that all ranges registered with
3016 * add_active_ranges() contain no holes and may be freed, this
3017 * function may be used instead of calling memory_present() manually.
3019 void __init sparse_memory_present_with_active_regions(int nid)
3021 int i;
3023 for_each_active_range_index_in_nid(i, nid)
3024 memory_present(early_node_map[i].nid,
3025 early_node_map[i].start_pfn,
3026 early_node_map[i].end_pfn);
3030 * push_node_boundaries - Push node boundaries to at least the requested boundary
3031 * @nid: The nid of the node to push the boundary for
3032 * @start_pfn: The start pfn of the node
3033 * @end_pfn: The end pfn of the node
3035 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3036 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3037 * be hotplugged even though no physical memory exists. This function allows
3038 * an arch to push out the node boundaries so mem_map is allocated that can
3039 * be used later.
3041 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3042 void __init push_node_boundaries(unsigned int nid,
3043 unsigned long start_pfn, unsigned long end_pfn)
3045 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
3046 nid, start_pfn, end_pfn);
3048 /* Initialise the boundary for this node if necessary */
3049 if (node_boundary_end_pfn[nid] == 0)
3050 node_boundary_start_pfn[nid] = -1UL;
3052 /* Update the boundaries */
3053 if (node_boundary_start_pfn[nid] > start_pfn)
3054 node_boundary_start_pfn[nid] = start_pfn;
3055 if (node_boundary_end_pfn[nid] < end_pfn)
3056 node_boundary_end_pfn[nid] = end_pfn;
3059 /* If necessary, push the node boundary out for reserve hotadd */
3060 static void __meminit account_node_boundary(unsigned int nid,
3061 unsigned long *start_pfn, unsigned long *end_pfn)
3063 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
3064 nid, *start_pfn, *end_pfn);
3066 /* Return if boundary information has not been provided */
3067 if (node_boundary_end_pfn[nid] == 0)
3068 return;
3070 /* Check the boundaries and update if necessary */
3071 if (node_boundary_start_pfn[nid] < *start_pfn)
3072 *start_pfn = node_boundary_start_pfn[nid];
3073 if (node_boundary_end_pfn[nid] > *end_pfn)
3074 *end_pfn = node_boundary_end_pfn[nid];
3076 #else
3077 void __init push_node_boundaries(unsigned int nid,
3078 unsigned long start_pfn, unsigned long end_pfn) {}
3080 static void __meminit account_node_boundary(unsigned int nid,
3081 unsigned long *start_pfn, unsigned long *end_pfn) {}
3082 #endif
3086 * get_pfn_range_for_nid - Return the start and end page frames for a node
3087 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3088 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3089 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3091 * It returns the start and end page frame of a node based on information
3092 * provided by an arch calling add_active_range(). If called for a node
3093 * with no available memory, a warning is printed and the start and end
3094 * PFNs will be 0.
3096 void __meminit get_pfn_range_for_nid(unsigned int nid,
3097 unsigned long *start_pfn, unsigned long *end_pfn)
3099 int i;
3100 *start_pfn = -1UL;
3101 *end_pfn = 0;
3103 for_each_active_range_index_in_nid(i, nid) {
3104 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3105 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3108 if (*start_pfn == -1UL)
3109 *start_pfn = 0;
3111 /* Push the node boundaries out if requested */
3112 account_node_boundary(nid, start_pfn, end_pfn);
3116 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3117 * assumption is made that zones within a node are ordered in monotonic
3118 * increasing memory addresses so that the "highest" populated zone is used
3120 void __init find_usable_zone_for_movable(void)
3122 int zone_index;
3123 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3124 if (zone_index == ZONE_MOVABLE)
3125 continue;
3127 if (arch_zone_highest_possible_pfn[zone_index] >
3128 arch_zone_lowest_possible_pfn[zone_index])
3129 break;
3132 VM_BUG_ON(zone_index == -1);
3133 movable_zone = zone_index;
3137 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3138 * because it is sized independant of architecture. Unlike the other zones,
3139 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3140 * in each node depending on the size of each node and how evenly kernelcore
3141 * is distributed. This helper function adjusts the zone ranges
3142 * provided by the architecture for a given node by using the end of the
3143 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3144 * zones within a node are in order of monotonic increases memory addresses
3146 void __meminit adjust_zone_range_for_zone_movable(int nid,
3147 unsigned long zone_type,
3148 unsigned long node_start_pfn,
3149 unsigned long node_end_pfn,
3150 unsigned long *zone_start_pfn,
3151 unsigned long *zone_end_pfn)
3153 /* Only adjust if ZONE_MOVABLE is on this node */
3154 if (zone_movable_pfn[nid]) {
3155 /* Size ZONE_MOVABLE */
3156 if (zone_type == ZONE_MOVABLE) {
3157 *zone_start_pfn = zone_movable_pfn[nid];
3158 *zone_end_pfn = min(node_end_pfn,
3159 arch_zone_highest_possible_pfn[movable_zone]);
3161 /* Adjust for ZONE_MOVABLE starting within this range */
3162 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3163 *zone_end_pfn > zone_movable_pfn[nid]) {
3164 *zone_end_pfn = zone_movable_pfn[nid];
3166 /* Check if this whole range is within ZONE_MOVABLE */
3167 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3168 *zone_start_pfn = *zone_end_pfn;
3173 * Return the number of pages a zone spans in a node, including holes
3174 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3176 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3177 unsigned long zone_type,
3178 unsigned long *ignored)
3180 unsigned long node_start_pfn, node_end_pfn;
3181 unsigned long zone_start_pfn, zone_end_pfn;
3183 /* Get the start and end of the node and zone */
3184 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3185 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3186 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3187 adjust_zone_range_for_zone_movable(nid, zone_type,
3188 node_start_pfn, node_end_pfn,
3189 &zone_start_pfn, &zone_end_pfn);
3191 /* Check that this node has pages within the zone's required range */
3192 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3193 return 0;
3195 /* Move the zone boundaries inside the node if necessary */
3196 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3197 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3199 /* Return the spanned pages */
3200 return zone_end_pfn - zone_start_pfn;
3204 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3205 * then all holes in the requested range will be accounted for.
