x86, PAT: Remove page granularity tracking for vm_insert_pfn maps
[linux-2.6/mini2440.git] / fs / splice.c
blobc18aa7e03e2b8d33470d6632052a839c3a1845c8
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
43 struct page *page = buf->page;
44 struct address_space *mapping;
46 lock_page(page);
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
60 wait_on_page_writeback(page);
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
80 out_unlock:
81 unlock_page(page);
82 return 1;
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
99 struct page *page = buf->page;
100 int err;
102 if (!PageUptodate(page)) {
103 lock_page(page);
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
115 * Uh oh, read-error from disk.
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
123 * Page is ok afterall, we are done.
125 unlock_page(page);
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->private = spd->partial[page_nr].private;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
212 if (pipe->inode)
213 do_wakeup = 1;
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < PIPE_BUFFERS)
218 continue;
220 break;
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
248 if (pipe->inode) {
249 mutex_unlock(&pipe->inode->i_mutex);
251 if (do_wakeup) {
252 smp_mb();
253 if (waitqueue_active(&pipe->wait))
254 wake_up_interruptible(&pipe->wait);
255 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
262 return ret;
265 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 page_cache_release(spd->pages[i]);
270 static int
271 __generic_file_splice_read(struct file *in, loff_t *ppos,
272 struct pipe_inode_info *pipe, size_t len,
273 unsigned int flags)
275 struct address_space *mapping = in->f_mapping;
276 unsigned int loff, nr_pages, req_pages;
277 struct page *pages[PIPE_BUFFERS];
278 struct partial_page partial[PIPE_BUFFERS];
279 struct page *page;
280 pgoff_t index, end_index;
281 loff_t isize;
282 int error, page_nr;
283 struct splice_pipe_desc spd = {
284 .pages = pages,
285 .partial = partial,
286 .flags = flags,
287 .ops = &page_cache_pipe_buf_ops,
288 .spd_release = spd_release_page,
291 index = *ppos >> PAGE_CACHE_SHIFT;
292 loff = *ppos & ~PAGE_CACHE_MASK;
293 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
294 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
297 * Lookup the (hopefully) full range of pages we need.
299 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
300 index += spd.nr_pages;
303 * If find_get_pages_contig() returned fewer pages than we needed,
304 * readahead/allocate the rest and fill in the holes.
306 if (spd.nr_pages < nr_pages)
307 page_cache_sync_readahead(mapping, &in->f_ra, in,
308 index, req_pages - spd.nr_pages);
310 error = 0;
311 while (spd.nr_pages < nr_pages) {
313 * Page could be there, find_get_pages_contig() breaks on
314 * the first hole.
316 page = find_get_page(mapping, index);
317 if (!page) {
319 * page didn't exist, allocate one.
321 page = page_cache_alloc_cold(mapping);
322 if (!page)
323 break;
325 error = add_to_page_cache_lru(page, mapping, index,
326 mapping_gfp_mask(mapping));
327 if (unlikely(error)) {
328 page_cache_release(page);
329 if (error == -EEXIST)
330 continue;
331 break;
334 * add_to_page_cache() locks the page, unlock it
335 * to avoid convoluting the logic below even more.
337 unlock_page(page);
340 pages[spd.nr_pages++] = page;
341 index++;
345 * Now loop over the map and see if we need to start IO on any
346 * pages, fill in the partial map, etc.
348 index = *ppos >> PAGE_CACHE_SHIFT;
349 nr_pages = spd.nr_pages;
350 spd.nr_pages = 0;
351 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
352 unsigned int this_len;
354 if (!len)
355 break;
358 * this_len is the max we'll use from this page
360 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
361 page = pages[page_nr];
363 if (PageReadahead(page))
364 page_cache_async_readahead(mapping, &in->f_ra, in,
365 page, index, req_pages - page_nr);
368 * If the page isn't uptodate, we may need to start io on it
370 if (!PageUptodate(page)) {
372 * If in nonblock mode then dont block on waiting
373 * for an in-flight io page
375 if (flags & SPLICE_F_NONBLOCK) {
376 if (!trylock_page(page)) {
377 error = -EAGAIN;
378 break;
380 } else
381 lock_page(page);
384 * Page was truncated, or invalidated by the
385 * filesystem. Redo the find/create, but this time the
386 * page is kept locked, so there's no chance of another
387 * race with truncate/invalidate.
