page allocator: use allocation flags as an index to the zone watermark
[linux-2.6/mini2440.git] / mm / page_alloc.c
blobabe26003124de3d3720a87684ee96daf7c720499
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 #include <linux/kmemleak.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 #include "internal.h"
56 * Array of node states.
58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61 #ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 #ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 #endif
66 [N_CPU] = { { [0] = 1UL } },
67 #endif /* NUMA */
69 EXPORT_SYMBOL(node_states);
71 unsigned long totalram_pages __read_mostly;
72 unsigned long totalreserve_pages __read_mostly;
73 unsigned long highest_memmap_pfn __read_mostly;
74 int percpu_pagelist_fraction;
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly;
78 #endif
80 static void __free_pages_ok(struct page *page, unsigned int order);
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94 #ifdef CONFIG_ZONE_DMA
95 256,
96 #endif
97 #ifdef CONFIG_ZONE_DMA32
98 256,
99 #endif
100 #ifdef CONFIG_HIGHMEM
102 #endif
106 EXPORT_SYMBOL(totalram_pages);
108 static char * const zone_names[MAX_NR_ZONES] = {
109 #ifdef CONFIG_ZONE_DMA
110 "DMA",
111 #endif
112 #ifdef CONFIG_ZONE_DMA32
113 "DMA32",
114 #endif
115 "Normal",
116 #ifdef CONFIG_HIGHMEM
117 "HighMem",
118 #endif
119 "Movable",
122 int min_free_kbytes = 1024;
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
165 #endif
167 int page_group_by_mobility_disabled __read_mostly;
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
172 if (unlikely(page_group_by_mobility_disabled))
173 migratetype = MIGRATE_UNMOVABLE;
175 set_pageblock_flags_group(page, (unsigned long)migratetype,
176 PB_migrate, PB_migrate_end);
179 #ifdef CONFIG_DEBUG_VM
180 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
182 int ret = 0;
183 unsigned seq;
184 unsigned long pfn = page_to_pfn(page);
186 do {
187 seq = zone_span_seqbegin(zone);
188 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 ret = 1;
190 else if (pfn < zone->zone_start_pfn)
191 ret = 1;
192 } while (zone_span_seqretry(zone, seq));
194 return ret;
197 static int page_is_consistent(struct zone *zone, struct page *page)
199 if (!pfn_valid_within(page_to_pfn(page)))
200 return 0;
201 if (zone != page_zone(page))
202 return 0;
204 return 1;
207 * Temporary debugging check for pages not lying within a given zone.
209 static int bad_range(struct zone *zone, struct page *page)
211 if (page_outside_zone_boundaries(zone, page))
212 return 1;
213 if (!page_is_consistent(zone, page))
214 return 1;
216 return 0;
218 #else
219 static inline int bad_range(struct zone *zone, struct page *page)
221 return 0;
223 #endif
225 static void bad_page(struct page *page)
227 static unsigned long resume;
228 static unsigned long nr_shown;
229 static unsigned long nr_unshown;
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
235 if (nr_shown == 60) {
236 if (time_before(jiffies, resume)) {
237 nr_unshown++;
238 goto out;
240 if (nr_unshown) {
241 printk(KERN_ALERT
242 "BUG: Bad page state: %lu messages suppressed\n",
243 nr_unshown);
244 nr_unshown = 0;
246 nr_shown = 0;
248 if (nr_shown++ == 0)
249 resume = jiffies + 60 * HZ;
251 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
252 current->comm, page_to_pfn(page));
253 printk(KERN_ALERT
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page, (void *)page->flags, page_count(page),
256 page_mapcount(page), page->mapping, page->index);
258 dump_stack();
259 out:
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
262 add_taint(TAINT_BAD_PAGE);
266 * Higher-order pages are called "compound pages". They are structured thusly:
268 * The first PAGE_SIZE page is called the "head page".
270 * The remaining PAGE_SIZE pages are called "tail pages".
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
280 static void free_compound_page(struct page *page)
282 __free_pages_ok(page, compound_order(page));
285 void prep_compound_page(struct page *page, unsigned long order)
287 int i;
288 int nr_pages = 1 << order;
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
296 __SetPageTail(p);
297 p->first_page = page;
301 #ifdef CONFIG_HUGETLBFS
302 void prep_compound_gigantic_page(struct page *page, unsigned long order)
304 int i;
305 int nr_pages = 1 << order;
306 struct page *p = page + 1;
308 set_compound_page_dtor(page, free_compound_page);
309 set_compound_order(page, order);
310 __SetPageHead(page);
311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
312 __SetPageTail(p);
313 p->first_page = page;
316 #endif
318 static int destroy_compound_page(struct page *page, unsigned long order)
320 int i;
321 int nr_pages = 1 << order;
322 int bad = 0;
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
326 bad_page(page);
327 bad++;
330 __ClearPageHead(page);
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
335 if (unlikely(!PageTail(p) || (p->first_page != page))) {
336 bad_page(page);
337 bad++;
339 __ClearPageTail(p);
342 return bad;
345 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
347 int i;
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
358 static inline void set_page_order(struct page *page, int order)
360 set_page_private(page, order);
361 __SetPageBuddy(page);
364 static inline void rmv_page_order(struct page *page)
366 __ClearPageBuddy(page);
367 set_page_private(page, 0);
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
387 static inline struct page *
388 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
390 unsigned long buddy_idx = page_idx ^ (1 << order);
392 return page + (buddy_idx - page_idx);
395 static inline unsigned long
396 __find_combined_index(unsigned long page_idx, unsigned int order)
398 return (page_idx & ~(1 << order));
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
404 * (a) the buddy is not in a hole &&
405 * (b) the buddy is in the buddy system &&
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
412 * For recording page's order, we use page_private(page).
414 static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
417 if (!pfn_valid_within(page_to_pfn(buddy)))
418 return 0;
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 VM_BUG_ON(page_count(buddy) != 0);
425 return 1;
427 return 0;
431 * Freeing function for a buddy system allocator.
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
444 * order is recorded in page_private(page) field.
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
451 * -- wli
454 static inline void __free_one_page(struct page *page,
455 struct zone *zone, unsigned int order,
456 int migratetype)
458 unsigned long page_idx;
459 int order_size = 1 << order;
461 if (unlikely(PageCompound(page)))
462 if (unlikely(destroy_compound_page(page, order)))
463 return;
465 VM_BUG_ON(migratetype == -1);
467 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
469 VM_BUG_ON(page_idx & (order_size - 1));
470 VM_BUG_ON(bad_range(zone, page));
472 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
473 while (order < MAX_ORDER-1) {
474 unsigned long combined_idx;
475 struct page *buddy;
477 buddy = __page_find_buddy(page, page_idx, order);
478 if (!page_is_buddy(page, buddy, order))
479 break;
481 /* Our buddy is free, merge with it and move up one order. */
482 list_del(&buddy->lru);
483 zone->free_area[order].nr_free--;
484 rmv_page_order(buddy);
485 combined_idx = __find_combined_index(page_idx, order);
486 page = page + (combined_idx - page_idx);
487 page_idx = combined_idx;
488 order++;
490 set_page_order(page, order);
491 list_add(&page->lru,
492 &zone->free_area[order].free_list[migratetype]);
493 zone->free_area[order].nr_free++;
496 static inline int free_pages_check(struct page *page)
498 if (unlikely(page_mapcount(page) |
499 (page->mapping != NULL) |
500 (atomic_read(&page->_count) != 0) |
501 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
502 bad_page(page);
503 return 1;
505 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
506 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
507 return 0;
511 * Frees a list of pages.
512 * Assumes all pages on list are in same zone, and of same order.
513 * count is the number of pages to free.
515 * If the zone was previously in an "all pages pinned" state then look to
516 * see if this freeing clears that state.
518 * And clear the zone's pages_scanned counter, to hold off the "all pages are
519 * pinned" detection logic.
521 static void free_pages_bulk(struct zone *zone, int count,
522 struct list_head *list, int order)
524 spin_lock(&zone->lock);
525 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
526 zone->pages_scanned = 0;
527 while (count--) {
528 struct page *page;
530 VM_BUG_ON(list_empty(list));
531 page = list_entry(list->prev, struct page, lru);
532 /* have to delete it as __free_one_page list manipulates */
533 list_del(&page->lru);
534 __free_one_page(page, zone, order, page_private(page));
536 spin_unlock(&zone->lock);
539 static void free_one_page(struct zone *zone, struct page *page, int order,
540 int migratetype)
542 spin_lock(&zone->lock);
543 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
544 zone->pages_scanned = 0;
545 __free_one_page(page, zone, order, migratetype);
546 spin_unlock(&zone->lock);
549 static void __free_pages_ok(struct page *page, unsigned int order)
551 unsigned long flags;
552 int i;
553 int bad = 0;
554 int clearMlocked = PageMlocked(page);
556 for (i = 0 ; i < (1 << order) ; ++i)
557 bad += free_pages_check(page + i);
558 if (bad)
559 return;
561 if (!PageHighMem(page)) {
562 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
563 debug_check_no_obj_freed(page_address(page),
564 PAGE_SIZE << order);
566 arch_free_page(page, order);
567 kernel_map_pages(page, 1 << order, 0);
569 local_irq_save(flags);
570 if (unlikely(clearMlocked))
571 free_page_mlock(page);
572 __count_vm_events(PGFREE, 1 << order);
573 free_one_page(page_zone(page), page, order,
574 get_pageblock_migratetype(page));
575 local_irq_restore(flags);
579 * permit the bootmem allocator to evade page validation on high-order frees
581 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
583 if (order == 0) {
584 __ClearPageReserved(page);
585 set_page_count(page, 0);
586 set_page_refcounted(page);
587 __free_page(page);
588 } else {
589 int loop;
591 prefetchw(page);
592 for (loop = 0; loop < BITS_PER_LONG; loop++) {
593 struct page *p = &page[loop];
595 if (loop + 1 < BITS_PER_LONG)
596 prefetchw(p + 1);
597 __ClearPageReserved(p);
598 set_page_count(p, 0);
601 set_page_refcounted(page);
602 __free_pages(page, order);
608 * The order of subdivision here is critical for the IO subsystem.
609 * Please do not alter this order without good reasons and regression
610 * testing. Specifically, as large blocks of memory are subdivided,
611 * the order in which smaller blocks are delivered depends on the order
612 * they're subdivided in this function. This is the primary factor
613 * influencing the order in which pages are delivered to the IO
614 * subsystem according to empirical testing, and this is also justified
615 * by considering the behavior of a buddy system containing a single
616 * large block of memory acted on by a series of small allocations.