3207 unsigned long __meminit __absent_pages_in_range(int nid,
3208 unsigned long range_start_pfn,
3209 unsigned long range_end_pfn)
3211 int i = 0;
3212 unsigned long prev_end_pfn = 0, hole_pages = 0;
3213 unsigned long start_pfn;
3215 /* Find the end_pfn of the first active range of pfns in the node */
3216 i = first_active_region_index_in_nid(nid);
3217 if (i == -1)
3218 return 0;
3220 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3222 /* Account for ranges before physical memory on this node */
3223 if (early_node_map[i].start_pfn > range_start_pfn)
3224 hole_pages = prev_end_pfn - range_start_pfn;
3226 /* Find all holes for the zone within the node */
3227 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3229 /* No need to continue if prev_end_pfn is outside the zone */
3230 if (prev_end_pfn >= range_end_pfn)
3231 break;
3233 /* Make sure the end of the zone is not within the hole */
3234 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3235 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3237 /* Update the hole size cound and move on */
3238 if (start_pfn > range_start_pfn) {
3239 BUG_ON(prev_end_pfn > start_pfn);
3240 hole_pages += start_pfn - prev_end_pfn;
3242 prev_end_pfn = early_node_map[i].end_pfn;
3245 /* Account for ranges past physical memory on this node */
3246 if (range_end_pfn > prev_end_pfn)
3247 hole_pages += range_end_pfn -
3248 max(range_start_pfn, prev_end_pfn);
3250 return hole_pages;
3254 * absent_pages_in_range - Return number of page frames in holes within a range
3255 * @start_pfn: The start PFN to start searching for holes
3256 * @end_pfn: The end PFN to stop searching for holes
3258 * It returns the number of pages frames in memory holes within a range.
3260 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3261 unsigned long end_pfn)
3263 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3266 /* Return the number of page frames in holes in a zone on a node */
3267 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3268 unsigned long zone_type,
3269 unsigned long *ignored)
3271 unsigned long node_start_pfn, node_end_pfn;
3272 unsigned long zone_start_pfn, zone_end_pfn;
3274 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3275 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3276 node_start_pfn);
3277 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3278 node_end_pfn);
3280 adjust_zone_range_for_zone_movable(nid, zone_type,
3281 node_start_pfn, node_end_pfn,
3282 &zone_start_pfn, &zone_end_pfn);
3283 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3286 #else
3287 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3288 unsigned long zone_type,
3289 unsigned long *zones_size)
3291 return zones_size[zone_type];
3294 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3295 unsigned long zone_type,
3296 unsigned long *zholes_size)
3298 if (!zholes_size)
3299 return 0;
3301 return zholes_size[zone_type];
3304 #endif
3306 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3307 unsigned long *zones_size, unsigned long *zholes_size)
3309 unsigned long realtotalpages, totalpages = 0;
3310 enum zone_type i;
3312 for (i = 0; i < MAX_NR_ZONES; i++)
3313 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3314 zones_size);
3315 pgdat->node_spanned_pages = totalpages;
3317 realtotalpages = totalpages;
3318 for (i = 0; i < MAX_NR_ZONES; i++)
3319 realtotalpages -=
3320 zone_absent_pages_in_node(pgdat->node_id, i,
3321 zholes_size);
3322 pgdat->node_present_pages = realtotalpages;
3323 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3324 realtotalpages);
3327 #ifndef CONFIG_SPARSEMEM
3329 * Calculate the size of the zone->blockflags rounded to an unsigned long
3330 * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
3331 * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
3332 * round what is now in bits to nearest long in bits, then return it in
3333 * bytes.
