Merge branch 'i2c-fixes-rc6' of git://aeryn.fluff.org.uk/bjdooks/linux
[linux-2.6/mini2440.git] / drivers / md / dm-table.c
blobd952b3441913a74b15c09f6ba7ea6237bd1e8aa0
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <asm/atomic.h>
21 #define DM_MSG_PREFIX "table"
23 #define MAX_DEPTH 16
24 #define NODE_SIZE L1_CACHE_BYTES
25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
29 * The table has always exactly one reference from either mapped_device->map
30 * or hash_cell->new_map. This reference is not counted in table->holders.
31 * A pair of dm_create_table/dm_destroy_table functions is used for table
32 * creation/destruction.
34 * Temporary references from the other code increase table->holders. A pair
35 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 * When the table is about to be destroyed, we wait for table->holders to
38 * drop to zero.
41 struct dm_table {
42 struct mapped_device *md;
43 atomic_t holders;
44 unsigned type;
46 /* btree table */
47 unsigned int depth;
48 unsigned int counts[MAX_DEPTH]; /* in nodes */
49 sector_t *index[MAX_DEPTH];
51 unsigned int num_targets;
52 unsigned int num_allocated;
53 sector_t *highs;
54 struct dm_target *targets;
57 * Indicates the rw permissions for the new logical
58 * device. This should be a combination of FMODE_READ
59 * and FMODE_WRITE.
61 fmode_t mode;
63 /* a list of devices used by this table */
64 struct list_head devices;
66 /* events get handed up using this callback */
67 void (*event_fn)(void *);
68 void *event_context;
70 struct dm_md_mempools *mempools;
74 * Similar to ceiling(log_size(n))
76 static unsigned int int_log(unsigned int n, unsigned int base)
78 int result = 0;
80 while (n > 1) {
81 n = dm_div_up(n, base);
82 result++;
85 return result;
89 * Calculate the index of the child node of the n'th node k'th key.
91 static inline unsigned int get_child(unsigned int n, unsigned int k)
93 return (n * CHILDREN_PER_NODE) + k;
97 * Return the n'th node of level l from table t.
99 static inline sector_t *get_node(struct dm_table *t,
100 unsigned int l, unsigned int n)
102 return t->index[l] + (n * KEYS_PER_NODE);
106 * Return the highest key that you could lookup from the n'th
107 * node on level l of the btree.
109 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
111 for (; l < t->depth - 1; l++)
112 n = get_child(n, CHILDREN_PER_NODE - 1);
114 if (n >= t->counts[l])
115 return (sector_t) - 1;
117 return get_node(t, l, n)[KEYS_PER_NODE - 1];
121 * Fills in a level of the btree based on the highs of the level
122 * below it.
124 static int setup_btree_index(unsigned int l, struct dm_table *t)
126 unsigned int n, k;
127 sector_t *node;
129 for (n = 0U; n < t->counts[l]; n++) {
130 node = get_node(t, l, n);
132 for (k = 0U; k < KEYS_PER_NODE; k++)
133 node[k] = high(t, l + 1, get_child(n, k));
136 return 0;
139 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
141 unsigned long size;
142 void *addr;
145 * Check that we're not going to overflow.
147 if (nmemb > (ULONG_MAX / elem_size))
148 return NULL;
150 size = nmemb * elem_size;
151 addr = vmalloc(size);
152 if (addr)
153 memset(addr, 0, size);
155 return addr;
159 * highs, and targets are managed as dynamic arrays during a
160 * table load.
162 static int alloc_targets(struct dm_table *t, unsigned int num)
164 sector_t *n_highs;
165 struct dm_target *n_targets;
166 int n = t->num_targets;
169 * Allocate both the target array and offset array at once.
170 * Append an empty entry to catch sectors beyond the end of
171 * the device.