389 if (!page->mapping) {
390 unlock_page(page);
391 page = find_or_create_page(mapping, index,
392 mapping_gfp_mask(mapping));
394 if (!page) {
395 error = -ENOMEM;
396 break;
398 page_cache_release(pages[page_nr]);
399 pages[page_nr] = page;
402 * page was already under io and is now done, great
404 if (PageUptodate(page)) {
405 unlock_page(page);
406 goto fill_it;
410 * need to read in the page
412 error = mapping->a_ops->readpage(in, page);
413 if (unlikely(error)) {
415 * We really should re-lookup the page here,
416 * but it complicates things a lot. Instead
417 * lets just do what we already stored, and
418 * we'll get it the next time we are called.
420 if (error == AOP_TRUNCATED_PAGE)
421 error = 0;
423 break;
426 fill_it:
428 * i_size must be checked after PageUptodate.
430 isize = i_size_read(mapping->host);
431 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
432 if (unlikely(!isize || index > end_index))
433 break;
436 * if this is the last page, see if we need to shrink
437 * the length and stop
439 if (end_index == index) {
440 unsigned int plen;
443 * max good bytes in this page
445 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
446 if (plen <= loff)
447 break;
450 * force quit after adding this page
452 this_len = min(this_len, plen - loff);
453 len = this_len;
456 partial[page_nr].offset = loff;
457 partial[page_nr].len = this_len;
458 len -= this_len;
459 loff = 0;
460 spd.nr_pages++;
461 index++;
465 * Release any pages at the end, if we quit early. 'page_nr' is how far
466 * we got, 'nr_pages' is how many pages are in the map.
468 while (page_nr < nr_pages)
469 page_cache_release(pages[page_nr++]);
470 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
472 if (spd.nr_pages)
473 return splice_to_pipe(pipe, &spd);
475 return error;
479 * generic_file_splice_read - splice data from file to a pipe
480 * @in: file to splice from
481 * @ppos: position in @in
482 * @pipe: pipe to splice to
483 * @len: number of bytes to splice
484 * @flags: splice modifier flags
486 * Description:
487 * Will read pages from given file and fill them into a pipe. Can be
488 * used as long as the address_space operations for the source implements
489 * a readpage() hook.
492 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
493 struct pipe_inode_info *pipe, size_t len,
494 unsigned int flags)
496 loff_t isize, left;
497 int ret;
499 isize = i_size_read(in->f_mapping->host);
500 if (unlikely(*ppos >= isize))
501 return 0;
503 left = isize - *ppos;
504 if (unlikely(left < len))
505 len = left;
507 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
508 if (ret > 0)
509 *ppos += ret;
511 return ret;
514 EXPORT_SYMBOL(generic_file_splice_read);
517 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
518 * using sendpage(). Return the number of bytes sent.
520 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
521 struct pipe_buffer *buf, struct splice_desc *sd)
523 struct file *file = sd->u.file;
524 loff_t pos = sd->pos;
525 int ret, more;
527 ret = buf->ops->confirm(pipe, buf);
528 if (!ret) {
529 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
531 ret = file->f_op->sendpage(file, buf->page, buf->offset,
532 sd->len, &pos, more);
535 return ret;
539 * This is a little more tricky than the file -> pipe splicing. There are
540 * basically three cases:
542 * - Destination page already exists in the address space and there
543 * are users of it. For that case we have no other option that
544 * copying the data. Tough luck.
545 * - Destination page already exists in the address space, but there
546 * are no users of it. Make sure it's uptodate, then drop it. Fall
547 * through to last case.
548 * - Destination page does not exist, we can add the pipe page to
549 * the page cache and avoid the copy.
551 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
552 * sd->flags), we attempt to migrate pages from the pipe to the output
553 * file address space page cache. This is possible if no one else has
554 * the pipe page referenced outside of the pipe and page cache. If
555 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
556 * a new page in the output file page cache and fill/dirty that.
558 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
559 struct splice_desc *sd)
561 struct file *file = sd->u.file;
562 struct address_space *mapping = file->f_mapping;
563 unsigned int offset, this_len;
564 struct page *page;
565 void *fsdata;
566 int ret;
569 * make sure the data in this buffer is uptodate
571 ret = buf->ops->confirm(pipe, buf);
572 if (unlikely(ret))
573 return ret;
575 offset = sd->pos & ~PAGE_CACHE_MASK;
577 this_len = sd->len;
578 if (this_len + offset > PAGE_CACHE_SIZE)
579 this_len = PAGE_CACHE_SIZE - offset;
581 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
582 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
583 if (unlikely(ret))
584 goto out;
586 if (buf->page != page) {
588 * Careful, ->map() uses KM_USER0!