3335 static unsigned long __init usemap_size(unsigned long zonesize)
3337 unsigned long usemapsize;
3339 usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
3340 usemapsize = usemapsize >> (MAX_ORDER-1);
3341 usemapsize *= NR_PAGEBLOCK_BITS;
3342 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3344 return usemapsize / 8;
3347 static void __init setup_usemap(struct pglist_data *pgdat,
3348 struct zone *zone, unsigned long zonesize)
3350 unsigned long usemapsize = usemap_size(zonesize);
3351 zone->pageblock_flags = NULL;
3352 if (usemapsize) {
3353 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3354 memset(zone->pageblock_flags, 0, usemapsize);
3357 #else
3358 static void inline setup_usemap(struct pglist_data *pgdat,
3359 struct zone *zone, unsigned long zonesize) {}
3360 #endif /* CONFIG_SPARSEMEM */
3363 * Set up the zone data structures:
3364 * - mark all pages reserved
3365 * - mark all memory queues empty
3366 * - clear the memory bitmaps
3368 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3369 unsigned long *zones_size, unsigned long *zholes_size)
3371 enum zone_type j;
3372 int nid = pgdat->node_id;
3373 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3374 int ret;
3376 pgdat_resize_init(pgdat);
3377 pgdat->nr_zones = 0;
3378 init_waitqueue_head(&pgdat->kswapd_wait);
3379 pgdat->kswapd_max_order = 0;
3381 for (j = 0; j < MAX_NR_ZONES; j++) {
3382 struct zone *zone = pgdat->node_zones + j;
3383 unsigned long size, realsize, memmap_pages;
3385 size = zone_spanned_pages_in_node(nid, j, zones_size);
3386 realsize = size - zone_absent_pages_in_node(nid, j,
3387 zholes_size);
3390 * Adjust realsize so that it accounts for how much memory
3391 * is used by this zone for memmap. This affects the watermark
3392 * and per-cpu initialisations
3394 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3395 if (realsize >= memmap_pages) {
3396 realsize -= memmap_pages;
3397 printk(KERN_DEBUG
3398 " %s zone: %lu pages used for memmap\n",
3399 zone_names[j], memmap_pages);
3400 } else
3401 printk(KERN_WARNING
3402 " %s zone: %lu pages exceeds realsize %lu\n",
3403 zone_names[j], memmap_pages, realsize);
3405 /* Account for reserved pages */
3406 if (j == 0 && realsize > dma_reserve) {
3407 realsize -= dma_reserve;
3408 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3409 zone_names[0], dma_reserve);
3412 if (!is_highmem_idx(j))
3413 nr_kernel_pages += realsize;
3414 nr_all_pages += realsize;
3416 zone->spanned_pages = size;
3417 zone->present_pages = realsize;
3418 #ifdef CONFIG_NUMA
3419 zone->node = nid;
3420 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3421 / 100;
3422 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3423 #endif
3424 zone->name = zone_names[j];
3425 spin_lock_init(&zone->lock);
3426 spin_lock_init(&zone->lru_lock);
3427 zone_seqlock_init(zone);
3428 zone->zone_pgdat = pgdat;
3430 zone->prev_priority = DEF_PRIORITY;
3432 zone_pcp_init(zone);
3433 INIT_LIST_HEAD(&zone->active_list);
3434 INIT_LIST_HEAD(&zone->inactive_list);
3435 zone->nr_scan_active = 0;
3436 zone->nr_scan_inactive = 0;
3437 zap_zone_vm_stats(zone);
3438 atomic_set(&zone->reclaim_in_progress, 0);
3439 if (!size)
3440 continue;
3442 setup_usemap(pgdat, zone, size);
3443 ret = init_currently_empty_zone(zone, zone_start_pfn,
3444 size, MEMMAP_EARLY);
3445 BUG_ON(ret);
3446 zone_start_pfn += size;
3450 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3452 /* Skip empty nodes */
3453 if (!pgdat->node_spanned_pages)
3454 return;
3456 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3457 /* ia64 gets its own node_mem_map, before this, without bootmem */
3458 if (!pgdat->node_mem_map) {
3459 unsigned long size, start, end;
3460 struct page *map;
3463 * The zone's endpoints aren't required to be MAX_ORDER
3464 * aligned but the node_mem_map endpoints must be in order
3465 * for the buddy allocator to function correctly.
3467 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3468 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3469 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3470 size = (end - start) * sizeof(struct page);
3471 map = alloc_remap(pgdat->node_id, size);
3472 if (!map)
3473 map = alloc_bootmem_node(pgdat, size);
3474 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3476 #ifndef CONFIG_NEED_MULTIPLE_NODES
3478 * With no DISCONTIG, the global mem_map is just set as node 0's
3480 if (pgdat == NODE_DATA(0)) {
3481 mem_map = NODE_DATA(0)->node_mem_map;
3482 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3483 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3484 mem_map -= pgdat->node_start_pfn;
3485 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3487 #endif
3488 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3491 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3492 unsigned long *zones_size, unsigned long node_start_pfn,
3493 unsigned long *zholes_size)
3495 pgdat->node_id = nid;
3496 pgdat->node_start_pfn = node_start_pfn;
3497 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3499 alloc_node_mem_map(pgdat);
3501 free_area_init_core(pgdat, zones_size, zholes_size);
3504 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3506 #if MAX_NUMNODES > 1
3508 * Figure out the number of possible node ids.
3510 static void __init setup_nr_node_ids(void)
3512 unsigned int node;
3513 unsigned int highest = 0;
3515 for_each_node_mask(node, node_possible_map)
3516 highest = node;
3517 nr_node_ids = highest + 1;
3519 #else
3520 static inline void setup_nr_node_ids(void)
3523 #endif
3526 * add_active_range - Register a range of PFNs backed by physical memory
3527 * @nid: The node ID the range resides on
3528 * @start_pfn: The start PFN of the available physical memory
3529 * @end_pfn: The end PFN of the available physical memory
3531 * These ranges are stored in an early_node_map[] and later used by
3532 * free_area_init_nodes() to calculate zone sizes and holes. If the
3533 * range spans a memory hole, it is up to the architecture to ensure
3534 * the memory is not freed by the bootmem allocator. If possible
3535 * the range being registered will be merged with existing ranges.
