Print out statistics in relation to fragmentation avoidance to /proc/pagetypeinfo
[linux-2.6/mini2440.git] / include / linux / mmzone.h
blob20ea42c45e4adde226432a755c323a390bd88232
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <linux/pageblock-flags.h>
17 #include <asm/atomic.h>
18 #include <asm/page.h>
20 /* Free memory management - zoned buddy allocator. */
21 #ifndef CONFIG_FORCE_MAX_ZONEORDER
22 #define MAX_ORDER 11
23 #else
24 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25 #endif
26 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
30 * costly to service. That is between allocation orders which should
31 * coelesce naturally under reasonable reclaim pressure and those which
32 * will not.
34 #define PAGE_ALLOC_COSTLY_ORDER 3
36 #define MIGRATE_UNMOVABLE 0
37 #define MIGRATE_RECLAIMABLE 1
38 #define MIGRATE_MOVABLE 2
39 #define MIGRATE_RESERVE 3
40 #define MIGRATE_TYPES 4
42 #define for_each_migratetype_order(order, type) \
43 for (order = 0; order < MAX_ORDER; order++) \
44 for (type = 0; type < MIGRATE_TYPES; type++)
46 extern int page_group_by_mobility_disabled;
48 static inline int get_pageblock_migratetype(struct page *page)
50 if (unlikely(page_group_by_mobility_disabled))
51 return MIGRATE_UNMOVABLE;
53 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
56 struct free_area {
57 struct list_head free_list[MIGRATE_TYPES];
58 unsigned long nr_free;
61 struct pglist_data;
64 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
65 * So add a wild amount of padding here to ensure that they fall into separate
66 * cachelines. There are very few zone structures in the machine, so space
67 * consumption is not a concern here.
69 #if defined(CONFIG_SMP)
70 struct zone_padding {
71 char x[0];
72 } ____cacheline_internodealigned_in_smp;
73 #define ZONE_PADDING(name) struct zone_padding name;
74 #else
75 #define ZONE_PADDING(name)
76 #endif
78 enum zone_stat_item {
79 /* First 128 byte cacheline (assuming 64 bit words) */
80 NR_FREE_PAGES,
81 NR_INACTIVE,
82 NR_ACTIVE,
83 NR_ANON_PAGES, /* Mapped anonymous pages */
84 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
85 only modified from process context */
86 NR_FILE_PAGES,
87 NR_FILE_DIRTY,
88 NR_WRITEBACK,
89 /* Second 128 byte cacheline */
90 NR_SLAB_RECLAIMABLE,
91 NR_SLAB_UNRECLAIMABLE,
92 NR_PAGETABLE, /* used for pagetables */
93 NR_UNSTABLE_NFS, /* NFS unstable pages */
94 NR_BOUNCE,
95 NR_VMSCAN_WRITE,
96 #ifdef CONFIG_NUMA
97 NUMA_HIT, /* allocated in intended node */
98 NUMA_MISS, /* allocated in non intended node */
99 NUMA_FOREIGN, /* was intended here, hit elsewhere */
100 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
101 NUMA_LOCAL, /* allocation from local node */
102 NUMA_OTHER, /* allocation from other node */
103 #endif
104 NR_VM_ZONE_STAT_ITEMS };
106 struct per_cpu_pages {
107 int count; /* number of pages in the list */
108 int high; /* high watermark, emptying needed */
109 int batch; /* chunk size for buddy add/remove */
110 struct list_head list; /* the list of pages */
113 struct per_cpu_pageset {
114 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
115 #ifdef CONFIG_NUMA
116 s8 expire;
117 #endif
118 #ifdef CONFIG_SMP
119 s8 stat_threshold;
120 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
121 #endif
122 } ____cacheline_aligned_in_smp;
124 #ifdef CONFIG_NUMA
125 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
126 #else
127 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
128 #endif
130 enum zone_type {
131 #ifdef CONFIG_ZONE_DMA
133 * ZONE_DMA is used when there are devices that are not able
134 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
135 * carve out the portion of memory that is needed for these devices.
136 * The range is arch specific.
138 * Some examples
140 * Architecture Limit
141 * ---------------------------
142 * parisc, ia64, sparc <4G
143 * s390 <2G
144 * arm Various
145 * alpha Unlimited or 0-16MB.