590 char *src = buf->ops->map(pipe, buf, 1);
591 char *dst = kmap_atomic(page, KM_USER1);
593 memcpy(dst + offset, src + buf->offset, this_len);
594 flush_dcache_page(page);
595 kunmap_atomic(dst, KM_USER1);
596 buf->ops->unmap(pipe, buf, src);
598 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
599 page, fsdata);
600 out:
601 return ret;
605 * __splice_from_pipe - splice data from a pipe to given actor
606 * @pipe: pipe to splice from
607 * @sd: information to @actor
608 * @actor: handler that splices the data
610 * Description:
611 * This function does little more than loop over the pipe and call
612 * @actor to do the actual moving of a single struct pipe_buffer to
613 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
614 * pipe_to_user.
617 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
618 splice_actor *actor)
620 int ret, do_wakeup, err;
622 ret = 0;
623 do_wakeup = 0;
625 for (;;) {
626 if (pipe->nrbufs) {
627 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
628 const struct pipe_buf_operations *ops = buf->ops;
630 sd->len = buf->len;
631 if (sd->len > sd->total_len)
632 sd->len = sd->total_len;
634 err = actor(pipe, buf, sd);
635 if (err <= 0) {
636 if (!ret && err != -ENODATA)
637 ret = err;
639 break;
642 ret += err;
643 buf->offset += err;
644 buf->len -= err;
646 sd->len -= err;
647 sd->pos += err;
648 sd->total_len -= err;
649 if (sd->len)
650 continue;
652 if (!buf->len) {
653 buf->ops = NULL;
654 ops->release(pipe, buf);
655 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
656 pipe->nrbufs--;
657 if (pipe->inode)
658 do_wakeup = 1;
661 if (!sd->total_len)
662 break;
665 if (pipe->nrbufs)
666 continue;
667 if (!pipe->writers)
668 break;
669 if (!pipe->waiting_writers) {
670 if (ret)
671 break;
674 if (sd->flags & SPLICE_F_NONBLOCK) {
675 if (!ret)
676 ret = -EAGAIN;
677 break;
680 if (signal_pending(current)) {
681 if (!ret)
682 ret = -ERESTARTSYS;
683 break;
686 if (do_wakeup) {
687 smp_mb();
688 if (waitqueue_active(&pipe->wait))
689 wake_up_interruptible_sync(&pipe->wait);
690 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
691 do_wakeup = 0;
694 pipe_wait(pipe);
697 if (do_wakeup) {
698 smp_mb();
699 if (waitqueue_active(&pipe->wait))
700 wake_up_interruptible(&pipe->wait);
701 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
704 return ret;
706 EXPORT_SYMBOL(__splice_from_pipe);
709 * splice_from_pipe - splice data from a pipe to a file
710 * @pipe: pipe to splice from
711 * @out: file to splice to
712 * @ppos: position in @out
713 * @len: how many bytes to splice
714 * @flags: splice modifier flags
715 * @actor: handler that splices the data
717 * Description:
718 * See __splice_from_pipe. This function locks the input and output inodes,
719 * otherwise it's identical to __splice_from_pipe().
722 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
723 loff_t *ppos, size_t len, unsigned int flags,
724 splice_actor *actor)
726 ssize_t ret;
727 struct inode *inode = out->f_mapping->host;
728 struct splice_desc sd = {
729 .total_len = len,
730 .flags = flags,
731 .pos = *ppos,
732 .u.file = out,
736 * The actor worker might be calling ->write_begin and
737 * ->write_end. Most of the time, these expect i_mutex to
738 * be held. Since this may result in an ABBA deadlock with
739 * pipe->inode, we have to order lock acquiry here.
741 * Outer lock must be inode->i_mutex, as pipe_wait() will
742 * release and reacquire pipe->inode->i_mutex, AND inode must
743 * never be a pipe.
745 WARN_ON(S_ISFIFO(inode->i_mode));
746 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
747 if (pipe->inode)
748 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_CHILD);
749 ret = __splice_from_pipe(pipe, &sd, actor);
750 if (pipe->inode)
751 mutex_unlock(&pipe->inode->i_mutex);
752 mutex_unlock(&inode->i_mutex);
754 return ret;
758 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
759 * @pipe: pipe info
760 * @out: file to write to
761 * @ppos: position in @out
762 * @len: number of bytes to splice
763 * @flags: splice modifier flags
765 * Description:
766 * Will either move or copy pages (determined by @flags options) from
767 * the given pipe inode to the given file. The caller is responsible
768 * for acquiring i_mutex on both inodes.
771 ssize_t
772 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
773 loff_t *ppos, size_t len, unsigned int flags)
775 struct address_space *mapping = out->f_mapping;
776 struct inode *inode = mapping->host;
777 struct splice_desc sd = {
778 .total_len = len,
779 .flags = flags,
780 .pos = *ppos,
781 .u.file = out,
783 ssize_t ret;
784 int err;
786 err = file_remove_suid(out);
787 if (unlikely(err))
788 return err;
790 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
791 if (ret > 0) {
792 unsigned long nr_pages;
794 *ppos += ret;
795 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
798 * If file or inode is SYNC and we actually wrote some data,
799 * sync it.