3537 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3538 unsigned long end_pfn)
3540 int i;
3542 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3543 "%d entries of %d used\n",
3544 nid, start_pfn, end_pfn,
3545 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3547 /* Merge with existing active regions if possible */
3548 for (i = 0; i < nr_nodemap_entries; i++) {
3549 if (early_node_map[i].nid != nid)
3550 continue;
3552 /* Skip if an existing region covers this new one */
3553 if (start_pfn >= early_node_map[i].start_pfn &&
3554 end_pfn <= early_node_map[i].end_pfn)
3555 return;
3557 /* Merge forward if suitable */
3558 if (start_pfn <= early_node_map[i].end_pfn &&
3559 end_pfn > early_node_map[i].end_pfn) {
3560 early_node_map[i].end_pfn = end_pfn;
3561 return;
3564 /* Merge backward if suitable */
3565 if (start_pfn < early_node_map[i].end_pfn &&
3566 end_pfn >= early_node_map[i].start_pfn) {
3567 early_node_map[i].start_pfn = start_pfn;
3568 return;
3572 /* Check that early_node_map is large enough */
3573 if (i >= MAX_ACTIVE_REGIONS) {
3574 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3575 MAX_ACTIVE_REGIONS);
3576 return;
3579 early_node_map[i].nid = nid;
3580 early_node_map[i].start_pfn = start_pfn;
3581 early_node_map[i].end_pfn = end_pfn;
3582 nr_nodemap_entries = i + 1;
3586 * shrink_active_range - Shrink an existing registered range of PFNs
3587 * @nid: The node id the range is on that should be shrunk
3588 * @old_end_pfn: The old end PFN of the range
3589 * @new_end_pfn: The new PFN of the range
3591 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3592 * The map is kept at the end physical page range that has already been
3593 * registered with add_active_range(). This function allows an arch to shrink
3594 * an existing registered range.
3596 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3597 unsigned long new_end_pfn)
3599 int i;
3601 /* Find the old active region end and shrink */
3602 for_each_active_range_index_in_nid(i, nid)
3603 if (early_node_map[i].end_pfn == old_end_pfn) {
3604 early_node_map[i].end_pfn = new_end_pfn;
3605 break;
3610 * remove_all_active_ranges - Remove all currently registered regions
3612 * During discovery, it may be found that a table like SRAT is invalid
3613 * and an alternative discovery method must be used. This function removes
3614 * all currently registered regions.
3616 void __init remove_all_active_ranges(void)
3618 memset(early_node_map, 0, sizeof(early_node_map));
3619 nr_nodemap_entries = 0;
3620 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3621 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3622 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3623 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3626 /* Compare two active node_active_regions */
3627 static int __init cmp_node_active_region(const void *a, const void *b)
3629 struct node_active_region *arange = (struct node_active_region *)a;
3630 struct node_active_region *brange = (struct node_active_region *)b;
3632 /* Done this way to avoid overflows */
3633 if (arange->start_pfn > brange->start_pfn)
3634 return 1;
3635 if (arange->start_pfn < brange->start_pfn)
3636 return -1;
3638 return 0;
3641 /* sort the node_map by start_pfn */
3642 static void __init sort_node_map(void)
3644 sort(early_node_map, (size_t)nr_nodemap_entries,
3645 sizeof(struct node_active_region),
3646 cmp_node_active_region, NULL);
3649 /* Find the lowest pfn for a node */
3650 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3652 int i;
3653 unsigned long min_pfn = ULONG_MAX;
3655 /* Assuming a sorted map, the first range found has the starting pfn */
3656 for_each_active_range_index_in_nid(i, nid)
3657 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3659 if (min_pfn == ULONG_MAX) {
3660 printk(KERN_WARNING
3661 "Could not find start_pfn for node %lu\n", nid);
3662 return 0;
3665 return min_pfn;
3669 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3671 * It returns the minimum PFN based on information provided via
3672 * add_active_range().
3674 unsigned long __init find_min_pfn_with_active_regions(void)
3676 return find_min_pfn_for_node(MAX_NUMNODES);
3680 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3682 * It returns the maximum PFN based on information provided via
3683 * add_active_range().
3685 unsigned long __init find_max_pfn_with_active_regions(void)
3687 int i;
3688 unsigned long max_pfn = 0;
3690 for (i = 0; i < nr_nodemap_entries; i++)
3691 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3693 return max_pfn;
3697 * early_calculate_totalpages()
3698 * Sum pages in active regions for movable zone.
3699 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3701 unsigned long __init early_calculate_totalpages(void)
3703 int i;
3704 unsigned long totalpages = 0;
3706 for (i = 0; i < nr_nodemap_entries; i++) {
3707 unsigned long pages = early_node_map[i].end_pfn -
3708 early_node_map[i].start_pfn;
3709 totalpages += pages;
3710 if (pages)
3711 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3713 return totalpages;
3717 * Find the PFN the Movable zone begins in each node. Kernel memory
3718 * is spread evenly between nodes as long as the nodes have enough
3719 * memory. When they don't, some nodes will have more kernelcore than
3720 * others
3722 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3724 int i, nid;
3725 unsigned long usable_startpfn;
3726 unsigned long kernelcore_node, kernelcore_remaining;
3727 unsigned long totalpages = early_calculate_totalpages();
3728 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3731 * If movablecore was specified, calculate what size of
3732 * kernelcore that corresponds so that memory usable for
3733 * any allocation type is evenly spread. If both kernelcore
3734 * and movablecore are specified, then the value of kernelcore
3735 * will be used for required_kernelcore if it's greater than
3736 * what movablecore would have allowed.