147 * i386, x86_64 and multiple other arches
148 * <16M.
150 ZONE_DMA,
151 #endif
152 #ifdef CONFIG_ZONE_DMA32
154 * x86_64 needs two ZONE_DMAs because it supports devices that are
155 * only able to do DMA to the lower 16M but also 32 bit devices that
156 * can only do DMA areas below 4G.
158 ZONE_DMA32,
159 #endif
161 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
162 * performed on pages in ZONE_NORMAL if the DMA devices support
163 * transfers to all addressable memory.
165 ZONE_NORMAL,
166 #ifdef CONFIG_HIGHMEM
168 * A memory area that is only addressable by the kernel through
169 * mapping portions into its own address space. This is for example
170 * used by i386 to allow the kernel to address the memory beyond
171 * 900MB. The kernel will set up special mappings (page
172 * table entries on i386) for each page that the kernel needs to
173 * access.
175 ZONE_HIGHMEM,
176 #endif
177 ZONE_MOVABLE,
178 MAX_NR_ZONES
182 * When a memory allocation must conform to specific limitations (such
183 * as being suitable for DMA) the caller will pass in hints to the
184 * allocator in the gfp_mask, in the zone modifier bits. These bits
185 * are used to select a priority ordered list of memory zones which
186 * match the requested limits. See gfp_zone() in include/linux/gfp.h
190 * Count the active zones. Note that the use of defined(X) outside
191 * #if and family is not necessarily defined so ensure we cannot use
192 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
194 #define __ZONE_COUNT ( \
195 defined(CONFIG_ZONE_DMA) \
196 + defined(CONFIG_ZONE_DMA32) \
197 + 1 \
198 + defined(CONFIG_HIGHMEM) \
199 + 1 \
201 #if __ZONE_COUNT < 2
202 #define ZONES_SHIFT 0
203 #elif __ZONE_COUNT <= 2
204 #define ZONES_SHIFT 1
205 #elif __ZONE_COUNT <= 4
206 #define ZONES_SHIFT 2
207 #else
208 #error ZONES_SHIFT -- too many zones configured adjust calculation
209 #endif
210 #undef __ZONE_COUNT
212 struct zone {
213 /* Fields commonly accessed by the page allocator */
214 unsigned long pages_min, pages_low, pages_high;
216 * We don't know if the memory that we're going to allocate will be freeable
217 * or/and it will be released eventually, so to avoid totally wasting several
218 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
219 * to run OOM on the lower zones despite there's tons of freeable ram
220 * on the higher zones). This array is recalculated at runtime if the
221 * sysctl_lowmem_reserve_ratio sysctl changes.
223 unsigned long lowmem_reserve[MAX_NR_ZONES];
225 #ifdef CONFIG_NUMA
226 int node;
228 * zone reclaim becomes active if more unmapped pages exist.
230 unsigned long min_unmapped_pages;
231 unsigned long min_slab_pages;
232 struct per_cpu_pageset *pageset[NR_CPUS];
233 #else
234 struct per_cpu_pageset pageset[NR_CPUS];
235 #endif
237 * free areas of different sizes
239 spinlock_t lock;
240 #ifdef CONFIG_MEMORY_HOTPLUG
241 /* see spanned/present_pages for more description */
242 seqlock_t span_seqlock;
243 #endif
244 struct free_area free_area[MAX_ORDER];
246 #ifndef CONFIG_SPARSEMEM
248 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
249 * In SPARSEMEM, this map is stored in struct mem_section
251 unsigned long *pageblock_flags;
252 #endif /* CONFIG_SPARSEMEM */
255 ZONE_PADDING(_pad1_)
257 /* Fields commonly accessed by the page reclaim scanner */
258 spinlock_t lru_lock;
259 struct list_head active_list;
260 struct list_head inactive_list;
261 unsigned long nr_scan_active;
262 unsigned long nr_scan_inactive;
263 unsigned long pages_scanned; /* since last reclaim */
264 int all_unreclaimable; /* All pages pinned */
266 /* A count of how many reclaimers are scanning this zone */
267 atomic_t reclaim_in_progress;
269 /* Zone statistics */
270 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
273 * prev_priority holds the scanning priority for this zone. It is
274 * defined as the scanning priority at which we achieved our reclaim
275 * target at the previous try_to_free_pages() or balance_pgdat()
276 * invokation.