801 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
802 err = generic_osync_inode(inode, mapping,
803 OSYNC_METADATA|OSYNC_DATA);
805 if (err)
806 ret = err;
808 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
811 return ret;
814 EXPORT_SYMBOL(generic_file_splice_write_nolock);
817 * generic_file_splice_write - splice data from a pipe to a file
818 * @pipe: pipe info
819 * @out: file to write to
820 * @ppos: position in @out
821 * @len: number of bytes to splice
822 * @flags: splice modifier flags
824 * Description:
825 * Will either move or copy pages (determined by @flags options) from
826 * the given pipe inode to the given file.
829 ssize_t
830 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
831 loff_t *ppos, size_t len, unsigned int flags)
833 struct address_space *mapping = out->f_mapping;
834 struct inode *inode = mapping->host;
835 struct splice_desc sd = {
836 .total_len = len,
837 .flags = flags,
838 .pos = *ppos,
839 .u.file = out,
841 ssize_t ret;
843 WARN_ON(S_ISFIFO(inode->i_mode));
844 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
845 ret = file_remove_suid(out);
846 if (likely(!ret)) {
847 if (pipe->inode)
848 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_CHILD);
849 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
850 if (pipe->inode)
851 mutex_unlock(&pipe->inode->i_mutex);
853 mutex_unlock(&inode->i_mutex);
854 if (ret > 0) {
855 unsigned long nr_pages;
857 *ppos += ret;
858 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
861 * If file or inode is SYNC and we actually wrote some data,
862 * sync it.
864 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
865 int err;
867 mutex_lock(&inode->i_mutex);
868 err = generic_osync_inode(inode, mapping,
869 OSYNC_METADATA|OSYNC_DATA);
870 mutex_unlock(&inode->i_mutex);
872 if (err)
873 ret = err;
875 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
878 return ret;
881 EXPORT_SYMBOL(generic_file_splice_write);
884 * generic_splice_sendpage - splice data from a pipe to a socket
885 * @pipe: pipe to splice from
886 * @out: socket to write to
887 * @ppos: position in @out
888 * @len: number of bytes to splice
889 * @flags: splice modifier flags
891 * Description:
892 * Will send @len bytes from the pipe to a network socket. No data copying
893 * is involved.
896 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
897 loff_t *ppos, size_t len, unsigned int flags)
899 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
902 EXPORT_SYMBOL(generic_splice_sendpage);
905 * Attempt to initiate a splice from pipe to file.
907 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
908 loff_t *ppos, size_t len, unsigned int flags)
910 int ret;
912 if (unlikely(!out->f_op || !out->f_op->splice_write))
913 return -EINVAL;
915 if (unlikely(!(out->f_mode & FMODE_WRITE)))
916 return -EBADF;
918 if (unlikely(out->f_flags & O_APPEND))
919 return -EINVAL;
921 ret = rw_verify_area(WRITE, out, ppos, len);
922 if (unlikely(ret < 0))
923 return ret;
925 return out->f_op->splice_write(pipe, out, ppos, len, flags);
929 * Attempt to initiate a splice from a file to a pipe.
931 static long do_splice_to(struct file *in, loff_t *ppos,
932 struct pipe_inode_info *pipe, size_t len,
933 unsigned int flags)
935 int ret;
937 if (unlikely(!in->f_op || !in->f_op->splice_read))
938 return -EINVAL;
940 if (unlikely(!(in->f_mode & FMODE_READ)))
941 return -EBADF;
943 ret = rw_verify_area(READ, in, ppos, len);
944 if (unlikely(ret < 0))
945 return ret;
947 return in->f_op->splice_read(in, ppos, pipe, len, flags);
951 * splice_direct_to_actor - splices data directly between two non-pipes
952 * @in: file to splice from
953 * @sd: actor information on where to splice to
954 * @actor: handles the data splicing
956 * Description:
957 * This is a special case helper to splice directly between two
958 * points, without requiring an explicit pipe. Internally an allocated
959 * pipe is cached in the process, and reused during the lifetime of
960 * that process.
963 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
964 splice_direct_actor *actor)
966 struct pipe_inode_info *pipe;
967 long ret, bytes;
968 umode_t i_mode;
969 size_t len;
970 int i, flags;
973 * We require the input being a regular file, as we don't want to
974 * randomly drop data for eg socket -> socket splicing. Use the
975 * piped splicing for that!