617 * This behavior is a critical factor in sglist merging's success.
619 * -- wli
621 static inline void expand(struct zone *zone, struct page *page,
622 int low, int high, struct free_area *area,
623 int migratetype)
625 unsigned long size = 1 << high;
627 while (high > low) {
628 area--;
629 high--;
630 size >>= 1;
631 VM_BUG_ON(bad_range(zone, &page[size]));
632 list_add(&page[size].lru, &area->free_list[migratetype]);
633 area->nr_free++;
634 set_page_order(&page[size], high);
639 * This page is about to be returned from the page allocator
641 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
643 if (unlikely(page_mapcount(page) |
644 (page->mapping != NULL) |
645 (atomic_read(&page->_count) != 0) |
646 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
647 bad_page(page);
648 return 1;
651 set_page_private(page, 0);
652 set_page_refcounted(page);
654 arch_alloc_page(page, order);
655 kernel_map_pages(page, 1 << order, 1);
657 if (gfp_flags & __GFP_ZERO)
658 prep_zero_page(page, order, gfp_flags);
660 if (order && (gfp_flags & __GFP_COMP))
661 prep_compound_page(page, order);
663 return 0;
667 * Go through the free lists for the given migratetype and remove
668 * the smallest available page from the freelists
670 static inline
671 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
672 int migratetype)
674 unsigned int current_order;
675 struct free_area * area;
676 struct page *page;
678 /* Find a page of the appropriate size in the preferred list */
679 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
680 area = &(zone->free_area[current_order]);
681 if (list_empty(&area->free_list[migratetype]))
682 continue;
684 page = list_entry(area->free_list[migratetype].next,
685 struct page, lru);
686 list_del(&page->lru);
687 rmv_page_order(page);
688 area->nr_free--;
689 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
690 expand(zone, page, order, current_order, area, migratetype);
691 return page;
694 return NULL;
699 * This array describes the order lists are fallen back to when
700 * the free lists for the desirable migrate type are depleted
702 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
703 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
704 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
705 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
706 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
710 * Move the free pages in a range to the free lists of the requested type.
711 * Note that start_page and end_pages are not aligned on a pageblock
712 * boundary. If alignment is required, use move_freepages_block()
714 static int move_freepages(struct zone *zone,
715 struct page *start_page, struct page *end_page,
716 int migratetype)
718 struct page *page;
719 unsigned long order;
720 int pages_moved = 0;
722 #ifndef CONFIG_HOLES_IN_ZONE
724 * page_zone is not safe to call in this context when
725 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
726 * anyway as we check zone boundaries in move_freepages_block().
727 * Remove at a later date when no bug reports exist related to
728 * grouping pages by mobility
730 BUG_ON(page_zone(start_page) != page_zone(end_page));
731 #endif
733 for (page = start_page; page <= end_page;) {
734 /* Make sure we are not inadvertently changing nodes */
735 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
737 if (!pfn_valid_within(page_to_pfn(page))) {
738 page++;
739 continue;
742 if (!PageBuddy(page)) {
743 page++;
744 continue;
747 order = page_order(page);
748 list_del(&page->lru);
749 list_add(&page->lru,
750 &zone->free_area[order].free_list[migratetype]);
751 page += 1 << order;
752 pages_moved += 1 << order;
755 return pages_moved;
758 static int move_freepages_block(struct zone *zone, struct page *page,
759 int migratetype)
761 unsigned long start_pfn, end_pfn;
762 struct page *start_page, *end_page;
764 start_pfn = page_to_pfn(page);
765 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
766 start_page = pfn_to_page(start_pfn);
767 end_page = start_page + pageblock_nr_pages - 1;
768 end_pfn = start_pfn + pageblock_nr_pages - 1;
770 /* Do not cross zone boundaries */
771 if (start_pfn < zone->zone_start_pfn)
772 start_page = page;
773 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
774 return 0;
776 return move_freepages(zone, start_page, end_page, migratetype);
779 /* Remove an element from the buddy allocator from the fallback list */
780 static inline struct page *
781 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
783 struct free_area * area;
784 int current_order;
785 struct page *page;
786 int migratetype, i;
788 /* Find the largest possible block of pages in the other list */
789 for (current_order = MAX_ORDER-1; current_order >= order;
790 --current_order) {
791 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
792 migratetype = fallbacks[start_migratetype][i];
794 /* MIGRATE_RESERVE handled later if necessary */
795 if (migratetype == MIGRATE_RESERVE)
796 continue;
798 area = &(zone->free_area[current_order]);
799 if (list_empty(&area->free_list[migratetype]))
800 continue;
802 page = list_entry(area->free_list[migratetype].next,
803 struct page, lru);
804 area->nr_free--;
807 * If breaking a large block of pages, move all free
808 * pages to the preferred allocation list. If falling
809 * back for a reclaimable kernel allocation, be more
810 * agressive about taking ownership of free pages
812 if (unlikely(current_order >= (pageblock_order >> 1)) ||
813 start_migratetype == MIGRATE_RECLAIMABLE) {
814 unsigned long pages;
815 pages = move_freepages_block(zone, page,
816 start_migratetype);
818 /* Claim the whole block if over half of it is free */
819 if (pages >= (1 << (pageblock_order-1)))
820 set_pageblock_migratetype(page,
821 start_migratetype);
823 migratetype = start_migratetype;
826 /* Remove the page from the freelists */
827 list_del(&page->lru);
828 rmv_page_order(page);
829 __mod_zone_page_state(zone, NR_FREE_PAGES,
830 -(1UL << order));
832 if (current_order == pageblock_order)
833 set_pageblock_migratetype(page,
834 start_migratetype);
836 expand(zone, page, order, current_order, area, migratetype);
837 return page;
841 return NULL;
845 * Do the hard work of removing an element from the buddy allocator.
846 * Call me with the zone->lock already held.
848 static struct page *__rmqueue(struct zone *zone, unsigned int order,
849 int migratetype)
851 struct page *page;
853 retry_reserve:
854 page = __rmqueue_smallest(zone, order, migratetype);
856 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
857 page = __rmqueue_fallback(zone, order, migratetype);
860 * Use MIGRATE_RESERVE rather than fail an allocation. goto
861 * is used because __rmqueue_smallest is an inline function
862 * and we want just one call site
864 if (!page) {
865 migratetype = MIGRATE_RESERVE;
866 goto retry_reserve;
870 return page;
874 * Obtain a specified number of elements from the buddy allocator, all under
875 * a single hold of the lock, for efficiency. Add them to the supplied list.
876 * Returns the number of new pages which were placed at *list.
878 static int rmqueue_bulk(struct zone *zone, unsigned int order,
879 unsigned long count, struct list_head *list,
880 int migratetype)
882 int i;
884 spin_lock(&zone->lock);
885 for (i = 0; i < count; ++i) {
886 struct page *page = __rmqueue(zone, order, migratetype);
887 if (unlikely(page == NULL))
888 break;
891 * Split buddy pages returned by expand() are received here
892 * in physical page order. The page is added to the callers and
893 * list and the list head then moves forward. From the callers
894 * perspective, the linked list is ordered by page number in
895 * some conditions. This is useful for IO devices that can
896 * merge IO requests if the physical pages are ordered
897 * properly.
899 list_add(&page->lru, list);
900 set_page_private(page, migratetype);
901 list = &page->lru;
903 spin_unlock(&zone->lock);
904 return i;
907 #ifdef CONFIG_NUMA
909 * Called from the vmstat counter updater to drain pagesets of this
910 * currently executing processor on remote nodes after they have
911 * expired.
913 * Note that this function must be called with the thread pinned to
914 * a single processor.
916 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
918 unsigned long flags;
919 int to_drain;
921 local_irq_save(flags);
922 if (pcp->count >= pcp->batch)
923 to_drain = pcp->batch;
924 else
925 to_drain = pcp->count;
926 free_pages_bulk(zone, to_drain, &pcp->list, 0);
927 pcp->count -= to_drain;
928 local_irq_restore(flags);
930 #endif
933 * Drain pages of the indicated processor.
935 * The processor must either be the current processor and the
936 * thread pinned to the current processor or a processor that
937 * is not online.
939 static void drain_pages(unsigned int cpu)
941 unsigned long flags;
942 struct zone *zone;
944 for_each_populated_zone(zone) {
945 struct per_cpu_pageset *pset;
946 struct per_cpu_pages *pcp;
948 pset = zone_pcp(zone, cpu);
950 pcp = &pset->pcp;
951 local_irq_save(flags);
952 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
953 pcp->count = 0;
954 local_irq_restore(flags);
959 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
961 void drain_local_pages(void *arg)
963 drain_pages(smp_processor_id());
967 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
969 void drain_all_pages(void)
971 on_each_cpu(drain_local_pages, NULL, 1);
974 #ifdef CONFIG_HIBERNATION
976 void mark_free_pages(struct zone *zone)
978 unsigned long pfn, max_zone_pfn;
979 unsigned long flags;
980 int order, t;
981 struct list_head *curr;
983 if (!zone->spanned_pages)
984 return;
986 spin_lock_irqsave(&zone->lock, flags);
988 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
989 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
990 if (pfn_valid(pfn)) {
991 struct page *page = pfn_to_page(pfn);
993 if (!swsusp_page_is_forbidden(page))
994 swsusp_unset_page_free(page);
997 for_each_migratetype_order(order, t) {
998 list_for_each(curr, &zone->free_area[order].free_list[t]) {
999 unsigned long i;
1001 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1002 for (i = 0; i < (1UL << order); i++)
1003 swsusp_set_page_free(pfn_to_page(pfn + i));
1006 spin_unlock_irqrestore(&zone->lock, flags);
1008 #endif /* CONFIG_PM */
1011 * Free a 0-order page
1013 static void free_hot_cold_page(struct page *page, int cold)
1015 struct zone *zone = page_zone(page);
1016 struct per_cpu_pages *pcp;
1017 unsigned long flags;
1018 int clearMlocked = PageMlocked(page);
1020 if (PageAnon(page))
1021 page->mapping = NULL;
1022 if (free_pages_check(page))
1023 return;
1025 if (!PageHighMem(page)) {
1026 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1027 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1029 arch_free_page(page, 0);
1030 kernel_map_pages(page, 1, 0);
1032 pcp = &zone_pcp(zone, get_cpu())->pcp;
1033 local_irq_save(flags);
1034 if (unlikely(clearMlocked))
1035 free_page_mlock(page);
1036 __count_vm_event(PGFREE);
1038 if (cold)
1039 list_add_tail(&page->lru, &pcp->list);
1040 else
1041 list_add(&page->lru, &pcp->list);
1042 set_page_private(page, get_pageblock_migratetype(page));
1043 pcp->count++;
1044 if (pcp->count >= pcp->high) {
1045 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1046 pcp->count -= pcp->batch;
1048 local_irq_restore(flags);
1049 put_cpu();
1052 void free_hot_page(struct page *page)
1054 free_hot_cold_page(page, 0);
1057 void free_cold_page(struct page *page)
1059 free_hot_cold_page(page, 1);
1063 * split_page takes a non-compound higher-order page, and splits it into
1064 * n (1<<order) sub-pages: page[0..n]
1065 * Each sub-page must be freed individually.
