ext4: Use high 16 bits of the block group descriptor's free counts fields
[linux-2.6/mini2440.git] / fs / ext4 / inode.c
blob56142accf5cd2b00976ada8a3cade6ea35bff38b
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
45 #define MPAGE_DA_EXTENT_TAIL 0x01
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
50 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
51 new_size);
54 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57 * Test whether an inode is a fast symlink.
59 static int ext4_inode_is_fast_symlink(struct inode *inode)
61 int ea_blocks = EXT4_I(inode)->i_file_acl ?
62 (inode->i_sb->s_blocksize >> 9) : 0;
64 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
68 * The ext4 forget function must perform a revoke if we are freeing data
69 * which has been journaled. Metadata (eg. indirect blocks) must be
70 * revoked in all cases.
72 * "bh" may be NULL: a metadata block may have been freed from memory
73 * but there may still be a record of it in the journal, and that record
74 * still needs to be revoked.
76 * If the handle isn't valid we're not journaling so there's nothing to do.
78 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
79 struct buffer_head *bh, ext4_fsblk_t blocknr)
81 int err;
83 if (!ext4_handle_valid(handle))
84 return 0;
86 might_sleep();
88 BUFFER_TRACE(bh, "enter");
90 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
91 "data mode %lx\n",
92 bh, is_metadata, inode->i_mode,
93 test_opt(inode->i_sb, DATA_FLAGS));
95 /* Never use the revoke function if we are doing full data
96 * journaling: there is no need to, and a V1 superblock won't
97 * support it. Otherwise, only skip the revoke on un-journaled
98 * data blocks. */
100 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
101 (!is_metadata && !ext4_should_journal_data(inode))) {
102 if (bh) {
103 BUFFER_TRACE(bh, "call jbd2_journal_forget");
104 return ext4_journal_forget(handle, bh);
106 return 0;
110 * data!=journal && (is_metadata || should_journal_data(inode))
112 BUFFER_TRACE(bh, "call ext4_journal_revoke");
113 err = ext4_journal_revoke(handle, blocknr, bh);
114 if (err)
115 ext4_abort(inode->i_sb, __func__,
116 "error %d when attempting revoke", err);
117 BUFFER_TRACE(bh, "exit");
118 return err;
122 * Work out how many blocks we need to proceed with the next chunk of a
123 * truncate transaction.
125 static unsigned long blocks_for_truncate(struct inode *inode)
127 ext4_lblk_t needed;
129 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
131 /* Give ourselves just enough room to cope with inodes in which
132 * i_blocks is corrupt: we've seen disk corruptions in the past
133 * which resulted in random data in an inode which looked enough
134 * like a regular file for ext4 to try to delete it. Things
135 * will go a bit crazy if that happens, but at least we should
136 * try not to panic the whole kernel. */
137 if (needed < 2)
138 needed = 2;
140 /* But we need to bound the transaction so we don't overflow the
141 * journal. */
142 if (needed > EXT4_MAX_TRANS_DATA)
143 needed = EXT4_MAX_TRANS_DATA;
145 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
149 * Truncate transactions can be complex and absolutely huge. So we need to
150 * be able to restart the transaction at a conventient checkpoint to make
151 * sure we don't overflow the journal.
153 * start_transaction gets us a new handle for a truncate transaction,
154 * and extend_transaction tries to extend the existing one a bit. If
155 * extend fails, we need to propagate the failure up and restart the
156 * transaction in the top-level truncate loop. --sct
158 static handle_t *start_transaction(struct inode *inode)
160 handle_t *result;
162 result = ext4_journal_start(inode, blocks_for_truncate(inode));
163 if (!IS_ERR(result))
164 return result;
166 ext4_std_error(inode->i_sb, PTR_ERR(result));
167 return result;
171 * Try to extend this transaction for the purposes of truncation.
173 * Returns 0 if we managed to create more room. If we can't create more
174 * room, and the transaction must be restarted we return 1.
176 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
178 if (!ext4_handle_valid(handle))
179 return 0;
180 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
181 return 0;
182 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
183 return 0;
184 return 1;
188 * Restart the transaction associated with *handle. This does a commit,
189 * so before we call here everything must be consistently dirtied against
190 * this transaction.
192 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
194 BUG_ON(EXT4_JOURNAL(inode) == NULL);
195 jbd_debug(2, "restarting handle %p\n", handle);
196 return ext4_journal_restart(handle, blocks_for_truncate(inode));
200 * Called at the last iput() if i_nlink is zero.
202 void ext4_delete_inode(struct inode *inode)
204 handle_t *handle;
205 int err;
207 if (ext4_should_order_data(inode))
208 ext4_begin_ordered_truncate(inode, 0);
209 truncate_inode_pages(&inode->i_data, 0);
211 if (is_bad_inode(inode))
212 goto no_delete;
214 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
215 if (IS_ERR(handle)) {
216 ext4_std_error(inode->i_sb, PTR_ERR(handle));
218 * If we're going to skip the normal cleanup, we still need to
219 * make sure that the in-core orphan linked list is properly
220 * cleaned up.
222 ext4_orphan_del(NULL, inode);
223 goto no_delete;
226 if (IS_SYNC(inode))
227 ext4_handle_sync(handle);
228 inode->i_size = 0;
229 err = ext4_mark_inode_dirty(handle, inode);
230 if (err) {
231 ext4_warning(inode->i_sb, __func__,
232 "couldn't mark inode dirty (err %d)", err);
233 goto stop_handle;
235 if (inode->i_blocks)
236 ext4_truncate(inode);
239 * ext4_ext_truncate() doesn't reserve any slop when it
240 * restarts journal transactions; therefore there may not be
241 * enough credits left in the handle to remove the inode from
242 * the orphan list and set the dtime field.
244 if (!ext4_handle_has_enough_credits(handle, 3)) {
245 err = ext4_journal_extend(handle, 3);
246 if (err > 0)
247 err = ext4_journal_restart(handle, 3);
248 if (err != 0) {
249 ext4_warning(inode->i_sb, __func__,
250 "couldn't extend journal (err %d)", err);
251 stop_handle:
252 ext4_journal_stop(handle);
253 goto no_delete;
258 * Kill off the orphan record which ext4_truncate created.
259 * AKPM: I think this can be inside the above `if'.
260 * Note that ext4_orphan_del() has to be able to cope with the
261 * deletion of a non-existent orphan - this is because we don't
262 * know if ext4_truncate() actually created an orphan record.
263 * (Well, we could do this if we need to, but heck - it works)
265 ext4_orphan_del(handle, inode);
266 EXT4_I(inode)->i_dtime = get_seconds();
269 * One subtle ordering requirement: if anything has gone wrong
270 * (transaction abort, IO errors, whatever), then we can still
271 * do these next steps (the fs will already have been marked as
272 * having errors), but we can't free the inode if the mark_dirty
273 * fails.
275 if (ext4_mark_inode_dirty(handle, inode))
276 /* If that failed, just do the required in-core inode clear. */
277 clear_inode(inode);
278 else
279 ext4_free_inode(handle, inode);
280 ext4_journal_stop(handle);
281 return;
282 no_delete:
283 clear_inode(inode); /* We must guarantee clearing of inode... */
286 typedef struct {
287 __le32 *p;
288 __le32 key;
289 struct buffer_head *bh;
290 } Indirect;
292 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
294 p->key = *(p->p = v);
295 p->bh = bh;
299 * ext4_block_to_path - parse the block number into array of offsets
300 * @inode: inode in question (we are only interested in its superblock)
301 * @i_block: block number to be parsed
302 * @offsets: array to store the offsets in
303 * @boundary: set this non-zero if the referred-to block is likely to be
304 * followed (on disk) by an indirect block.
306 * To store the locations of file's data ext4 uses a data structure common
307 * for UNIX filesystems - tree of pointers anchored in the inode, with
308 * data blocks at leaves and indirect blocks in intermediate nodes.
309 * This function translates the block number into path in that tree -
310 * return value is the path length and @offsets[n] is the offset of
311 * pointer to (n+1)th node in the nth one. If @block is out of range
312 * (negative or too large) warning is printed and zero returned.
314 * Note: function doesn't find node addresses, so no IO is needed. All
315 * we need to know is the capacity of indirect blocks (taken from the
316 * inode->i_sb).
320 * Portability note: the last comparison (check that we fit into triple
321 * indirect block) is spelled differently, because otherwise on an
322 * architecture with 32-bit longs and 8Kb pages we might get into trouble
323 * if our filesystem had 8Kb blocks. We might use long long, but that would
324 * kill us on x86. Oh, well, at least the sign propagation does not matter -
325 * i_block would have to be negative in the very beginning, so we would not
326 * get there at all.
329 static int ext4_block_to_path(struct inode *inode,
330 ext4_lblk_t i_block,
331 ext4_lblk_t offsets[4], int *boundary)
333 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
334 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
335 const long direct_blocks = EXT4_NDIR_BLOCKS,
336 indirect_blocks = ptrs,
337 double_blocks = (1 << (ptrs_bits * 2));
338 int n = 0;
339 int final = 0;
341 if (i_block < 0) {
342 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
343 } else if (i_block < direct_blocks) {
344 offsets[n++] = i_block;
345 final = direct_blocks;
346 } else if ((i_block -= direct_blocks) < indirect_blocks) {
347 offsets[n++] = EXT4_IND_BLOCK;
348 offsets[n++] = i_block;
349 final = ptrs;
350 } else if ((i_block -= indirect_blocks) < double_blocks) {
351 offsets[n++] = EXT4_DIND_BLOCK;
352 offsets[n++] = i_block >> ptrs_bits;
353 offsets[n++] = i_block & (ptrs - 1);
354 final = ptrs;
355 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
356 offsets[n++] = EXT4_TIND_BLOCK;
357 offsets[n++] = i_block >> (ptrs_bits * 2);
358 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
359 offsets[n++] = i_block & (ptrs - 1);
360 final = ptrs;
361 } else {
362 ext4_warning(inode->i_sb, "ext4_block_to_path",
363 "block %lu > max",
364 i_block + direct_blocks +
365 indirect_blocks + double_blocks);
367 if (boundary)
368 *boundary = final - 1 - (i_block & (ptrs - 1));
369 return n;
373 * ext4_get_branch - read the chain of indirect blocks leading to data
374 * @inode: inode in question
375 * @depth: depth of the chain (1 - direct pointer, etc.)
376 * @offsets: offsets of pointers in inode/indirect blocks
377 * @chain: place to store the result
378 * @err: here we store the error value
380 * Function fills the array of triples <key, p, bh> and returns %NULL
381 * if everything went OK or the pointer to the last filled triple
382 * (incomplete one) otherwise. Upon the return chain[i].key contains
383 * the number of (i+1)-th block in the chain (as it is stored in memory,
384 * i.e. little-endian 32-bit), chain[i].p contains the address of that
385 * number (it points into struct inode for i==0 and into the bh->b_data
386 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
387 * block for i>0 and NULL for i==0. In other words, it holds the block
388 * numbers of the chain, addresses they were taken from (and where we can
389 * verify that chain did not change) and buffer_heads hosting these
390 * numbers.
392 * Function stops when it stumbles upon zero pointer (absent block)
393 * (pointer to last triple returned, *@err == 0)
394 * or when it gets an IO error reading an indirect block
395 * (ditto, *@err == -EIO)
396 * or when it reads all @depth-1 indirect blocks successfully and finds
397 * the whole chain, all way to the data (returns %NULL, *err == 0).
399 * Need to be called with
400 * down_read(&EXT4_I(inode)->i_data_sem)
402 static Indirect *ext4_get_branch(struct inode *inode, int depth,
403 ext4_lblk_t *offsets,
404 Indirect chain[4], int *err)
406 struct super_block *sb = inode->i_sb;
407 Indirect *p = chain;
408 struct buffer_head *bh;
410 *err = 0;
411 /* i_data is not going away, no lock needed */
412 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
413 if (!p->key)
414 goto no_block;
415 while (--depth) {
416 bh = sb_bread(sb, le32_to_cpu(p->key));
417 if (!bh)
418 goto failure;
419 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
420 /* Reader: end */
421 if (!p->key)
422 goto no_block;
424 return NULL;
426 failure:
427 *err = -EIO;
428 no_block:
429 return p;
433 * ext4_find_near - find a place for allocation with sufficient locality
434 * @inode: owner
435 * @ind: descriptor of indirect block.
437 * This function returns the preferred place for block allocation.
438 * It is used when heuristic for sequential allocation fails.
439 * Rules are:
440 * + if there is a block to the left of our position - allocate near it.
441 * + if pointer will live in indirect block - allocate near that block.
442 * + if pointer will live in inode - allocate in the same
443 * cylinder group.
445 * In the latter case we colour the starting block by the callers PID to
446 * prevent it from clashing with concurrent allocations for a different inode
447 * in the same block group. The PID is used here so that functionally related
448 * files will be close-by on-disk.
450 * Caller must make sure that @ind is valid and will stay that way.
452 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
454 struct ext4_inode_info *ei = EXT4_I(inode);
455 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
456 __le32 *p;
457 ext4_fsblk_t bg_start;
458 ext4_fsblk_t last_block;
459 ext4_grpblk_t colour;
461 /* Try to find previous block */
462 for (p = ind->p - 1; p >= start; p--) {
463 if (*p)
464 return le32_to_cpu(*p);
467 /* No such thing, so let's try location of indirect block */
468 if (ind->bh)
469 return ind->bh->b_blocknr;
472 * It is going to be referred to from the inode itself? OK, just put it
473 * into the same cylinder group then.
475 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
476 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
478 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
479 colour = (current->pid % 16) *
480 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
481 else
482 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
483 return bg_start + colour;
487 * ext4_find_goal - find a preferred place for allocation.
488 * @inode: owner
489 * @block: block we want
490 * @partial: pointer to the last triple within a chain
492 * Normally this function find the preferred place for block allocation,
493 * returns it.
495 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
496 Indirect *partial)
499 * XXX need to get goal block from mballoc's data structures
502 return ext4_find_near(inode, partial);
506 * ext4_blks_to_allocate: Look up the block map and count the number
507 * of direct blocks need to be allocated for the given branch.
509 * @branch: chain of indirect blocks
510 * @k: number of blocks need for indirect blocks
511 * @blks: number of data blocks to be mapped.
512 * @blocks_to_boundary: the offset in the indirect block
514 * return the total number of blocks to be allocate, including the
515 * direct and indirect blocks.
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
518 int blocks_to_boundary)
520 unsigned int count = 0;
523 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 * then it's clear blocks on that path have not allocated
526 if (k > 0) {
527 /* right now we don't handle cross boundary allocation */
528 if (blks < blocks_to_boundary + 1)
529 count += blks;
530 else
531 count += blocks_to_boundary + 1;
532 return count;
535 count++;
536 while (count < blks && count <= blocks_to_boundary &&
537 le32_to_cpu(*(branch[0].p + count)) == 0) {
538 count++;
540 return count;
544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
545 * @indirect_blks: the number of blocks need to allocate for indirect
546 * blocks
548 * @new_blocks: on return it will store the new block numbers for
549 * the indirect blocks(if needed) and the first direct block,
550 * @blks: on return it will store the total number of allocated
551 * direct blocks
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554 ext4_lblk_t iblock, ext4_fsblk_t goal,
555 int indirect_blks, int blks,
556 ext4_fsblk_t new_blocks[4], int *err)
558 struct ext4_allocation_request ar;
559 int target, i;
560 unsigned long count = 0, blk_allocated = 0;
561 int index = 0;
562 ext4_fsblk_t current_block = 0;
563 int ret = 0;
566 * Here we try to allocate the requested multiple blocks at once,
567 * on a best-effort basis.
568 * To build a branch, we should allocate blocks for
569 * the indirect blocks(if not allocated yet), and at least
570 * the first direct block of this branch. That's the
571 * minimum number of blocks need to allocate(required)
573 /* first we try to allocate the indirect blocks */
574 target = indirect_blks;
575 while (target > 0) {
576 count = target;
577 /* allocating blocks for indirect blocks and direct blocks */
578 current_block = ext4_new_meta_blocks(handle, inode,
579 goal, &count, err);
580 if (*err)
581 goto failed_out;
583 target -= count;
584 /* allocate blocks for indirect blocks */
585 while (index < indirect_blks && count) {
586 new_blocks[index++] = current_block++;
587 count--;
589 if (count > 0) {
591 * save the new block number
592 * for the first direct block
594 new_blocks[index] = current_block;
595 printk(KERN_INFO "%s returned more blocks than "
596 "requested\n", __func__);
597 WARN_ON(1);
598 break;
602 target = blks - count ;
603 blk_allocated = count;
604 if (!target)
605 goto allocated;
606 /* Now allocate data blocks */
607 memset(&ar, 0, sizeof(ar));
608 ar.inode = inode;
609 ar.goal = goal;
610 ar.len = target;
611 ar.logical = iblock;
612 if (S_ISREG(inode->i_mode))
613 /* enable in-core preallocation only for regular files */
614 ar.flags = EXT4_MB_HINT_DATA;
616 current_block = ext4_mb_new_blocks(handle, &ar, err);
618 if (*err && (target == blks)) {
620 * if the allocation failed and we didn't allocate
621 * any blocks before
623 goto failed_out;
625 if (!*err) {
626 if (target == blks) {
628 * save the new block number
629 * for the first direct block
631 new_blocks[index] = current_block;
633 blk_allocated += ar.len;
635 allocated:
636 /* total number of blocks allocated for direct blocks */
637 ret = blk_allocated;
638 *err = 0;
639 return ret;
640 failed_out:
641 for (i = 0; i < index; i++)
642 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
643 return ret;
647 * ext4_alloc_branch - allocate and set up a chain of blocks.
648 * @inode: owner
649 * @indirect_blks: number of allocated indirect blocks
650 * @blks: number of allocated direct blocks
651 * @offsets: offsets (in the blocks) to store the pointers to next.
652 * @branch: place to store the chain in.
654 * This function allocates blocks, zeroes out all but the last one,
655 * links them into chain and (if we are synchronous) writes them to disk.