3738 if (required_movablecore) {
3739 unsigned long corepages;
3742 * Round-up so that ZONE_MOVABLE is at least as large as what
3743 * was requested by the user
3745 required_movablecore =
3746 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3747 corepages = totalpages - required_movablecore;
3749 required_kernelcore = max(required_kernelcore, corepages);
3752 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3753 if (!required_kernelcore)
3754 return;
3756 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3757 find_usable_zone_for_movable();
3758 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3760 restart:
3761 /* Spread kernelcore memory as evenly as possible throughout nodes */
3762 kernelcore_node = required_kernelcore / usable_nodes;
3763 for_each_node_state(nid, N_HIGH_MEMORY) {
3765 * Recalculate kernelcore_node if the division per node
3766 * now exceeds what is necessary to satisfy the requested
3767 * amount of memory for the kernel
3769 if (required_kernelcore < kernelcore_node)
3770 kernelcore_node = required_kernelcore / usable_nodes;
3773 * As the map is walked, we track how much memory is usable
3774 * by the kernel using kernelcore_remaining. When it is
3775 * 0, the rest of the node is usable by ZONE_MOVABLE
3777 kernelcore_remaining = kernelcore_node;
3779 /* Go through each range of PFNs within this node */
3780 for_each_active_range_index_in_nid(i, nid) {
3781 unsigned long start_pfn, end_pfn;
3782 unsigned long size_pages;
3784 start_pfn = max(early_node_map[i].start_pfn,
3785 zone_movable_pfn[nid]);
3786 end_pfn = early_node_map[i].end_pfn;
3787 if (start_pfn >= end_pfn)
3788 continue;
3790 /* Account for what is only usable for kernelcore */
3791 if (start_pfn < usable_startpfn) {
3792 unsigned long kernel_pages;
3793 kernel_pages = min(end_pfn, usable_startpfn)
3794 - start_pfn;
3796 kernelcore_remaining -= min(kernel_pages,
3797 kernelcore_remaining);
3798 required_kernelcore -= min(kernel_pages,
3799 required_kernelcore);
3801 /* Continue if range is now fully accounted */
3802 if (end_pfn <= usable_startpfn) {
3805 * Push zone_movable_pfn to the end so
3806 * that if we have to rebalance
3807 * kernelcore across nodes, we will
3808 * not double account here
3810 zone_movable_pfn[nid] = end_pfn;
3811 continue;
3813 start_pfn = usable_startpfn;
3817 * The usable PFN range for ZONE_MOVABLE is from
3818 * start_pfn->end_pfn. Calculate size_pages as the
3819 * number of pages used as kernelcore
3821 size_pages = end_pfn - start_pfn;
3822 if (size_pages > kernelcore_remaining)
3823 size_pages = kernelcore_remaining;
3824 zone_movable_pfn[nid] = start_pfn + size_pages;
3827 * Some kernelcore has been met, update counts and
3828 * break if the kernelcore for this node has been
3829 * satisified
3831 required_kernelcore -= min(required_kernelcore,
3832 size_pages);
3833 kernelcore_remaining -= size_pages;
3834 if (!kernelcore_remaining)
3835 break;
3840 * If there is still required_kernelcore, we do another pass with one
3841 * less node in the count. This will push zone_movable_pfn[nid] further
3842 * along on the nodes that still have memory until kernelcore is
3843 * satisified
3845 usable_nodes--;
3846 if (usable_nodes && required_kernelcore > usable_nodes)
3847 goto restart;
3849 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3850 for (nid = 0; nid < MAX_NUMNODES; nid++)
3851 zone_movable_pfn[nid] =
3852 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3855 /* Any regular memory on that node ? */
3856 static void check_for_regular_memory(pg_data_t *pgdat)
3858 #ifdef CONFIG_HIGHMEM
3859 enum zone_type zone_type;
3861 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3862 struct zone *zone = &pgdat->node_zones[zone_type];
3863 if (zone->present_pages)
3864 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3866 #endif
3870 * free_area_init_nodes - Initialise all pg_data_t and zone data
3871 * @max_zone_pfn: an array of max PFNs for each zone
3873 * This will call free_area_init_node() for each active node in the system.
3874 * Using the page ranges provided by add_active_range(), the size of each
3875 * zone in each node and their holes is calculated. If the maximum PFN
3876 * between two adjacent zones match, it is assumed that the zone is empty.
3877 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3878 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3879 * starts where the previous one ended. For example, ZONE_DMA32 starts
3880 * at arch_max_dma_pfn.