173 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
174 sizeof(sector_t));
175 if (!n_highs)
176 return -ENOMEM;
178 n_targets = (struct dm_target *) (n_highs + num);
180 if (n) {
181 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
182 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
185 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
186 vfree(t->highs);
188 t->num_allocated = num;
189 t->highs = n_highs;
190 t->targets = n_targets;
192 return 0;
195 int dm_table_create(struct dm_table **result, fmode_t mode,
196 unsigned num_targets, struct mapped_device *md)
198 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
200 if (!t)
201 return -ENOMEM;
203 INIT_LIST_HEAD(&t->devices);
204 atomic_set(&t->holders, 0);
206 if (!num_targets)
207 num_targets = KEYS_PER_NODE;
209 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
211 if (alloc_targets(t, num_targets)) {
212 kfree(t);
213 t = NULL;
214 return -ENOMEM;
217 t->mode = mode;
218 t->md = md;
219 *result = t;
220 return 0;
223 static void free_devices(struct list_head *devices)
225 struct list_head *tmp, *next;
227 list_for_each_safe(tmp, next, devices) {
228 struct dm_dev_internal *dd =
229 list_entry(tmp, struct dm_dev_internal, list);
230 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
231 dd->dm_dev.name);
232 kfree(dd);
236 void dm_table_destroy(struct dm_table *t)
238 unsigned int i;
240 while (atomic_read(&t->holders))
241 msleep(1);
242 smp_mb();
244 /* free the indexes (see dm_table_complete) */
245 if (t->depth >= 2)
246 vfree(t->index[t->depth - 2]);
248 /* free the targets */
249 for (i = 0; i < t->num_targets; i++) {
250 struct dm_target *tgt = t->targets + i;
252 if (tgt->type->dtr)
253 tgt->type->dtr(tgt);
255 dm_put_target_type(tgt->type);
258 vfree(t->highs);
260 /* free the device list */
261 if (t->devices.next != &t->devices)
262 free_devices(&t->devices);
264 dm_free_md_mempools(t->mempools);
266 kfree(t);
269 void dm_table_get(struct dm_table *t)
271 atomic_inc(&t->holders);
274 void dm_table_put(struct dm_table *t)
276 if (!t)
277 return;
279 smp_mb__before_atomic_dec();
280 atomic_dec(&t->holders);
284 * Checks to see if we need to extend highs or targets.
286 static inline int check_space(struct dm_table *t)
288 if (t->num_targets >= t->num_allocated)
289 return alloc_targets(t, t->num_allocated * 2);
291 return 0;
295 * See if we've already got a device in the list.
297 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
299 struct dm_dev_internal *dd;
301 list_for_each_entry (dd, l, list)
302 if (dd->dm_dev.bdev->bd_dev == dev)
303 return dd;
305 return NULL;
309 * Open a device so we can use it as a map destination.
311 static int open_dev(struct dm_dev_internal *d, dev_t dev,
312 struct mapped_device *md)
314 static char *_claim_ptr = "I belong to device-mapper";
315 struct block_device *bdev;
317 int r;
319 BUG_ON(d->dm_dev.bdev);
321 bdev = open_by_devnum(dev, d->dm_dev.mode);
322 if (IS_ERR(bdev))
323 return PTR_ERR(bdev);
324 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
325 if (r)
326 blkdev_put(bdev, d->dm_dev.mode);
327 else
328 d->dm_dev.bdev = bdev;
329 return r;
333 * Close a device that we've been using.
335 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
337 if (!d->dm_dev.bdev)
338 return;
340 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
341 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
342 d->dm_dev.bdev = NULL;
346 * If possible, this checks an area of a destination device is valid.
348 static int device_area_is_valid(struct dm_target *ti, struct dm_dev *dev,
349 sector_t start, sector_t len, void *data)
351 struct queue_limits *limits = data;
352 struct block_device *bdev = dev->bdev;
353 sector_t dev_size =
354 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
355 unsigned short logical_block_size_sectors =
356 limits->logical_block_size >> SECTOR_SHIFT;
357 char b[BDEVNAME_SIZE];
359 if (!dev_size)
360 return 1;
362 if ((start >= dev_size) || (start + len > dev_size)) {
363 DMWARN("%s: %s too small for target",
364 dm_device_name(ti->table->md), bdevname(bdev, b));
365 return 0;
368 if (logical_block_size_sectors <= 1)
369 return 1;
371 if (start & (logical_block_size_sectors - 1)) {
372 DMWARN("%s: start=%llu not aligned to h/w "
373 "logical block size %hu of %s",
374 dm_device_name(ti->table->md),
375 (unsigned long long)start,
376 limits->logical_block_size, bdevname(bdev, b));
377 return 0;
380 if (len & (logical_block_size_sectors - 1)) {
381 DMWARN("%s: len=%llu not aligned to h/w "
382 "logical block size %hu of %s",
383 dm_device_name(ti->table->md),
384 (unsigned long long)len,
385 limits->logical_block_size, bdevname(bdev, b));
386 return 0;
389 return 1;
393 * This upgrades the mode on an already open dm_dev, being
394 * careful to leave things as they were if we fail to reopen the
395 * device and not to touch the existing bdev field in case
396 * it is accessed concurrently inside dm_table_any_congested().