977 i_mode = in->f_path.dentry->d_inode->i_mode;
978 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
979 return -EINVAL;
982 * neither in nor out is a pipe, setup an internal pipe attached to
983 * 'out' and transfer the wanted data from 'in' to 'out' through that
985 pipe = current->splice_pipe;
986 if (unlikely(!pipe)) {
987 pipe = alloc_pipe_info(NULL);
988 if (!pipe)
989 return -ENOMEM;
992 * We don't have an immediate reader, but we'll read the stuff
993 * out of the pipe right after the splice_to_pipe(). So set
994 * PIPE_READERS appropriately.
996 pipe->readers = 1;
998 current->splice_pipe = pipe;
1002 * Do the splice.
1004 ret = 0;
1005 bytes = 0;
1006 len = sd->total_len;
1007 flags = sd->flags;
1010 * Don't block on output, we have to drain the direct pipe.
1012 sd->flags &= ~SPLICE_F_NONBLOCK;
1014 while (len) {
1015 size_t read_len;
1016 loff_t pos = sd->pos, prev_pos = pos;
1018 ret = do_splice_to(in, &pos, pipe, len, flags);
1019 if (unlikely(ret <= 0))
1020 goto out_release;
1022 read_len = ret;
1023 sd->total_len = read_len;
1026 * NOTE: nonblocking mode only applies to the input. We
1027 * must not do the output in nonblocking mode as then we
1028 * could get stuck data in the internal pipe:
1030 ret = actor(pipe, sd);
1031 if (unlikely(ret <= 0)) {
1032 sd->pos = prev_pos;
1033 goto out_release;
1036 bytes += ret;
1037 len -= ret;
1038 sd->pos = pos;
1040 if (ret < read_len) {
1041 sd->pos = prev_pos + ret;
1042 goto out_release;
1046 done:
1047 pipe->nrbufs = pipe->curbuf = 0;
1048 file_accessed(in);
1049 return bytes;
1051 out_release:
1053 * If we did an incomplete transfer we must release
1054 * the pipe buffers in question:
1056 for (i = 0; i < PIPE_BUFFERS; i++) {
1057 struct pipe_buffer *buf = pipe->bufs + i;
1059 if (buf->ops) {
1060 buf->ops->release(pipe, buf);
1061 buf->ops = NULL;
1065 if (!bytes)
1066 bytes = ret;
1068 goto done;
1070 EXPORT_SYMBOL(splice_direct_to_actor);
1072 static int direct_splice_actor(struct pipe_inode_info *pipe,
1073 struct splice_desc *sd)
1075 struct file *file = sd->u.file;
1077 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1081 * do_splice_direct - splices data directly between two files
1082 * @in: file to splice from
1083 * @ppos: input file offset
1084 * @out: file to splice to
1085 * @len: number of bytes to splice
1086 * @flags: splice modifier flags
1088 * Description:
1089 * For use by do_sendfile(). splice can easily emulate sendfile, but
1090 * doing it in the application would incur an extra system call
1091 * (splice in + splice out, as compared to just sendfile()). So this helper
1092 * can splice directly through a process-private pipe.
1095 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1096 size_t len, unsigned int flags)
1098 struct splice_desc sd = {
1099 .len = len,
1100 .total_len = len,
1101 .flags = flags,
1102 .pos = *ppos,
1103 .u.file = out,
1105 long ret;
1107 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1108 if (ret > 0)
1109 *ppos = sd.pos;
1111 return ret;
1115 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1116 * location, so checking ->i_pipe is not enough to verify that this is a
1117 * pipe.
1119 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1121 if (S_ISFIFO(inode->i_mode))
1122 return inode->i_pipe;
1124 return NULL;
1128 * Determine where to splice to/from.
1130 static long do_splice(struct file *in, loff_t __user *off_in,
1131 struct file *out, loff_t __user *off_out,
1132 size_t len, unsigned int flags)
1134 struct pipe_inode_info *pipe;
1135 loff_t offset, *off;
1136 long ret;
1138 pipe = pipe_info(in->f_path.dentry->d_inode);
1139 if (pipe) {
1140 if (off_in)
1141 return -ESPIPE;
1142 if (off_out) {
1143 if (out->f_op->llseek == no_llseek)
1144 return -EINVAL;
1145 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1146 return -EFAULT;
1147 off = &offset;
1148 } else
1149 off = &out->f_pos;
1151 ret = do_splice_from(pipe, out, off, len, flags);
1153 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1154 ret = -EFAULT;
1156 return ret;
1159 pipe = pipe_info(out->f_path.dentry->d_inode);
1160 if (pipe) {
1161 if (off_out)
1162 return -ESPIPE;
1163 if (off_in) {
1164 if (in->f_op->llseek == no_llseek)
1165 return -EINVAL;
1166 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1167 return -EFAULT;
1168 off = &offset;
1169 } else
1170 off = &in->f_pos;
1172 ret = do_splice_to(in, off, pipe, len, flags);
1174 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1175 ret = -EFAULT;
1177 return ret;
1180 return -EINVAL;
1184 * Map an iov into an array of pages and offset/length tupples. With the
1185 * partial_page structure, we can map several non-contiguous ranges into
1186 * our ones pages[] map instead of splitting that operation into pieces.