278 * We use prev_priority as a measure of how much stress page reclaim is
279 * under - it drives the swappiness decision: whether to unmap mapped
280 * pages.
282 * Access to both this field is quite racy even on uniprocessor. But
283 * it is expected to average out OK.
285 int prev_priority;
288 ZONE_PADDING(_pad2_)
289 /* Rarely used or read-mostly fields */
292 * wait_table -- the array holding the hash table
293 * wait_table_hash_nr_entries -- the size of the hash table array
294 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
296 * The purpose of all these is to keep track of the people
297 * waiting for a page to become available and make them
298 * runnable again when possible. The trouble is that this
299 * consumes a lot of space, especially when so few things
300 * wait on pages at a given time. So instead of using
301 * per-page waitqueues, we use a waitqueue hash table.
303 * The bucket discipline is to sleep on the same queue when
304 * colliding and wake all in that wait queue when removing.
305 * When something wakes, it must check to be sure its page is
306 * truly available, a la thundering herd. The cost of a
307 * collision is great, but given the expected load of the
308 * table, they should be so rare as to be outweighed by the
309 * benefits from the saved space.
311 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
312 * primary users of these fields, and in mm/page_alloc.c
313 * free_area_init_core() performs the initialization of them.
315 wait_queue_head_t * wait_table;
316 unsigned long wait_table_hash_nr_entries;
317 unsigned long wait_table_bits;
320 * Discontig memory support fields.
322 struct pglist_data *zone_pgdat;
323 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
324 unsigned long zone_start_pfn;
327 * zone_start_pfn, spanned_pages and present_pages are all
328 * protected by span_seqlock. It is a seqlock because it has
329 * to be read outside of zone->lock, and it is done in the main
330 * allocator path. But, it is written quite infrequently.
332 * The lock is declared along with zone->lock because it is
333 * frequently read in proximity to zone->lock. It's good to
334 * give them a chance of being in the same cacheline.
336 unsigned long spanned_pages; /* total size, including holes */
337 unsigned long present_pages; /* amount of memory (excluding holes) */
340 * rarely used fields:
342 const char *name;
343 } ____cacheline_internodealigned_in_smp;
346 * The "priority" of VM scanning is how much of the queues we will scan in one
347 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
348 * queues ("queue_length >> 12") during an aging round.
350 #define DEF_PRIORITY 12
352 /* Maximum number of zones on a zonelist */
353 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
355 #ifdef CONFIG_NUMA
358 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
359 * allocations to a single node for GFP_THISNODE.
361 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
362 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
364 #define MAX_ZONELISTS (2 * MAX_NR_ZONES)
368 * We cache key information from each zonelist for smaller cache
369 * footprint when scanning for free pages in get_page_from_freelist().
371 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
372 * up short of free memory since the last time (last_fullzone_zap)
373 * we zero'd fullzones.
374 * 2) The array z_to_n[] maps each zone in the zonelist to its node
375 * id, so that we can efficiently evaluate whether that node is
376 * set in the current tasks mems_allowed.
378 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
379 * indexed by a zones offset in the zonelist zones[] array.
381 * The get_page_from_freelist() routine does two scans. During the
382 * first scan, we skip zones whose corresponding bit in 'fullzones'
383 * is set or whose corresponding node in current->mems_allowed (which
384 * comes from cpusets) is not set. During the second scan, we bypass
385 * this zonelist_cache, to ensure we look methodically at each zone.
387 * Once per second, we zero out (zap) fullzones, forcing us to
388 * reconsider nodes that might have regained more free memory.
389 * The field last_full_zap is the time we last zapped fullzones.
391 * This mechanism reduces the amount of time we waste repeatedly
392 * reexaming zones for free memory when they just came up low on
393 * memory momentarilly ago.
395 * The zonelist_cache struct members logically belong in struct
396 * zonelist. However, the mempolicy zonelists constructed for
397 * MPOL_BIND are intentionally variable length (and usually much
398 * shorter). A general purpose mechanism for handling structs with
399 * multiple variable length members is more mechanism than we want
400 * here. We resort to some special case hackery instead.