398 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
399 struct mapped_device *md)
401 int r;
402 struct dm_dev_internal dd_new, dd_old;
404 dd_new = dd_old = *dd;
406 dd_new.dm_dev.mode |= new_mode;
407 dd_new.dm_dev.bdev = NULL;
409 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
410 if (r)
411 return r;
413 dd->dm_dev.mode |= new_mode;
414 close_dev(&dd_old, md);
416 return 0;
420 * Add a device to the list, or just increment the usage count if
421 * it's already present.
423 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
424 const char *path, sector_t start, sector_t len,
425 fmode_t mode, struct dm_dev **result)
427 int r;
428 dev_t uninitialized_var(dev);
429 struct dm_dev_internal *dd;
430 unsigned int major, minor;
432 BUG_ON(!t);
434 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
435 /* Extract the major/minor numbers */
436 dev = MKDEV(major, minor);
437 if (MAJOR(dev) != major || MINOR(dev) != minor)
438 return -EOVERFLOW;
439 } else {
440 /* convert the path to a device */
441 struct block_device *bdev = lookup_bdev(path);
443 if (IS_ERR(bdev))
444 return PTR_ERR(bdev);
445 dev = bdev->bd_dev;
446 bdput(bdev);
449 dd = find_device(&t->devices, dev);
450 if (!dd) {
451 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
452 if (!dd)
453 return -ENOMEM;
455 dd->dm_dev.mode = mode;
456 dd->dm_dev.bdev = NULL;
458 if ((r = open_dev(dd, dev, t->md))) {
459 kfree(dd);
460 return r;
463 format_dev_t(dd->dm_dev.name, dev);
465 atomic_set(&dd->count, 0);
466 list_add(&dd->list, &t->devices);
468 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
469 r = upgrade_mode(dd, mode, t->md);
470 if (r)
471 return r;
473 atomic_inc(&dd->count);
475 *result = &dd->dm_dev;
476 return 0;
480 * Returns the minimum that is _not_ zero, unless both are zero.
482 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
484 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
485 sector_t start, sector_t len, void *data)
487 struct queue_limits *limits = data;
488 struct block_device *bdev = dev->bdev;
489 struct request_queue *q = bdev_get_queue(bdev);
490 char b[BDEVNAME_SIZE];
492 if (unlikely(!q)) {
493 DMWARN("%s: Cannot set limits for nonexistent device %s",
494 dm_device_name(ti->table->md), bdevname(bdev, b));
495 return 0;
498 if (blk_stack_limits(limits, &q->limits, start << 9) < 0)
499 DMWARN("%s: target device %s is misaligned",
500 dm_device_name(ti->table->md), bdevname(bdev, b));
503 * Check if merge fn is supported.
504 * If not we'll force DM to use PAGE_SIZE or
505 * smaller I/O, just to be safe.
508 if (q->merge_bvec_fn && !ti->type->merge)
509 limits->max_sectors =
510 min_not_zero(limits->max_sectors,
511 (unsigned int) (PAGE_SIZE >> 9));
512 return 0;
514 EXPORT_SYMBOL_GPL(dm_set_device_limits);
516 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
517 sector_t len, fmode_t mode, struct dm_dev **result)
519 return __table_get_device(ti->table, ti, path,
520 start, len, mode, result);
525 * Decrement a devices use count and remove it if necessary.
527 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
529 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
530 dm_dev);
532 if (atomic_dec_and_test(&dd->count)) {
533 close_dev(dd, ti->table->md);
534 list_del(&dd->list);
535 kfree(dd);
540 * Checks to see if the target joins onto the end of the table.
542 static int adjoin(struct dm_table *table, struct dm_target *ti)
544 struct dm_target *prev;
546 if (!table->num_targets)
547 return !ti->begin;
549 prev = &table->targets[table->num_targets - 1];
550 return (ti->begin == (prev->begin + prev->len));
554 * Used to dynamically allocate the arg array.