1187 * Could easily be exported as a generic helper for other users, in which
1188 * case one would probably want to add a 'max_nr_pages' parameter as well.
1190 static int get_iovec_page_array(const struct iovec __user *iov,
1191 unsigned int nr_vecs, struct page **pages,
1192 struct partial_page *partial, int aligned)
1194 int buffers = 0, error = 0;
1196 while (nr_vecs) {
1197 unsigned long off, npages;
1198 struct iovec entry;
1199 void __user *base;
1200 size_t len;
1201 int i;
1203 error = -EFAULT;
1204 if (copy_from_user(&entry, iov, sizeof(entry)))
1205 break;
1207 base = entry.iov_base;
1208 len = entry.iov_len;
1211 * Sanity check this iovec. 0 read succeeds.
1213 error = 0;
1214 if (unlikely(!len))
1215 break;
1216 error = -EFAULT;
1217 if (!access_ok(VERIFY_READ, base, len))
1218 break;
1221 * Get this base offset and number of pages, then map
1222 * in the user pages.
1224 off = (unsigned long) base & ~PAGE_MASK;
1227 * If asked for alignment, the offset must be zero and the
1228 * length a multiple of the PAGE_SIZE.
1230 error = -EINVAL;
1231 if (aligned && (off || len & ~PAGE_MASK))
1232 break;
1234 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1235 if (npages > PIPE_BUFFERS - buffers)
1236 npages = PIPE_BUFFERS - buffers;
1238 error = get_user_pages_fast((unsigned long)base, npages,
1239 0, &pages[buffers]);
1241 if (unlikely(error <= 0))
1242 break;
1245 * Fill this contiguous range into the partial page map.
1247 for (i = 0; i < error; i++) {
1248 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1250 partial[buffers].offset = off;
1251 partial[buffers].len = plen;
1253 off = 0;
1254 len -= plen;
1255 buffers++;
1259 * We didn't complete this iov, stop here since it probably
1260 * means we have to move some of this into a pipe to
1261 * be able to continue.
1263 if (len)
1264 break;
1267 * Don't continue if we mapped fewer pages than we asked for,
1268 * or if we mapped the max number of pages that we have
1269 * room for.
1271 if (error < npages || buffers == PIPE_BUFFERS)
1272 break;
1274 nr_vecs--;
1275 iov++;
1278 if (buffers)
1279 return buffers;
1281 return error;
1284 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1285 struct splice_desc *sd)
1287 char *src;
1288 int ret;
1290 ret = buf->ops->confirm(pipe, buf);
1291 if (unlikely(ret))
1292 return ret;
1295 * See if we can use the atomic maps, by prefaulting in the
1296 * pages and doing an atomic copy
1298 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1299 src = buf->ops->map(pipe, buf, 1);
1300 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1301 sd->len);
1302 buf->ops->unmap(pipe, buf, src);
1303 if (!ret) {
1304 ret = sd->len;
1305 goto out;
1310 * No dice, use slow non-atomic map and copy
1312 src = buf->ops->map(pipe, buf, 0);
1314 ret = sd->len;
1315 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1316 ret = -EFAULT;
1318 buf->ops->unmap(pipe, buf, src);
1319 out:
1320 if (ret > 0)
1321 sd->u.userptr += ret;
1322 return ret;
1326 * For lack of a better implementation, implement vmsplice() to userspace
1327 * as a simple copy of the pipes pages to the user iov.
1329 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1330 unsigned long nr_segs, unsigned int flags)
1332 struct pipe_inode_info *pipe;
1333 struct splice_desc sd;
1334 ssize_t size;
1335 int error;
1336 long ret;
1338 pipe = pipe_info(file->f_path.dentry->d_inode);
1339 if (!pipe)
1340 return -EBADF;
1342 if (pipe->inode)
1343 mutex_lock(&pipe->inode->i_mutex);
1345 error = ret = 0;
1346 while (nr_segs) {
1347 void __user *base;
1348 size_t len;
1351 * Get user address base and length for this iovec.