656 * In other words, it prepares a branch that can be spliced onto the
657 * inode. It stores the information about that chain in the branch[], in
658 * the same format as ext4_get_branch() would do. We are calling it after
659 * we had read the existing part of chain and partial points to the last
660 * triple of that (one with zero ->key). Upon the exit we have the same
661 * picture as after the successful ext4_get_block(), except that in one
662 * place chain is disconnected - *branch->p is still zero (we did not
663 * set the last link), but branch->key contains the number that should
664 * be placed into *branch->p to fill that gap.
666 * If allocation fails we free all blocks we've allocated (and forget
667 * their buffer_heads) and return the error value the from failed
668 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
669 * as described above and return 0.
671 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
672 ext4_lblk_t iblock, int indirect_blks,
673 int *blks, ext4_fsblk_t goal,
674 ext4_lblk_t *offsets, Indirect *branch)
676 int blocksize = inode->i_sb->s_blocksize;
677 int i, n = 0;
678 int err = 0;
679 struct buffer_head *bh;
680 int num;
681 ext4_fsblk_t new_blocks[4];
682 ext4_fsblk_t current_block;
684 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
685 *blks, new_blocks, &err);
686 if (err)
687 return err;
689 branch[0].key = cpu_to_le32(new_blocks[0]);
691 * metadata blocks and data blocks are allocated.
693 for (n = 1; n <= indirect_blks; n++) {
695 * Get buffer_head for parent block, zero it out
696 * and set the pointer to new one, then send
697 * parent to disk.
699 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
700 branch[n].bh = bh;
701 lock_buffer(bh);
702 BUFFER_TRACE(bh, "call get_create_access");
703 err = ext4_journal_get_create_access(handle, bh);
704 if (err) {
705 unlock_buffer(bh);
706 brelse(bh);
707 goto failed;
710 memset(bh->b_data, 0, blocksize);
711 branch[n].p = (__le32 *) bh->b_data + offsets[n];
712 branch[n].key = cpu_to_le32(new_blocks[n]);
713 *branch[n].p = branch[n].key;
714 if (n == indirect_blks) {
715 current_block = new_blocks[n];
717 * End of chain, update the last new metablock of
718 * the chain to point to the new allocated
719 * data blocks numbers
721 for (i=1; i < num; i++)
722 *(branch[n].p + i) = cpu_to_le32(++current_block);
724 BUFFER_TRACE(bh, "marking uptodate");
725 set_buffer_uptodate(bh);
726 unlock_buffer(bh);
728 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
729 err = ext4_handle_dirty_metadata(handle, inode, bh);
730 if (err)
731 goto failed;
733 *blks = num;
734 return err;
735 failed:
736 /* Allocation failed, free what we already allocated */
737 for (i = 1; i <= n ; i++) {
738 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
739 ext4_journal_forget(handle, branch[i].bh);
741 for (i = 0; i < indirect_blks; i++)
742 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
744 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
746 return err;
750 * ext4_splice_branch - splice the allocated branch onto inode.
751 * @inode: owner
752 * @block: (logical) number of block we are adding
753 * @chain: chain of indirect blocks (with a missing link - see
754 * ext4_alloc_branch)
755 * @where: location of missing link
756 * @num: number of indirect blocks we are adding
757 * @blks: number of direct blocks we are adding
759 * This function fills the missing link and does all housekeeping needed in
760 * inode (->i_blocks, etc.). In case of success we end up with the full
761 * chain to new block and return 0.
763 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
764 ext4_lblk_t block, Indirect *where, int num, int blks)
766 int i;
767 int err = 0;
768 ext4_fsblk_t current_block;
771 * If we're splicing into a [td]indirect block (as opposed to the
772 * inode) then we need to get write access to the [td]indirect block
773 * before the splice.
775 if (where->bh) {
776 BUFFER_TRACE(where->bh, "get_write_access");
777 err = ext4_journal_get_write_access(handle, where->bh);
778 if (err)
779 goto err_out;
781 /* That's it */
783 *where->p = where->key;
786 * Update the host buffer_head or inode to point to more just allocated
787 * direct blocks blocks
789 if (num == 0 && blks > 1) {
790 current_block = le32_to_cpu(where->key) + 1;
791 for (i = 1; i < blks; i++)
792 *(where->p + i) = cpu_to_le32(current_block++);
795 /* We are done with atomic stuff, now do the rest of housekeeping */
797 inode->i_ctime = ext4_current_time(inode);
798 ext4_mark_inode_dirty(handle, inode);
800 /* had we spliced it onto indirect block? */
801 if (where->bh) {
803 * If we spliced it onto an indirect block, we haven't
804 * altered the inode. Note however that if it is being spliced
805 * onto an indirect block at the very end of the file (the
806 * file is growing) then we *will* alter the inode to reflect
807 * the new i_size. But that is not done here - it is done in
808 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
810 jbd_debug(5, "splicing indirect only\n");
811 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
812 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
813 if (err)
814 goto err_out;
815 } else {
817 * OK, we spliced it into the inode itself on a direct block.
818 * Inode was dirtied above.
820 jbd_debug(5, "splicing direct\n");
822 return err;
824 err_out:
825 for (i = 1; i <= num; i++) {
826 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
827 ext4_journal_forget(handle, where[i].bh);
828 ext4_free_blocks(handle, inode,
829 le32_to_cpu(where[i-1].key), 1, 0);
831 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
833 return err;
837 * Allocation strategy is simple: if we have to allocate something, we will
838 * have to go the whole way to leaf. So let's do it before attaching anything
839 * to tree, set linkage between the newborn blocks, write them if sync is
840 * required, recheck the path, free and repeat if check fails, otherwise
841 * set the last missing link (that will protect us from any truncate-generated
842 * removals - all blocks on the path are immune now) and possibly force the
843 * write on the parent block.
844 * That has a nice additional property: no special recovery from the failed
845 * allocations is needed - we simply release blocks and do not touch anything
846 * reachable from inode.
848 * `handle' can be NULL if create == 0.
850 * return > 0, # of blocks mapped or allocated.
851 * return = 0, if plain lookup failed.
852 * return < 0, error case.
855 * Need to be called with
856 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
857 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
859 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
860 ext4_lblk_t iblock, unsigned int maxblocks,
861 struct buffer_head *bh_result,
862 int create, int extend_disksize)
864 int err = -EIO;
865 ext4_lblk_t offsets[4];
866 Indirect chain[4];
867 Indirect *partial;
868 ext4_fsblk_t goal;
869 int indirect_blks;
870 int blocks_to_boundary = 0;
871 int depth;
872 struct ext4_inode_info *ei = EXT4_I(inode);
873 int count = 0;
874 ext4_fsblk_t first_block = 0;
875 loff_t disksize;
878 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
879 J_ASSERT(handle != NULL || create == 0);
880 depth = ext4_block_to_path(inode, iblock, offsets,
881 &blocks_to_boundary);
883 if (depth == 0)
884 goto out;
886 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
888 /* Simplest case - block found, no allocation needed */
889 if (!partial) {
890 first_block = le32_to_cpu(chain[depth - 1].key);
891 clear_buffer_new(bh_result);
892 count++;
893 /*map more blocks*/
894 while (count < maxblocks && count <= blocks_to_boundary) {
895 ext4_fsblk_t blk;
897 blk = le32_to_cpu(*(chain[depth-1].p + count));
899 if (blk == first_block + count)
900 count++;
901 else
902 break;
904 goto got_it;
907 /* Next simple case - plain lookup or failed read of indirect block */
908 if (!create || err == -EIO)
909 goto cleanup;
912 * Okay, we need to do block allocation.
914 goal = ext4_find_goal(inode, iblock, partial);
916 /* the number of blocks need to allocate for [d,t]indirect blocks */
917 indirect_blks = (chain + depth) - partial - 1;
920 * Next look up the indirect map to count the totoal number of
921 * direct blocks to allocate for this branch.
923 count = ext4_blks_to_allocate(partial, indirect_blks,
924 maxblocks, blocks_to_boundary);
926 * Block out ext4_truncate while we alter the tree
928 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
929 &count, goal,
930 offsets + (partial - chain), partial);
933 * The ext4_splice_branch call will free and forget any buffers
934 * on the new chain if there is a failure, but that risks using
935 * up transaction credits, especially for bitmaps where the
936 * credits cannot be returned. Can we handle this somehow? We
937 * may need to return -EAGAIN upwards in the worst case. --sct
939 if (!err)
940 err = ext4_splice_branch(handle, inode, iblock,
941 partial, indirect_blks, count);
943 * i_disksize growing is protected by i_data_sem. Don't forget to
944 * protect it if you're about to implement concurrent
945 * ext4_get_block() -bzzz
947 if (!err && extend_disksize) {
948 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
949 if (disksize > i_size_read(inode))
950 disksize = i_size_read(inode);
951 if (disksize > ei->i_disksize)
952 ei->i_disksize = disksize;
954 if (err)
955 goto cleanup;
957 set_buffer_new(bh_result);
958 got_it:
959 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
960 if (count > blocks_to_boundary)
961 set_buffer_boundary(bh_result);
962 err = count;
963 /* Clean up and exit */
964 partial = chain + depth - 1; /* the whole chain */
965 cleanup:
966 while (partial > chain) {
967 BUFFER_TRACE(partial->bh, "call brelse");
968 brelse(partial->bh);
969 partial--;
971 BUFFER_TRACE(bh_result, "returned");
972 out:
973 return err;
977 * Calculate the number of metadata blocks need to reserve
978 * to allocate @blocks for non extent file based file
980 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
982 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
983 int ind_blks, dind_blks, tind_blks;
985 /* number of new indirect blocks needed */
986 ind_blks = (blocks + icap - 1) / icap;
988 dind_blks = (ind_blks + icap - 1) / icap;
990 tind_blks = 1;
992 return ind_blks + dind_blks + tind_blks;
996 * Calculate the number of metadata blocks need to reserve
997 * to allocate given number of blocks
999 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1001 if (!blocks)
1002 return 0;
1004 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1005 return ext4_ext_calc_metadata_amount(inode, blocks);
1007 return ext4_indirect_calc_metadata_amount(inode, blocks);
1010 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1012 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1013 int total, mdb, mdb_free;
1015 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1016 /* recalculate the number of metablocks still need to be reserved */
1017 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1018 mdb = ext4_calc_metadata_amount(inode, total);
1020 /* figure out how many metablocks to release */
1021 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1022 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1024 if (mdb_free) {
1025 /* Account for allocated meta_blocks */
1026 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1028 /* update fs dirty blocks counter */
1029 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1030 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1031 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1034 /* update per-inode reservations */
1035 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1036 EXT4_I(inode)->i_reserved_data_blocks -= used;
1038 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1043 * and returns if the blocks are already mapped.
1045 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1046 * and store the allocated blocks in the result buffer head and mark it
1047 * mapped.
1049 * If file type is extents based, it will call ext4_ext_get_blocks(),
1050 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1051 * based files
1053 * On success, it returns the number of blocks being mapped or allocate.
1054 * if create==0 and the blocks are pre-allocated and uninitialized block,
1055 * the result buffer head is unmapped. If the create ==1, it will make sure
1056 * the buffer head is mapped.
1058 * It returns 0 if plain look up failed (blocks have not been allocated), in
1059 * that casem, buffer head is unmapped
1061 * It returns the error in case of allocation failure.
1063 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1064 unsigned int max_blocks, struct buffer_head *bh,
1065 int create, int extend_disksize, int flag)
1067 int retval;
1069 clear_buffer_mapped(bh);
1072 * Try to see if we can get the block without requesting
1073 * for new file system block.
1075 down_read((&EXT4_I(inode)->i_data_sem));
1076 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1077 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1078 bh, 0, 0);
1079 } else {
1080 retval = ext4_get_blocks_handle(handle,
1081 inode, block, max_blocks, bh, 0, 0);
1083 up_read((&EXT4_I(inode)->i_data_sem));
1085 /* If it is only a block(s) look up */
1086 if (!create)
1087 return retval;
1090 * Returns if the blocks have already allocated
1092 * Note that if blocks have been preallocated
1093 * ext4_ext_get_block() returns th create = 0
1094 * with buffer head unmapped.
1096 if (retval > 0 && buffer_mapped(bh))
1097 return retval;
1100 * New blocks allocate and/or writing to uninitialized extent
1101 * will possibly result in updating i_data, so we take
1102 * the write lock of i_data_sem, and call get_blocks()
1103 * with create == 1 flag.
1105 down_write((&EXT4_I(inode)->i_data_sem));
1108 * if the caller is from delayed allocation writeout path
1109 * we have already reserved fs blocks for allocation
1110 * let the underlying get_block() function know to
1111 * avoid double accounting
1113 if (flag)
1114 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1116 * We need to check for EXT4 here because migrate
1117 * could have changed the inode type in between
1119 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1120 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1121 bh, create, extend_disksize);
1122 } else {
1123 retval = ext4_get_blocks_handle(handle, inode, block,
1124 max_blocks, bh, create, extend_disksize);
1126 if (retval > 0 && buffer_new(bh)) {
1128 * We allocated new blocks which will result in
1129 * i_data's format changing. Force the migrate
1130 * to fail by clearing migrate flags
1132 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1133 ~EXT4_EXT_MIGRATE;
1137 if (flag) {
1138 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1140 * Update reserved blocks/metadata blocks
1141 * after successful block allocation
1142 * which were deferred till now
1144 if ((retval > 0) && buffer_delay(bh))
1145 ext4_da_update_reserve_space(inode, retval);
1148 up_write((&EXT4_I(inode)->i_data_sem));
1149 return retval;
1152 /* Maximum number of blocks we map for direct IO at once. */
1153 #define DIO_MAX_BLOCKS 4096
1155 int ext4_get_block(struct inode *inode, sector_t iblock,
1156 struct buffer_head *bh_result, int create)
1158 handle_t *handle = ext4_journal_current_handle();
1159 int ret = 0, started = 0;
1160 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1161 int dio_credits;
1163 if (create && !handle) {
1164 /* Direct IO write... */
1165 if (max_blocks > DIO_MAX_BLOCKS)
1166 max_blocks = DIO_MAX_BLOCKS;
1167 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1168 handle = ext4_journal_start(inode, dio_credits);
1169 if (IS_ERR(handle)) {
1170 ret = PTR_ERR(handle);
1171 goto out;
1173 started = 1;
1176 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1177 max_blocks, bh_result, create, 0, 0);
1178 if (ret > 0) {
1179 bh_result->b_size = (ret << inode->i_blkbits);
1180 ret = 0;
1182 if (started)
1183 ext4_journal_stop(handle);
1184 out:
1185 return ret;
1189 * `handle' can be NULL if create is zero
1191 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1192 ext4_lblk_t block, int create, int *errp)
1194 struct buffer_head dummy;
1195 int fatal = 0, err;
1197 J_ASSERT(handle != NULL || create == 0);
1199 dummy.b_state = 0;
1200 dummy.b_blocknr = -1000;
1201 buffer_trace_init(&dummy.b_history);
1202 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1203 &dummy, create, 1, 0);
1205 * ext4_get_blocks_handle() returns number of blocks
1206 * mapped. 0 in case of a HOLE.
1208 if (err > 0) {
1209 if (err > 1)
1210 WARN_ON(1);
1211 err = 0;
1213 *errp = err;
1214 if (!err && buffer_mapped(&dummy)) {
1215 struct buffer_head *bh;
1216 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1217 if (!bh) {
1218 *errp = -EIO;
1219 goto err;
1221 if (buffer_new(&dummy)) {
1222 J_ASSERT(create != 0);
1223 J_ASSERT(handle != NULL);
1226 * Now that we do not always journal data, we should
1227 * keep in mind whether this should always journal the
1228 * new buffer as metadata. For now, regular file
1229 * writes use ext4_get_block instead, so it's not a
1230 * problem.
1232 lock_buffer(bh);
1233 BUFFER_TRACE(bh, "call get_create_access");
1234 fatal = ext4_journal_get_create_access(handle, bh);
1235 if (!fatal && !buffer_uptodate(bh)) {
1236 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1237 set_buffer_uptodate(bh);
1239 unlock_buffer(bh);
1240 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1241 err = ext4_handle_dirty_metadata(handle, inode, bh);
1242 if (!fatal)
1243 fatal = err;
1244 } else {
1245 BUFFER_TRACE(bh, "not a new buffer");
1247 if (fatal) {
1248 *errp = fatal;
1249 brelse(bh);
1250 bh = NULL;
1252 return bh;
1254 err:
1255 return NULL;
1258 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1259 ext4_lblk_t block, int create, int *err)
1261 struct buffer_head *bh;
1263 bh = ext4_getblk(handle, inode, block, create, err);
1264 if (!bh)
1265 return bh;
1266 if (buffer_uptodate(bh))
1267 return bh;
1268 ll_rw_block(READ_META, 1, &bh);
1269 wait_on_buffer(bh);
1270 if (buffer_uptodate(bh))
1271 return bh;
1272 put_bh(bh);
1273 *err = -EIO;
1274 return NULL;
1277 static int walk_page_buffers(handle_t *handle,
1278 struct buffer_head *head,
1279 unsigned from,
1280 unsigned to,
1281 int *partial,
1282 int (*fn)(handle_t *handle,
1283 struct buffer_head *bh))
1285 struct buffer_head *bh;
1286 unsigned block_start, block_end;
1287 unsigned blocksize = head->b_size;
1288 int err, ret = 0;
1289 struct buffer_head *next;
1291 for (bh = head, block_start = 0;
1292 ret == 0 && (bh != head || !block_start);
1293 block_start = block_end, bh = next)
1295 next = bh->b_this_page;
1296 block_end = block_start + blocksize;
1297 if (block_end <= from || block_start >= to) {
1298 if (partial && !buffer_uptodate(bh))
1299 *partial = 1;
1300 continue;
1302 err = (*fn)(handle, bh);
1303 if (!ret)
1304 ret = err;
1306 return ret;
1310 * To preserve ordering, it is essential that the hole instantiation and
1311 * the data write be encapsulated in a single transaction. We cannot
1312 * close off a transaction and start a new one between the ext4_get_block()
1313 * and the commit_write(). So doing the jbd2_journal_start at the start of
1314 * prepare_write() is the right place.
1316 * Also, this function can nest inside ext4_writepage() ->
1317 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1318 * has generated enough buffer credits to do the whole page. So we won't
1319 * block on the journal in that case, which is good, because the caller may
1320 * be PF_MEMALLOC.