556 static char **realloc_argv(unsigned *array_size, char **old_argv)
558 char **argv;
559 unsigned new_size;
561 new_size = *array_size ? *array_size * 2 : 64;
562 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
563 if (argv) {
564 memcpy(argv, old_argv, *array_size * sizeof(*argv));
565 *array_size = new_size;
568 kfree(old_argv);
569 return argv;
573 * Destructively splits up the argument list to pass to ctr.
575 int dm_split_args(int *argc, char ***argvp, char *input)
577 char *start, *end = input, *out, **argv = NULL;
578 unsigned array_size = 0;
580 *argc = 0;
582 if (!input) {
583 *argvp = NULL;
584 return 0;
587 argv = realloc_argv(&array_size, argv);
588 if (!argv)
589 return -ENOMEM;
591 while (1) {
592 start = end;
594 /* Skip whitespace */
595 while (*start && isspace(*start))
596 start++;
598 if (!*start)
599 break; /* success, we hit the end */
601 /* 'out' is used to remove any back-quotes */
602 end = out = start;
603 while (*end) {
604 /* Everything apart from '\0' can be quoted */
605 if (*end == '\\' && *(end + 1)) {
606 *out++ = *(end + 1);
607 end += 2;
608 continue;
611 if (isspace(*end))
612 break; /* end of token */
614 *out++ = *end++;
617 /* have we already filled the array ? */
618 if ((*argc + 1) > array_size) {
619 argv = realloc_argv(&array_size, argv);
620 if (!argv)
621 return -ENOMEM;
624 /* we know this is whitespace */
625 if (*end)
626 end++;
628 /* terminate the string and put it in the array */
629 *out = '\0';
630 argv[*argc] = start;
631 (*argc)++;
634 *argvp = argv;
635 return 0;
639 * Impose necessary and sufficient conditions on a devices's table such
640 * that any incoming bio which respects its logical_block_size can be
641 * processed successfully. If it falls across the boundary between
642 * two or more targets, the size of each piece it gets split into must
643 * be compatible with the logical_block_size of the target processing it.
645 static int validate_hardware_logical_block_alignment(struct dm_table *table,
646 struct queue_limits *limits)
649 * This function uses arithmetic modulo the logical_block_size
650 * (in units of 512-byte sectors).
652 unsigned short device_logical_block_size_sects =
653 limits->logical_block_size >> SECTOR_SHIFT;
656 * Offset of the start of the next table entry, mod logical_block_size.
658 unsigned short next_target_start = 0;
661 * Given an aligned bio that extends beyond the end of a
662 * target, how many sectors must the next target handle?
664 unsigned short remaining = 0;
666 struct dm_target *uninitialized_var(ti);
667 struct queue_limits ti_limits;
668 unsigned i = 0;
671 * Check each entry in the table in turn.
673 while (i < dm_table_get_num_targets(table)) {
674 ti = dm_table_get_target(table, i++);
676 blk_set_default_limits(&ti_limits);
678 /* combine all target devices' limits */
679 if (ti->type->iterate_devices)
680 ti->type->iterate_devices(ti, dm_set_device_limits,
681 &ti_limits);
684 * If the remaining sectors fall entirely within this
685 * table entry are they compatible with its logical_block_size?
687 if (remaining < ti->len &&
688 remaining & ((ti_limits.logical_block_size >>
689 SECTOR_SHIFT) - 1))
690 break; /* Error */
692 next_target_start =
693 (unsigned short) ((next_target_start + ti->len) &
694 (device_logical_block_size_sects - 1));
695 remaining = next_target_start ?