402 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
403 * part because they are shorter), so we put the fixed length stuff
404 * at the front of the zonelist struct, ending in a variable length
405 * zones[], as is needed by MPOL_BIND.
407 * Then we put the optional zonelist cache on the end of the zonelist
408 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
409 * the fixed length portion at the front of the struct. This pointer
410 * both enables us to find the zonelist cache, and in the case of
411 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
412 * to know that the zonelist cache is not there.
414 * The end result is that struct zonelists come in two flavors:
415 * 1) The full, fixed length version, shown below, and
416 * 2) The custom zonelists for MPOL_BIND.
417 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
419 * Even though there may be multiple CPU cores on a node modifying
420 * fullzones or last_full_zap in the same zonelist_cache at the same
421 * time, we don't lock it. This is just hint data - if it is wrong now
422 * and then, the allocator will still function, perhaps a bit slower.
426 struct zonelist_cache {
427 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
428 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
429 unsigned long last_full_zap; /* when last zap'd (jiffies) */
431 #else
432 #define MAX_ZONELISTS MAX_NR_ZONES
433 struct zonelist_cache;
434 #endif
437 * One allocation request operates on a zonelist. A zonelist
438 * is a list of zones, the first one is the 'goal' of the
439 * allocation, the other zones are fallback zones, in decreasing
440 * priority.
442 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
443 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
446 struct zonelist {
447 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
448 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
449 #ifdef CONFIG_NUMA
450 struct zonelist_cache zlcache; // optional ...
451 #endif
454 #ifdef CONFIG_NUMA
456 * Only custom zonelists like MPOL_BIND need to be filtered as part of
457 * policies. As described in the comment for struct zonelist_cache, these
458 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
459 * that to determine if the zonelists needs to be filtered or not.
461 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
463 return !zonelist->zlcache_ptr;
465 #else
466 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
468 return 0;
470 #endif /* CONFIG_NUMA */
472 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
473 struct node_active_region {
474 unsigned long start_pfn;
475 unsigned long end_pfn;
476 int nid;
478 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
480 #ifndef CONFIG_DISCONTIGMEM
481 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
482 extern struct page *mem_map;
483 #endif
486 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
487 * (mostly NUMA machines?) to denote a higher-level memory zone than the
488 * zone denotes.
490 * On NUMA machines, each NUMA node would have a pg_data_t to describe
491 * it's memory layout.
493 * Memory statistics and page replacement data structures are maintained on a
494 * per-zone basis.
496 struct bootmem_data;
497 typedef struct pglist_data {
498 struct zone node_zones[MAX_NR_ZONES];
499 struct zonelist node_zonelists[MAX_ZONELISTS];
500 int nr_zones;
501 #ifdef CONFIG_FLAT_NODE_MEM_MAP
502 struct page *node_mem_map;
503 #endif
504 struct bootmem_data *bdata;
505 #ifdef CONFIG_MEMORY_HOTPLUG
507 * Must be held any time you expect node_start_pfn, node_present_pages
508 * or node_spanned_pages stay constant. Holding this will also
509 * guarantee that any pfn_valid() stays that way.
511 * Nests above zone->lock and zone->size_seqlock.