1322 * By accident, ext4 can be reentered when a transaction is open via
1323 * quota file writes. If we were to commit the transaction while thus
1324 * reentered, there can be a deadlock - we would be holding a quota
1325 * lock, and the commit would never complete if another thread had a
1326 * transaction open and was blocking on the quota lock - a ranking
1327 * violation.
1329 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1330 * will _not_ run commit under these circumstances because handle->h_ref
1331 * is elevated. We'll still have enough credits for the tiny quotafile
1332 * write.
1334 static int do_journal_get_write_access(handle_t *handle,
1335 struct buffer_head *bh)
1337 if (!buffer_mapped(bh) || buffer_freed(bh))
1338 return 0;
1339 return ext4_journal_get_write_access(handle, bh);
1342 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1343 loff_t pos, unsigned len, unsigned flags,
1344 struct page **pagep, void **fsdata)
1346 struct inode *inode = mapping->host;
1347 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1348 handle_t *handle;
1349 int retries = 0;
1350 struct page *page;
1351 pgoff_t index;
1352 unsigned from, to;
1354 index = pos >> PAGE_CACHE_SHIFT;
1355 from = pos & (PAGE_CACHE_SIZE - 1);
1356 to = from + len;
1358 retry:
1359 handle = ext4_journal_start(inode, needed_blocks);
1360 if (IS_ERR(handle)) {
1361 ret = PTR_ERR(handle);
1362 goto out;
1365 page = grab_cache_page_write_begin(mapping, index, flags);
1366 if (!page) {
1367 ext4_journal_stop(handle);
1368 ret = -ENOMEM;
1369 goto out;
1371 *pagep = page;
1373 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1374 ext4_get_block);
1376 if (!ret && ext4_should_journal_data(inode)) {
1377 ret = walk_page_buffers(handle, page_buffers(page),
1378 from, to, NULL, do_journal_get_write_access);
1381 if (ret) {
1382 unlock_page(page);
1383 ext4_journal_stop(handle);
1384 page_cache_release(page);
1386 * block_write_begin may have instantiated a few blocks
1387 * outside i_size. Trim these off again. Don't need
1388 * i_size_read because we hold i_mutex.
1390 if (pos + len > inode->i_size)
1391 vmtruncate(inode, inode->i_size);
1394 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1395 goto retry;
1396 out:
1397 return ret;
1400 /* For write_end() in data=journal mode */
1401 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1403 if (!buffer_mapped(bh) || buffer_freed(bh))
1404 return 0;
1405 set_buffer_uptodate(bh);
1406 return ext4_handle_dirty_metadata(handle, NULL, bh);
1410 * We need to pick up the new inode size which generic_commit_write gave us
1411 * `file' can be NULL - eg, when called from page_symlink().
1413 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1414 * buffers are managed internally.
1416 static int ext4_ordered_write_end(struct file *file,
1417 struct address_space *mapping,
1418 loff_t pos, unsigned len, unsigned copied,
1419 struct page *page, void *fsdata)
1421 handle_t *handle = ext4_journal_current_handle();
1422 struct inode *inode = mapping->host;
1423 int ret = 0, ret2;
1425 ret = ext4_jbd2_file_inode(handle, inode);
1427 if (ret == 0) {
1428 loff_t new_i_size;
1430 new_i_size = pos + copied;
1431 if (new_i_size > EXT4_I(inode)->i_disksize) {
1432 ext4_update_i_disksize(inode, new_i_size);
1433 /* We need to mark inode dirty even if
1434 * new_i_size is less that inode->i_size
1435 * bu greater than i_disksize.(hint delalloc)
1437 ext4_mark_inode_dirty(handle, inode);
1440 ret2 = generic_write_end(file, mapping, pos, len, copied,
1441 page, fsdata);
1442 copied = ret2;
1443 if (ret2 < 0)
1444 ret = ret2;
1446 ret2 = ext4_journal_stop(handle);
1447 if (!ret)
1448 ret = ret2;
1450 return ret ? ret : copied;
1453 static int ext4_writeback_write_end(struct file *file,
1454 struct address_space *mapping,
1455 loff_t pos, unsigned len, unsigned copied,
1456 struct page *page, void *fsdata)
1458 handle_t *handle = ext4_journal_current_handle();
1459 struct inode *inode = mapping->host;
1460 int ret = 0, ret2;
1461 loff_t new_i_size;
1463 new_i_size = pos + copied;
1464 if (new_i_size > EXT4_I(inode)->i_disksize) {
1465 ext4_update_i_disksize(inode, new_i_size);
1466 /* We need to mark inode dirty even if
1467 * new_i_size is less that inode->i_size
1468 * bu greater than i_disksize.(hint delalloc)
1470 ext4_mark_inode_dirty(handle, inode);
1473 ret2 = generic_write_end(file, mapping, pos, len, copied,
1474 page, fsdata);
1475 copied = ret2;
1476 if (ret2 < 0)
1477 ret = ret2;
1479 ret2 = ext4_journal_stop(handle);
1480 if (!ret)
1481 ret = ret2;
1483 return ret ? ret : copied;
1486 static int ext4_journalled_write_end(struct file *file,
1487 struct address_space *mapping,
1488 loff_t pos, unsigned len, unsigned copied,
1489 struct page *page, void *fsdata)
1491 handle_t *handle = ext4_journal_current_handle();
1492 struct inode *inode = mapping->host;
1493 int ret = 0, ret2;
1494 int partial = 0;
1495 unsigned from, to;
1496 loff_t new_i_size;
1498 from = pos & (PAGE_CACHE_SIZE - 1);
1499 to = from + len;
1501 if (copied < len) {
1502 if (!PageUptodate(page))
1503 copied = 0;
1504 page_zero_new_buffers(page, from+copied, to);
1507 ret = walk_page_buffers(handle, page_buffers(page), from,
1508 to, &partial, write_end_fn);
1509 if (!partial)
1510 SetPageUptodate(page);
1511 new_i_size = pos + copied;
1512 if (new_i_size > inode->i_size)
1513 i_size_write(inode, pos+copied);
1514 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1515 if (new_i_size > EXT4_I(inode)->i_disksize) {
1516 ext4_update_i_disksize(inode, new_i_size);
1517 ret2 = ext4_mark_inode_dirty(handle, inode);
1518 if (!ret)
1519 ret = ret2;
1522 unlock_page(page);
1523 ret2 = ext4_journal_stop(handle);
1524 if (!ret)
1525 ret = ret2;
1526 page_cache_release(page);
1528 return ret ? ret : copied;
1531 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1533 int retries = 0;
1534 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1535 unsigned long md_needed, mdblocks, total = 0;
1538 * recalculate the amount of metadata blocks to reserve
1539 * in order to allocate nrblocks
1540 * worse case is one extent per block
1542 repeat:
1543 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1544 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1545 mdblocks = ext4_calc_metadata_amount(inode, total);
1546 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1548 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1549 total = md_needed + nrblocks;
1551 if (ext4_claim_free_blocks(sbi, total)) {
1552 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1553 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1554 yield();
1555 goto repeat;
1557 return -ENOSPC;
1559 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1560 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1562 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1563 return 0; /* success */
1566 static void ext4_da_release_space(struct inode *inode, int to_free)
1568 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1569 int total, mdb, mdb_free, release;
1571 if (!to_free)
1572 return; /* Nothing to release, exit */
1574 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1576 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1578 * if there is no reserved blocks, but we try to free some
1579 * then the counter is messed up somewhere.
1580 * but since this function is called from invalidate
1581 * page, it's harmless to return without any action
1583 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1584 "blocks for inode %lu, but there is no reserved "
1585 "data blocks\n", to_free, inode->i_ino);
1586 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1587 return;
1590 /* recalculate the number of metablocks still need to be reserved */
1591 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1592 mdb = ext4_calc_metadata_amount(inode, total);
1594 /* figure out how many metablocks to release */
1595 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1596 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1598 release = to_free + mdb_free;
1600 /* update fs dirty blocks counter for truncate case */
1601 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1603 /* update per-inode reservations */
1604 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1605 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1607 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1608 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1609 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1612 static void ext4_da_page_release_reservation(struct page *page,
1613 unsigned long offset)
1615 int to_release = 0;
1616 struct buffer_head *head, *bh;
1617 unsigned int curr_off = 0;
1619 head = page_buffers(page);
1620 bh = head;
1621 do {
1622 unsigned int next_off = curr_off + bh->b_size;
1624 if ((offset <= curr_off) && (buffer_delay(bh))) {
1625 to_release++;
1626 clear_buffer_delay(bh);
1628 curr_off = next_off;
1629 } while ((bh = bh->b_this_page) != head);
1630 ext4_da_release_space(page->mapping->host, to_release);
1634 * Delayed allocation stuff
1637 struct mpage_da_data {
1638 struct inode *inode;
1639 struct buffer_head lbh; /* extent of blocks */
1640 unsigned long first_page, next_page; /* extent of pages */
1641 get_block_t *get_block;
1642 struct writeback_control *wbc;
1643 int io_done;
1644 int pages_written;
1645 int retval;
1649 * mpage_da_submit_io - walks through extent of pages and try to write
1650 * them with writepage() call back
1652 * @mpd->inode: inode
1653 * @mpd->first_page: first page of the extent
1654 * @mpd->next_page: page after the last page of the extent
1655 * @mpd->get_block: the filesystem's block mapper function
1657 * By the time mpage_da_submit_io() is called we expect all blocks
1658 * to be allocated. this may be wrong if allocation failed.
1660 * As pages are already locked by write_cache_pages(), we can't use it
1662 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1664 long pages_skipped;
1665 struct pagevec pvec;
1666 unsigned long index, end;
1667 int ret = 0, err, nr_pages, i;
1668 struct inode *inode = mpd->inode;
1669 struct address_space *mapping = inode->i_mapping;
1671 BUG_ON(mpd->next_page <= mpd->first_page);
1673 * We need to start from the first_page to the next_page - 1
1674 * to make sure we also write the mapped dirty buffer_heads.
1675 * If we look at mpd->lbh.b_blocknr we would only be looking
1676 * at the currently mapped buffer_heads.
1678 index = mpd->first_page;
1679 end = mpd->next_page - 1;
1681 pagevec_init(&pvec, 0);
1682 while (index <= end) {
1683 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1684 if (nr_pages == 0)
1685 break;
1686 for (i = 0; i < nr_pages; i++) {
1687 struct page *page = pvec.pages[i];
1689 index = page->index;
1690 if (index > end)
1691 break;
1692 index++;
1694 BUG_ON(!PageLocked(page));
1695 BUG_ON(PageWriteback(page));
1697 pages_skipped = mpd->wbc->pages_skipped;
1698 err = mapping->a_ops->writepage(page, mpd->wbc);
1699 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1701 * have successfully written the page
1702 * without skipping the same
1704 mpd->pages_written++;
1706 * In error case, we have to continue because
1707 * remaining pages are still locked
1708 * XXX: unlock and re-dirty them?
1710 if (ret == 0)
1711 ret = err;
1713 pagevec_release(&pvec);
1715 return ret;
1719 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1721 * @mpd->inode - inode to walk through
1722 * @exbh->b_blocknr - first block on a disk
1723 * @exbh->b_size - amount of space in bytes
1724 * @logical - first logical block to start assignment with
1726 * the function goes through all passed space and put actual disk
1727 * block numbers into buffer heads, dropping BH_Delay
1729 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1730 struct buffer_head *exbh)
1732 struct inode *inode = mpd->inode;
1733 struct address_space *mapping = inode->i_mapping;
1734 int blocks = exbh->b_size >> inode->i_blkbits;
1735 sector_t pblock = exbh->b_blocknr, cur_logical;
1736 struct buffer_head *head, *bh;
1737 pgoff_t index, end;
1738 struct pagevec pvec;
1739 int nr_pages, i;
1741 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1742 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1743 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1745 pagevec_init(&pvec, 0);
1747 while (index <= end) {
1748 /* XXX: optimize tail */
1749 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1750 if (nr_pages == 0)
1751 break;
1752 for (i = 0; i < nr_pages; i++) {
1753 struct page *page = pvec.pages[i];
1755 index = page->index;
1756 if (index > end)
1757 break;
1758 index++;
1760 BUG_ON(!PageLocked(page));
1761 BUG_ON(PageWriteback(page));
1762 BUG_ON(!page_has_buffers(page));
1764 bh = page_buffers(page);
1765 head = bh;
1767 /* skip blocks out of the range */
1768 do {
1769 if (cur_logical >= logical)
1770 break;
1771 cur_logical++;
1772 } while ((bh = bh->b_this_page) != head);
1774 do {
1775 if (cur_logical >= logical + blocks)
1776 break;
1777 if (buffer_delay(bh)) {
1778 bh->b_blocknr = pblock;
1779 clear_buffer_delay(bh);
1780 bh->b_bdev = inode->i_sb->s_bdev;
1781 } else if (buffer_unwritten(bh)) {
1782 bh->b_blocknr = pblock;
1783 clear_buffer_unwritten(bh);
1784 set_buffer_mapped(bh);
1785 set_buffer_new(bh);
1786 bh->b_bdev = inode->i_sb->s_bdev;
1787 } else if (buffer_mapped(bh))
1788 BUG_ON(bh->b_blocknr != pblock);
1790 cur_logical++;
1791 pblock++;
1792 } while ((bh = bh->b_this_page) != head);
1794 pagevec_release(&pvec);
1800 * __unmap_underlying_blocks - just a helper function to unmap
1801 * set of blocks described by @bh
1803 static inline void __unmap_underlying_blocks(struct inode *inode,
1804 struct buffer_head *bh)
1806 struct block_device *bdev = inode->i_sb->s_bdev;
1807 int blocks, i;
1809 blocks = bh->b_size >> inode->i_blkbits;
1810 for (i = 0; i < blocks; i++)
1811 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1814 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1815 sector_t logical, long blk_cnt)
1817 int nr_pages, i;
1818 pgoff_t index, end;
1819 struct pagevec pvec;
1820 struct inode *inode = mpd->inode;
1821 struct address_space *mapping = inode->i_mapping;
1823 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1824 end = (logical + blk_cnt - 1) >>
1825 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1826 while (index <= end) {
1827 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1828 if (nr_pages == 0)
1829 break;
1830 for (i = 0; i < nr_pages; i++) {
1831 struct page *page = pvec.pages[i];
1832 index = page->index;
1833 if (index > end)
1834 break;
1835 index++;
1837 BUG_ON(!PageLocked(page));
1838 BUG_ON(PageWriteback(page));
1839 block_invalidatepage(page, 0);
1840 ClearPageUptodate(page);
1841 unlock_page(page);
1844 return;
1847 static void ext4_print_free_blocks(struct inode *inode)
1849 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1850 printk(KERN_EMERG "Total free blocks count %lld\n",
1851 ext4_count_free_blocks(inode->i_sb));
1852 printk(KERN_EMERG "Free/Dirty block details\n");
1853 printk(KERN_EMERG "free_blocks=%lld\n",
1854 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1855 printk(KERN_EMERG "dirty_blocks=%lld\n",
1856 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1857 printk(KERN_EMERG "Block reservation details\n");
1858 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1859 EXT4_I(inode)->i_reserved_data_blocks);
1860 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1861 EXT4_I(inode)->i_reserved_meta_blocks);
1862 return;
1866 * mpage_da_map_blocks - go through given space
1868 * @mpd->lbh - bh describing space
1869 * @mpd->get_block - the filesystem's block mapper function
1871 * The function skips space we know is already mapped to disk blocks.
1874 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1876 int err = 0;
1877 struct buffer_head new;
1878 struct buffer_head *lbh = &mpd->lbh;
1879 sector_t next;
1882 * We consider only non-mapped and non-allocated blocks
1884 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1885 return 0;
1886 new.b_state = lbh->b_state;
1887 new.b_blocknr = 0;
1888 new.b_size = lbh->b_size;
1889 next = lbh->b_blocknr;
1891 * If we didn't accumulate anything
1892 * to write simply return
1894 if (!new.b_size)
1895 return 0;
1896 err = mpd->get_block(mpd->inode, next, &new, 1);
1897 if (err) {
1899 /* If get block returns with error
1900 * we simply return. Later writepage
1901 * will redirty the page and writepages
1902 * will find the dirty page again
1904 if (err == -EAGAIN)
1905 return 0;
1907 if (err == -ENOSPC &&
1908 ext4_count_free_blocks(mpd->inode->i_sb)) {
1909 mpd->retval = err;
1910 return 0;
1914 * get block failure will cause us
1915 * to loop in writepages. Because
1916 * a_ops->writepage won't be able to
1917 * make progress. The page will be redirtied
1918 * by writepage and writepages will again
1919 * try to write the same.
1921 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1922 "at logical offset %llu with max blocks "
1923 "%zd with error %d\n",
1924 __func__, mpd->inode->i_ino,
1925 (unsigned long long)next,
1926 lbh->b_size >> mpd->inode->i_blkbits, err);
1927 printk(KERN_EMERG "This should not happen.!! "
1928 "Data will be lost\n");
1929 if (err == -ENOSPC) {
1930 ext4_print_free_blocks(mpd->inode);
1932 /* invlaidate all the pages */
1933 ext4_da_block_invalidatepages(mpd, next,
1934 lbh->b_size >> mpd->inode->i_blkbits);
1935 return err;
1937 BUG_ON(new.b_size == 0);
1939 if (buffer_new(&new))
1940 __unmap_underlying_blocks(mpd->inode, &new);
1943 * If blocks are delayed marked, we need to
1944 * put actual blocknr and drop delayed bit
1946 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1947 mpage_put_bnr_to_bhs(mpd, next, &new);
1949 return 0;
1952 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1953 (1 << BH_Delay) | (1 << BH_Unwritten))
1956 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1958 * @mpd->lbh - extent of blocks
1959 * @logical - logical number of the block in the file
1960 * @bh - bh of the block (used to access block's state)
1962 * the function is used to collect contig. blocks in same state
1964 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1965 sector_t logical, struct buffer_head *bh)
1967 sector_t next;
1968 size_t b_size = bh->b_size;
1969 struct buffer_head *lbh = &mpd->lbh;
1970 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1972 /* check if thereserved journal credits might overflow */
1973 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1974 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1976 * With non-extent format we are limited by the journal
1977 * credit available. Total credit needed to insert
1978 * nrblocks contiguous blocks is dependent on the
1979 * nrblocks. So limit nrblocks.