696 device_logical_block_size_sects - next_target_start : 0;
699 if (remaining) {
700 DMWARN("%s: table line %u (start sect %llu len %llu) "
701 "not aligned to h/w logical block size %hu",
702 dm_device_name(table->md), i,
703 (unsigned long long) ti->begin,
704 (unsigned long long) ti->len,
705 limits->logical_block_size);
706 return -EINVAL;
709 return 0;
712 int dm_table_add_target(struct dm_table *t, const char *type,
713 sector_t start, sector_t len, char *params)
715 int r = -EINVAL, argc;
716 char **argv;
717 struct dm_target *tgt;
719 if ((r = check_space(t)))
720 return r;
722 tgt = t->targets + t->num_targets;
723 memset(tgt, 0, sizeof(*tgt));
725 if (!len) {
726 DMERR("%s: zero-length target", dm_device_name(t->md));
727 return -EINVAL;
730 tgt->type = dm_get_target_type(type);
731 if (!tgt->type) {
732 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
733 type);
734 return -EINVAL;
737 tgt->table = t;
738 tgt->begin = start;
739 tgt->len = len;
740 tgt->error = "Unknown error";
743 * Does this target adjoin the previous one ?
745 if (!adjoin(t, tgt)) {
746 tgt->error = "Gap in table";
747 r = -EINVAL;
748 goto bad;
751 r = dm_split_args(&argc, &argv, params);
752 if (r) {
753 tgt->error = "couldn't split parameters (insufficient memory)";
754 goto bad;
757 r = tgt->type->ctr(tgt, argc, argv);
758 kfree(argv);
759 if (r)
760 goto bad;
762 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
764 return 0;
766 bad:
767 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
768 dm_put_target_type(tgt->type);
769 return r;
772 int dm_table_set_type(struct dm_table *t)
774 unsigned i;
775 unsigned bio_based = 0, request_based = 0;
776 struct dm_target *tgt;
777 struct dm_dev_internal *dd;
778 struct list_head *devices;
780 for (i = 0; i < t->num_targets; i++) {
781 tgt = t->targets + i;
782 if (dm_target_request_based(tgt))
783 request_based = 1;
784 else
785 bio_based = 1;
787 if (bio_based && request_based) {
788 DMWARN("Inconsistent table: different target types"
789 " can't be mixed up");
790 return -EINVAL;
794 if (bio_based) {
795 /* We must use this table as bio-based */
796 t->type = DM_TYPE_BIO_BASED;
797 return 0;
800 BUG_ON(!request_based); /* No targets in this table */
802 /* Non-request-stackable devices can't be used for request-based dm */
803 devices = dm_table_get_devices(t);
804 list_for_each_entry(dd, devices, list) {
805 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
806 DMWARN("table load rejected: including"
807 " non-request-stackable devices");
808 return -EINVAL;
813 * Request-based dm supports only tables that have a single target now.
814 * To support multiple targets, request splitting support is needed,
815 * and that needs lots of changes in the block-layer.
816 * (e.g. request completion process for partial completion.)
818 if (t->num_targets > 1) {
819 DMWARN("Request-based dm doesn't support multiple targets yet");
820 return -EINVAL;
823 t->type = DM_TYPE_REQUEST_BASED;
825 return 0;
828 unsigned dm_table_get_type(struct dm_table *t)
830 return t->type;
833 bool dm_table_request_based(struct dm_table *t)
835 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
838 int dm_table_alloc_md_mempools(struct dm_table *t)
840 unsigned type = dm_table_get_type(t);
842 if (unlikely(type == DM_TYPE_NONE)) {
843 DMWARN("no table type is set, can't allocate mempools");
844 return -EINVAL;
847 t->mempools = dm_alloc_md_mempools(type);
848 if (!t->mempools)
849 return -ENOMEM;
851 return 0;
854 void dm_table_free_md_mempools(struct dm_table *t)
856 dm_free_md_mempools(t->mempools);
857 t->mempools = NULL;
860 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
862 return t->mempools;
865 static int setup_indexes(struct dm_table *t)
867 int i;
868 unsigned int total = 0;
869 sector_t *indexes;
871 /* allocate the space for *all* the indexes */
872 for (i = t->depth - 2; i >= 0; i--) {
873 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
874 total += t->counts[i];
877 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
878 if (!indexes)
879 return -ENOMEM;
881 /* set up internal nodes, bottom-up */
882 for (i = t->depth - 2; i >= 0; i--) {
883 t->index[i] = indexes;
884 indexes += (KEYS_PER_NODE * t->counts[i]);
885 setup_btree_index(i, t);
888 return 0;
892 * Builds the btree to index the map.