3882 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3884 unsigned long nid;
3885 enum zone_type i;
3887 /* Sort early_node_map as initialisation assumes it is sorted */
3888 sort_node_map();
3890 /* Record where the zone boundaries are */
3891 memset(arch_zone_lowest_possible_pfn, 0,
3892 sizeof(arch_zone_lowest_possible_pfn));
3893 memset(arch_zone_highest_possible_pfn, 0,
3894 sizeof(arch_zone_highest_possible_pfn));
3895 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3896 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3897 for (i = 1; i < MAX_NR_ZONES; i++) {
3898 if (i == ZONE_MOVABLE)
3899 continue;
3900 arch_zone_lowest_possible_pfn[i] =
3901 arch_zone_highest_possible_pfn[i-1];
3902 arch_zone_highest_possible_pfn[i] =
3903 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3905 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3906 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3908 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3909 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3910 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3912 /* Print out the zone ranges */
3913 printk("Zone PFN ranges:\n");
3914 for (i = 0; i < MAX_NR_ZONES; i++) {
3915 if (i == ZONE_MOVABLE)
3916 continue;
3917 printk(" %-8s %8lu -> %8lu\n",
3918 zone_names[i],
3919 arch_zone_lowest_possible_pfn[i],
3920 arch_zone_highest_possible_pfn[i]);
3923 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3924 printk("Movable zone start PFN for each node\n");
3925 for (i = 0; i < MAX_NUMNODES; i++) {
3926 if (zone_movable_pfn[i])
3927 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3930 /* Print out the early_node_map[] */
3931 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3932 for (i = 0; i < nr_nodemap_entries; i++)
3933 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3934 early_node_map[i].start_pfn,
3935 early_node_map[i].end_pfn);
3937 /* Initialise every node */
3938 setup_nr_node_ids();
3939 for_each_online_node(nid) {
3940 pg_data_t *pgdat = NODE_DATA(nid);
3941 free_area_init_node(nid, pgdat, NULL,
3942 find_min_pfn_for_node(nid), NULL);
3944 /* Any memory on that node */
3945 if (pgdat->node_present_pages)
3946 node_set_state(nid, N_HIGH_MEMORY);
3947 check_for_regular_memory(pgdat);
3951 static int __init cmdline_parse_core(char *p, unsigned long *core)
3953 unsigned long long coremem;
3954 if (!p)
3955 return -EINVAL;
3957 coremem = memparse(p, &p);
3958 *core = coremem >> PAGE_SHIFT;
3960 /* Paranoid check that UL is enough for the coremem value */
3961 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3963 return 0;
3967 * kernelcore=size sets the amount of memory for use for allocations that
3968 * cannot be reclaimed or migrated.
3970 static int __init cmdline_parse_kernelcore(char *p)
3972 return cmdline_parse_core(p, &required_kernelcore);
3976 * movablecore=size sets the amount of memory for use for allocations that
3977 * can be reclaimed or migrated.
3979 static int __init cmdline_parse_movablecore(char *p)
3981 return cmdline_parse_core(p, &required_movablecore);
3984 early_param("kernelcore", cmdline_parse_kernelcore);
3985 early_param("movablecore", cmdline_parse_movablecore);
3987 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3990 * set_dma_reserve - set the specified number of pages reserved in the first zone
3991 * @new_dma_reserve: The number of pages to mark reserved
3993 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3994 * In the DMA zone, a significant percentage may be consumed by kernel image
3995 * and other unfreeable allocations which can skew the watermarks badly. This
3996 * function may optionally be used to account for unfreeable pages in the
3997 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3998 * smaller per-cpu batchsize.
4000 void __init set_dma_reserve(unsigned long new_dma_reserve)
4002 dma_reserve = new_dma_reserve;
4005 #ifndef CONFIG_NEED_MULTIPLE_NODES
4006 static bootmem_data_t contig_bootmem_data;
4007 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
4009 EXPORT_SYMBOL(contig_page_data);
4010 #endif
4012 void __init free_area_init(unsigned long *zones_size)
4014 free_area_init_node(0, NODE_DATA(0), zones_size,
4015 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4018 static int page_alloc_cpu_notify(struct notifier_block *self,
4019 unsigned long action, void *hcpu)
4021 int cpu = (unsigned long)hcpu;
4023 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4024 local_irq_disable();
4025 __drain_pages(cpu);
4026 vm_events_fold_cpu(cpu);
4027 local_irq_enable();
4028 refresh_cpu_vm_stats(cpu);
4030 return NOTIFY_OK;
4033 void __init page_alloc_init(void)
4035 hotcpu_notifier(page_alloc_cpu_notify, 0);
4039 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4040 * or min_free_kbytes changes.
4042 static void calculate_totalreserve_pages(void)
4044 struct pglist_data *pgdat;
4045 unsigned long reserve_pages = 0;
4046 enum zone_type i, j;
4048 for_each_online_pgdat(pgdat) {
4049 for (i = 0; i < MAX_NR_ZONES; i++) {
4050 struct zone *zone = pgdat->node_zones + i;
4051 unsigned long max = 0;
4053 /* Find valid and maximum lowmem_reserve in the zone */
4054 for (j = i; j < MAX_NR_ZONES; j++) {
4055 if (zone->lowmem_reserve[j] > max)
4056 max = zone->lowmem_reserve[j];
4059 /* we treat pages_high as reserved pages. */
4060 max += zone->pages_high;
4062 if (max > zone->present_pages)
4063 max = zone->present_pages;
4064 reserve_pages += max;
4067 totalreserve_pages = reserve_pages;
4071 * setup_per_zone_lowmem_reserve - called whenever
4072 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4073 * has a correct pages reserved value, so an adequate number of
4074 * pages are left in the zone after a successful __alloc_pages().
4076 static void setup_per_zone_lowmem_reserve(void)
4078 struct pglist_data *pgdat;
4079 enum zone_type j, idx;
4081 for_each_online_pgdat(pgdat) {
4082 for (j = 0; j < MAX_NR_ZONES; j++) {
4083 struct zone *zone = pgdat->node_zones + j;
4084 unsigned long present_pages = zone->present_pages;
4086 zone->lowmem_reserve[j] = 0;
4088 idx = j;
4089 while (idx) {
4090 struct zone *lower_zone;
4092 idx--;
4094 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4095 sysctl_lowmem_reserve_ratio[idx] = 1;
4097 lower_zone = pgdat->node_zones + idx;
4098 lower_zone->lowmem_reserve[j] = present_pages /
4099 sysctl_lowmem_reserve_ratio[idx];
4100 present_pages += lower_zone->present_pages;
4105 /* update totalreserve_pages */
4106 calculate_totalreserve_pages();
4110 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4112 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4113 * with respect to min_free_kbytes.