1067 * Note: this is probably too low level an operation for use in drivers.
1068 * Please consult with lkml before using this in your driver.
1070 void split_page(struct page *page, unsigned int order)
1072 int i;
1074 VM_BUG_ON(PageCompound(page));
1075 VM_BUG_ON(!page_count(page));
1076 for (i = 1; i < (1 << order); i++)
1077 set_page_refcounted(page + i);
1081 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1082 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1083 * or two.
1085 static inline
1086 struct page *buffered_rmqueue(struct zone *preferred_zone,
1087 struct zone *zone, int order, gfp_t gfp_flags,
1088 int migratetype)
1090 unsigned long flags;
1091 struct page *page;
1092 int cold = !!(gfp_flags & __GFP_COLD);
1093 int cpu;
1095 again:
1096 cpu = get_cpu();
1097 if (likely(order == 0)) {
1098 struct per_cpu_pages *pcp;
1100 pcp = &zone_pcp(zone, cpu)->pcp;
1101 local_irq_save(flags);
1102 if (!pcp->count) {
1103 pcp->count = rmqueue_bulk(zone, 0,
1104 pcp->batch, &pcp->list, migratetype);
1105 if (unlikely(!pcp->count))
1106 goto failed;
1109 /* Find a page of the appropriate migrate type */
1110 if (cold) {
1111 list_for_each_entry_reverse(page, &pcp->list, lru)
1112 if (page_private(page) == migratetype)
1113 break;
1114 } else {
1115 list_for_each_entry(page, &pcp->list, lru)
1116 if (page_private(page) == migratetype)
1117 break;
1120 /* Allocate more to the pcp list if necessary */
1121 if (unlikely(&page->lru == &pcp->list)) {
1122 pcp->count += rmqueue_bulk(zone, 0,
1123 pcp->batch, &pcp->list, migratetype);
1124 page = list_entry(pcp->list.next, struct page, lru);
1127 list_del(&page->lru);
1128 pcp->count--;
1129 } else {
1130 spin_lock_irqsave(&zone->lock, flags);
1131 page = __rmqueue(zone, order, migratetype);
1132 spin_unlock(&zone->lock);
1133 if (!page)
1134 goto failed;
1137 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1138 zone_statistics(preferred_zone, zone);
1139 local_irq_restore(flags);
1140 put_cpu();
1142 VM_BUG_ON(bad_range(zone, page));
1143 if (prep_new_page(page, order, gfp_flags))
1144 goto again;
1145 return page;
1147 failed:
1148 local_irq_restore(flags);
1149 put_cpu();
1150 return NULL;
1153 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1154 #define ALLOC_WMARK_MIN WMARK_MIN
1155 #define ALLOC_WMARK_LOW WMARK_LOW
1156 #define ALLOC_WMARK_HIGH WMARK_HIGH
1157 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1159 /* Mask to get the watermark bits */
1160 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1162 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1163 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1164 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1166 #ifdef CONFIG_FAIL_PAGE_ALLOC
1168 static struct fail_page_alloc_attr {
1169 struct fault_attr attr;
1171 u32 ignore_gfp_highmem;
1172 u32 ignore_gfp_wait;
1173 u32 min_order;
1175 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1177 struct dentry *ignore_gfp_highmem_file;
1178 struct dentry *ignore_gfp_wait_file;
1179 struct dentry *min_order_file;
1181 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1183 } fail_page_alloc = {
1184 .attr = FAULT_ATTR_INITIALIZER,
1185 .ignore_gfp_wait = 1,
1186 .ignore_gfp_highmem = 1,
1187 .min_order = 1,
1190 static int __init setup_fail_page_alloc(char *str)
1192 return setup_fault_attr(&fail_page_alloc.attr, str);
1194 __setup("fail_page_alloc=", setup_fail_page_alloc);
1196 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1198 if (order < fail_page_alloc.min_order)
1199 return 0;
1200 if (gfp_mask & __GFP_NOFAIL)
1201 return 0;
1202 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1203 return 0;
1204 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1205 return 0;
1207 return should_fail(&fail_page_alloc.attr, 1 << order);
1210 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1212 static int __init fail_page_alloc_debugfs(void)
1214 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1215 struct dentry *dir;
1216 int err;
1218 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1219 "fail_page_alloc");
1220 if (err)
1221 return err;
1222 dir = fail_page_alloc.attr.dentries.dir;
1224 fail_page_alloc.ignore_gfp_wait_file =
1225 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1226 &fail_page_alloc.ignore_gfp_wait);
1228 fail_page_alloc.ignore_gfp_highmem_file =
1229 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1230 &fail_page_alloc.ignore_gfp_highmem);
1231 fail_page_alloc.min_order_file =
1232 debugfs_create_u32("min-order", mode, dir,
1233 &fail_page_alloc.min_order);
1235 if (!fail_page_alloc.ignore_gfp_wait_file ||
1236 !fail_page_alloc.ignore_gfp_highmem_file ||
1237 !fail_page_alloc.min_order_file) {
1238 err = -ENOMEM;
1239 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1240 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1241 debugfs_remove(fail_page_alloc.min_order_file);
1242 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1245 return err;
1248 late_initcall(fail_page_alloc_debugfs);
1250 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1252 #else /* CONFIG_FAIL_PAGE_ALLOC */
1254 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1256 return 0;
1259 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1262 * Return 1 if free pages are above 'mark'. This takes into account the order
1263 * of the allocation.
1265 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1266 int classzone_idx, int alloc_flags)
1268 /* free_pages my go negative - that's OK */
1269 long min = mark;
1270 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1271 int o;
1273 if (alloc_flags & ALLOC_HIGH)
1274 min -= min / 2;
1275 if (alloc_flags & ALLOC_HARDER)
1276 min -= min / 4;
1278 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1279 return 0;
1280 for (o = 0; o < order; o++) {
1281 /* At the next order, this order's pages become unavailable */
1282 free_pages -= z->free_area[o].nr_free << o;
1284 /* Require fewer higher order pages to be free */
1285 min >>= 1;
1287 if (free_pages <= min)
1288 return 0;
1290 return 1;
1293 #ifdef CONFIG_NUMA
1295 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1296 * skip over zones that are not allowed by the cpuset, or that have
1297 * been recently (in last second) found to be nearly full. See further
1298 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1299 * that have to skip over a lot of full or unallowed zones.
1301 * If the zonelist cache is present in the passed in zonelist, then
1302 * returns a pointer to the allowed node mask (either the current
1303 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1305 * If the zonelist cache is not available for this zonelist, does
1306 * nothing and returns NULL.
1308 * If the fullzones BITMAP in the zonelist cache is stale (more than
1309 * a second since last zap'd) then we zap it out (clear its bits.)
1311 * We hold off even calling zlc_setup, until after we've checked the
1312 * first zone in the zonelist, on the theory that most allocations will
1313 * be satisfied from that first zone, so best to examine that zone as
1314 * quickly as we can.
1316 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1318 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1319 nodemask_t *allowednodes; /* zonelist_cache approximation */
1321 zlc = zonelist->zlcache_ptr;
1322 if (!zlc)
1323 return NULL;
1325 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1326 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1327 zlc->last_full_zap = jiffies;
1330 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1331 &cpuset_current_mems_allowed :
1332 &node_states[N_HIGH_MEMORY];
1333 return allowednodes;
1337 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1338 * if it is worth looking at further for free memory:
1339 * 1) Check that the zone isn't thought to be full (doesn't have its
1340 * bit set in the zonelist_cache fullzones BITMAP).
1341 * 2) Check that the zones node (obtained from the zonelist_cache
1342 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1343 * Return true (non-zero) if zone is worth looking at further, or
1344 * else return false (zero) if it is not.
1346 * This check -ignores- the distinction between various watermarks,
1347 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1348 * found to be full for any variation of these watermarks, it will
1349 * be considered full for up to one second by all requests, unless
1350 * we are so low on memory on all allowed nodes that we are forced
1351 * into the second scan of the zonelist.
1353 * In the second scan we ignore this zonelist cache and exactly
1354 * apply the watermarks to all zones, even it is slower to do so.
1355 * We are low on memory in the second scan, and should leave no stone
1356 * unturned looking for a free page.
1358 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1359 nodemask_t *allowednodes)
1361 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1362 int i; /* index of *z in zonelist zones */
1363 int n; /* node that zone *z is on */
1365 zlc = zonelist->zlcache_ptr;
1366 if (!zlc)
1367 return 1;
1369 i = z - zonelist->_zonerefs;
1370 n = zlc->z_to_n[i];
1372 /* This zone is worth trying if it is allowed but not full */
1373 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1377 * Given 'z' scanning a zonelist, set the corresponding bit in
1378 * zlc->fullzones, so that subsequent attempts to allocate a page
1379 * from that zone don't waste time re-examining it.
1381 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1383 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1384 int i; /* index of *z in zonelist zones */
1386 zlc = zonelist->zlcache_ptr;
1387 if (!zlc)
1388 return;
1390 i = z - zonelist->_zonerefs;
1392 set_bit(i, zlc->fullzones);
1395 #else /* CONFIG_NUMA */
1397 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1399 return NULL;
1402 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1403 nodemask_t *allowednodes)
1405 return 1;
1408 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1411 #endif /* CONFIG_NUMA */
1414 * get_page_from_freelist goes through the zonelist trying to allocate
1415 * a page.