513 spinlock_t node_size_lock;
514 #endif
515 unsigned long node_start_pfn;
516 unsigned long node_present_pages; /* total number of physical pages */
517 unsigned long node_spanned_pages; /* total size of physical page
518 range, including holes */
519 int node_id;
520 wait_queue_head_t kswapd_wait;
521 struct task_struct *kswapd;
522 int kswapd_max_order;
523 } pg_data_t;
525 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
526 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
527 #ifdef CONFIG_FLAT_NODE_MEM_MAP
528 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
529 #else
530 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
531 #endif
532 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
534 #include <linux/memory_hotplug.h>
536 void get_zone_counts(unsigned long *active, unsigned long *inactive,
537 unsigned long *free);
538 void build_all_zonelists(void);
539 void wakeup_kswapd(struct zone *zone, int order);
540 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
541 int classzone_idx, int alloc_flags);
542 enum memmap_context {
543 MEMMAP_EARLY,
544 MEMMAP_HOTPLUG,
546 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
547 unsigned long size,
548 enum memmap_context context);
550 #ifdef CONFIG_HAVE_MEMORY_PRESENT
551 void memory_present(int nid, unsigned long start, unsigned long end);
552 #else
553 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
554 #endif
556 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
557 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
558 #endif
561 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
563 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
565 static inline int populated_zone(struct zone *zone)
567 return (!!zone->present_pages);
570 extern int movable_zone;
572 static inline int zone_movable_is_highmem(void)
574 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
575 return movable_zone == ZONE_HIGHMEM;
576 #else
577 return 0;
578 #endif
581 static inline int is_highmem_idx(enum zone_type idx)
583 #ifdef CONFIG_HIGHMEM
584 return (idx == ZONE_HIGHMEM ||
585 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
586 #else
587 return 0;
588 #endif
591 static inline int is_normal_idx(enum zone_type idx)
593 return (idx == ZONE_NORMAL);
597 * is_highmem - helper function to quickly check if a struct zone is a
598 * highmem zone or not. This is an attempt to keep references
599 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
600 * @zone - pointer to struct zone variable
602 static inline int is_highmem(struct zone *zone)
604 #ifdef CONFIG_HIGHMEM
605 int zone_idx = zone - zone->zone_pgdat->node_zones;
606 return zone_idx == ZONE_HIGHMEM ||
607 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
608 #else
609 return 0;
610 #endif
613 static inline int is_normal(struct zone *zone)
615 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
618 static inline int is_dma32(struct zone *zone)
620 #ifdef CONFIG_ZONE_DMA32
621 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
622 #else
623 return 0;
624 #endif
627 static inline int is_dma(struct zone *zone)
629 #ifdef CONFIG_ZONE_DMA
630 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
631 #else
632 return 0;
633 #endif
636 /* These two functions are used to setup the per zone pages min values */
637 struct ctl_table;
638 struct file;
639 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
640 void __user *, size_t *, loff_t *);
641 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
642 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
643 void __user *, size_t *, loff_t *);
644 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
645 void __user *, size_t *, loff_t *);
646 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
647 struct file *, void __user *, size_t *, loff_t *);
648 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
649 struct file *, void __user *, size_t *, loff_t *);
651 extern int numa_zonelist_order_handler(struct ctl_table *, int,
652 struct file *, void __user *, size_t *, loff_t *);
653 extern char numa_zonelist_order[];
654 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
656 #include <linux/topology.h>
657 /* Returns the number of the current Node. */
658 #ifndef numa_node_id
659 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
660 #endif
662 #ifndef CONFIG_NEED_MULTIPLE_NODES
664 extern struct pglist_data contig_page_data;
665 #define NODE_DATA(nid) (&contig_page_data)
666 #define NODE_MEM_MAP(nid) mem_map
667 #define MAX_NODES_SHIFT 1
669 #else /* CONFIG_NEED_MULTIPLE_NODES */
671 #include <asm/mmzone.h>
673 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
675 extern struct pglist_data *first_online_pgdat(void);
676 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
677 extern struct zone *next_zone(struct zone *zone);
680 * for_each_pgdat - helper macro to iterate over all nodes
681 * @pgdat - pointer to a pg_data_t variable
683 #define for_each_online_pgdat(pgdat) \
684 for (pgdat = first_online_pgdat(); \
685 pgdat; \
686 pgdat = next_online_pgdat(pgdat))
688 * for_each_zone - helper macro to iterate over all memory zones
689 * @zone - pointer to struct zone variable
691 * The user only needs to declare the zone variable, for_each_zone
692 * fills it in.
694 #define for_each_zone(zone) \
695 for (zone = (first_online_pgdat())->node_zones; \
696 zone; \
697 zone = next_zone(zone))
699 #ifdef CONFIG_SPARSEMEM
700 #include <asm/sparsemem.h>
701 #endif
703 #if BITS_PER_LONG == 32
705 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
706 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
708 #define FLAGS_RESERVED 9
710 #elif BITS_PER_LONG == 64
712 * with 64 bit flags field, there's plenty of room.