4115 void setup_per_zone_pages_min(void)
4117 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4118 unsigned long lowmem_pages = 0;
4119 struct zone *zone;
4120 unsigned long flags;
4122 /* Calculate total number of !ZONE_HIGHMEM pages */
4123 for_each_zone(zone) {
4124 if (!is_highmem(zone))
4125 lowmem_pages += zone->present_pages;
4128 for_each_zone(zone) {
4129 u64 tmp;
4131 spin_lock_irqsave(&zone->lru_lock, flags);
4132 tmp = (u64)pages_min * zone->present_pages;
4133 do_div(tmp, lowmem_pages);
4134 if (is_highmem(zone)) {
4136 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4137 * need highmem pages, so cap pages_min to a small
4138 * value here.
4140 * The (pages_high-pages_low) and (pages_low-pages_min)
4141 * deltas controls asynch page reclaim, and so should
4142 * not be capped for highmem.
4144 int min_pages;
4146 min_pages = zone->present_pages / 1024;
4147 if (min_pages < SWAP_CLUSTER_MAX)
4148 min_pages = SWAP_CLUSTER_MAX;
4149 if (min_pages > 128)
4150 min_pages = 128;
4151 zone->pages_min = min_pages;
4152 } else {
4154 * If it's a lowmem zone, reserve a number of pages
4155 * proportionate to the zone's size.
4157 zone->pages_min = tmp;
4160 zone->pages_low = zone->pages_min + (tmp >> 2);
4161 zone->pages_high = zone->pages_min + (tmp >> 1);
4162 setup_zone_migrate_reserve(zone);
4163 spin_unlock_irqrestore(&zone->lru_lock, flags);
4166 /* update totalreserve_pages */
4167 calculate_totalreserve_pages();
4171 * Initialise min_free_kbytes.
4173 * For small machines we want it small (128k min). For large machines
4174 * we want it large (64MB max). But it is not linear, because network
4175 * bandwidth does not increase linearly with machine size. We use
4177 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4178 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4180 * which yields
4182 * 16MB: 512k
4183 * 32MB: 724k
4184 * 64MB: 1024k
4185 * 128MB: 1448k
4186 * 256MB: 2048k
4187 * 512MB: 2896k
4188 * 1024MB: 4096k
4189 * 2048MB: 5792k
4190 * 4096MB: 8192k
4191 * 8192MB: 11584k
4192 * 16384MB: 16384k
4194 static int __init init_per_zone_pages_min(void)
4196 unsigned long lowmem_kbytes;
4198 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4200 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4201 if (min_free_kbytes < 128)
4202 min_free_kbytes = 128;
4203 if (min_free_kbytes > 65536)
4204 min_free_kbytes = 65536;
4205 setup_per_zone_pages_min();
4206 setup_per_zone_lowmem_reserve();
4207 return 0;
4209 module_init(init_per_zone_pages_min)
4212 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4213 * that we can call two helper functions whenever min_free_kbytes
4214 * changes.
4216 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4217 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4219 proc_dointvec(table, write, file, buffer, length, ppos);
4220 if (write)
4221 setup_per_zone_pages_min();
4222 return 0;
4225 #ifdef CONFIG_NUMA
4226 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4227 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4229 struct zone *zone;
4230 int rc;
4232 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4233 if (rc)
4234 return rc;
4236 for_each_zone(zone)
4237 zone->min_unmapped_pages = (zone->present_pages *
4238 sysctl_min_unmapped_ratio) / 100;
4239 return 0;
4242 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4243 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4245 struct zone *zone;
4246 int rc;
4248 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4249 if (rc)
4250 return rc;
4252 for_each_zone(zone)
4253 zone->min_slab_pages = (zone->present_pages *
4254 sysctl_min_slab_ratio) / 100;
4255 return 0;
4257 #endif
4260 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4261 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4262 * whenever sysctl_lowmem_reserve_ratio changes.
4264 * The reserve ratio obviously has absolutely no relation with the
4265 * pages_min watermarks. The lowmem reserve ratio can only make sense
4266 * if in function of the boot time zone sizes.
4268 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4269 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4271 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4272 setup_per_zone_lowmem_reserve();
4273 return 0;
4277 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4278 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4279 * can have before it gets flushed back to buddy allocator.