1353 error = get_user(base, &iov->iov_base);
1354 if (unlikely(error))
1355 break;
1356 error = get_user(len, &iov->iov_len);
1357 if (unlikely(error))
1358 break;
1361 * Sanity check this iovec. 0 read succeeds.
1363 if (unlikely(!len))
1364 break;
1365 if (unlikely(!base)) {
1366 error = -EFAULT;
1367 break;
1370 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1371 error = -EFAULT;
1372 break;
1375 sd.len = 0;
1376 sd.total_len = len;
1377 sd.flags = flags;
1378 sd.u.userptr = base;
1379 sd.pos = 0;
1381 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1382 if (size < 0) {
1383 if (!ret)
1384 ret = size;
1386 break;
1389 ret += size;
1391 if (size < len)
1392 break;
1394 nr_segs--;
1395 iov++;
1398 if (pipe->inode)
1399 mutex_unlock(&pipe->inode->i_mutex);
1401 if (!ret)
1402 ret = error;
1404 return ret;
1408 * vmsplice splices a user address range into a pipe. It can be thought of
1409 * as splice-from-memory, where the regular splice is splice-from-file (or
1410 * to file). In both cases the output is a pipe, naturally.
1412 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1413 unsigned long nr_segs, unsigned int flags)
1415 struct pipe_inode_info *pipe;
1416 struct page *pages[PIPE_BUFFERS];
1417 struct partial_page partial[PIPE_BUFFERS];
1418 struct splice_pipe_desc spd = {
1419 .pages = pages,
1420 .partial = partial,
1421 .flags = flags,
1422 .ops = &user_page_pipe_buf_ops,
1423 .spd_release = spd_release_page,
1426 pipe = pipe_info(file->f_path.dentry->d_inode);
1427 if (!pipe)
1428 return -EBADF;
1430 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1431 flags & SPLICE_F_GIFT);
1432 if (spd.nr_pages <= 0)
1433 return spd.nr_pages;
1435 return splice_to_pipe(pipe, &spd);
1439 * Note that vmsplice only really supports true splicing _from_ user memory
1440 * to a pipe, not the other way around. Splicing from user memory is a simple
1441 * operation that can be supported without any funky alignment restrictions
1442 * or nasty vm tricks. We simply map in the user memory and fill them into
1443 * a pipe. The reverse isn't quite as easy, though. There are two possible
1444 * solutions for that:
1446 * - memcpy() the data internally, at which point we might as well just
1447 * do a regular read() on the buffer anyway.
1448 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1449 * has restriction limitations on both ends of the pipe).
1451 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1454 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1455 unsigned long, nr_segs, unsigned int, flags)
1457 struct file *file;
1458 long error;
1459 int fput;
1461 if (unlikely(nr_segs > UIO_MAXIOV))
1462 return -EINVAL;
1463 else if (unlikely(!nr_segs))
1464 return 0;
1466 error = -EBADF;
1467 file = fget_light(fd, &fput);
1468 if (file) {
1469 if (file->f_mode & FMODE_WRITE)
1470 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1471 else if (file->f_mode & FMODE_READ)
1472 error = vmsplice_to_user(file, iov, nr_segs, flags);
1474 fput_light(file, fput);
1477 return error;
1480 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1481 int, fd_out, loff_t __user *, off_out,
1482 size_t, len, unsigned int, flags)
1484 long error;
1485 struct file *in, *out;
1486 int fput_in, fput_out;
1488 if (unlikely(!len))
1489 return 0;
1491 error = -EBADF;
1492 in = fget_light(fd_in, &fput_in);
1493 if (in) {
1494 if (in->f_mode & FMODE_READ) {
1495 out = fget_light(fd_out, &fput_out);
1496 if (out) {
1497 if (out->f_mode & FMODE_WRITE)
1498 error = do_splice(in, off_in,
1499 out, off_out,
1500 len, flags);
1501 fput_light(out, fput_out);
1505 fput_light(in, fput_in);
1508 return error;
1512 * Make sure there's data to read. Wait for input if we can, otherwise
1513 * return an appropriate error.
1515 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1517 int ret;
1520 * Check ->nrbufs without the inode lock first. This function
1521 * is speculative anyways, so missing one is ok.
1523 if (pipe->nrbufs)
1524 return 0;
1526 ret = 0;
1527 mutex_lock(&pipe->inode->i_mutex);
1529 while (!pipe->nrbufs) {
1530 if (signal_pending(current)) {
1531 ret = -ERESTARTSYS;
1532 break;
1534 if (!pipe->writers)
1535 break;
1536 if (!pipe->waiting_writers) {
1537 if (flags & SPLICE_F_NONBLOCK) {
1538 ret = -EAGAIN;
1539 break;
1542 pipe_wait(pipe);
1545 mutex_unlock(&pipe->inode->i_mutex);
1546 return ret;
1550 * Make sure there's writeable room. Wait for room if we can, otherwise
1551 * return an appropriate error.