1417 static struct page *
1418 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1419 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1420 struct zone *preferred_zone, int migratetype)
1422 struct zoneref *z;
1423 struct page *page = NULL;
1424 int classzone_idx;
1425 struct zone *zone;
1426 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1427 int zlc_active = 0; /* set if using zonelist_cache */
1428 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1430 if (WARN_ON_ONCE(order >= MAX_ORDER))
1431 return NULL;
1433 classzone_idx = zone_idx(preferred_zone);
1434 zonelist_scan:
1436 * Scan zonelist, looking for a zone with enough free.
1437 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1439 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1440 high_zoneidx, nodemask) {
1441 if (NUMA_BUILD && zlc_active &&
1442 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1443 continue;
1444 if ((alloc_flags & ALLOC_CPUSET) &&
1445 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1446 goto try_next_zone;
1448 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1449 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1450 unsigned long mark;
1451 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1452 if (!zone_watermark_ok(zone, order, mark,
1453 classzone_idx, alloc_flags)) {
1454 if (!zone_reclaim_mode ||
1455 !zone_reclaim(zone, gfp_mask, order))
1456 goto this_zone_full;
1460 page = buffered_rmqueue(preferred_zone, zone, order,
1461 gfp_mask, migratetype);
1462 if (page)
1463 break;
1464 this_zone_full:
1465 if (NUMA_BUILD)
1466 zlc_mark_zone_full(zonelist, z);
1467 try_next_zone:
1468 if (NUMA_BUILD && !did_zlc_setup && num_online_nodes() > 1) {
1470 * we do zlc_setup after the first zone is tried but only
1471 * if there are multiple nodes make it worthwhile
1473 allowednodes = zlc_setup(zonelist, alloc_flags);
1474 zlc_active = 1;
1475 did_zlc_setup = 1;
1479 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1480 /* Disable zlc cache for second zonelist scan */
1481 zlc_active = 0;
1482 goto zonelist_scan;
1484 return page;
1487 static inline int
1488 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1489 unsigned long pages_reclaimed)
1491 /* Do not loop if specifically requested */
1492 if (gfp_mask & __GFP_NORETRY)
1493 return 0;
1496 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1497 * means __GFP_NOFAIL, but that may not be true in other
1498 * implementations.
1500 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1501 return 1;
1504 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1505 * specified, then we retry until we no longer reclaim any pages
1506 * (above), or we've reclaimed an order of pages at least as
1507 * large as the allocation's order. In both cases, if the
1508 * allocation still fails, we stop retrying.
1510 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1511 return 1;
1514 * Don't let big-order allocations loop unless the caller
1515 * explicitly requests that.
1517 if (gfp_mask & __GFP_NOFAIL)
1518 return 1;
1520 return 0;
1523 static inline struct page *
1524 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1525 struct zonelist *zonelist, enum zone_type high_zoneidx,
1526 nodemask_t *nodemask, struct zone *preferred_zone,
1527 int migratetype)
1529 struct page *page;
1531 /* Acquire the OOM killer lock for the zones in zonelist */
1532 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1533 schedule_timeout_uninterruptible(1);
1534 return NULL;
1538 * Go through the zonelist yet one more time, keep very high watermark
1539 * here, this is only to catch a parallel oom killing, we must fail if
1540 * we're still under heavy pressure.
1542 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1543 order, zonelist, high_zoneidx,
1544 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1545 preferred_zone, migratetype);
1546 if (page)
1547 goto out;
1549 /* The OOM killer will not help higher order allocs */
1550 if (order > PAGE_ALLOC_COSTLY_ORDER)
1551 goto out;
1553 /* Exhausted what can be done so it's blamo time */
1554 out_of_memory(zonelist, gfp_mask, order);
1556 out:
1557 clear_zonelist_oom(zonelist, gfp_mask);
1558 return page;
1561 /* The really slow allocator path where we enter direct reclaim */
1562 static inline struct page *
1563 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1564 struct zonelist *zonelist, enum zone_type high_zoneidx,
1565 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1566 int migratetype, unsigned long *did_some_progress)
1568 struct page *page = NULL;
1569 struct reclaim_state reclaim_state;
1570 struct task_struct *p = current;
1572 cond_resched();
1574 /* We now go into synchronous reclaim */
1575 cpuset_memory_pressure_bump();
1578 * The task's cpuset might have expanded its set of allowable nodes
1580 p->flags |= PF_MEMALLOC;
1581 lockdep_set_current_reclaim_state(gfp_mask);
1582 reclaim_state.reclaimed_slab = 0;
1583 p->reclaim_state = &reclaim_state;
1585 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1587 p->reclaim_state = NULL;
1588 lockdep_clear_current_reclaim_state();
1589 p->flags &= ~PF_MEMALLOC;
1591 cond_resched();
1593 if (order != 0)
1594 drain_all_pages();
1596 if (likely(*did_some_progress))
1597 page = get_page_from_freelist(gfp_mask, nodemask, order,
1598 zonelist, high_zoneidx,
1599 alloc_flags, preferred_zone,
1600 migratetype);
1601 return page;
1605 * This is called in the allocator slow-path if the allocation request is of
1606 * sufficient urgency to ignore watermarks and take other desperate measures
1608 static inline struct page *
1609 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1610 struct zonelist *zonelist, enum zone_type high_zoneidx,
1611 nodemask_t *nodemask, struct zone *preferred_zone,
1612 int migratetype)
1614 struct page *page;
1616 do {
1617 page = get_page_from_freelist(gfp_mask, nodemask, order,
1618 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1619 preferred_zone, migratetype);
1621 if (!page && gfp_mask & __GFP_NOFAIL)
1622 congestion_wait(WRITE, HZ/50);
1623 } while (!page && (gfp_mask & __GFP_NOFAIL));
1625 return page;
1628 static inline
1629 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1630 enum zone_type high_zoneidx)
1632 struct zoneref *z;
1633 struct zone *zone;
1635 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1636 wakeup_kswapd(zone, order);
1639 static inline int
1640 gfp_to_alloc_flags(gfp_t gfp_mask)
1642 struct task_struct *p = current;
1643 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1644 const gfp_t wait = gfp_mask & __GFP_WAIT;
1646 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1647 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1650 * The caller may dip into page reserves a bit more if the caller
1651 * cannot run direct reclaim, or if the caller has realtime scheduling
1652 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1653 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1655 alloc_flags |= (gfp_mask & __GFP_HIGH);
1657 if (!wait) {
1658 alloc_flags |= ALLOC_HARDER;
1660 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1661 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1663 alloc_flags &= ~ALLOC_CPUSET;
1664 } else if (unlikely(rt_task(p)))
1665 alloc_flags |= ALLOC_HARDER;
1667 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1668 if (!in_interrupt() &&
1669 ((p->flags & PF_MEMALLOC) ||
1670 unlikely(test_thread_flag(TIF_MEMDIE))))
1671 alloc_flags |= ALLOC_NO_WATERMARKS;
1674 return alloc_flags;
1677 static inline struct page *
1678 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1679 struct zonelist *zonelist, enum zone_type high_zoneidx,
1680 nodemask_t *nodemask, struct zone *preferred_zone,
1681 int migratetype)
1683 const gfp_t wait = gfp_mask & __GFP_WAIT;
1684 struct page *page = NULL;
1685 int alloc_flags;
1686 unsigned long pages_reclaimed = 0;
1687 unsigned long did_some_progress;
1688 struct task_struct *p = current;
1691 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1692 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1693 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1694 * using a larger set of nodes after it has established that the
1695 * allowed per node queues are empty and that nodes are
1696 * over allocated.
1698 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1699 goto nopage;
1701 wake_all_kswapd(order, zonelist, high_zoneidx);
1704 * OK, we're below the kswapd watermark and have kicked background
1705 * reclaim. Now things get more complex, so set up alloc_flags according
1706 * to how we want to proceed.
1708 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1710 restart:
1711 /* This is the last chance, in general, before the goto nopage. */
1712 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1713 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1714 preferred_zone, migratetype);
1715 if (page)
1716 goto got_pg;
1718 rebalance:
1719 /* Allocate without watermarks if the context allows */
1720 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1721 page = __alloc_pages_high_priority(gfp_mask, order,
1722 zonelist, high_zoneidx, nodemask,
1723 preferred_zone, migratetype);
1724 if (page)
1725 goto got_pg;
1728 /* Atomic allocations - we can't balance anything */
1729 if (!wait)
1730 goto nopage;
1732 /* Avoid recursion of direct reclaim */
1733 if (p->flags & PF_MEMALLOC)
1734 goto nopage;
1736 /* Try direct reclaim and then allocating */
1737 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1738 zonelist, high_zoneidx,
1739 nodemask,
1740 alloc_flags, preferred_zone,
1741 migratetype, &did_some_progress);
1742 if (page)
1743 goto got_pg;
1746 * If we failed to make any progress reclaiming, then we are
1747 * running out of options and have to consider going OOM
1749 if (!did_some_progress) {
1750 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1751 page = __alloc_pages_may_oom(gfp_mask, order,
1752 zonelist, high_zoneidx,
1753 nodemask, preferred_zone,
1754 migratetype);
1755 if (page)
1756 goto got_pg;
1759 * The OOM killer does not trigger for high-order allocations
1760 * but if no progress is being made, there are no other
1761 * options and retrying is unlikely to help
1763 if (order > PAGE_ALLOC_COSTLY_ORDER)
1764 goto nopage;
1766 goto restart;
1770 /* Check if we should retry the allocation */
1771 pages_reclaimed += did_some_progress;
1772 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1773 /* Wait for some write requests to complete then retry */
1774 congestion_wait(WRITE, HZ/50);
1775 goto rebalance;
1778 nopage:
1779 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1780 printk(KERN_WARNING "%s: page allocation failure."
1781 " order:%d, mode:0x%x\n",
1782 p->comm, order, gfp_mask);
1783 dump_stack();
1784 show_mem();
1786 got_pg:
1787 return page;
1792 * This is the 'heart' of the zoned buddy allocator.