1981 goto flush_it;
1982 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1983 EXT4_MAX_TRANS_DATA) {
1985 * Adding the new buffer_head would make it cross the
1986 * allowed limit for which we have journal credit
1987 * reserved. So limit the new bh->b_size
1989 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1990 mpd->inode->i_blkbits;
1991 /* we will do mpage_da_submit_io in the next loop */
1995 * First block in the extent
1997 if (lbh->b_size == 0) {
1998 lbh->b_blocknr = logical;
1999 lbh->b_size = b_size;
2000 lbh->b_state = bh->b_state & BH_FLAGS;
2001 return;
2004 next = lbh->b_blocknr + nrblocks;
2006 * Can we merge the block to our big extent?
2008 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2009 lbh->b_size += b_size;
2010 return;
2013 flush_it:
2015 * We couldn't merge the block to our extent, so we
2016 * need to flush current extent and start new one
2018 if (mpage_da_map_blocks(mpd) == 0)
2019 mpage_da_submit_io(mpd);
2020 mpd->io_done = 1;
2021 return;
2025 * __mpage_da_writepage - finds extent of pages and blocks
2027 * @page: page to consider
2028 * @wbc: not used, we just follow rules
2029 * @data: context
2031 * The function finds extents of pages and scan them for all blocks.
2033 static int __mpage_da_writepage(struct page *page,
2034 struct writeback_control *wbc, void *data)
2036 struct mpage_da_data *mpd = data;
2037 struct inode *inode = mpd->inode;
2038 struct buffer_head *bh, *head, fake;
2039 sector_t logical;
2041 if (mpd->io_done) {
2043 * Rest of the page in the page_vec
2044 * redirty then and skip then. We will
2045 * try to to write them again after
2046 * starting a new transaction
2048 redirty_page_for_writepage(wbc, page);
2049 unlock_page(page);
2050 return MPAGE_DA_EXTENT_TAIL;
2053 * Can we merge this page to current extent?
2055 if (mpd->next_page != page->index) {
2057 * Nope, we can't. So, we map non-allocated blocks
2058 * and start IO on them using writepage()
2060 if (mpd->next_page != mpd->first_page) {
2061 if (mpage_da_map_blocks(mpd) == 0)
2062 mpage_da_submit_io(mpd);
2064 * skip rest of the page in the page_vec
2066 mpd->io_done = 1;
2067 redirty_page_for_writepage(wbc, page);
2068 unlock_page(page);
2069 return MPAGE_DA_EXTENT_TAIL;
2073 * Start next extent of pages ...
2075 mpd->first_page = page->index;
2078 * ... and blocks
2080 mpd->lbh.b_size = 0;
2081 mpd->lbh.b_state = 0;
2082 mpd->lbh.b_blocknr = 0;
2085 mpd->next_page = page->index + 1;
2086 logical = (sector_t) page->index <<
2087 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2089 if (!page_has_buffers(page)) {
2091 * There is no attached buffer heads yet (mmap?)
2092 * we treat the page asfull of dirty blocks
2094 bh = &fake;
2095 bh->b_size = PAGE_CACHE_SIZE;
2096 bh->b_state = 0;
2097 set_buffer_dirty(bh);
2098 set_buffer_uptodate(bh);
2099 mpage_add_bh_to_extent(mpd, logical, bh);
2100 if (mpd->io_done)
2101 return MPAGE_DA_EXTENT_TAIL;
2102 } else {
2104 * Page with regular buffer heads, just add all dirty ones
2106 head = page_buffers(page);
2107 bh = head;
2108 do {
2109 BUG_ON(buffer_locked(bh));
2111 * We need to try to allocate
2112 * unmapped blocks in the same page.
2113 * Otherwise we won't make progress
2114 * with the page in ext4_da_writepage
2116 if (buffer_dirty(bh) &&
2117 (!buffer_mapped(bh) || buffer_delay(bh))) {
2118 mpage_add_bh_to_extent(mpd, logical, bh);
2119 if (mpd->io_done)
2120 return MPAGE_DA_EXTENT_TAIL;
2121 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2123 * mapped dirty buffer. We need to update
2124 * the b_state because we look at
2125 * b_state in mpage_da_map_blocks. We don't
2126 * update b_size because if we find an
2127 * unmapped buffer_head later we need to
2128 * use the b_state flag of that buffer_head.
2130 if (mpd->lbh.b_size == 0)
2131 mpd->lbh.b_state =
2132 bh->b_state & BH_FLAGS;
2134 logical++;
2135 } while ((bh = bh->b_this_page) != head);
2138 return 0;
2142 * mpage_da_writepages - walk the list of dirty pages of the given
2143 * address space, allocates non-allocated blocks, maps newly-allocated
2144 * blocks to existing bhs and issue IO them
2146 * @mapping: address space structure to write
2147 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2148 * @get_block: the filesystem's block mapper function.
2150 * This is a library function, which implements the writepages()
2151 * address_space_operation.
2153 static int mpage_da_writepages(struct address_space *mapping,
2154 struct writeback_control *wbc,
2155 struct mpage_da_data *mpd)
2157 int ret;
2159 if (!mpd->get_block)
2160 return generic_writepages(mapping, wbc);
2162 mpd->lbh.b_size = 0;
2163 mpd->lbh.b_state = 0;
2164 mpd->lbh.b_blocknr = 0;
2165 mpd->first_page = 0;
2166 mpd->next_page = 0;
2167 mpd->io_done = 0;
2168 mpd->pages_written = 0;
2169 mpd->retval = 0;
2171 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2173 * Handle last extent of pages
2175 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2176 if (mpage_da_map_blocks(mpd) == 0)
2177 mpage_da_submit_io(mpd);
2179 mpd->io_done = 1;
2180 ret = MPAGE_DA_EXTENT_TAIL;
2182 wbc->nr_to_write -= mpd->pages_written;
2183 return ret;
2187 * this is a special callback for ->write_begin() only
2188 * it's intention is to return mapped block or reserve space
2190 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2191 struct buffer_head *bh_result, int create)
2193 int ret = 0;
2195 BUG_ON(create == 0);
2196 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2199 * first, we need to know whether the block is allocated already
2200 * preallocated blocks are unmapped but should treated
2201 * the same as allocated blocks.
2203 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2204 if ((ret == 0) && !buffer_delay(bh_result)) {
2205 /* the block isn't (pre)allocated yet, let's reserve space */
2207 * XXX: __block_prepare_write() unmaps passed block,
2208 * is it OK?
2210 ret = ext4_da_reserve_space(inode, 1);
2211 if (ret)
2212 /* not enough space to reserve */
2213 return ret;
2215 map_bh(bh_result, inode->i_sb, 0);
2216 set_buffer_new(bh_result);
2217 set_buffer_delay(bh_result);
2218 } else if (ret > 0) {
2219 bh_result->b_size = (ret << inode->i_blkbits);
2220 ret = 0;
2223 return ret;
2225 #define EXT4_DELALLOC_RSVED 1
2226 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2227 struct buffer_head *bh_result, int create)
2229 int ret;
2230 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2231 loff_t disksize = EXT4_I(inode)->i_disksize;
2232 handle_t *handle = NULL;
2234 handle = ext4_journal_current_handle();
2235 BUG_ON(!handle);
2236 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2237 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2238 if (ret > 0) {
2240 bh_result->b_size = (ret << inode->i_blkbits);
2242 if (ext4_should_order_data(inode)) {
2243 int retval;
2244 retval = ext4_jbd2_file_inode(handle, inode);
2245 if (retval)
2247 * Failed to add inode for ordered
2248 * mode. Don't update file size
2250 return retval;
2254 * Update on-disk size along with block allocation
2255 * we don't use 'extend_disksize' as size may change
2256 * within already allocated block -bzzz
2258 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2259 if (disksize > i_size_read(inode))
2260 disksize = i_size_read(inode);
2261 if (disksize > EXT4_I(inode)->i_disksize) {
2262 ext4_update_i_disksize(inode, disksize);
2263 ret = ext4_mark_inode_dirty(handle, inode);
2264 return ret;
2266 ret = 0;
2268 return ret;
2271 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2274 * unmapped buffer is possible for holes.
2275 * delay buffer is possible with delayed allocation
2277 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2280 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2281 struct buffer_head *bh_result, int create)
2283 int ret = 0;
2284 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2287 * we don't want to do block allocation in writepage
2288 * so call get_block_wrap with create = 0
2290 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2291 bh_result, 0, 0, 0);
2292 if (ret > 0) {
2293 bh_result->b_size = (ret << inode->i_blkbits);
2294 ret = 0;
2296 return ret;
2300 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2301 * get called via journal_submit_inode_data_buffers (no journal handle)
2302 * get called via shrink_page_list via pdflush (no journal handle)
2303 * or grab_page_cache when doing write_begin (have journal handle)
2305 static int ext4_da_writepage(struct page *page,
2306 struct writeback_control *wbc)
2308 int ret = 0;
2309 loff_t size;
2310 unsigned int len;
2311 struct buffer_head *page_bufs;
2312 struct inode *inode = page->mapping->host;
2314 size = i_size_read(inode);
2315 if (page->index == size >> PAGE_CACHE_SHIFT)
2316 len = size & ~PAGE_CACHE_MASK;
2317 else
2318 len = PAGE_CACHE_SIZE;
2320 if (page_has_buffers(page)) {
2321 page_bufs = page_buffers(page);
2322 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2323 ext4_bh_unmapped_or_delay)) {
2325 * We don't want to do block allocation
2326 * So redirty the page and return
2327 * We may reach here when we do a journal commit
2328 * via journal_submit_inode_data_buffers.
2329 * If we don't have mapping block we just ignore
2330 * them. We can also reach here via shrink_page_list
2332 redirty_page_for_writepage(wbc, page);
2333 unlock_page(page);
2334 return 0;
2336 } else {
2338 * The test for page_has_buffers() is subtle:
2339 * We know the page is dirty but it lost buffers. That means
2340 * that at some moment in time after write_begin()/write_end()
2341 * has been called all buffers have been clean and thus they
2342 * must have been written at least once. So they are all
2343 * mapped and we can happily proceed with mapping them
2344 * and writing the page.
2346 * Try to initialize the buffer_heads and check whether
2347 * all are mapped and non delay. We don't want to
2348 * do block allocation here.
2350 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2351 ext4_normal_get_block_write);
2352 if (!ret) {
2353 page_bufs = page_buffers(page);
2354 /* check whether all are mapped and non delay */
2355 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2356 ext4_bh_unmapped_or_delay)) {
2357 redirty_page_for_writepage(wbc, page);
2358 unlock_page(page);
2359 return 0;
2361 } else {
2363 * We can't do block allocation here
2364 * so just redity the page and unlock
2365 * and return
2367 redirty_page_for_writepage(wbc, page);
2368 unlock_page(page);
2369 return 0;
2371 /* now mark the buffer_heads as dirty and uptodate */
2372 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2375 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2376 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2377 else
2378 ret = block_write_full_page(page,
2379 ext4_normal_get_block_write,
2380 wbc);
2382 return ret;
2386 * This is called via ext4_da_writepages() to
2387 * calulate the total number of credits to reserve to fit
2388 * a single extent allocation into a single transaction,
2389 * ext4_da_writpeages() will loop calling this before
2390 * the block allocation.
2393 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2395 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2398 * With non-extent format the journal credit needed to
2399 * insert nrblocks contiguous block is dependent on
2400 * number of contiguous block. So we will limit
2401 * number of contiguous block to a sane value
2403 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2404 (max_blocks > EXT4_MAX_TRANS_DATA))
2405 max_blocks = EXT4_MAX_TRANS_DATA;
2407 return ext4_chunk_trans_blocks(inode, max_blocks);
2410 static int ext4_da_writepages(struct address_space *mapping,
2411 struct writeback_control *wbc)
2413 pgoff_t index;
2414 int range_whole = 0;
2415 handle_t *handle = NULL;
2416 struct mpage_da_data mpd;
2417 struct inode *inode = mapping->host;
2418 int no_nrwrite_index_update;
2419 int pages_written = 0;
2420 long pages_skipped;
2421 int needed_blocks, ret = 0, nr_to_writebump = 0;
2422 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2425 * No pages to write? This is mainly a kludge to avoid starting
2426 * a transaction for special inodes like journal inode on last iput()
2427 * because that could violate lock ordering on umount
2429 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2430 return 0;
2433 * If the filesystem has aborted, it is read-only, so return
2434 * right away instead of dumping stack traces later on that
2435 * will obscure the real source of the problem. We test
2436 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2437 * the latter could be true if the filesystem is mounted
2438 * read-only, and in that case, ext4_da_writepages should
2439 * *never* be called, so if that ever happens, we would want
2440 * the stack trace.
2442 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2443 return -EROFS;
2446 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2447 * This make sure small files blocks are allocated in
2448 * single attempt. This ensure that small files
2449 * get less fragmented.
2451 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2452 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2453 wbc->nr_to_write = sbi->s_mb_stream_request;
2455 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2456 range_whole = 1;
2458 if (wbc->range_cyclic)
2459 index = mapping->writeback_index;
2460 else
2461 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2463 mpd.wbc = wbc;
2464 mpd.inode = mapping->host;
2467 * we don't want write_cache_pages to update
2468 * nr_to_write and writeback_index
2470 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2471 wbc->no_nrwrite_index_update = 1;
2472 pages_skipped = wbc->pages_skipped;
2474 while (!ret && wbc->nr_to_write > 0) {
2477 * we insert one extent at a time. So we need
2478 * credit needed for single extent allocation.
2479 * journalled mode is currently not supported
2480 * by delalloc
2482 BUG_ON(ext4_should_journal_data(inode));
2483 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2485 /* start a new transaction*/
2486 handle = ext4_journal_start(inode, needed_blocks);
2487 if (IS_ERR(handle)) {
2488 ret = PTR_ERR(handle);
2489 printk(KERN_CRIT "%s: jbd2_start: "
2490 "%ld pages, ino %lu; err %d\n", __func__,
2491 wbc->nr_to_write, inode->i_ino, ret);
2492 dump_stack();
2493 goto out_writepages;
2495 mpd.get_block = ext4_da_get_block_write;
2496 ret = mpage_da_writepages(mapping, wbc, &mpd);
2498 ext4_journal_stop(handle);
2500 if (mpd.retval == -ENOSPC) {
2501 /* commit the transaction which would
2502 * free blocks released in the transaction
2503 * and try again
2505 jbd2_journal_force_commit_nested(sbi->s_journal);
2506 wbc->pages_skipped = pages_skipped;
2507 ret = 0;
2508 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2510 * got one extent now try with
2511 * rest of the pages
2513 pages_written += mpd.pages_written;
2514 wbc->pages_skipped = pages_skipped;
2515 ret = 0;
2516 } else if (wbc->nr_to_write)
2518 * There is no more writeout needed
2519 * or we requested for a noblocking writeout
2520 * and we found the device congested
2522 break;
2524 if (pages_skipped != wbc->pages_skipped)
2525 printk(KERN_EMERG "This should not happen leaving %s "
2526 "with nr_to_write = %ld ret = %d\n",
2527 __func__, wbc->nr_to_write, ret);
2529 /* Update index */
2530 index += pages_written;
2531 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2533 * set the writeback_index so that range_cyclic
2534 * mode will write it back later
2536 mapping->writeback_index = index;
2538 out_writepages:
2539 if (!no_nrwrite_index_update)
2540 wbc->no_nrwrite_index_update = 0;
2541 wbc->nr_to_write -= nr_to_writebump;
2542 return ret;
2545 #define FALL_BACK_TO_NONDELALLOC 1
2546 static int ext4_nonda_switch(struct super_block *sb)
2548 s64 free_blocks, dirty_blocks;
2549 struct ext4_sb_info *sbi = EXT4_SB(sb);
2552 * switch to non delalloc mode if we are running low
2553 * on free block. The free block accounting via percpu
2554 * counters can get slightly wrong with FBC_BATCH getting
2555 * accumulated on each CPU without updating global counters
2556 * Delalloc need an accurate free block accounting. So switch
2557 * to non delalloc when we are near to error range.
2559 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2560 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2561 if (2 * free_blocks < 3 * dirty_blocks ||
2562 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2564 * free block count is less that 150% of dirty blocks
2565 * or free blocks is less that watermark
2567 return 1;
2569 return 0;
2572 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2573 loff_t pos, unsigned len, unsigned flags,
2574 struct page **pagep, void **fsdata)
2576 int ret, retries = 0;
2577 struct page *page;
2578 pgoff_t index;
2579 unsigned from, to;
2580 struct inode *inode = mapping->host;
2581 handle_t *handle;
2583 index = pos >> PAGE_CACHE_SHIFT;
2584 from = pos & (PAGE_CACHE_SIZE - 1);
2585 to = from + len;
2587 if (ext4_nonda_switch(inode->i_sb)) {
2588 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2589 return ext4_write_begin(file, mapping, pos,
2590 len, flags, pagep, fsdata);
2592 *fsdata = (void *)0;
2593 retry:
2595 * With delayed allocation, we don't log the i_disksize update
2596 * if there is delayed block allocation. But we still need
2597 * to journalling the i_disksize update if writes to the end
2598 * of file which has an already mapped buffer.
2600 handle = ext4_journal_start(inode, 1);
2601 if (IS_ERR(handle)) {
2602 ret = PTR_ERR(handle);
2603 goto out;
2606 page = grab_cache_page_write_begin(mapping, index, flags);
2607 if (!page) {
2608 ext4_journal_stop(handle);
2609 ret = -ENOMEM;
2610 goto out;
2612 *pagep = page;
2614 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2615 ext4_da_get_block_prep);
2616 if (ret < 0) {
2617 unlock_page(page);
2618 ext4_journal_stop(handle);
2619 page_cache_release(page);
2621 * block_write_begin may have instantiated a few blocks
2622 * outside i_size. Trim these off again. Don't need
2623 * i_size_read because we hold i_mutex.