894 int dm_table_complete(struct dm_table *t)
896 int r = 0;
897 unsigned int leaf_nodes;
899 /* how many indexes will the btree have ? */
900 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
901 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
903 /* leaf layer has already been set up */
904 t->counts[t->depth - 1] = leaf_nodes;
905 t->index[t->depth - 1] = t->highs;
907 if (t->depth >= 2)
908 r = setup_indexes(t);
910 return r;
913 static DEFINE_MUTEX(_event_lock);
914 void dm_table_event_callback(struct dm_table *t,
915 void (*fn)(void *), void *context)
917 mutex_lock(&_event_lock);
918 t->event_fn = fn;
919 t->event_context = context;
920 mutex_unlock(&_event_lock);
923 void dm_table_event(struct dm_table *t)
926 * You can no longer call dm_table_event() from interrupt
927 * context, use a bottom half instead.
929 BUG_ON(in_interrupt());
931 mutex_lock(&_event_lock);
932 if (t->event_fn)
933 t->event_fn(t->event_context);
934 mutex_unlock(&_event_lock);
937 sector_t dm_table_get_size(struct dm_table *t)
939 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
942 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
944 if (index >= t->num_targets)
945 return NULL;
947 return t->targets + index;
951 * Search the btree for the correct target.
953 * Caller should check returned pointer with dm_target_is_valid()
954 * to trap I/O beyond end of device.
956 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
958 unsigned int l, n = 0, k = 0;
959 sector_t *node;
961 for (l = 0; l < t->depth; l++) {
962 n = get_child(n, k);
963 node = get_node(t, l, n);
965 for (k = 0; k < KEYS_PER_NODE; k++)
966 if (node[k] >= sector)
967 break;
970 return &t->targets[(KEYS_PER_NODE * n) + k];
974 * Establish the new table's queue_limits and validate them.
976 int dm_calculate_queue_limits(struct dm_table *table,
977 struct queue_limits *limits)
979 struct dm_target *uninitialized_var(ti);
980 struct queue_limits ti_limits;
981 unsigned i = 0;
983 blk_set_default_limits(limits);
985 while (i < dm_table_get_num_targets(table)) {
986 blk_set_default_limits(&ti_limits);
988 ti = dm_table_get_target(table, i++);
990 if (!ti->type->iterate_devices)
991 goto combine_limits;
994 * Combine queue limits of all the devices this target uses.
996 ti->type->iterate_devices(ti, dm_set_device_limits,
997 &ti_limits);
1000 * Check each device area is consistent with the target's
1001 * overall queue limits.
1003 if (!ti->type->iterate_devices(ti, device_area_is_valid,
1004 &ti_limits))
1005 return -EINVAL;
1007 combine_limits:
1009 * Merge this target's queue limits into the overall limits
1010 * for the table.
1012 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1013 DMWARN("%s: target device "
1014 "(start sect %llu len %llu) "
1015 "is misaligned",
1016 dm_device_name(table->md),
1017 (unsigned long long) ti->begin,
1018 (unsigned long long) ti->len);
1021 return validate_hardware_logical_block_alignment(table, limits);
1025 * Set the integrity profile for this device if all devices used have
1026 * matching profiles.
1028 static void dm_table_set_integrity(struct dm_table *t)
1030 struct list_head *devices = dm_table_get_devices(t);
1031 struct dm_dev_internal *prev = NULL, *dd = NULL;
1033 if (!blk_get_integrity(dm_disk(t->md)))
1034 return;
1036 list_for_each_entry(dd, devices, list) {
1037 if (prev &&
1038 blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
1039 dd->dm_dev.bdev->bd_disk) < 0) {
1040 DMWARN("%s: integrity not set: %s and %s mismatch",
1041 dm_device_name(t->md),
1042 prev->dm_dev.bdev->bd_disk->disk_name,
1043 dd->dm_dev.bdev->bd_disk->disk_name);
1044 goto no_integrity;
1046 prev = dd;
1049 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
1050 goto no_integrity;
1052 blk_integrity_register(dm_disk(t->md),
1053 bdev_get_integrity(prev->dm_dev.bdev));
1055 return;
1057 no_integrity:
1058 blk_integrity_register(dm_disk(t->md), NULL);
1060 return;
1063 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1064 struct queue_limits *limits)
1067 * Each target device in the table has a data area that should normally
1068 * be aligned such that the DM device's alignment_offset is 0.