1794 struct page *
1795 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1796 struct zonelist *zonelist, nodemask_t *nodemask)
1798 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1799 struct zone *preferred_zone;
1800 struct page *page;
1801 int migratetype = allocflags_to_migratetype(gfp_mask);
1803 lockdep_trace_alloc(gfp_mask);
1805 might_sleep_if(gfp_mask & __GFP_WAIT);
1807 if (should_fail_alloc_page(gfp_mask, order))
1808 return NULL;
1811 * Check the zones suitable for the gfp_mask contain at least one
1812 * valid zone. It's possible to have an empty zonelist as a result
1813 * of GFP_THISNODE and a memoryless node
1815 if (unlikely(!zonelist->_zonerefs->zone))
1816 return NULL;
1818 /* The preferred zone is used for statistics later */
1819 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1820 if (!preferred_zone)
1821 return NULL;
1823 /* First allocation attempt */
1824 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1825 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1826 preferred_zone, migratetype);
1827 if (unlikely(!page))
1828 page = __alloc_pages_slowpath(gfp_mask, order,
1829 zonelist, high_zoneidx, nodemask,
1830 preferred_zone, migratetype);
1832 return page;
1834 EXPORT_SYMBOL(__alloc_pages_nodemask);
1837 * Common helper functions.
1839 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1841 struct page * page;
1842 page = alloc_pages(gfp_mask, order);
1843 if (!page)
1844 return 0;
1845 return (unsigned long) page_address(page);
1848 EXPORT_SYMBOL(__get_free_pages);
1850 unsigned long get_zeroed_page(gfp_t gfp_mask)
1852 struct page * page;
1855 * get_zeroed_page() returns a 32-bit address, which cannot represent
1856 * a highmem page
1858 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1860 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1861 if (page)
1862 return (unsigned long) page_address(page);
1863 return 0;
1866 EXPORT_SYMBOL(get_zeroed_page);
1868 void __pagevec_free(struct pagevec *pvec)
1870 int i = pagevec_count(pvec);
1872 while (--i >= 0)
1873 free_hot_cold_page(pvec->pages[i], pvec->cold);
1876 void __free_pages(struct page *page, unsigned int order)
1878 if (put_page_testzero(page)) {
1879 if (order == 0)
1880 free_hot_page(page);
1881 else
1882 __free_pages_ok(page, order);
1886 EXPORT_SYMBOL(__free_pages);
1888 void free_pages(unsigned long addr, unsigned int order)
1890 if (addr != 0) {
1891 VM_BUG_ON(!virt_addr_valid((void *)addr));
1892 __free_pages(virt_to_page((void *)addr), order);
1896 EXPORT_SYMBOL(free_pages);
1899 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1900 * @size: the number of bytes to allocate
1901 * @gfp_mask: GFP flags for the allocation
1903 * This function is similar to alloc_pages(), except that it allocates the
1904 * minimum number of pages to satisfy the request. alloc_pages() can only
1905 * allocate memory in power-of-two pages.
1907 * This function is also limited by MAX_ORDER.
1909 * Memory allocated by this function must be released by free_pages_exact().
1911 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1913 unsigned int order = get_order(size);
1914 unsigned long addr;
1916 addr = __get_free_pages(gfp_mask, order);
1917 if (addr) {
1918 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1919 unsigned long used = addr + PAGE_ALIGN(size);
1921 split_page(virt_to_page(addr), order);
1922 while (used < alloc_end) {
1923 free_page(used);
1924 used += PAGE_SIZE;
1928 return (void *)addr;
1930 EXPORT_SYMBOL(alloc_pages_exact);
1933 * free_pages_exact - release memory allocated via alloc_pages_exact()
1934 * @virt: the value returned by alloc_pages_exact.
1935 * @size: size of allocation, same value as passed to alloc_pages_exact().
1937 * Release the memory allocated by a previous call to alloc_pages_exact.
1939 void free_pages_exact(void *virt, size_t size)
1941 unsigned long addr = (unsigned long)virt;
1942 unsigned long end = addr + PAGE_ALIGN(size);
1944 while (addr < end) {
1945 free_page(addr);
1946 addr += PAGE_SIZE;
1949 EXPORT_SYMBOL(free_pages_exact);
1951 static unsigned int nr_free_zone_pages(int offset)
1953 struct zoneref *z;
1954 struct zone *zone;
1956 /* Just pick one node, since fallback list is circular */
1957 unsigned int sum = 0;
1959 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1961 for_each_zone_zonelist(zone, z, zonelist, offset) {
1962 unsigned long size = zone->present_pages;
1963 unsigned long high = high_wmark_pages(zone);
1964 if (size > high)
1965 sum += size - high;
1968 return sum;
1972 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1974 unsigned int nr_free_buffer_pages(void)
1976 return nr_free_zone_pages(gfp_zone(GFP_USER));
1978 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1981 * Amount of free RAM allocatable within all zones
1983 unsigned int nr_free_pagecache_pages(void)
1985 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1988 static inline void show_node(struct zone *zone)
1990 if (NUMA_BUILD)
1991 printk("Node %d ", zone_to_nid(zone));
1994 void si_meminfo(struct sysinfo *val)
1996 val->totalram = totalram_pages;
1997 val->sharedram = 0;
1998 val->freeram = global_page_state(NR_FREE_PAGES);
1999 val->bufferram = nr_blockdev_pages();
2000 val->totalhigh = totalhigh_pages;
2001 val->freehigh = nr_free_highpages();
2002 val->mem_unit = PAGE_SIZE;
2005 EXPORT_SYMBOL(si_meminfo);
2007 #ifdef CONFIG_NUMA
2008 void si_meminfo_node(struct sysinfo *val, int nid)
2010 pg_data_t *pgdat = NODE_DATA(nid);
2012 val->totalram = pgdat->node_present_pages;
2013 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2014 #ifdef CONFIG_HIGHMEM
2015 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2016 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2017 NR_FREE_PAGES);
2018 #else
2019 val->totalhigh = 0;
2020 val->freehigh = 0;
2021 #endif
2022 val->mem_unit = PAGE_SIZE;
2024 #endif
2026 #define K(x) ((x) << (PAGE_SHIFT-10))
2029 * Show free area list (used inside shift_scroll-lock stuff)
2030 * We also calculate the percentage fragmentation. We do this by counting the
2031 * memory on each free list with the exception of the first item on the list.
2033 void show_free_areas(void)
2035 int cpu;
2036 struct zone *zone;
2038 for_each_populated_zone(zone) {
2039 show_node(zone);
2040 printk("%s per-cpu:\n", zone->name);
2042 for_each_online_cpu(cpu) {
2043 struct per_cpu_pageset *pageset;
2045 pageset = zone_pcp(zone, cpu);
2047 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2048 cpu, pageset->pcp.high,
2049 pageset->pcp.batch, pageset->pcp.count);
2053 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2054 " inactive_file:%lu"
2055 //TODO: check/adjust line lengths
2056 #ifdef CONFIG_UNEVICTABLE_LRU
2057 " unevictable:%lu"
2058 #endif
2059 " dirty:%lu writeback:%lu unstable:%lu\n"
2060 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2061 global_page_state(NR_ACTIVE_ANON),
2062 global_page_state(NR_ACTIVE_FILE),
2063 global_page_state(NR_INACTIVE_ANON),
2064 global_page_state(NR_INACTIVE_FILE),
2065 #ifdef CONFIG_UNEVICTABLE_LRU
2066 global_page_state(NR_UNEVICTABLE),
2067 #endif
2068 global_page_state(NR_FILE_DIRTY),
2069 global_page_state(NR_WRITEBACK),
2070 global_page_state(NR_UNSTABLE_NFS),
2071 global_page_state(NR_FREE_PAGES),
2072 global_page_state(NR_SLAB_RECLAIMABLE) +
2073 global_page_state(NR_SLAB_UNRECLAIMABLE),
2074 global_page_state(NR_FILE_MAPPED),
2075 global_page_state(NR_PAGETABLE),
2076 global_page_state(NR_BOUNCE));
2078 for_each_populated_zone(zone) {
2079 int i;
2081 show_node(zone);
2082 printk("%s"
2083 " free:%lukB"
2084 " min:%lukB"
2085 " low:%lukB"
2086 " high:%lukB"
2087 " active_anon:%lukB"
2088 " inactive_anon:%lukB"
2089 " active_file:%lukB"
2090 " inactive_file:%lukB"
2091 #ifdef CONFIG_UNEVICTABLE_LRU
2092 " unevictable:%lukB"
2093 #endif
2094 " present:%lukB"
2095 " pages_scanned:%lu"
2096 " all_unreclaimable? %s"
2097 "\n",
2098 zone->name,
2099 K(zone_page_state(zone, NR_FREE_PAGES)),
2100 K(min_wmark_pages(zone)),
2101 K(low_wmark_pages(zone)),
2102 K(high_wmark_pages(zone)),
2103 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2104 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2105 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2106 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2107 #ifdef CONFIG_UNEVICTABLE_LRU
2108 K(zone_page_state(zone, NR_UNEVICTABLE)),
2109 #endif
2110 K(zone->present_pages),
2111 zone->pages_scanned,
2112 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2114 printk("lowmem_reserve[]:");
2115 for (i = 0; i < MAX_NR_ZONES; i++)
2116 printk(" %lu", zone->lowmem_reserve[i]);
2117 printk("\n");
2120 for_each_populated_zone(zone) {
2121 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2123 show_node(zone);
2124 printk("%s: ", zone->name);
2126 spin_lock_irqsave(&zone->lock, flags);
2127 for (order = 0; order < MAX_ORDER; order++) {
2128 nr[order] = zone->free_area[order].nr_free;
2129 total += nr[order] << order;
2131 spin_unlock_irqrestore(&zone->lock, flags);
2132 for (order = 0; order < MAX_ORDER; order++)
2133 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2134 printk("= %lukB\n", K(total));
2137 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2139 show_swap_cache_info();
2142 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2144 zoneref->zone = zone;
2145 zoneref->zone_idx = zone_idx(zone);
2149 * Builds allocation fallback zone lists.
2151 * Add all populated zones of a node to the zonelist.
2153 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2154 int nr_zones, enum zone_type zone_type)
2156 struct zone *zone;
2158 BUG_ON(zone_type >= MAX_NR_ZONES);
2159 zone_type++;
2161 do {
2162 zone_type--;
2163 zone = pgdat->node_zones + zone_type;
2164 if (populated_zone(zone)) {
2165 zoneref_set_zone(zone,
2166 &zonelist->_zonerefs[nr_zones++]);
2167 check_highest_zone(zone_type);
2170 } while (zone_type);
2171 return nr_zones;
2176 * zonelist_order:
2177 * 0 = automatic detection of better ordering.
2178 * 1 = order by ([node] distance, -zonetype)
2179 * 2 = order by (-zonetype, [node] distance)
2181 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2182 * the same zonelist. So only NUMA can configure this param.