2625 if (pos + len > inode->i_size)
2626 vmtruncate(inode, inode->i_size);
2629 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2630 goto retry;
2631 out:
2632 return ret;
2636 * Check if we should update i_disksize
2637 * when write to the end of file but not require block allocation
2639 static int ext4_da_should_update_i_disksize(struct page *page,
2640 unsigned long offset)
2642 struct buffer_head *bh;
2643 struct inode *inode = page->mapping->host;
2644 unsigned int idx;
2645 int i;
2647 bh = page_buffers(page);
2648 idx = offset >> inode->i_blkbits;
2650 for (i = 0; i < idx; i++)
2651 bh = bh->b_this_page;
2653 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2654 return 0;
2655 return 1;
2658 static int ext4_da_write_end(struct file *file,
2659 struct address_space *mapping,
2660 loff_t pos, unsigned len, unsigned copied,
2661 struct page *page, void *fsdata)
2663 struct inode *inode = mapping->host;
2664 int ret = 0, ret2;
2665 handle_t *handle = ext4_journal_current_handle();
2666 loff_t new_i_size;
2667 unsigned long start, end;
2668 int write_mode = (int)(unsigned long)fsdata;
2670 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2671 if (ext4_should_order_data(inode)) {
2672 return ext4_ordered_write_end(file, mapping, pos,
2673 len, copied, page, fsdata);
2674 } else if (ext4_should_writeback_data(inode)) {
2675 return ext4_writeback_write_end(file, mapping, pos,
2676 len, copied, page, fsdata);
2677 } else {
2678 BUG();
2682 start = pos & (PAGE_CACHE_SIZE - 1);
2683 end = start + copied - 1;
2686 * generic_write_end() will run mark_inode_dirty() if i_size
2687 * changes. So let's piggyback the i_disksize mark_inode_dirty
2688 * into that.
2691 new_i_size = pos + copied;
2692 if (new_i_size > EXT4_I(inode)->i_disksize) {
2693 if (ext4_da_should_update_i_disksize(page, end)) {
2694 down_write(&EXT4_I(inode)->i_data_sem);
2695 if (new_i_size > EXT4_I(inode)->i_disksize) {
2697 * Updating i_disksize when extending file
2698 * without needing block allocation
2700 if (ext4_should_order_data(inode))
2701 ret = ext4_jbd2_file_inode(handle,
2702 inode);
2704 EXT4_I(inode)->i_disksize = new_i_size;
2706 up_write(&EXT4_I(inode)->i_data_sem);
2707 /* We need to mark inode dirty even if
2708 * new_i_size is less that inode->i_size
2709 * bu greater than i_disksize.(hint delalloc)
2711 ext4_mark_inode_dirty(handle, inode);
2714 ret2 = generic_write_end(file, mapping, pos, len, copied,
2715 page, fsdata);
2716 copied = ret2;
2717 if (ret2 < 0)
2718 ret = ret2;
2719 ret2 = ext4_journal_stop(handle);
2720 if (!ret)
2721 ret = ret2;
2723 return ret ? ret : copied;
2726 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2729 * Drop reserved blocks
2731 BUG_ON(!PageLocked(page));
2732 if (!page_has_buffers(page))
2733 goto out;
2735 ext4_da_page_release_reservation(page, offset);
2737 out:
2738 ext4_invalidatepage(page, offset);
2740 return;
2745 * bmap() is special. It gets used by applications such as lilo and by
2746 * the swapper to find the on-disk block of a specific piece of data.
2748 * Naturally, this is dangerous if the block concerned is still in the
2749 * journal. If somebody makes a swapfile on an ext4 data-journaling
2750 * filesystem and enables swap, then they may get a nasty shock when the
2751 * data getting swapped to that swapfile suddenly gets overwritten by
2752 * the original zero's written out previously to the journal and
2753 * awaiting writeback in the kernel's buffer cache.
2755 * So, if we see any bmap calls here on a modified, data-journaled file,
2756 * take extra steps to flush any blocks which might be in the cache.
2758 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2760 struct inode *inode = mapping->host;
2761 journal_t *journal;
2762 int err;
2764 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2765 test_opt(inode->i_sb, DELALLOC)) {
2767 * With delalloc we want to sync the file
2768 * so that we can make sure we allocate
2769 * blocks for file
2771 filemap_write_and_wait(mapping);
2774 BUG_ON(!EXT4_JOURNAL(inode) &&
2775 EXT4_I(inode)->i_state & EXT4_STATE_JDATA);
2777 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2779 * This is a REALLY heavyweight approach, but the use of
2780 * bmap on dirty files is expected to be extremely rare:
2781 * only if we run lilo or swapon on a freshly made file
2782 * do we expect this to happen.
2784 * (bmap requires CAP_SYS_RAWIO so this does not
2785 * represent an unprivileged user DOS attack --- we'd be
2786 * in trouble if mortal users could trigger this path at
2787 * will.)
2789 * NB. EXT4_STATE_JDATA is not set on files other than
2790 * regular files. If somebody wants to bmap a directory
2791 * or symlink and gets confused because the buffer
2792 * hasn't yet been flushed to disk, they deserve
2793 * everything they get.
2796 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2797 journal = EXT4_JOURNAL(inode);
2798 jbd2_journal_lock_updates(journal);
2799 err = jbd2_journal_flush(journal);
2800 jbd2_journal_unlock_updates(journal);
2802 if (err)
2803 return 0;
2806 return generic_block_bmap(mapping, block, ext4_get_block);
2809 static int bget_one(handle_t *handle, struct buffer_head *bh)
2811 get_bh(bh);
2812 return 0;
2815 static int bput_one(handle_t *handle, struct buffer_head *bh)
2817 put_bh(bh);
2818 return 0;
2822 * Note that we don't need to start a transaction unless we're journaling data
2823 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2824 * need to file the inode to the transaction's list in ordered mode because if
2825 * we are writing back data added by write(), the inode is already there and if
2826 * we are writing back data modified via mmap(), noone guarantees in which
2827 * transaction the data will hit the disk. In case we are journaling data, we
2828 * cannot start transaction directly because transaction start ranks above page
2829 * lock so we have to do some magic.
2831 * In all journaling modes block_write_full_page() will start the I/O.
2833 * Problem:
2835 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2836 * ext4_writepage()
2838 * Similar for:
2840 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2842 * Same applies to ext4_get_block(). We will deadlock on various things like
2843 * lock_journal and i_data_sem
2845 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2846 * allocations fail.
2848 * 16May01: If we're reentered then journal_current_handle() will be
2849 * non-zero. We simply *return*.
2851 * 1 July 2001: @@@ FIXME:
2852 * In journalled data mode, a data buffer may be metadata against the
2853 * current transaction. But the same file is part of a shared mapping
2854 * and someone does a writepage() on it.
2856 * We will move the buffer onto the async_data list, but *after* it has
2857 * been dirtied. So there's a small window where we have dirty data on
2858 * BJ_Metadata.
2860 * Note that this only applies to the last partial page in the file. The
2861 * bit which block_write_full_page() uses prepare/commit for. (That's
2862 * broken code anyway: it's wrong for msync()).
2864 * It's a rare case: affects the final partial page, for journalled data
2865 * where the file is subject to bith write() and writepage() in the same
2866 * transction. To fix it we'll need a custom block_write_full_page().
2867 * We'll probably need that anyway for journalling writepage() output.
2869 * We don't honour synchronous mounts for writepage(). That would be
2870 * disastrous. Any write() or metadata operation will sync the fs for
2871 * us.
2874 static int __ext4_normal_writepage(struct page *page,
2875 struct writeback_control *wbc)
2877 struct inode *inode = page->mapping->host;
2879 if (test_opt(inode->i_sb, NOBH))
2880 return nobh_writepage(page,
2881 ext4_normal_get_block_write, wbc);
2882 else
2883 return block_write_full_page(page,
2884 ext4_normal_get_block_write,
2885 wbc);
2888 static int ext4_normal_writepage(struct page *page,
2889 struct writeback_control *wbc)
2891 struct inode *inode = page->mapping->host;
2892 loff_t size = i_size_read(inode);
2893 loff_t len;
2895 J_ASSERT(PageLocked(page));
2896 if (page->index == size >> PAGE_CACHE_SHIFT)
2897 len = size & ~PAGE_CACHE_MASK;
2898 else
2899 len = PAGE_CACHE_SIZE;
2901 if (page_has_buffers(page)) {
2902 /* if page has buffers it should all be mapped
2903 * and allocated. If there are not buffers attached
2904 * to the page we know the page is dirty but it lost
2905 * buffers. That means that at some moment in time
2906 * after write_begin() / write_end() has been called
2907 * all buffers have been clean and thus they must have been
2908 * written at least once. So they are all mapped and we can
2909 * happily proceed with mapping them and writing the page.
2911 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2912 ext4_bh_unmapped_or_delay));
2915 if (!ext4_journal_current_handle())
2916 return __ext4_normal_writepage(page, wbc);
2918 redirty_page_for_writepage(wbc, page);
2919 unlock_page(page);
2920 return 0;
2923 static int __ext4_journalled_writepage(struct page *page,
2924 struct writeback_control *wbc)
2926 struct address_space *mapping = page->mapping;
2927 struct inode *inode = mapping->host;
2928 struct buffer_head *page_bufs;
2929 handle_t *handle = NULL;
2930 int ret = 0;
2931 int err;
2933 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2934 ext4_normal_get_block_write);
2935 if (ret != 0)
2936 goto out_unlock;
2938 page_bufs = page_buffers(page);
2939 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2940 bget_one);
2941 /* As soon as we unlock the page, it can go away, but we have
2942 * references to buffers so we are safe */
2943 unlock_page(page);
2945 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2946 if (IS_ERR(handle)) {
2947 ret = PTR_ERR(handle);
2948 goto out;
2951 ret = walk_page_buffers(handle, page_bufs, 0,
2952 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2954 err = walk_page_buffers(handle, page_bufs, 0,
2955 PAGE_CACHE_SIZE, NULL, write_end_fn);
2956 if (ret == 0)
2957 ret = err;
2958 err = ext4_journal_stop(handle);
2959 if (!ret)
2960 ret = err;
2962 walk_page_buffers(handle, page_bufs, 0,
2963 PAGE_CACHE_SIZE, NULL, bput_one);
2964 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2965 goto out;
2967 out_unlock:
2968 unlock_page(page);
2969 out:
2970 return ret;
2973 static int ext4_journalled_writepage(struct page *page,
2974 struct writeback_control *wbc)
2976 struct inode *inode = page->mapping->host;
2977 loff_t size = i_size_read(inode);
2978 loff_t len;
2980 J_ASSERT(PageLocked(page));
2981 if (page->index == size >> PAGE_CACHE_SHIFT)
2982 len = size & ~PAGE_CACHE_MASK;
2983 else
2984 len = PAGE_CACHE_SIZE;
2986 if (page_has_buffers(page)) {
2987 /* if page has buffers it should all be mapped
2988 * and allocated. If there are not buffers attached
2989 * to the page we know the page is dirty but it lost
2990 * buffers. That means that at some moment in time
2991 * after write_begin() / write_end() has been called
2992 * all buffers have been clean and thus they must have been
2993 * written at least once. So they are all mapped and we can
2994 * happily proceed with mapping them and writing the page.
2996 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2997 ext4_bh_unmapped_or_delay));
3000 if (ext4_journal_current_handle())
3001 goto no_write;
3003 if (PageChecked(page)) {
3005 * It's mmapped pagecache. Add buffers and journal it. There
3006 * doesn't seem much point in redirtying the page here.
3008 ClearPageChecked(page);
3009 return __ext4_journalled_writepage(page, wbc);
3010 } else {
3012 * It may be a page full of checkpoint-mode buffers. We don't
3013 * really know unless we go poke around in the buffer_heads.
3014 * But block_write_full_page will do the right thing.
3016 return block_write_full_page(page,
3017 ext4_normal_get_block_write,
3018 wbc);
3020 no_write:
3021 redirty_page_for_writepage(wbc, page);
3022 unlock_page(page);
3023 return 0;
3026 static int ext4_readpage(struct file *file, struct page *page)
3028 return mpage_readpage(page, ext4_get_block);
3031 static int
3032 ext4_readpages(struct file *file, struct address_space *mapping,
3033 struct list_head *pages, unsigned nr_pages)
3035 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3038 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3040 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3043 * If it's a full truncate we just forget about the pending dirtying
3045 if (offset == 0)
3046 ClearPageChecked(page);
3048 if (journal)
3049 jbd2_journal_invalidatepage(journal, page, offset);
3050 else
3051 block_invalidatepage(page, offset);
3054 static int ext4_releasepage(struct page *page, gfp_t wait)
3056 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3058 WARN_ON(PageChecked(page));
3059 if (!page_has_buffers(page))
3060 return 0;
3061 if (journal)
3062 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3063 else
3064 return try_to_free_buffers(page);
3068 * If the O_DIRECT write will extend the file then add this inode to the
3069 * orphan list. So recovery will truncate it back to the original size
3070 * if the machine crashes during the write.
3072 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3073 * crashes then stale disk data _may_ be exposed inside the file. But current
3074 * VFS code falls back into buffered path in that case so we are safe.
3076 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3077 const struct iovec *iov, loff_t offset,
3078 unsigned long nr_segs)
3080 struct file *file = iocb->ki_filp;
3081 struct inode *inode = file->f_mapping->host;
3082 struct ext4_inode_info *ei = EXT4_I(inode);
3083 handle_t *handle;
3084 ssize_t ret;
3085 int orphan = 0;
3086 size_t count = iov_length(iov, nr_segs);
3088 if (rw == WRITE) {
3089 loff_t final_size = offset + count;
3091 if (final_size > inode->i_size) {
3092 /* Credits for sb + inode write */
3093 handle = ext4_journal_start(inode, 2);
3094 if (IS_ERR(handle)) {
3095 ret = PTR_ERR(handle);
3096 goto out;
3098 ret = ext4_orphan_add(handle, inode);
3099 if (ret) {
3100 ext4_journal_stop(handle);
3101 goto out;
3103 orphan = 1;
3104 ei->i_disksize = inode->i_size;
3105 ext4_journal_stop(handle);
3109 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3110 offset, nr_segs,
3111 ext4_get_block, NULL);
3113 if (orphan) {
3114 int err;
3116 /* Credits for sb + inode write */
3117 handle = ext4_journal_start(inode, 2);
3118 if (IS_ERR(handle)) {
3119 /* This is really bad luck. We've written the data
3120 * but cannot extend i_size. Bail out and pretend
3121 * the write failed... */
3122 ret = PTR_ERR(handle);
3123 goto out;
3125 if (inode->i_nlink)
3126 ext4_orphan_del(handle, inode);
3127 if (ret > 0) {
3128 loff_t end = offset + ret;
3129 if (end > inode->i_size) {
3130 ei->i_disksize = end;
3131 i_size_write(inode, end);
3133 * We're going to return a positive `ret'
3134 * here due to non-zero-length I/O, so there's
3135 * no way of reporting error returns from
3136 * ext4_mark_inode_dirty() to userspace. So
3137 * ignore it.
3139 ext4_mark_inode_dirty(handle, inode);
3142 err = ext4_journal_stop(handle);
3143 if (ret == 0)
3144 ret = err;
3146 out:
3147 return ret;
3151 * Pages can be marked dirty completely asynchronously from ext4's journalling
3152 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3153 * much here because ->set_page_dirty is called under VFS locks. The page is
3154 * not necessarily locked.
3156 * We cannot just dirty the page and leave attached buffers clean, because the
3157 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3158 * or jbddirty because all the journalling code will explode.
3160 * So what we do is to mark the page "pending dirty" and next time writepage
3161 * is called, propagate that into the buffers appropriately.
3163 static int ext4_journalled_set_page_dirty(struct page *page)
3165 SetPageChecked(page);
3166 return __set_page_dirty_nobuffers(page);
3169 static const struct address_space_operations ext4_ordered_aops = {
3170 .readpage = ext4_readpage,
3171 .readpages = ext4_readpages,
3172 .writepage = ext4_normal_writepage,
3173 .sync_page = block_sync_page,
3174 .write_begin = ext4_write_begin,
3175 .write_end = ext4_ordered_write_end,
3176 .bmap = ext4_bmap,
3177 .invalidatepage = ext4_invalidatepage,
3178 .releasepage = ext4_releasepage,
3179 .direct_IO = ext4_direct_IO,
3180 .migratepage = buffer_migrate_page,
3181 .is_partially_uptodate = block_is_partially_uptodate,
3184 static const struct address_space_operations ext4_writeback_aops = {
3185 .readpage = ext4_readpage,
3186 .readpages = ext4_readpages,
3187 .writepage = ext4_normal_writepage,
3188 .sync_page = block_sync_page,
3189 .write_begin = ext4_write_begin,
3190 .write_end = ext4_writeback_write_end,
3191 .bmap = ext4_bmap,
3192 .invalidatepage = ext4_invalidatepage,
3193 .releasepage = ext4_releasepage,
3194 .direct_IO = ext4_direct_IO,
3195 .migratepage = buffer_migrate_page,
3196 .is_partially_uptodate = block_is_partially_uptodate,
3199 static const struct address_space_operations ext4_journalled_aops = {
3200 .readpage = ext4_readpage,
3201 .readpages = ext4_readpages,
3202 .writepage = ext4_journalled_writepage,
3203 .sync_page = block_sync_page,
3204 .write_begin = ext4_write_begin,
3205 .write_end = ext4_journalled_write_end,
3206 .set_page_dirty = ext4_journalled_set_page_dirty,
3207 .bmap = ext4_bmap,
3208 .invalidatepage = ext4_invalidatepage,
3209 .releasepage = ext4_releasepage,
3210 .is_partially_uptodate = block_is_partially_uptodate,
3213 static const struct address_space_operations ext4_da_aops = {
3214 .readpage = ext4_readpage,
3215 .readpages = ext4_readpages,
3216 .writepage = ext4_da_writepage,
3217 .writepages = ext4_da_writepages,
3218 .sync_page = block_sync_page,
3219 .write_begin = ext4_da_write_begin,
3220 .write_end = ext4_da_write_end,
3221 .bmap = ext4_bmap,
3222 .invalidatepage = ext4_da_invalidatepage,
3223 .releasepage = ext4_releasepage,
3224 .direct_IO = ext4_direct_IO,
3225 .migratepage = buffer_migrate_page,
3226 .is_partially_uptodate = block_is_partially_uptodate,
3229 void ext4_set_aops(struct inode *inode)
3231 if (ext4_should_order_data(inode) &&
3232 test_opt(inode->i_sb, DELALLOC))
3233 inode->i_mapping->a_ops = &ext4_da_aops;
3234 else if (ext4_should_order_data(inode))
3235 inode->i_mapping->a_ops = &ext4_ordered_aops;
3236 else if (ext4_should_writeback_data(inode) &&
3237 test_opt(inode->i_sb, DELALLOC))
3238 inode->i_mapping->a_ops = &ext4_da_aops;
3239 else if (ext4_should_writeback_data(inode))
3240 inode->i_mapping->a_ops = &ext4_writeback_aops;
3241 else
3242 inode->i_mapping->a_ops = &ext4_journalled_aops;
3246 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3247 * up to the end of the block which corresponds to `from'.