4282 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4283 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4285 struct zone *zone;
4286 unsigned int cpu;
4287 int ret;
4289 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4290 if (!write || (ret == -EINVAL))
4291 return ret;
4292 for_each_zone(zone) {
4293 for_each_online_cpu(cpu) {
4294 unsigned long high;
4295 high = zone->present_pages / percpu_pagelist_fraction;
4296 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4299 return 0;
4302 int hashdist = HASHDIST_DEFAULT;
4304 #ifdef CONFIG_NUMA
4305 static int __init set_hashdist(char *str)
4307 if (!str)
4308 return 0;
4309 hashdist = simple_strtoul(str, &str, 0);
4310 return 1;
4312 __setup("hashdist=", set_hashdist);
4313 #endif
4316 * allocate a large system hash table from bootmem
4317 * - it is assumed that the hash table must contain an exact power-of-2
4318 * quantity of entries
4319 * - limit is the number of hash buckets, not the total allocation size
4321 void *__init alloc_large_system_hash(const char *tablename,
4322 unsigned long bucketsize,
4323 unsigned long numentries,
4324 int scale,
4325 int flags,
4326 unsigned int *_hash_shift,
4327 unsigned int *_hash_mask,
4328 unsigned long limit)
4330 unsigned long long max = limit;
4331 unsigned long log2qty, size;
4332 void *table = NULL;
4334 /* allow the kernel cmdline to have a say */
4335 if (!numentries) {
4336 /* round applicable memory size up to nearest megabyte */
4337 numentries = nr_kernel_pages;
4338 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4339 numentries >>= 20 - PAGE_SHIFT;
4340 numentries <<= 20 - PAGE_SHIFT;
4342 /* limit to 1 bucket per 2^scale bytes of low memory */
4343 if (scale > PAGE_SHIFT)
4344 numentries >>= (scale - PAGE_SHIFT);
4345 else
4346 numentries <<= (PAGE_SHIFT - scale);
4348 /* Make sure we've got at least a 0-order allocation.. */
4349 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4350 numentries = PAGE_SIZE / bucketsize;
4352 numentries = roundup_pow_of_two(numentries);
4354 /* limit allocation size to 1/16 total memory by default */
4355 if (max == 0) {
4356 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4357 do_div(max, bucketsize);
4360 if (numentries > max)
4361 numentries = max;
4363 log2qty = ilog2(numentries);
4365 do {
4366 size = bucketsize << log2qty;
4367 if (flags & HASH_EARLY)
4368 table = alloc_bootmem(size);
4369 else if (hashdist)
4370 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4371 else {
4372 unsigned long order;
4373 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4375 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4377 * If bucketsize is not a power-of-two, we may free
4378 * some pages at the end of hash table.
4380 if (table) {
4381 unsigned long alloc_end = (unsigned long)table +
4382 (PAGE_SIZE << order);
4383 unsigned long used = (unsigned long)table +
4384 PAGE_ALIGN(size);
4385 split_page(virt_to_page(table), order);
4386 while (used < alloc_end) {
4387 free_page(used);
4388 used += PAGE_SIZE;
4392 } while (!table && size > PAGE_SIZE && --log2qty);
4394 if (!table)
4395 panic("Failed to allocate %s hash table\n", tablename);
4397 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4398 tablename,
4399 (1U << log2qty),
4400 ilog2(size) - PAGE_SHIFT,
4401 size);
4403 if (_hash_shift)
4404 *_hash_shift = log2qty;
4405 if (_hash_mask)
4406 *_hash_mask = (1 << log2qty) - 1;
4408 return table;
4411 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4412 struct page *pfn_to_page(unsigned long pfn)
4414 return __pfn_to_page(pfn);
4416 unsigned long page_to_pfn(struct page *page)
4418 return __page_to_pfn(page);
4420 EXPORT_SYMBOL(pfn_to_page);
4421 EXPORT_SYMBOL(page_to_pfn);
4422 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4424 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4425 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4426 unsigned long pfn)
4428 #ifdef CONFIG_SPARSEMEM
4429 return __pfn_to_section(pfn)->pageblock_flags;
4430 #else
4431 return zone->pageblock_flags;
4432 #endif /* CONFIG_SPARSEMEM */
4435 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4437 #ifdef CONFIG_SPARSEMEM
4438 pfn &= (PAGES_PER_SECTION-1);
4439 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4440 #else
4441 pfn = pfn - zone->zone_start_pfn;
4442 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4443 #endif /* CONFIG_SPARSEMEM */
4447 * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
4448 * @page: The page within the block of interest
4449 * @start_bitidx: The first bit of interest to retrieve
4450 * @end_bitidx: The last bit of interest
4451 * returns pageblock_bits flags
4453 unsigned long get_pageblock_flags_group(struct page *page,
4454 int start_bitidx, int end_bitidx)
4456 struct zone *zone;
4457 unsigned long *bitmap;
4458 unsigned long pfn, bitidx;
4459 unsigned long flags = 0;
4460 unsigned long value = 1;
4462 zone = page_zone(page);
4463 pfn = page_to_pfn(page);
4464 bitmap = get_pageblock_bitmap(zone, pfn);
4465 bitidx = pfn_to_bitidx(zone, pfn);
4467 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4468 if (test_bit(bitidx + start_bitidx, bitmap))
4469 flags |= value;
4471 return flags;
4475 * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
4476 * @page: The page within the block of interest
4477 * @start_bitidx: The first bit of interest
4478 * @end_bitidx: The last bit of interest
4479 * @flags: The flags to set
4481 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4482 int start_bitidx, int end_bitidx)
4484 struct zone *zone;
4485 unsigned long *bitmap;
4486 unsigned long pfn, bitidx;
4487 unsigned long value = 1;
4489 zone = page_zone(page);
4490 pfn = page_to_pfn(page);
4491 bitmap = get_pageblock_bitmap(zone, pfn);
4492 bitidx = pfn_to_bitidx(zone, pfn);
4494 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4495 if (flags & value)
4496 __set_bit(bitidx + start_bitidx, bitmap);
4497 else
4498 __clear_bit(bitidx + start_bitidx, bitmap);