2184 #define ZONELIST_ORDER_DEFAULT 0
2185 #define ZONELIST_ORDER_NODE 1
2186 #define ZONELIST_ORDER_ZONE 2
2188 /* zonelist order in the kernel.
2189 * set_zonelist_order() will set this to NODE or ZONE.
2191 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2192 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2195 #ifdef CONFIG_NUMA
2196 /* The value user specified ....changed by config */
2197 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2198 /* string for sysctl */
2199 #define NUMA_ZONELIST_ORDER_LEN 16
2200 char numa_zonelist_order[16] = "default";
2203 * interface for configure zonelist ordering.
2204 * command line option "numa_zonelist_order"
2205 * = "[dD]efault - default, automatic configuration.
2206 * = "[nN]ode - order by node locality, then by zone within node
2207 * = "[zZ]one - order by zone, then by locality within zone
2210 static int __parse_numa_zonelist_order(char *s)
2212 if (*s == 'd' || *s == 'D') {
2213 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2214 } else if (*s == 'n' || *s == 'N') {
2215 user_zonelist_order = ZONELIST_ORDER_NODE;
2216 } else if (*s == 'z' || *s == 'Z') {
2217 user_zonelist_order = ZONELIST_ORDER_ZONE;
2218 } else {
2219 printk(KERN_WARNING
2220 "Ignoring invalid numa_zonelist_order value: "
2221 "%s\n", s);
2222 return -EINVAL;
2224 return 0;
2227 static __init int setup_numa_zonelist_order(char *s)
2229 if (s)
2230 return __parse_numa_zonelist_order(s);
2231 return 0;
2233 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2236 * sysctl handler for numa_zonelist_order
2238 int numa_zonelist_order_handler(ctl_table *table, int write,
2239 struct file *file, void __user *buffer, size_t *length,
2240 loff_t *ppos)
2242 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2243 int ret;
2245 if (write)
2246 strncpy(saved_string, (char*)table->data,
2247 NUMA_ZONELIST_ORDER_LEN);
2248 ret = proc_dostring(table, write, file, buffer, length, ppos);
2249 if (ret)
2250 return ret;
2251 if (write) {
2252 int oldval = user_zonelist_order;
2253 if (__parse_numa_zonelist_order((char*)table->data)) {
2255 * bogus value. restore saved string
2257 strncpy((char*)table->data, saved_string,
2258 NUMA_ZONELIST_ORDER_LEN);
2259 user_zonelist_order = oldval;
2260 } else if (oldval != user_zonelist_order)
2261 build_all_zonelists();
2263 return 0;
2267 #define MAX_NODE_LOAD (num_online_nodes())
2268 static int node_load[MAX_NUMNODES];
2271 * find_next_best_node - find the next node that should appear in a given node's fallback list
2272 * @node: node whose fallback list we're appending
2273 * @used_node_mask: nodemask_t of already used nodes
2275 * We use a number of factors to determine which is the next node that should
2276 * appear on a given node's fallback list. The node should not have appeared
2277 * already in @node's fallback list, and it should be the next closest node
2278 * according to the distance array (which contains arbitrary distance values
2279 * from each node to each node in the system), and should also prefer nodes
2280 * with no CPUs, since presumably they'll have very little allocation pressure
2281 * on them otherwise.
2282 * It returns -1 if no node is found.
2284 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2286 int n, val;
2287 int min_val = INT_MAX;
2288 int best_node = -1;
2289 const struct cpumask *tmp = cpumask_of_node(0);
2291 /* Use the local node if we haven't already */
2292 if (!node_isset(node, *used_node_mask)) {
2293 node_set(node, *used_node_mask);
2294 return node;
2297 for_each_node_state(n, N_HIGH_MEMORY) {
2299 /* Don't want a node to appear more than once */
2300 if (node_isset(n, *used_node_mask))
2301 continue;
2303 /* Use the distance array to find the distance */
2304 val = node_distance(node, n);
2306 /* Penalize nodes under us ("prefer the next node") */
2307 val += (n < node);
2309 /* Give preference to headless and unused nodes */
2310 tmp = cpumask_of_node(n);
2311 if (!cpumask_empty(tmp))
2312 val += PENALTY_FOR_NODE_WITH_CPUS;
2314 /* Slight preference for less loaded node */
2315 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2316 val += node_load[n];
2318 if (val < min_val) {
2319 min_val = val;
2320 best_node = n;
2324 if (best_node >= 0)
2325 node_set(best_node, *used_node_mask);
2327 return best_node;
2332 * Build zonelists ordered by node and zones within node.
2333 * This results in maximum locality--normal zone overflows into local
2334 * DMA zone, if any--but risks exhausting DMA zone.
2336 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2338 int j;
2339 struct zonelist *zonelist;
2341 zonelist = &pgdat->node_zonelists[0];
2342 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2344 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2345 MAX_NR_ZONES - 1);
2346 zonelist->_zonerefs[j].zone = NULL;
2347 zonelist->_zonerefs[j].zone_idx = 0;
2351 * Build gfp_thisnode zonelists
2353 static void build_thisnode_zonelists(pg_data_t *pgdat)
2355 int j;
2356 struct zonelist *zonelist;
2358 zonelist = &pgdat->node_zonelists[1];
2359 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2360 zonelist->_zonerefs[j].zone = NULL;
2361 zonelist->_zonerefs[j].zone_idx = 0;
2365 * Build zonelists ordered by zone and nodes within zones.
2366 * This results in conserving DMA zone[s] until all Normal memory is
2367 * exhausted, but results in overflowing to remote node while memory
2368 * may still exist in local DMA zone.
2370 static int node_order[MAX_NUMNODES];
2372 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2374 int pos, j, node;
2375 int zone_type; /* needs to be signed */
2376 struct zone *z;
2377 struct zonelist *zonelist;
2379 zonelist = &pgdat->node_zonelists[0];
2380 pos = 0;
2381 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2382 for (j = 0; j < nr_nodes; j++) {
2383 node = node_order[j];
2384 z = &NODE_DATA(node)->node_zones[zone_type];
2385 if (populated_zone(z)) {
2386 zoneref_set_zone(z,
2387 &zonelist->_zonerefs[pos++]);
2388 check_highest_zone(zone_type);
2392 zonelist->_zonerefs[pos].zone = NULL;
2393 zonelist->_zonerefs[pos].zone_idx = 0;
2396 static int default_zonelist_order(void)
2398 int nid, zone_type;
2399 unsigned long low_kmem_size,total_size;
2400 struct zone *z;
2401 int average_size;
2403 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2404 * If they are really small and used heavily, the system can fall
2405 * into OOM very easily.
2406 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2408 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2409 low_kmem_size = 0;
2410 total_size = 0;
2411 for_each_online_node(nid) {
2412 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2413 z = &NODE_DATA(nid)->node_zones[zone_type];
2414 if (populated_zone(z)) {
2415 if (zone_type < ZONE_NORMAL)
2416 low_kmem_size += z->present_pages;
2417 total_size += z->present_pages;
2421 if (!low_kmem_size || /* there are no DMA area. */
2422 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2423 return ZONELIST_ORDER_NODE;
2425 * look into each node's config.
2426 * If there is a node whose DMA/DMA32 memory is very big area on
2427 * local memory, NODE_ORDER may be suitable.
2429 average_size = total_size /
2430 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2431 for_each_online_node(nid) {
2432 low_kmem_size = 0;
2433 total_size = 0;
2434 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2435 z = &NODE_DATA(nid)->node_zones[zone_type];
2436 if (populated_zone(z)) {
2437 if (zone_type < ZONE_NORMAL)
2438 low_kmem_size += z->present_pages;
2439 total_size += z->present_pages;
2442 if (low_kmem_size &&
2443 total_size > average_size && /* ignore small node */
2444 low_kmem_size > total_size * 70/100)
2445 return ZONELIST_ORDER_NODE;
2447 return ZONELIST_ORDER_ZONE;
2450 static void set_zonelist_order(void)
2452 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2453 current_zonelist_order = default_zonelist_order();
2454 else
2455 current_zonelist_order = user_zonelist_order;
2458 static void build_zonelists(pg_data_t *pgdat)
2460 int j, node, load;
2461 enum zone_type i;
2462 nodemask_t used_mask;
2463 int local_node, prev_node;
2464 struct zonelist *zonelist;
2465 int order = current_zonelist_order;
2467 /* initialize zonelists */
2468 for (i = 0; i < MAX_ZONELISTS; i++) {
2469 zonelist = pgdat->node_zonelists + i;
2470 zonelist->_zonerefs[0].zone = NULL;
2471 zonelist->_zonerefs[0].zone_idx = 0;
2474 /* NUMA-aware ordering of nodes */
2475 local_node = pgdat->node_id;
2476 load = num_online_nodes();
2477 prev_node = local_node;
2478 nodes_clear(used_mask);
2480 memset(node_load, 0, sizeof(node_load));
2481 memset(node_order, 0, sizeof(node_order));
2482 j = 0;
2484 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2485 int distance = node_distance(local_node, node);
2488 * If another node is sufficiently far away then it is better
2489 * to reclaim pages in a zone before going off node.
2491 if (distance > RECLAIM_DISTANCE)
2492 zone_reclaim_mode = 1;
2495 * We don't want to pressure a particular node.
2496 * So adding penalty to the first node in same
2497 * distance group to make it round-robin.
2499 if (distance != node_distance(local_node, prev_node))
2500 node_load[node] = load;
2502 prev_node = node;
2503 load--;
2504 if (order == ZONELIST_ORDER_NODE)
2505 build_zonelists_in_node_order(pgdat, node);
2506 else
2507 node_order[j++] = node; /* remember order */
2510 if (order == ZONELIST_ORDER_ZONE) {
2511 /* calculate node order -- i.e., DMA last! */
2512 build_zonelists_in_zone_order(pgdat, j);
2515 build_thisnode_zonelists(pgdat);
2518 /* Construct the zonelist performance cache - see further mmzone.h */
2519 static void build_zonelist_cache(pg_data_t *pgdat)
2521 struct zonelist *zonelist;
2522 struct zonelist_cache *zlc;
2523 struct zoneref *z;
2525 zonelist = &pgdat->node_zonelists[0];
2526 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2527 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2528 for (z = zonelist->_zonerefs; z->zone; z++)
2529 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2533 #else /* CONFIG_NUMA */
2535 static void set_zonelist_order(void)
2537 current_zonelist_order = ZONELIST_ORDER_ZONE;
2540 static void build_zonelists(pg_data_t *pgdat)
2542 int node, local_node;
2543 enum zone_type j;
2544 struct zonelist *zonelist;
2546 local_node = pgdat->node_id;
2548 zonelist = &pgdat->node_zonelists[0];
2549 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2552 * Now we build the zonelist so that it contains the zones
2553 * of all the other nodes.