3248 * This required during truncate. We need to physically zero the tail end
3249 * of that block so it doesn't yield old data if the file is later grown.
3251 int ext4_block_truncate_page(handle_t *handle,
3252 struct address_space *mapping, loff_t from)
3254 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3255 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3256 unsigned blocksize, length, pos;
3257 ext4_lblk_t iblock;
3258 struct inode *inode = mapping->host;
3259 struct buffer_head *bh;
3260 struct page *page;
3261 int err = 0;
3263 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3264 if (!page)
3265 return -EINVAL;
3267 blocksize = inode->i_sb->s_blocksize;
3268 length = blocksize - (offset & (blocksize - 1));
3269 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3272 * For "nobh" option, we can only work if we don't need to
3273 * read-in the page - otherwise we create buffers to do the IO.
3275 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3276 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3277 zero_user(page, offset, length);
3278 set_page_dirty(page);
3279 goto unlock;
3282 if (!page_has_buffers(page))
3283 create_empty_buffers(page, blocksize, 0);
3285 /* Find the buffer that contains "offset" */
3286 bh = page_buffers(page);
3287 pos = blocksize;
3288 while (offset >= pos) {
3289 bh = bh->b_this_page;
3290 iblock++;
3291 pos += blocksize;
3294 err = 0;
3295 if (buffer_freed(bh)) {
3296 BUFFER_TRACE(bh, "freed: skip");
3297 goto unlock;
3300 if (!buffer_mapped(bh)) {
3301 BUFFER_TRACE(bh, "unmapped");
3302 ext4_get_block(inode, iblock, bh, 0);
3303 /* unmapped? It's a hole - nothing to do */
3304 if (!buffer_mapped(bh)) {
3305 BUFFER_TRACE(bh, "still unmapped");
3306 goto unlock;
3310 /* Ok, it's mapped. Make sure it's up-to-date */
3311 if (PageUptodate(page))
3312 set_buffer_uptodate(bh);
3314 if (!buffer_uptodate(bh)) {
3315 err = -EIO;
3316 ll_rw_block(READ, 1, &bh);
3317 wait_on_buffer(bh);
3318 /* Uhhuh. Read error. Complain and punt. */
3319 if (!buffer_uptodate(bh))
3320 goto unlock;
3323 if (ext4_should_journal_data(inode)) {
3324 BUFFER_TRACE(bh, "get write access");
3325 err = ext4_journal_get_write_access(handle, bh);
3326 if (err)
3327 goto unlock;
3330 zero_user(page, offset, length);
3332 BUFFER_TRACE(bh, "zeroed end of block");
3334 err = 0;
3335 if (ext4_should_journal_data(inode)) {
3336 err = ext4_handle_dirty_metadata(handle, inode, bh);
3337 } else {
3338 if (ext4_should_order_data(inode))
3339 err = ext4_jbd2_file_inode(handle, inode);
3340 mark_buffer_dirty(bh);
3343 unlock:
3344 unlock_page(page);
3345 page_cache_release(page);
3346 return err;
3350 * Probably it should be a library function... search for first non-zero word
3351 * or memcmp with zero_page, whatever is better for particular architecture.
3352 * Linus?
3354 static inline int all_zeroes(__le32 *p, __le32 *q)
3356 while (p < q)
3357 if (*p++)
3358 return 0;
3359 return 1;
3363 * ext4_find_shared - find the indirect blocks for partial truncation.
3364 * @inode: inode in question
3365 * @depth: depth of the affected branch
3366 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3367 * @chain: place to store the pointers to partial indirect blocks
3368 * @top: place to the (detached) top of branch
3370 * This is a helper function used by ext4_truncate().
3372 * When we do truncate() we may have to clean the ends of several
3373 * indirect blocks but leave the blocks themselves alive. Block is
3374 * partially truncated if some data below the new i_size is refered
3375 * from it (and it is on the path to the first completely truncated
3376 * data block, indeed). We have to free the top of that path along
3377 * with everything to the right of the path. Since no allocation
3378 * past the truncation point is possible until ext4_truncate()
3379 * finishes, we may safely do the latter, but top of branch may
3380 * require special attention - pageout below the truncation point
3381 * might try to populate it.
3383 * We atomically detach the top of branch from the tree, store the
3384 * block number of its root in *@top, pointers to buffer_heads of
3385 * partially truncated blocks - in @chain[].bh and pointers to
3386 * their last elements that should not be removed - in
3387 * @chain[].p. Return value is the pointer to last filled element
3388 * of @chain.
3390 * The work left to caller to do the actual freeing of subtrees:
3391 * a) free the subtree starting from *@top
3392 * b) free the subtrees whose roots are stored in
3393 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3394 * c) free the subtrees growing from the inode past the @chain[0].
3395 * (no partially truncated stuff there). */
3397 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3398 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3400 Indirect *partial, *p;
3401 int k, err;
3403 *top = 0;
3404 /* Make k index the deepest non-null offest + 1 */
3405 for (k = depth; k > 1 && !offsets[k-1]; k--)
3407 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3408 /* Writer: pointers */
3409 if (!partial)
3410 partial = chain + k-1;
3412 * If the branch acquired continuation since we've looked at it -
3413 * fine, it should all survive and (new) top doesn't belong to us.
3415 if (!partial->key && *partial->p)
3416 /* Writer: end */
3417 goto no_top;
3418 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3421 * OK, we've found the last block that must survive. The rest of our
3422 * branch should be detached before unlocking. However, if that rest
3423 * of branch is all ours and does not grow immediately from the inode
3424 * it's easier to cheat and just decrement partial->p.
3426 if (p == chain + k - 1 && p > chain) {
3427 p->p--;
3428 } else {
3429 *top = *p->p;
3430 /* Nope, don't do this in ext4. Must leave the tree intact */
3431 #if 0
3432 *p->p = 0;
3433 #endif
3435 /* Writer: end */
3437 while (partial > p) {
3438 brelse(partial->bh);
3439 partial--;
3441 no_top:
3442 return partial;
3446 * Zero a number of block pointers in either an inode or an indirect block.
3447 * If we restart the transaction we must again get write access to the
3448 * indirect block for further modification.
3450 * We release `count' blocks on disk, but (last - first) may be greater
3451 * than `count' because there can be holes in there.
3453 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3454 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3455 unsigned long count, __le32 *first, __le32 *last)
3457 __le32 *p;
3458 if (try_to_extend_transaction(handle, inode)) {
3459 if (bh) {
3460 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3461 ext4_handle_dirty_metadata(handle, inode, bh);
3463 ext4_mark_inode_dirty(handle, inode);
3464 ext4_journal_test_restart(handle, inode);
3465 if (bh) {
3466 BUFFER_TRACE(bh, "retaking write access");
3467 ext4_journal_get_write_access(handle, bh);
3472 * Any buffers which are on the journal will be in memory. We find
3473 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3474 * on them. We've already detached each block from the file, so
3475 * bforget() in jbd2_journal_forget() should be safe.
3477 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3479 for (p = first; p < last; p++) {
3480 u32 nr = le32_to_cpu(*p);
3481 if (nr) {
3482 struct buffer_head *tbh;
3484 *p = 0;
3485 tbh = sb_find_get_block(inode->i_sb, nr);
3486 ext4_forget(handle, 0, inode, tbh, nr);
3490 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3494 * ext4_free_data - free a list of data blocks
3495 * @handle: handle for this transaction
3496 * @inode: inode we are dealing with
3497 * @this_bh: indirect buffer_head which contains *@first and *@last
3498 * @first: array of block numbers
3499 * @last: points immediately past the end of array
3501 * We are freeing all blocks refered from that array (numbers are stored as
3502 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3504 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3505 * blocks are contiguous then releasing them at one time will only affect one
3506 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3507 * actually use a lot of journal space.
3509 * @this_bh will be %NULL if @first and @last point into the inode's direct
3510 * block pointers.
3512 static void ext4_free_data(handle_t *handle, struct inode *inode,
3513 struct buffer_head *this_bh,
3514 __le32 *first, __le32 *last)
3516 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3517 unsigned long count = 0; /* Number of blocks in the run */
3518 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3519 corresponding to
3520 block_to_free */
3521 ext4_fsblk_t nr; /* Current block # */
3522 __le32 *p; /* Pointer into inode/ind
3523 for current block */
3524 int err;
3526 if (this_bh) { /* For indirect block */
3527 BUFFER_TRACE(this_bh, "get_write_access");
3528 err = ext4_journal_get_write_access(handle, this_bh);
3529 /* Important: if we can't update the indirect pointers
3530 * to the blocks, we can't free them. */
3531 if (err)
3532 return;
3535 for (p = first; p < last; p++) {
3536 nr = le32_to_cpu(*p);
3537 if (nr) {
3538 /* accumulate blocks to free if they're contiguous */
3539 if (count == 0) {
3540 block_to_free = nr;
3541 block_to_free_p = p;
3542 count = 1;
3543 } else if (nr == block_to_free + count) {
3544 count++;
3545 } else {
3546 ext4_clear_blocks(handle, inode, this_bh,
3547 block_to_free,
3548 count, block_to_free_p, p);
3549 block_to_free = nr;
3550 block_to_free_p = p;
3551 count = 1;
3556 if (count > 0)
3557 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3558 count, block_to_free_p, p);
3560 if (this_bh) {
3561 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3564 * The buffer head should have an attached journal head at this
3565 * point. However, if the data is corrupted and an indirect
3566 * block pointed to itself, it would have been detached when
3567 * the block was cleared. Check for this instead of OOPSing.
3569 if (bh2jh(this_bh))
3570 ext4_handle_dirty_metadata(handle, inode, this_bh);
3571 else
3572 ext4_error(inode->i_sb, __func__,
3573 "circular indirect block detected, "
3574 "inode=%lu, block=%llu",
3575 inode->i_ino,
3576 (unsigned long long) this_bh->b_blocknr);
3581 * ext4_free_branches - free an array of branches
3582 * @handle: JBD handle for this transaction
3583 * @inode: inode we are dealing with
3584 * @parent_bh: the buffer_head which contains *@first and *@last
3585 * @first: array of block numbers
3586 * @last: pointer immediately past the end of array
3587 * @depth: depth of the branches to free
3589 * We are freeing all blocks refered from these branches (numbers are
3590 * stored as little-endian 32-bit) and updating @inode->i_blocks
3591 * appropriately.
3593 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3594 struct buffer_head *parent_bh,
3595 __le32 *first, __le32 *last, int depth)
3597 ext4_fsblk_t nr;
3598 __le32 *p;
3600 if (ext4_handle_is_aborted(handle))
3601 return;
3603 if (depth--) {
3604 struct buffer_head *bh;
3605 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3606 p = last;
3607 while (--p >= first) {
3608 nr = le32_to_cpu(*p);
3609 if (!nr)
3610 continue; /* A hole */
3612 /* Go read the buffer for the next level down */
3613 bh = sb_bread(inode->i_sb, nr);
3616 * A read failure? Report error and clear slot
3617 * (should be rare).
3619 if (!bh) {
3620 ext4_error(inode->i_sb, "ext4_free_branches",
3621 "Read failure, inode=%lu, block=%llu",
3622 inode->i_ino, nr);
3623 continue;
3626 /* This zaps the entire block. Bottom up. */
3627 BUFFER_TRACE(bh, "free child branches");
3628 ext4_free_branches(handle, inode, bh,
3629 (__le32 *) bh->b_data,
3630 (__le32 *) bh->b_data + addr_per_block,
3631 depth);
3634 * We've probably journalled the indirect block several
3635 * times during the truncate. But it's no longer
3636 * needed and we now drop it from the transaction via
3637 * jbd2_journal_revoke().
3639 * That's easy if it's exclusively part of this
3640 * transaction. But if it's part of the committing
3641 * transaction then jbd2_journal_forget() will simply
3642 * brelse() it. That means that if the underlying
3643 * block is reallocated in ext4_get_block(),
3644 * unmap_underlying_metadata() will find this block
3645 * and will try to get rid of it. damn, damn.
3647 * If this block has already been committed to the
3648 * journal, a revoke record will be written. And
3649 * revoke records must be emitted *before* clearing
3650 * this block's bit in the bitmaps.
3652 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3655 * Everything below this this pointer has been
3656 * released. Now let this top-of-subtree go.
3658 * We want the freeing of this indirect block to be
3659 * atomic in the journal with the updating of the
3660 * bitmap block which owns it. So make some room in
3661 * the journal.
3663 * We zero the parent pointer *after* freeing its
3664 * pointee in the bitmaps, so if extend_transaction()
3665 * for some reason fails to put the bitmap changes and
3666 * the release into the same transaction, recovery
3667 * will merely complain about releasing a free block,
3668 * rather than leaking blocks.
3670 if (ext4_handle_is_aborted(handle))
3671 return;
3672 if (try_to_extend_transaction(handle, inode)) {
3673 ext4_mark_inode_dirty(handle, inode);
3674 ext4_journal_test_restart(handle, inode);
3677 ext4_free_blocks(handle, inode, nr, 1, 1);
3679 if (parent_bh) {
3681 * The block which we have just freed is
3682 * pointed to by an indirect block: journal it
3684 BUFFER_TRACE(parent_bh, "get_write_access");
3685 if (!ext4_journal_get_write_access(handle,
3686 parent_bh)){
3687 *p = 0;
3688 BUFFER_TRACE(parent_bh,
3689 "call ext4_handle_dirty_metadata");
3690 ext4_handle_dirty_metadata(handle,
3691 inode,
3692 parent_bh);
3696 } else {
3697 /* We have reached the bottom of the tree. */
3698 BUFFER_TRACE(parent_bh, "free data blocks");
3699 ext4_free_data(handle, inode, parent_bh, first, last);
3703 int ext4_can_truncate(struct inode *inode)
3705 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3706 return 0;
3707 if (S_ISREG(inode->i_mode))
3708 return 1;
3709 if (S_ISDIR(inode->i_mode))
3710 return 1;
3711 if (S_ISLNK(inode->i_mode))
3712 return !ext4_inode_is_fast_symlink(inode);
3713 return 0;
3717 * ext4_truncate()
3719 * We block out ext4_get_block() block instantiations across the entire
3720 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3721 * simultaneously on behalf of the same inode.
3723 * As we work through the truncate and commmit bits of it to the journal there
3724 * is one core, guiding principle: the file's tree must always be consistent on
3725 * disk. We must be able to restart the truncate after a crash.
3727 * The file's tree may be transiently inconsistent in memory (although it
3728 * probably isn't), but whenever we close off and commit a journal transaction,
3729 * the contents of (the filesystem + the journal) must be consistent and
3730 * restartable. It's pretty simple, really: bottom up, right to left (although
3731 * left-to-right works OK too).
3733 * Note that at recovery time, journal replay occurs *before* the restart of
3734 * truncate against the orphan inode list.
3736 * The committed inode has the new, desired i_size (which is the same as
3737 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3738 * that this inode's truncate did not complete and it will again call
3739 * ext4_truncate() to have another go. So there will be instantiated blocks
3740 * to the right of the truncation point in a crashed ext4 filesystem. But
3741 * that's fine - as long as they are linked from the inode, the post-crash
3742 * ext4_truncate() run will find them and release them.
3744 void ext4_truncate(struct inode *inode)
3746 handle_t *handle;
3747 struct ext4_inode_info *ei = EXT4_I(inode);
3748 __le32 *i_data = ei->i_data;
3749 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3750 struct address_space *mapping = inode->i_mapping;
3751 ext4_lblk_t offsets[4];
3752 Indirect chain[4];
3753 Indirect *partial;
3754 __le32 nr = 0;
3755 int n;
3756 ext4_lblk_t last_block;
3757 unsigned blocksize = inode->i_sb->s_blocksize;
3759 if (!ext4_can_truncate(inode))
3760 return;
3762 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3763 ext4_ext_truncate(inode);
3764 return;
3767 handle = start_transaction(inode);
3768 if (IS_ERR(handle))
3769 return; /* AKPM: return what? */
3771 last_block = (inode->i_size + blocksize-1)
3772 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3774 if (inode->i_size & (blocksize - 1))
3775 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3776 goto out_stop;
3778 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3779 if (n == 0)
3780 goto out_stop; /* error */
3783 * OK. This truncate is going to happen. We add the inode to the
3784 * orphan list, so that if this truncate spans multiple transactions,
3785 * and we crash, we will resume the truncate when the filesystem
3786 * recovers. It also marks the inode dirty, to catch the new size.
3788 * Implication: the file must always be in a sane, consistent
3789 * truncatable state while each transaction commits.
3791 if (ext4_orphan_add(handle, inode))
3792 goto out_stop;
3795 * From here we block out all ext4_get_block() callers who want to
3796 * modify the block allocation tree.
3798 down_write(&ei->i_data_sem);
3800 ext4_discard_preallocations(inode);
3803 * The orphan list entry will now protect us from any crash which
3804 * occurs before the truncate completes, so it is now safe to propagate
3805 * the new, shorter inode size (held for now in i_size) into the
3806 * on-disk inode. We do this via i_disksize, which is the value which
3807 * ext4 *really* writes onto the disk inode.