714 #define FLAGS_RESERVED 32
716 #else
718 #error BITS_PER_LONG not defined
720 #endif
722 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
723 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
724 #define early_pfn_to_nid(nid) (0UL)
725 #endif
727 #ifdef CONFIG_FLATMEM
728 #define pfn_to_nid(pfn) (0)
729 #endif
731 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
732 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
734 #ifdef CONFIG_SPARSEMEM
737 * SECTION_SHIFT #bits space required to store a section #
739 * PA_SECTION_SHIFT physical address to/from section number
740 * PFN_SECTION_SHIFT pfn to/from section number
742 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
744 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
745 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
747 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
749 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
750 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
752 #define SECTION_BLOCKFLAGS_BITS \
753 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
755 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
756 #error Allocator MAX_ORDER exceeds SECTION_SIZE
757 #endif
759 struct page;
760 struct mem_section {
762 * This is, logically, a pointer to an array of struct
763 * pages. However, it is stored with some other magic.
764 * (see sparse.c::sparse_init_one_section())
766 * Additionally during early boot we encode node id of
767 * the location of the section here to guide allocation.
768 * (see sparse.c::memory_present())
770 * Making it a UL at least makes someone do a cast
771 * before using it wrong.
773 unsigned long section_mem_map;
775 /* See declaration of similar field in struct zone */
776 unsigned long *pageblock_flags;
779 #ifdef CONFIG_SPARSEMEM_EXTREME
780 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
781 #else
782 #define SECTIONS_PER_ROOT 1
783 #endif
785 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
786 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
787 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
789 #ifdef CONFIG_SPARSEMEM_EXTREME
790 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
791 #else
792 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
793 #endif
795 static inline struct mem_section *__nr_to_section(unsigned long nr)
797 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
798 return NULL;
799 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
801 extern int __section_nr(struct mem_section* ms);
804 * We use the lower bits of the mem_map pointer to store
805 * a little bit of information. There should be at least
806 * 3 bits here due to 32-bit alignment.
808 #define SECTION_MARKED_PRESENT (1UL<<0)
809 #define SECTION_HAS_MEM_MAP (1UL<<1)
810 #define SECTION_MAP_LAST_BIT (1UL<<2)
811 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
812 #define SECTION_NID_SHIFT 2
814 static inline struct page *__section_mem_map_addr(struct mem_section *section)
816 unsigned long map = section->section_mem_map;
817 map &= SECTION_MAP_MASK;
818 return (struct page *)map;
821 static inline int present_section(struct mem_section *section)
823 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
826 static inline int present_section_nr(unsigned long nr)
828 return present_section(__nr_to_section(nr));
831 static inline int valid_section(struct mem_section *section)
833 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
836 static inline int valid_section_nr(unsigned long nr)
838 return valid_section(__nr_to_section(nr));
841 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
843 return __nr_to_section(pfn_to_section_nr(pfn));
846 static inline int pfn_valid(unsigned long pfn)
848 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
849 return 0;
850 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
853 static inline int pfn_present(unsigned long pfn)
855 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
856 return 0;
857 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
861 * These are _only_ used during initialisation, therefore they
862 * can use __initdata ... They could have names to indicate
863 * this restriction.
865 #ifdef CONFIG_NUMA
866 #define pfn_to_nid(pfn) \
867 ({ \
868 unsigned long __pfn_to_nid_pfn = (pfn); \
869 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
871 #else
872 #define pfn_to_nid(pfn) (0)
873 #endif
875 #define early_pfn_valid(pfn) pfn_valid(pfn)
876 void sparse_init(void);
877 #else
878 #define sparse_init() do {} while (0)
879 #define sparse_index_init(_sec, _nid) do {} while (0)
880 #endif /* CONFIG_SPARSEMEM */
882 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
883 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
884 #else
885 #define early_pfn_in_nid(pfn, nid) (1)
886 #endif
888 #ifndef early_pfn_valid
889 #define early_pfn_valid(pfn) (1)
890 #endif
892 void memory_present(int nid, unsigned long start, unsigned long end);
893 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
896 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
897 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
898 * pfn_valid_within() should be used in this case; we optimise this away
899 * when we have no holes within a MAX_ORDER_NR_PAGES block.
901 #ifdef CONFIG_HOLES_IN_ZONE
902 #define pfn_valid_within(pfn) pfn_valid(pfn)
903 #else
904 #define pfn_valid_within(pfn) (1)
905 #endif
907 #endif /* !__ASSEMBLY__ */
908 #endif /* __KERNEL__ */
909 #endif /* _LINUX_MMZONE_H */