1553 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1555 int ret;
1558 * Check ->nrbufs without the inode lock first. This function
1559 * is speculative anyways, so missing one is ok.
1561 if (pipe->nrbufs < PIPE_BUFFERS)
1562 return 0;
1564 ret = 0;
1565 mutex_lock(&pipe->inode->i_mutex);
1567 while (pipe->nrbufs >= PIPE_BUFFERS) {
1568 if (!pipe->readers) {
1569 send_sig(SIGPIPE, current, 0);
1570 ret = -EPIPE;
1571 break;
1573 if (flags & SPLICE_F_NONBLOCK) {
1574 ret = -EAGAIN;
1575 break;
1577 if (signal_pending(current)) {
1578 ret = -ERESTARTSYS;
1579 break;
1581 pipe->waiting_writers++;
1582 pipe_wait(pipe);
1583 pipe->waiting_writers--;
1586 mutex_unlock(&pipe->inode->i_mutex);
1587 return ret;
1591 * Link contents of ipipe to opipe.
1593 static int link_pipe(struct pipe_inode_info *ipipe,
1594 struct pipe_inode_info *opipe,
1595 size_t len, unsigned int flags)
1597 struct pipe_buffer *ibuf, *obuf;
1598 int ret = 0, i = 0, nbuf;
1601 * Potential ABBA deadlock, work around it by ordering lock
1602 * grabbing by inode address. Otherwise two different processes
1603 * could deadlock (one doing tee from A -> B, the other from B -> A).
1605 inode_double_lock(ipipe->inode, opipe->inode);
1607 do {
1608 if (!opipe->readers) {
1609 send_sig(SIGPIPE, current, 0);
1610 if (!ret)
1611 ret = -EPIPE;
1612 break;
1616 * If we have iterated all input buffers or ran out of
1617 * output room, break.
1619 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1620 break;
1622 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1623 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1626 * Get a reference to this pipe buffer,
1627 * so we can copy the contents over.
1629 ibuf->ops->get(ipipe, ibuf);
1631 obuf = opipe->bufs + nbuf;
1632 *obuf = *ibuf;
1635 * Don't inherit the gift flag, we need to
1636 * prevent multiple steals of this page.
1638 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1640 if (obuf->len > len)
1641 obuf->len = len;
1643 opipe->nrbufs++;
1644 ret += obuf->len;
1645 len -= obuf->len;
1646 i++;
1647 } while (len);
1650 * return EAGAIN if we have the potential of some data in the
1651 * future, otherwise just return 0
1653 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1654 ret = -EAGAIN;
1656 inode_double_unlock(ipipe->inode, opipe->inode);
1659 * If we put data in the output pipe, wakeup any potential readers.
1661 if (ret > 0) {
1662 smp_mb();
1663 if (waitqueue_active(&opipe->wait))
1664 wake_up_interruptible(&opipe->wait);
1665 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1668 return ret;
1672 * This is a tee(1) implementation that works on pipes. It doesn't copy
1673 * any data, it simply references the 'in' pages on the 'out' pipe.
1674 * The 'flags' used are the SPLICE_F_* variants, currently the only
1675 * applicable one is SPLICE_F_NONBLOCK.
1677 static long do_tee(struct file *in, struct file *out, size_t len,
1678 unsigned int flags)
1680 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1681 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1682 int ret = -EINVAL;
1685 * Duplicate the contents of ipipe to opipe without actually
1686 * copying the data.
1688 if (ipipe && opipe && ipipe != opipe) {
1690 * Keep going, unless we encounter an error. The ipipe/opipe
1691 * ordering doesn't really matter.
1693 ret = link_ipipe_prep(ipipe, flags);
1694 if (!ret) {
1695 ret = link_opipe_prep(opipe, flags);
1696 if (!ret)
1697 ret = link_pipe(ipipe, opipe, len, flags);
1701 return ret;
1704 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1706 struct file *in;
1707 int error, fput_in;
1709 if (unlikely(!len))
1710 return 0;
1712 error = -EBADF;
1713 in = fget_light(fdin, &fput_in);
1714 if (in) {
1715 if (in->f_mode & FMODE_READ) {
1716 int fput_out;
1717 struct file *out = fget_light(fdout, &fput_out);
1719 if (out) {
1720 if (out->f_mode & FMODE_WRITE)
1721 error = do_tee(in, out, len, flags);
1722 fput_light(out, fput_out);
1725 fput_light(in, fput_in);
1728 return error;