3809 ei->i_disksize = inode->i_size;
3811 if (n == 1) { /* direct blocks */
3812 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3813 i_data + EXT4_NDIR_BLOCKS);
3814 goto do_indirects;
3817 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3818 /* Kill the top of shared branch (not detached) */
3819 if (nr) {
3820 if (partial == chain) {
3821 /* Shared branch grows from the inode */
3822 ext4_free_branches(handle, inode, NULL,
3823 &nr, &nr+1, (chain+n-1) - partial);
3824 *partial->p = 0;
3826 * We mark the inode dirty prior to restart,
3827 * and prior to stop. No need for it here.
3829 } else {
3830 /* Shared branch grows from an indirect block */
3831 BUFFER_TRACE(partial->bh, "get_write_access");
3832 ext4_free_branches(handle, inode, partial->bh,
3833 partial->p,
3834 partial->p+1, (chain+n-1) - partial);
3837 /* Clear the ends of indirect blocks on the shared branch */
3838 while (partial > chain) {
3839 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3840 (__le32*)partial->bh->b_data+addr_per_block,
3841 (chain+n-1) - partial);
3842 BUFFER_TRACE(partial->bh, "call brelse");
3843 brelse (partial->bh);
3844 partial--;
3846 do_indirects:
3847 /* Kill the remaining (whole) subtrees */
3848 switch (offsets[0]) {
3849 default:
3850 nr = i_data[EXT4_IND_BLOCK];
3851 if (nr) {
3852 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3853 i_data[EXT4_IND_BLOCK] = 0;
3855 case EXT4_IND_BLOCK:
3856 nr = i_data[EXT4_DIND_BLOCK];
3857 if (nr) {
3858 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3859 i_data[EXT4_DIND_BLOCK] = 0;
3861 case EXT4_DIND_BLOCK:
3862 nr = i_data[EXT4_TIND_BLOCK];
3863 if (nr) {
3864 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3865 i_data[EXT4_TIND_BLOCK] = 0;
3867 case EXT4_TIND_BLOCK:
3871 up_write(&ei->i_data_sem);
3872 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3873 ext4_mark_inode_dirty(handle, inode);
3876 * In a multi-transaction truncate, we only make the final transaction
3877 * synchronous
3879 if (IS_SYNC(inode))
3880 ext4_handle_sync(handle);
3881 out_stop:
3883 * If this was a simple ftruncate(), and the file will remain alive
3884 * then we need to clear up the orphan record which we created above.
3885 * However, if this was a real unlink then we were called by
3886 * ext4_delete_inode(), and we allow that function to clean up the
3887 * orphan info for us.
3889 if (inode->i_nlink)
3890 ext4_orphan_del(handle, inode);
3892 ext4_journal_stop(handle);
3896 * ext4_get_inode_loc returns with an extra refcount against the inode's
3897 * underlying buffer_head on success. If 'in_mem' is true, we have all
3898 * data in memory that is needed to recreate the on-disk version of this
3899 * inode.
3901 static int __ext4_get_inode_loc(struct inode *inode,
3902 struct ext4_iloc *iloc, int in_mem)
3904 struct ext4_group_desc *gdp;
3905 struct buffer_head *bh;
3906 struct super_block *sb = inode->i_sb;
3907 ext4_fsblk_t block;
3908 int inodes_per_block, inode_offset;
3910 iloc->bh = NULL;
3911 if (!ext4_valid_inum(sb, inode->i_ino))
3912 return -EIO;
3914 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3915 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3916 if (!gdp)
3917 return -EIO;
3920 * Figure out the offset within the block group inode table
3922 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3923 inode_offset = ((inode->i_ino - 1) %
3924 EXT4_INODES_PER_GROUP(sb));
3925 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3926 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3928 bh = sb_getblk(sb, block);
3929 if (!bh) {
3930 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3931 "inode block - inode=%lu, block=%llu",
3932 inode->i_ino, block);
3933 return -EIO;
3935 if (!buffer_uptodate(bh)) {
3936 lock_buffer(bh);
3939 * If the buffer has the write error flag, we have failed
3940 * to write out another inode in the same block. In this
3941 * case, we don't have to read the block because we may
3942 * read the old inode data successfully.
3944 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3945 set_buffer_uptodate(bh);
3947 if (buffer_uptodate(bh)) {
3948 /* someone brought it uptodate while we waited */
3949 unlock_buffer(bh);
3950 goto has_buffer;
3954 * If we have all information of the inode in memory and this
3955 * is the only valid inode in the block, we need not read the
3956 * block.
3958 if (in_mem) {
3959 struct buffer_head *bitmap_bh;
3960 int i, start;
3962 start = inode_offset & ~(inodes_per_block - 1);
3964 /* Is the inode bitmap in cache? */
3965 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3966 if (!bitmap_bh)
3967 goto make_io;
3970 * If the inode bitmap isn't in cache then the
3971 * optimisation may end up performing two reads instead
3972 * of one, so skip it.
3974 if (!buffer_uptodate(bitmap_bh)) {
3975 brelse(bitmap_bh);
3976 goto make_io;
3978 for (i = start; i < start + inodes_per_block; i++) {
3979 if (i == inode_offset)
3980 continue;
3981 if (ext4_test_bit(i, bitmap_bh->b_data))
3982 break;
3984 brelse(bitmap_bh);
3985 if (i == start + inodes_per_block) {
3986 /* all other inodes are free, so skip I/O */
3987 memset(bh->b_data, 0, bh->b_size);
3988 set_buffer_uptodate(bh);
3989 unlock_buffer(bh);
3990 goto has_buffer;
3994 make_io:
3996 * If we need to do any I/O, try to pre-readahead extra
3997 * blocks from the inode table.
3999 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4000 ext4_fsblk_t b, end, table;
4001 unsigned num;
4003 table = ext4_inode_table(sb, gdp);
4004 /* Make sure s_inode_readahead_blks is a power of 2 */
4005 while (EXT4_SB(sb)->s_inode_readahead_blks &
4006 (EXT4_SB(sb)->s_inode_readahead_blks-1))
4007 EXT4_SB(sb)->s_inode_readahead_blks =
4008 (EXT4_SB(sb)->s_inode_readahead_blks &
4009 (EXT4_SB(sb)->s_inode_readahead_blks-1));
4010 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4011 if (table > b)
4012 b = table;
4013 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4014 num = EXT4_INODES_PER_GROUP(sb);
4015 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4016 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4017 num -= ext4_itable_unused_count(sb, gdp);
4018 table += num / inodes_per_block;
4019 if (end > table)
4020 end = table;
4021 while (b <= end)
4022 sb_breadahead(sb, b++);
4026 * There are other valid inodes in the buffer, this inode
4027 * has in-inode xattrs, or we don't have this inode in memory.
4028 * Read the block from disk.
4030 get_bh(bh);
4031 bh->b_end_io = end_buffer_read_sync;
4032 submit_bh(READ_META, bh);
4033 wait_on_buffer(bh);
4034 if (!buffer_uptodate(bh)) {
4035 ext4_error(sb, __func__,
4036 "unable to read inode block - inode=%lu, "
4037 "block=%llu", inode->i_ino, block);
4038 brelse(bh);
4039 return -EIO;
4042 has_buffer:
4043 iloc->bh = bh;
4044 return 0;
4047 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4049 /* We have all inode data except xattrs in memory here. */
4050 return __ext4_get_inode_loc(inode, iloc,
4051 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4054 void ext4_set_inode_flags(struct inode *inode)
4056 unsigned int flags = EXT4_I(inode)->i_flags;
4058 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4059 if (flags & EXT4_SYNC_FL)
4060 inode->i_flags |= S_SYNC;
4061 if (flags & EXT4_APPEND_FL)
4062 inode->i_flags |= S_APPEND;
4063 if (flags & EXT4_IMMUTABLE_FL)
4064 inode->i_flags |= S_IMMUTABLE;
4065 if (flags & EXT4_NOATIME_FL)
4066 inode->i_flags |= S_NOATIME;
4067 if (flags & EXT4_DIRSYNC_FL)
4068 inode->i_flags |= S_DIRSYNC;
4071 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4072 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4074 unsigned int flags = ei->vfs_inode.i_flags;
4076 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4077 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4078 if (flags & S_SYNC)
4079 ei->i_flags |= EXT4_SYNC_FL;
4080 if (flags & S_APPEND)
4081 ei->i_flags |= EXT4_APPEND_FL;
4082 if (flags & S_IMMUTABLE)
4083 ei->i_flags |= EXT4_IMMUTABLE_FL;
4084 if (flags & S_NOATIME)
4085 ei->i_flags |= EXT4_NOATIME_FL;
4086 if (flags & S_DIRSYNC)
4087 ei->i_flags |= EXT4_DIRSYNC_FL;
4089 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4090 struct ext4_inode_info *ei)
4092 blkcnt_t i_blocks ;
4093 struct inode *inode = &(ei->vfs_inode);
4094 struct super_block *sb = inode->i_sb;
4096 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4097 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4098 /* we are using combined 48 bit field */
4099 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4100 le32_to_cpu(raw_inode->i_blocks_lo);
4101 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4102 /* i_blocks represent file system block size */
4103 return i_blocks << (inode->i_blkbits - 9);
4104 } else {
4105 return i_blocks;
4107 } else {
4108 return le32_to_cpu(raw_inode->i_blocks_lo);
4112 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4114 struct ext4_iloc iloc;
4115 struct ext4_inode *raw_inode;
4116 struct ext4_inode_info *ei;
4117 struct buffer_head *bh;
4118 struct inode *inode;
4119 long ret;
4120 int block;
4122 inode = iget_locked(sb, ino);
4123 if (!inode)
4124 return ERR_PTR(-ENOMEM);
4125 if (!(inode->i_state & I_NEW))
4126 return inode;
4128 ei = EXT4_I(inode);
4129 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4130 ei->i_acl = EXT4_ACL_NOT_CACHED;
4131 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4132 #endif
4134 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4135 if (ret < 0)
4136 goto bad_inode;
4137 bh = iloc.bh;
4138 raw_inode = ext4_raw_inode(&iloc);
4139 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4140 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4141 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4142 if (!(test_opt(inode->i_sb, NO_UID32))) {
4143 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4144 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4146 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4148 ei->i_state = 0;
4149 ei->i_dir_start_lookup = 0;
4150 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4151 /* We now have enough fields to check if the inode was active or not.
4152 * This is needed because nfsd might try to access dead inodes
4153 * the test is that same one that e2fsck uses
4154 * NeilBrown 1999oct15
4156 if (inode->i_nlink == 0) {
4157 if (inode->i_mode == 0 ||
4158 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4159 /* this inode is deleted */
4160 brelse(bh);
4161 ret = -ESTALE;
4162 goto bad_inode;
4164 /* The only unlinked inodes we let through here have
4165 * valid i_mode and are being read by the orphan
4166 * recovery code: that's fine, we're about to complete
4167 * the process of deleting those. */
4169 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4170 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4171 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4172 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4173 cpu_to_le32(EXT4_OS_HURD)) {
4174 ei->i_file_acl |=
4175 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4177 inode->i_size = ext4_isize(raw_inode);
4178 ei->i_disksize = inode->i_size;
4179 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4180 ei->i_block_group = iloc.block_group;
4182 * NOTE! The in-memory inode i_data array is in little-endian order
4183 * even on big-endian machines: we do NOT byteswap the block numbers!
4185 for (block = 0; block < EXT4_N_BLOCKS; block++)
4186 ei->i_data[block] = raw_inode->i_block[block];
4187 INIT_LIST_HEAD(&ei->i_orphan);
4189 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4190 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4191 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4192 EXT4_INODE_SIZE(inode->i_sb)) {
4193 brelse(bh);
4194 ret = -EIO;
4195 goto bad_inode;
4197 if (ei->i_extra_isize == 0) {
4198 /* The extra space is currently unused. Use it. */
4199 ei->i_extra_isize = sizeof(struct ext4_inode) -
4200 EXT4_GOOD_OLD_INODE_SIZE;
4201 } else {
4202 __le32 *magic = (void *)raw_inode +
4203 EXT4_GOOD_OLD_INODE_SIZE +
4204 ei->i_extra_isize;
4205 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4206 ei->i_state |= EXT4_STATE_XATTR;
4208 } else
4209 ei->i_extra_isize = 0;
4211 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4212 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4213 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4214 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4216 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4217 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4218 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4219 inode->i_version |=
4220 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4223 if (S_ISREG(inode->i_mode)) {
4224 inode->i_op = &ext4_file_inode_operations;
4225 inode->i_fop = &ext4_file_operations;
4226 ext4_set_aops(inode);
4227 } else if (S_ISDIR(inode->i_mode)) {
4228 inode->i_op = &ext4_dir_inode_operations;
4229 inode->i_fop = &ext4_dir_operations;
4230 } else if (S_ISLNK(inode->i_mode)) {
4231 if (ext4_inode_is_fast_symlink(inode)) {
4232 inode->i_op = &ext4_fast_symlink_inode_operations;
4233 nd_terminate_link(ei->i_data, inode->i_size,
4234 sizeof(ei->i_data) - 1);
4235 } else {
4236 inode->i_op = &ext4_symlink_inode_operations;
4237 ext4_set_aops(inode);
4239 } else {
4240 inode->i_op = &ext4_special_inode_operations;
4241 if (raw_inode->i_block[0])
4242 init_special_inode(inode, inode->i_mode,
4243 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4244 else
4245 init_special_inode(inode, inode->i_mode,
4246 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4248 brelse(iloc.bh);
4249 ext4_set_inode_flags(inode);
4250 unlock_new_inode(inode);
4251 return inode;
4253 bad_inode:
4254 iget_failed(inode);
4255 return ERR_PTR(ret);
4258 static int ext4_inode_blocks_set(handle_t *handle,
4259 struct ext4_inode *raw_inode,
4260 struct ext4_inode_info *ei)
4262 struct inode *inode = &(ei->vfs_inode);
4263 u64 i_blocks = inode->i_blocks;
4264 struct super_block *sb = inode->i_sb;
4266 if (i_blocks <= ~0U) {
4268 * i_blocks can be represnted in a 32 bit variable
4269 * as multiple of 512 bytes
4271 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4272 raw_inode->i_blocks_high = 0;
4273 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4274 return 0;
4276 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4277 return -EFBIG;
4279 if (i_blocks <= 0xffffffffffffULL) {
4281 * i_blocks can be represented in a 48 bit variable
4282 * as multiple of 512 bytes
4284 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4285 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4286 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4287 } else {
4288 ei->i_flags |= EXT4_HUGE_FILE_FL;
4289 /* i_block is stored in file system block size */
4290 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4291 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4292 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4294 return 0;
4298 * Post the struct inode info into an on-disk inode location in the
4299 * buffer-cache. This gobbles the caller's reference to the
4300 * buffer_head in the inode location struct.
4302 * The caller must have write access to iloc->bh.
4304 static int ext4_do_update_inode(handle_t *handle,
4305 struct inode *inode,
4306 struct ext4_iloc *iloc)
4308 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4309 struct ext4_inode_info *ei = EXT4_I(inode);
4310 struct buffer_head *bh = iloc->bh;
4311 int err = 0, rc, block;
4313 /* For fields not not tracking in the in-memory inode,
4314 * initialise them to zero for new inodes. */
4315 if (ei->i_state & EXT4_STATE_NEW)
4316 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4318 ext4_get_inode_flags(ei);
4319 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4320 if (!(test_opt(inode->i_sb, NO_UID32))) {
4321 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4322 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4324 * Fix up interoperability with old kernels. Otherwise, old inodes get
4325 * re-used with the upper 16 bits of the uid/gid intact
4327 if (!ei->i_dtime) {
4328 raw_inode->i_uid_high =
4329 cpu_to_le16(high_16_bits(inode->i_uid));
4330 raw_inode->i_gid_high =
4331 cpu_to_le16(high_16_bits(inode->i_gid));
4332 } else {
4333 raw_inode->i_uid_high = 0;
4334 raw_inode->i_gid_high = 0;
4336 } else {
4337 raw_inode->i_uid_low =
4338 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4339 raw_inode->i_gid_low =
4340 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4341 raw_inode->i_uid_high = 0;
4342 raw_inode->i_gid_high = 0;
4344 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4346 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4347 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4348 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4349 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4351 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4352 goto out_brelse;
4353 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4354 /* clear the migrate flag in the raw_inode */
4355 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4356 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4357 cpu_to_le32(EXT4_OS_HURD))
4358 raw_inode->i_file_acl_high =
4359 cpu_to_le16(ei->i_file_acl >> 32);
4360 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4361 ext4_isize_set(raw_inode, ei->i_disksize);
4362 if (ei->i_disksize > 0x7fffffffULL) {
4363 struct super_block *sb = inode->i_sb;
4364 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4365 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4366 EXT4_SB(sb)->s_es->s_rev_level ==
4367 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4368 /* If this is the first large file
4369 * created, add a flag to the superblock.
4371 err = ext4_journal_get_write_access(handle,
4372 EXT4_SB(sb)->s_sbh);
4373 if (err)
4374 goto out_brelse;
4375 ext4_update_dynamic_rev(sb);
4376 EXT4_SET_RO_COMPAT_FEATURE(sb,
4377 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4378 sb->s_dirt = 1;
4379 ext4_handle_sync(handle);
4380 err = ext4_handle_dirty_metadata(handle, inode,
4381 EXT4_SB(sb)->s_sbh);
4384 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4385 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4386 if (old_valid_dev(inode->i_rdev)) {
4387 raw_inode->i_block[0] =
4388 cpu_to_le32(old_encode_dev(inode->i_rdev));
4389 raw_inode->i_block[1] = 0;
4390 } else {
4391 raw_inode->i_block[0] = 0;
4392 raw_inode->i_block[1] =
4393 cpu_to_le32(new_encode_dev(inode->i_rdev));
4394 raw_inode->i_block[2] = 0;
4396 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4397 raw_inode->i_block[block] = ei->i_data[block];
4399 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4400 if (ei->i_extra_isize) {
4401 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4402 raw_inode->i_version_hi =
4403 cpu_to_le32(inode->i_version >> 32);
4404 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4407 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4408 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4409 if (!err)
4410 err = rc;
4411 ei->i_state &= ~EXT4_STATE_NEW;
4413 out_brelse:
4414 brelse(bh);
4415 ext4_std_error(inode->i_sb, err);
4416 return err;
4420 * ext4_write_inode()
4422 * We are called from a few places:
4424 * - Within generic_file_write() for O_SYNC files.