2554 * We don't want to pressure a particular node, so when
2555 * building the zones for node N, we make sure that the
2556 * zones coming right after the local ones are those from
2557 * node N+1 (modulo N)
2559 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2560 if (!node_online(node))
2561 continue;
2562 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2563 MAX_NR_ZONES - 1);
2565 for (node = 0; node < local_node; node++) {
2566 if (!node_online(node))
2567 continue;
2568 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2569 MAX_NR_ZONES - 1);
2572 zonelist->_zonerefs[j].zone = NULL;
2573 zonelist->_zonerefs[j].zone_idx = 0;
2576 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2577 static void build_zonelist_cache(pg_data_t *pgdat)
2579 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2582 #endif /* CONFIG_NUMA */
2584 /* return values int ....just for stop_machine() */
2585 static int __build_all_zonelists(void *dummy)
2587 int nid;
2589 for_each_online_node(nid) {
2590 pg_data_t *pgdat = NODE_DATA(nid);
2592 build_zonelists(pgdat);
2593 build_zonelist_cache(pgdat);
2595 return 0;
2598 void build_all_zonelists(void)
2600 set_zonelist_order();
2602 if (system_state == SYSTEM_BOOTING) {
2603 __build_all_zonelists(NULL);
2604 mminit_verify_zonelist();
2605 cpuset_init_current_mems_allowed();
2606 } else {
2607 /* we have to stop all cpus to guarantee there is no user
2608 of zonelist */
2609 stop_machine(__build_all_zonelists, NULL, NULL);
2610 /* cpuset refresh routine should be here */
2612 vm_total_pages = nr_free_pagecache_pages();
2614 * Disable grouping by mobility if the number of pages in the
2615 * system is too low to allow the mechanism to work. It would be
2616 * more accurate, but expensive to check per-zone. This check is
2617 * made on memory-hotadd so a system can start with mobility
2618 * disabled and enable it later
2620 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2621 page_group_by_mobility_disabled = 1;
2622 else
2623 page_group_by_mobility_disabled = 0;
2625 printk("Built %i zonelists in %s order, mobility grouping %s. "
2626 "Total pages: %ld\n",
2627 num_online_nodes(),
2628 zonelist_order_name[current_zonelist_order],
2629 page_group_by_mobility_disabled ? "off" : "on",
2630 vm_total_pages);
2631 #ifdef CONFIG_NUMA
2632 printk("Policy zone: %s\n", zone_names[policy_zone]);
2633 #endif
2637 * Helper functions to size the waitqueue hash table.
2638 * Essentially these want to choose hash table sizes sufficiently
2639 * large so that collisions trying to wait on pages are rare.
2640 * But in fact, the number of active page waitqueues on typical
2641 * systems is ridiculously low, less than 200. So this is even
2642 * conservative, even though it seems large.
2644 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2645 * waitqueues, i.e. the size of the waitq table given the number of pages.
2647 #define PAGES_PER_WAITQUEUE 256
2649 #ifndef CONFIG_MEMORY_HOTPLUG
2650 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2652 unsigned long size = 1;
2654 pages /= PAGES_PER_WAITQUEUE;
2656 while (size < pages)
2657 size <<= 1;
2660 * Once we have dozens or even hundreds of threads sleeping
2661 * on IO we've got bigger problems than wait queue collision.
2662 * Limit the size of the wait table to a reasonable size.
2664 size = min(size, 4096UL);
2666 return max(size, 4UL);
2668 #else
2670 * A zone's size might be changed by hot-add, so it is not possible to determine
2671 * a suitable size for its wait_table. So we use the maximum size now.
2673 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2675 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2676 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2677 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2679 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2680 * or more by the traditional way. (See above). It equals:
2682 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2683 * ia64(16K page size) : = ( 8G + 4M)byte.
2684 * powerpc (64K page size) : = (32G +16M)byte.
2686 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2688 return 4096UL;
2690 #endif
2693 * This is an integer logarithm so that shifts can be used later
2694 * to extract the more random high bits from the multiplicative
2695 * hash function before the remainder is taken.
2697 static inline unsigned long wait_table_bits(unsigned long size)
2699 return ffz(~size);
2702 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2705 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2706 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2707 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2708 * higher will lead to a bigger reserve which will get freed as contiguous
2709 * blocks as reclaim kicks in
2711 static void setup_zone_migrate_reserve(struct zone *zone)
2713 unsigned long start_pfn, pfn, end_pfn;
2714 struct page *page;
2715 unsigned long reserve, block_migratetype;
2717 /* Get the start pfn, end pfn and the number of blocks to reserve */
2718 start_pfn = zone->zone_start_pfn;
2719 end_pfn = start_pfn + zone->spanned_pages;
2720 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2721 pageblock_order;
2723 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2724 if (!pfn_valid(pfn))
2725 continue;
2726 page = pfn_to_page(pfn);
2728 /* Watch out for overlapping nodes */
2729 if (page_to_nid(page) != zone_to_nid(zone))
2730 continue;
2732 /* Blocks with reserved pages will never free, skip them. */
2733 if (PageReserved(page))
2734 continue;
2736 block_migratetype = get_pageblock_migratetype(page);
2738 /* If this block is reserved, account for it */
2739 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2740 reserve--;
2741 continue;
2744 /* Suitable for reserving if this block is movable */
2745 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2746 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2747 move_freepages_block(zone, page, MIGRATE_RESERVE);
2748 reserve--;
2749 continue;
2753 * If the reserve is met and this is a previous reserved block,
2754 * take it back
2756 if (block_migratetype == MIGRATE_RESERVE) {
2757 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2758 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2764 * Initially all pages are reserved - free ones are freed
2765 * up by free_all_bootmem() once the early boot process is
2766 * done. Non-atomic initialization, single-pass.
2768 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2769 unsigned long start_pfn, enum memmap_context context)
2771 struct page *page;
2772 unsigned long end_pfn = start_pfn + size;
2773 unsigned long pfn;
2774 struct zone *z;
2776 if (highest_memmap_pfn < end_pfn - 1)
2777 highest_memmap_pfn = end_pfn - 1;
2779 z = &NODE_DATA(nid)->node_zones[zone];
2780 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2782 * There can be holes in boot-time mem_map[]s
2783 * handed to this function. They do not
2784 * exist on hotplugged memory.
2786 if (context == MEMMAP_EARLY) {
2787 if (!early_pfn_valid(pfn))
2788 continue;
2789 if (!early_pfn_in_nid(pfn, nid))
2790 continue;
2792 page = pfn_to_page(pfn);
2793 set_page_links(page, zone, nid, pfn);
2794 mminit_verify_page_links(page, zone, nid, pfn);
2795 init_page_count(page);
2796 reset_page_mapcount(page);
2797 SetPageReserved(page);
2799 * Mark the block movable so that blocks are reserved for
2800 * movable at startup. This will force kernel allocations
2801 * to reserve their blocks rather than leaking throughout
2802 * the address space during boot when many long-lived
2803 * kernel allocations are made. Later some blocks near
2804 * the start are marked MIGRATE_RESERVE by
2805 * setup_zone_migrate_reserve()
2807 * bitmap is created for zone's valid pfn range. but memmap
2808 * can be created for invalid pages (for alignment)
2809 * check here not to call set_pageblock_migratetype() against
2810 * pfn out of zone.
2812 if ((z->zone_start_pfn <= pfn)
2813 && (pfn < z->zone_start_pfn + z->spanned_pages)
2814 && !(pfn & (pageblock_nr_pages - 1)))
2815 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2817 INIT_LIST_HEAD(&page->lru);
2818 #ifdef WANT_PAGE_VIRTUAL
2819 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2820 if (!is_highmem_idx(zone))
2821 set_page_address(page, __va(pfn << PAGE_SHIFT));
2822 #endif
2826 static void __meminit zone_init_free_lists(struct zone *zone)
2828 int order, t;
2829 for_each_migratetype_order(order, t) {
2830 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2831 zone->free_area[order].nr_free = 0;
2835 #ifndef __HAVE_ARCH_MEMMAP_INIT
2836 #define memmap_init(size, nid, zone, start_pfn) \
2837 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2838 #endif
2840 static int zone_batchsize(struct zone *zone)
2842 #ifdef CONFIG_MMU
2843 int batch;
2846 * The per-cpu-pages pools are set to around 1000th of the
2847 * size of the zone. But no more than 1/2 of a meg.
2849 * OK, so we don't know how big the cache is. So guess.
2851 batch = zone->present_pages / 1024;
2852 if (batch * PAGE_SIZE > 512 * 1024)
2853 batch = (512 * 1024) / PAGE_SIZE;
2854 batch /= 4; /* We effectively *= 4 below */
2855 if (batch < 1)
2856 batch = 1;
2859 * Clamp the batch to a 2^n - 1 value. Having a power
2860 * of 2 value was found to be more likely to have
2861 * suboptimal cache aliasing properties in some cases.
2863 * For example if 2 tasks are alternately allocating
2864 * batches of pages, one task can end up with a lot
2865 * of pages of one half of the possible page colors
2866 * and the other with pages of the other colors.
2868 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2870 return batch;
2872 #else
2873 /* The deferral and batching of frees should be suppressed under NOMMU
2874 * conditions.
2876 * The problem is that NOMMU needs to be able to allocate large chunks
2877 * of contiguous memory as there's no hardware page translation to
2878 * assemble apparent contiguous memory from discontiguous pages.
2880 * Queueing large contiguous runs of pages for batching, however,
2881 * causes the pages to actually be freed in smaller chunks. As there
2882 * can be a significant delay between the individual batches being
2883 * recycled, this leads to the once large chunks of space being
2884 * fragmented and becoming unavailable for high-order allocations.
2886 return 0;
2887 #endif
2890 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2892 struct per_cpu_pages *pcp;
2894 memset(p, 0, sizeof(*p));
2896 pcp = &p->pcp;
2897 pcp->count = 0;
2898 pcp->high = 6 * batch;
2899 pcp->batch = max(1UL, 1 * batch);
2900 INIT_LIST_HEAD(&pcp->list);
2904 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2905 * to the value high for the pageset p.