1069 * FIXME: Propagate alignment_offsets up the stack and warn of
1070 * sub-optimal or inconsistent settings.
1072 limits->alignment_offset = 0;
1073 limits->misaligned = 0;
1076 * Copy table's limits to the DM device's request_queue
1078 q->limits = *limits;
1080 if (limits->no_cluster)
1081 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1082 else
1083 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
1085 dm_table_set_integrity(t);
1088 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1089 * visible to other CPUs because, once the flag is set, incoming bios
1090 * are processed by request-based dm, which refers to the queue
1091 * settings.
1092 * Until the flag set, bios are passed to bio-based dm and queued to
1093 * md->deferred where queue settings are not needed yet.
1094 * Those bios are passed to request-based dm at the resume time.
1096 smp_mb();
1097 if (dm_table_request_based(t))
1098 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1101 unsigned int dm_table_get_num_targets(struct dm_table *t)
1103 return t->num_targets;
1106 struct list_head *dm_table_get_devices(struct dm_table *t)
1108 return &t->devices;
1111 fmode_t dm_table_get_mode(struct dm_table *t)
1113 return t->mode;
1116 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1118 int i = t->num_targets;
1119 struct dm_target *ti = t->targets;
1121 while (i--) {
1122 if (postsuspend) {
1123 if (ti->type->postsuspend)
1124 ti->type->postsuspend(ti);
1125 } else if (ti->type->presuspend)
1126 ti->type->presuspend(ti);
1128 ti++;
1132 void dm_table_presuspend_targets(struct dm_table *t)
1134 if (!t)
1135 return;
1137 suspend_targets(t, 0);
1140 void dm_table_postsuspend_targets(struct dm_table *t)
1142 if (!t)
1143 return;
1145 suspend_targets(t, 1);
1148 int dm_table_resume_targets(struct dm_table *t)
1150 int i, r = 0;
1152 for (i = 0; i < t->num_targets; i++) {
1153 struct dm_target *ti = t->targets + i;
1155 if (!ti->type->preresume)
1156 continue;
1158 r = ti->type->preresume(ti);
1159 if (r)
1160 return r;
1163 for (i = 0; i < t->num_targets; i++) {
1164 struct dm_target *ti = t->targets + i;
1166 if (ti->type->resume)
1167 ti->type->resume(ti);
1170 return 0;
1173 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1175 struct dm_dev_internal *dd;
1176 struct list_head *devices = dm_table_get_devices(t);
1177 int r = 0;
1179 list_for_each_entry(dd, devices, list) {
1180 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1181 char b[BDEVNAME_SIZE];
1183 if (likely(q))
1184 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1185 else
1186 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1187 dm_device_name(t->md),
1188 bdevname(dd->dm_dev.bdev, b));
1191 return r;
1194 int dm_table_any_busy_target(struct dm_table *t)
1196 unsigned i;
1197 struct dm_target *ti;
1199 for (i = 0; i < t->num_targets; i++) {
1200 ti = t->targets + i;
1201 if (ti->type->busy && ti->type->busy(ti))
1202 return 1;
1205 return 0;
1208 void dm_table_unplug_all(struct dm_table *t)
1210 struct dm_dev_internal *dd;
1211 struct list_head *devices = dm_table_get_devices(t);
1213 list_for_each_entry(dd, devices, list) {
1214 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1215 char b[BDEVNAME_SIZE];
1217 if (likely(q))
1218 blk_unplug(q);
1219 else
1220 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1221 dm_device_name(t->md),
1222 bdevname(dd->dm_dev.bdev, b));
1226 struct mapped_device *dm_table_get_md(struct dm_table *t)
1228 dm_get(t->md);
1230 return t->md;
1233 EXPORT_SYMBOL(dm_vcalloc);
1234 EXPORT_SYMBOL(dm_get_device);
1235 EXPORT_SYMBOL(dm_put_device);
1236 EXPORT_SYMBOL(dm_table_event);
1237 EXPORT_SYMBOL(dm_table_get_size);
1238 EXPORT_SYMBOL(dm_table_get_mode);
1239 EXPORT_SYMBOL(dm_table_get_md);
1240 EXPORT_SYMBOL(dm_table_put);
1241 EXPORT_SYMBOL(dm_table_get);
1242 EXPORT_SYMBOL(dm_table_unplug_all);