4425 * Here, there will be no transaction running. We wait for any running
4426 * trasnaction to commit.
4428 * - Within sys_sync(), kupdate and such.
4429 * We wait on commit, if tol to.
4431 * - Within prune_icache() (PF_MEMALLOC == true)
4432 * Here we simply return. We can't afford to block kswapd on the
4433 * journal commit.
4435 * In all cases it is actually safe for us to return without doing anything,
4436 * because the inode has been copied into a raw inode buffer in
4437 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4438 * knfsd.
4440 * Note that we are absolutely dependent upon all inode dirtiers doing the
4441 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4442 * which we are interested.
4444 * It would be a bug for them to not do this. The code:
4446 * mark_inode_dirty(inode)
4447 * stuff();
4448 * inode->i_size = expr;
4450 * is in error because a kswapd-driven write_inode() could occur while
4451 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4452 * will no longer be on the superblock's dirty inode list.
4454 int ext4_write_inode(struct inode *inode, int wait)
4456 if (current->flags & PF_MEMALLOC)
4457 return 0;
4459 if (ext4_journal_current_handle()) {
4460 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4461 dump_stack();
4462 return -EIO;
4465 if (!wait)
4466 return 0;
4468 return ext4_force_commit(inode->i_sb);
4471 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4473 int err = 0;
4475 mark_buffer_dirty(bh);
4476 if (inode && inode_needs_sync(inode)) {
4477 sync_dirty_buffer(bh);
4478 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4479 ext4_error(inode->i_sb, __func__,
4480 "IO error syncing inode, "
4481 "inode=%lu, block=%llu",
4482 inode->i_ino,
4483 (unsigned long long)bh->b_blocknr);
4484 err = -EIO;
4487 return err;
4491 * ext4_setattr()
4493 * Called from notify_change.
4495 * We want to trap VFS attempts to truncate the file as soon as
4496 * possible. In particular, we want to make sure that when the VFS
4497 * shrinks i_size, we put the inode on the orphan list and modify
4498 * i_disksize immediately, so that during the subsequent flushing of
4499 * dirty pages and freeing of disk blocks, we can guarantee that any
4500 * commit will leave the blocks being flushed in an unused state on
4501 * disk. (On recovery, the inode will get truncated and the blocks will
4502 * be freed, so we have a strong guarantee that no future commit will
4503 * leave these blocks visible to the user.)
4505 * Another thing we have to assure is that if we are in ordered mode
4506 * and inode is still attached to the committing transaction, we must
4507 * we start writeout of all the dirty pages which are being truncated.
4508 * This way we are sure that all the data written in the previous
4509 * transaction are already on disk (truncate waits for pages under
4510 * writeback).
4512 * Called with inode->i_mutex down.
4514 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4516 struct inode *inode = dentry->d_inode;
4517 int error, rc = 0;
4518 const unsigned int ia_valid = attr->ia_valid;
4520 error = inode_change_ok(inode, attr);
4521 if (error)
4522 return error;
4524 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4525 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4526 handle_t *handle;
4528 /* (user+group)*(old+new) structure, inode write (sb,
4529 * inode block, ? - but truncate inode update has it) */
4530 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4531 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4532 if (IS_ERR(handle)) {
4533 error = PTR_ERR(handle);
4534 goto err_out;
4536 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4537 if (error) {
4538 ext4_journal_stop(handle);
4539 return error;
4541 /* Update corresponding info in inode so that everything is in
4542 * one transaction */
4543 if (attr->ia_valid & ATTR_UID)
4544 inode->i_uid = attr->ia_uid;
4545 if (attr->ia_valid & ATTR_GID)
4546 inode->i_gid = attr->ia_gid;
4547 error = ext4_mark_inode_dirty(handle, inode);
4548 ext4_journal_stop(handle);
4551 if (attr->ia_valid & ATTR_SIZE) {
4552 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4553 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4555 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4556 error = -EFBIG;
4557 goto err_out;
4562 if (S_ISREG(inode->i_mode) &&
4563 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4564 handle_t *handle;
4566 handle = ext4_journal_start(inode, 3);
4567 if (IS_ERR(handle)) {
4568 error = PTR_ERR(handle);
4569 goto err_out;
4572 error = ext4_orphan_add(handle, inode);
4573 EXT4_I(inode)->i_disksize = attr->ia_size;
4574 rc = ext4_mark_inode_dirty(handle, inode);
4575 if (!error)
4576 error = rc;
4577 ext4_journal_stop(handle);
4579 if (ext4_should_order_data(inode)) {
4580 error = ext4_begin_ordered_truncate(inode,
4581 attr->ia_size);
4582 if (error) {
4583 /* Do as much error cleanup as possible */
4584 handle = ext4_journal_start(inode, 3);
4585 if (IS_ERR(handle)) {
4586 ext4_orphan_del(NULL, inode);
4587 goto err_out;
4589 ext4_orphan_del(handle, inode);
4590 ext4_journal_stop(handle);
4591 goto err_out;
4596 rc = inode_setattr(inode, attr);
4598 /* If inode_setattr's call to ext4_truncate failed to get a
4599 * transaction handle at all, we need to clean up the in-core
4600 * orphan list manually. */
4601 if (inode->i_nlink)
4602 ext4_orphan_del(NULL, inode);
4604 if (!rc && (ia_valid & ATTR_MODE))
4605 rc = ext4_acl_chmod(inode);
4607 err_out:
4608 ext4_std_error(inode->i_sb, error);
4609 if (!error)
4610 error = rc;
4611 return error;
4614 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4615 struct kstat *stat)
4617 struct inode *inode;
4618 unsigned long delalloc_blocks;
4620 inode = dentry->d_inode;
4621 generic_fillattr(inode, stat);
4624 * We can't update i_blocks if the block allocation is delayed
4625 * otherwise in the case of system crash before the real block
4626 * allocation is done, we will have i_blocks inconsistent with
4627 * on-disk file blocks.
4628 * We always keep i_blocks updated together with real
4629 * allocation. But to not confuse with user, stat
4630 * will return the blocks that include the delayed allocation
4631 * blocks for this file.
4633 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4634 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4635 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4637 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4638 return 0;
4641 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4642 int chunk)
4644 int indirects;
4646 /* if nrblocks are contiguous */
4647 if (chunk) {
4649 * With N contiguous data blocks, it need at most
4650 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4651 * 2 dindirect blocks
4652 * 1 tindirect block
4654 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4655 return indirects + 3;
4658 * if nrblocks are not contiguous, worse case, each block touch
4659 * a indirect block, and each indirect block touch a double indirect
4660 * block, plus a triple indirect block
4662 indirects = nrblocks * 2 + 1;
4663 return indirects;
4666 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4668 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4669 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4670 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4674 * Account for index blocks, block groups bitmaps and block group
4675 * descriptor blocks if modify datablocks and index blocks
4676 * worse case, the indexs blocks spread over different block groups
4678 * If datablocks are discontiguous, they are possible to spread over
4679 * different block groups too. If they are contiugous, with flexbg,
4680 * they could still across block group boundary.
4682 * Also account for superblock, inode, quota and xattr blocks
4684 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4686 int groups, gdpblocks;
4687 int idxblocks;
4688 int ret = 0;
4691 * How many index blocks need to touch to modify nrblocks?
4692 * The "Chunk" flag indicating whether the nrblocks is
4693 * physically contiguous on disk
4695 * For Direct IO and fallocate, they calls get_block to allocate
4696 * one single extent at a time, so they could set the "Chunk" flag
4698 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4700 ret = idxblocks;
4703 * Now let's see how many group bitmaps and group descriptors need
4704 * to account
4706 groups = idxblocks;
4707 if (chunk)
4708 groups += 1;
4709 else
4710 groups += nrblocks;
4712 gdpblocks = groups;
4713 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4714 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4715 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4716 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4718 /* bitmaps and block group descriptor blocks */
4719 ret += groups + gdpblocks;
4721 /* Blocks for super block, inode, quota and xattr blocks */
4722 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4724 return ret;
4728 * Calulate the total number of credits to reserve to fit
4729 * the modification of a single pages into a single transaction,
4730 * which may include multiple chunks of block allocations.
4732 * This could be called via ext4_write_begin()
4734 * We need to consider the worse case, when
4735 * one new block per extent.
4737 int ext4_writepage_trans_blocks(struct inode *inode)
4739 int bpp = ext4_journal_blocks_per_page(inode);
4740 int ret;
4742 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4744 /* Account for data blocks for journalled mode */
4745 if (ext4_should_journal_data(inode))
4746 ret += bpp;
4747 return ret;
4751 * Calculate the journal credits for a chunk of data modification.
4753 * This is called from DIO, fallocate or whoever calling
4754 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4756 * journal buffers for data blocks are not included here, as DIO
4757 * and fallocate do no need to journal data buffers.
4759 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4761 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4765 * The caller must have previously called ext4_reserve_inode_write().
4766 * Give this, we know that the caller already has write access to iloc->bh.
4768 int ext4_mark_iloc_dirty(handle_t *handle,
4769 struct inode *inode, struct ext4_iloc *iloc)
4771 int err = 0;
4773 if (test_opt(inode->i_sb, I_VERSION))
4774 inode_inc_iversion(inode);
4776 /* the do_update_inode consumes one bh->b_count */
4777 get_bh(iloc->bh);
4779 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4780 err = ext4_do_update_inode(handle, inode, iloc);
4781 put_bh(iloc->bh);
4782 return err;
4786 * On success, We end up with an outstanding reference count against
4787 * iloc->bh. This _must_ be cleaned up later.
4791 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4792 struct ext4_iloc *iloc)
4794 int err;
4796 err = ext4_get_inode_loc(inode, iloc);
4797 if (!err) {
4798 BUFFER_TRACE(iloc->bh, "get_write_access");
4799 err = ext4_journal_get_write_access(handle, iloc->bh);
4800 if (err) {
4801 brelse(iloc->bh);
4802 iloc->bh = NULL;
4805 ext4_std_error(inode->i_sb, err);
4806 return err;
4810 * Expand an inode by new_extra_isize bytes.
4811 * Returns 0 on success or negative error number on failure.
4813 static int ext4_expand_extra_isize(struct inode *inode,
4814 unsigned int new_extra_isize,
4815 struct ext4_iloc iloc,
4816 handle_t *handle)
4818 struct ext4_inode *raw_inode;
4819 struct ext4_xattr_ibody_header *header;
4820 struct ext4_xattr_entry *entry;
4822 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4823 return 0;
4825 raw_inode = ext4_raw_inode(&iloc);
4827 header = IHDR(inode, raw_inode);
4828 entry = IFIRST(header);
4830 /* No extended attributes present */
4831 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4832 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4833 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4834 new_extra_isize);
4835 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4836 return 0;
4839 /* try to expand with EAs present */
4840 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4841 raw_inode, handle);
4845 * What we do here is to mark the in-core inode as clean with respect to inode
4846 * dirtiness (it may still be data-dirty).
4847 * This means that the in-core inode may be reaped by prune_icache
4848 * without having to perform any I/O. This is a very good thing,
4849 * because *any* task may call prune_icache - even ones which
4850 * have a transaction open against a different journal.
4852 * Is this cheating? Not really. Sure, we haven't written the
4853 * inode out, but prune_icache isn't a user-visible syncing function.
4854 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4855 * we start and wait on commits.
4857 * Is this efficient/effective? Well, we're being nice to the system
4858 * by cleaning up our inodes proactively so they can be reaped
4859 * without I/O. But we are potentially leaving up to five seconds'
4860 * worth of inodes floating about which prune_icache wants us to
4861 * write out. One way to fix that would be to get prune_icache()
4862 * to do a write_super() to free up some memory. It has the desired
4863 * effect.
4865 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4867 struct ext4_iloc iloc;
4868 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4869 static unsigned int mnt_count;
4870 int err, ret;
4872 might_sleep();
4873 err = ext4_reserve_inode_write(handle, inode, &iloc);
4874 if (ext4_handle_valid(handle) &&
4875 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4876 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4878 * We need extra buffer credits since we may write into EA block
4879 * with this same handle. If journal_extend fails, then it will
4880 * only result in a minor loss of functionality for that inode.
4881 * If this is felt to be critical, then e2fsck should be run to
4882 * force a large enough s_min_extra_isize.
4884 if ((jbd2_journal_extend(handle,
4885 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4886 ret = ext4_expand_extra_isize(inode,
4887 sbi->s_want_extra_isize,
4888 iloc, handle);
4889 if (ret) {
4890 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4891 if (mnt_count !=
4892 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4893 ext4_warning(inode->i_sb, __func__,
4894 "Unable to expand inode %lu. Delete"
4895 " some EAs or run e2fsck.",
4896 inode->i_ino);
4897 mnt_count =
4898 le16_to_cpu(sbi->s_es->s_mnt_count);
4903 if (!err)
4904 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4905 return err;
4909 * ext4_dirty_inode() is called from __mark_inode_dirty()
4911 * We're really interested in the case where a file is being extended.
4912 * i_size has been changed by generic_commit_write() and we thus need
4913 * to include the updated inode in the current transaction.
4915 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4916 * are allocated to the file.
4918 * If the inode is marked synchronous, we don't honour that here - doing
4919 * so would cause a commit on atime updates, which we don't bother doing.
4920 * We handle synchronous inodes at the highest possible level.
4922 void ext4_dirty_inode(struct inode *inode)
4924 handle_t *current_handle = ext4_journal_current_handle();
4925 handle_t *handle;
4927 if (!ext4_handle_valid(current_handle)) {
4928 ext4_mark_inode_dirty(current_handle, inode);
4929 return;
4932 handle = ext4_journal_start(inode, 2);
4933 if (IS_ERR(handle))
4934 goto out;
4935 if (current_handle &&
4936 current_handle->h_transaction != handle->h_transaction) {
4937 /* This task has a transaction open against a different fs */
4938 printk(KERN_EMERG "%s: transactions do not match!\n",
4939 __func__);
4940 } else {
4941 jbd_debug(5, "marking dirty. outer handle=%p\n",
4942 current_handle);
4943 ext4_mark_inode_dirty(handle, inode);
4945 ext4_journal_stop(handle);
4946 out:
4947 return;
4950 #if 0
4952 * Bind an inode's backing buffer_head into this transaction, to prevent
4953 * it from being flushed to disk early. Unlike
4954 * ext4_reserve_inode_write, this leaves behind no bh reference and
4955 * returns no iloc structure, so the caller needs to repeat the iloc
4956 * lookup to mark the inode dirty later.
4958 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4960 struct ext4_iloc iloc;
4962 int err = 0;
4963 if (handle) {
4964 err = ext4_get_inode_loc(inode, &iloc);
4965 if (!err) {
4966 BUFFER_TRACE(iloc.bh, "get_write_access");
4967 err = jbd2_journal_get_write_access(handle, iloc.bh);
4968 if (!err)
4969 err = ext4_handle_dirty_metadata(handle,
4970 inode,
4971 iloc.bh);
4972 brelse(iloc.bh);
4975 ext4_std_error(inode->i_sb, err);
4976 return err;
4978 #endif
4980 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4982 journal_t *journal;
4983 handle_t *handle;
4984 int err;
4987 * We have to be very careful here: changing a data block's
4988 * journaling status dynamically is dangerous. If we write a
4989 * data block to the journal, change the status and then delete
4990 * that block, we risk forgetting to revoke the old log record
4991 * from the journal and so a subsequent replay can corrupt data.
4992 * So, first we make sure that the journal is empty and that
4993 * nobody is changing anything.
4996 journal = EXT4_JOURNAL(inode);
4997 if (!journal)
4998 return 0;
4999 if (is_journal_aborted(journal))
5000 return -EROFS;
5002 jbd2_journal_lock_updates(journal);
5003 jbd2_journal_flush(journal);
5006 * OK, there are no updates running now, and all cached data is
5007 * synced to disk. We are now in a completely consistent state
5008 * which doesn't have anything in the journal, and we know that
5009 * no filesystem updates are running, so it is safe to modify
5010 * the inode's in-core data-journaling state flag now.
5013 if (val)
5014 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5015 else
5016 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5017 ext4_set_aops(inode);
5019 jbd2_journal_unlock_updates(journal);
5021 /* Finally we can mark the inode as dirty. */
5023 handle = ext4_journal_start(inode, 1);
5024 if (IS_ERR(handle))
5025 return PTR_ERR(handle);
5027 err = ext4_mark_inode_dirty(handle, inode);
5028 ext4_handle_sync(handle);
5029 ext4_journal_stop(handle);
5030 ext4_std_error(inode->i_sb, err);
5032 return err;
5035 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5037 return !buffer_mapped(bh);
5040 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5042 loff_t size;
5043 unsigned long len;
5044 int ret = -EINVAL;
5045 void *fsdata;
5046 struct file *file = vma->vm_file;
5047 struct inode *inode = file->f_path.dentry->d_inode;
5048 struct address_space *mapping = inode->i_mapping;
5051 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5052 * get i_mutex because we are already holding mmap_sem.
5054 down_read(&inode->i_alloc_sem);
5055 size = i_size_read(inode);
5056 if (page->mapping != mapping || size <= page_offset(page)
5057 || !PageUptodate(page)) {
5058 /* page got truncated from under us? */
5059 goto out_unlock;
5061 ret = 0;
5062 if (PageMappedToDisk(page))
5063 goto out_unlock;
5065 if (page->index == size >> PAGE_CACHE_SHIFT)
5066 len = size & ~PAGE_CACHE_MASK;
5067 else
5068 len = PAGE_CACHE_SIZE;
5070 if (page_has_buffers(page)) {
5071 /* return if we have all the buffers mapped */
5072 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5073 ext4_bh_unmapped))
5074 goto out_unlock;
5077 * OK, we need to fill the hole... Do write_begin write_end
5078 * to do block allocation/reservation.We are not holding
5079 * inode.i__mutex here. That allow * parallel write_begin,
5080 * write_end call. lock_page prevent this from happening
5081 * on the same page though
5083 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5084 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5085 if (ret < 0)
5086 goto out_unlock;
5087 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5088 len, len, page, fsdata);
5089 if (ret < 0)
5090 goto out_unlock;
5091 ret = 0;
5092 out_unlock:
5093 up_read(&inode->i_alloc_sem);
5094 return ret;