2908 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2909 unsigned long high)
2911 struct per_cpu_pages *pcp;
2913 pcp = &p->pcp;
2914 pcp->high = high;
2915 pcp->batch = max(1UL, high/4);
2916 if ((high/4) > (PAGE_SHIFT * 8))
2917 pcp->batch = PAGE_SHIFT * 8;
2921 #ifdef CONFIG_NUMA
2923 * Boot pageset table. One per cpu which is going to be used for all
2924 * zones and all nodes. The parameters will be set in such a way
2925 * that an item put on a list will immediately be handed over to
2926 * the buddy list. This is safe since pageset manipulation is done
2927 * with interrupts disabled.
2929 * Some NUMA counter updates may also be caught by the boot pagesets.
2931 * The boot_pagesets must be kept even after bootup is complete for
2932 * unused processors and/or zones. They do play a role for bootstrapping
2933 * hotplugged processors.
2935 * zoneinfo_show() and maybe other functions do
2936 * not check if the processor is online before following the pageset pointer.
2937 * Other parts of the kernel may not check if the zone is available.
2939 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2942 * Dynamically allocate memory for the
2943 * per cpu pageset array in struct zone.
2945 static int __cpuinit process_zones(int cpu)
2947 struct zone *zone, *dzone;
2948 int node = cpu_to_node(cpu);
2950 node_set_state(node, N_CPU); /* this node has a cpu */
2952 for_each_populated_zone(zone) {
2953 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2954 GFP_KERNEL, node);
2955 if (!zone_pcp(zone, cpu))
2956 goto bad;
2958 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2960 if (percpu_pagelist_fraction)
2961 setup_pagelist_highmark(zone_pcp(zone, cpu),
2962 (zone->present_pages / percpu_pagelist_fraction));
2965 return 0;
2966 bad:
2967 for_each_zone(dzone) {
2968 if (!populated_zone(dzone))
2969 continue;
2970 if (dzone == zone)
2971 break;
2972 kfree(zone_pcp(dzone, cpu));
2973 zone_pcp(dzone, cpu) = NULL;
2975 return -ENOMEM;
2978 static inline void free_zone_pagesets(int cpu)
2980 struct zone *zone;
2982 for_each_zone(zone) {
2983 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2985 /* Free per_cpu_pageset if it is slab allocated */
2986 if (pset != &boot_pageset[cpu])
2987 kfree(pset);
2988 zone_pcp(zone, cpu) = NULL;
2992 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2993 unsigned long action,
2994 void *hcpu)
2996 int cpu = (long)hcpu;
2997 int ret = NOTIFY_OK;
2999 switch (action) {
3000 case CPU_UP_PREPARE:
3001 case CPU_UP_PREPARE_FROZEN:
3002 if (process_zones(cpu))
3003 ret = NOTIFY_BAD;
3004 break;
3005 case CPU_UP_CANCELED:
3006 case CPU_UP_CANCELED_FROZEN:
3007 case CPU_DEAD:
3008 case CPU_DEAD_FROZEN:
3009 free_zone_pagesets(cpu);
3010 break;
3011 default:
3012 break;
3014 return ret;
3017 static struct notifier_block __cpuinitdata pageset_notifier =
3018 { &pageset_cpuup_callback, NULL, 0 };
3020 void __init setup_per_cpu_pageset(void)
3022 int err;
3024 /* Initialize per_cpu_pageset for cpu 0.
3025 * A cpuup callback will do this for every cpu
3026 * as it comes online
3028 err = process_zones(smp_processor_id());
3029 BUG_ON(err);
3030 register_cpu_notifier(&pageset_notifier);
3033 #endif
3035 static noinline __init_refok
3036 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3038 int i;
3039 struct pglist_data *pgdat = zone->zone_pgdat;
3040 size_t alloc_size;
3043 * The per-page waitqueue mechanism uses hashed waitqueues
3044 * per zone.
3046 zone->wait_table_hash_nr_entries =
3047 wait_table_hash_nr_entries(zone_size_pages);
3048 zone->wait_table_bits =
3049 wait_table_bits(zone->wait_table_hash_nr_entries);
3050 alloc_size = zone->wait_table_hash_nr_entries
3051 * sizeof(wait_queue_head_t);
3053 if (!slab_is_available()) {
3054 zone->wait_table = (wait_queue_head_t *)
3055 alloc_bootmem_node(pgdat, alloc_size);
3056 } else {
3058 * This case means that a zone whose size was 0 gets new memory
3059 * via memory hot-add.
3060 * But it may be the case that a new node was hot-added. In
3061 * this case vmalloc() will not be able to use this new node's
3062 * memory - this wait_table must be initialized to use this new
3063 * node itself as well.
3064 * To use this new node's memory, further consideration will be
3065 * necessary.
3067 zone->wait_table = vmalloc(alloc_size);
3069 if (!zone->wait_table)
3070 return -ENOMEM;
3072 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3073 init_waitqueue_head(zone->wait_table + i);
3075 return 0;
3078 static __meminit void zone_pcp_init(struct zone *zone)
3080 int cpu;
3081 unsigned long batch = zone_batchsize(zone);
3083 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3084 #ifdef CONFIG_NUMA
3085 /* Early boot. Slab allocator not functional yet */
3086 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3087 setup_pageset(&boot_pageset[cpu],0);
3088 #else
3089 setup_pageset(zone_pcp(zone,cpu), batch);
3090 #endif
3092 if (zone->present_pages)
3093 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3094 zone->name, zone->present_pages, batch);
3097 __meminit int init_currently_empty_zone(struct zone *zone,
3098 unsigned long zone_start_pfn,
3099 unsigned long size,
3100 enum memmap_context context)
3102 struct pglist_data *pgdat = zone->zone_pgdat;
3103 int ret;
3104 ret = zone_wait_table_init(zone, size);
3105 if (ret)
3106 return ret;
3107 pgdat->nr_zones = zone_idx(zone) + 1;
3109 zone->zone_start_pfn = zone_start_pfn;
3111 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3112 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3113 pgdat->node_id,
3114 (unsigned long)zone_idx(zone),
3115 zone_start_pfn, (zone_start_pfn + size));
3117 zone_init_free_lists(zone);
3119 return 0;
3122 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3124 * Basic iterator support. Return the first range of PFNs for a node
3125 * Note: nid == MAX_NUMNODES returns first region regardless of node
3127 static int __meminit first_active_region_index_in_nid(int nid)
3129 int i;
3131 for (i = 0; i < nr_nodemap_entries; i++)
3132 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3133 return i;
3135 return -1;
3139 * Basic iterator support. Return the next active range of PFNs for a node
3140 * Note: nid == MAX_NUMNODES returns next region regardless of node
3142 static int __meminit next_active_region_index_in_nid(int index, int nid)
3144 for (index = index + 1; index < nr_nodemap_entries; index++)
3145 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3146 return index;
3148 return -1;
3151 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3153 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3154 * Architectures may implement their own version but if add_active_range()
3155 * was used and there are no special requirements, this is a convenient
3156 * alternative
3158 int __meminit __early_pfn_to_nid(unsigned long pfn)
3160 int i;
3162 for (i = 0; i < nr_nodemap_entries; i++) {
3163 unsigned long start_pfn = early_node_map[i].start_pfn;
3164 unsigned long end_pfn = early_node_map[i].end_pfn;
3166 if (start_pfn <= pfn && pfn < end_pfn)
3167 return early_node_map[i].nid;
3169 /* This is a memory hole */
3170 return -1;
3172 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3174 int __meminit early_pfn_to_nid(unsigned long pfn)
3176 int nid;
3178 nid = __early_pfn_to_nid(pfn);
3179 if (nid >= 0)
3180 return nid;
3181 /* just returns 0 */
3182 return 0;
3185 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3186 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3188 int nid;
3190 nid = __early_pfn_to_nid(pfn);
3191 if (nid >= 0 && nid != node)
3192 return false;
3193 return true;
3195 #endif
3197 /* Basic iterator support to walk early_node_map[] */
3198 #define for_each_active_range_index_in_nid(i, nid) \
3199 for (i = first_active_region_index_in_nid(nid); i != -1; \
3200 i = next_active_region_index_in_nid(i, nid))
3203 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3204 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3205 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3207 * If an architecture guarantees that all ranges registered with
3208 * add_active_ranges() contain no holes and may be freed, this
3209 * this function may be used instead of calling free_bootmem() manually.
3211 void __init free_bootmem_with_active_regions(int nid,
3212 unsigned long max_low_pfn)
3214 int i;
3216 for_each_active_range_index_in_nid(i, nid) {
3217 unsigned long size_pages = 0;
3218 unsigned long end_pfn = early_node_map[i].end_pfn;
3220 if (early_node_map[i].start_pfn >= max_low_pfn)
3221 continue;
3223 if (end_pfn > max_low_pfn)
3224 end_pfn = max_low_pfn;
3226 size_pages = end_pfn - early_node_map[i].start_pfn;
3227 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3228 PFN_PHYS(early_node_map[i].start_pfn),
3229 size_pages << PAGE_SHIFT);
3233 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3235 int i;
3236 int ret;
3238 for_each_active_range_index_in_nid(i, nid) {
3239 ret = work_fn(early_node_map[i].start_pfn,
3240 early_node_map[i].end_pfn, data);
3241 if (ret)
3242 break;
3246 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3247 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3249 * If an architecture guarantees that all ranges registered with
3250 * add_active_ranges() contain no holes and may be freed, this
3251 * function may be used instead of calling memory_present() manually.
3253 void __init sparse_memory_present_with_active_regions(int nid)
3255 int i;
3257 for_each_active_range_index_in_nid(i, nid)
3258 memory_present(early_node_map[i].nid,
3259 early_node_map[i].start_pfn,
3260 early_node_map[i].end_pfn);
3264 * get_pfn_range_for_nid - Return the start and end page frames for a node
3265 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3266 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3267 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3269 * It returns the start and end page frame of a node based on information
3270 * provided by an arch calling add_active_range(). If called for a node
3271 * with no available memory, a warning is printed and the start and end
3272 * PFNs will be 0.
3274 void __meminit get_pfn_range_for_nid(unsigned int nid,
3275 unsigned long *start_pfn, unsigned long *end_pfn)
3277 int i;
3278 *start_pfn = -1UL;
3279 *end_pfn = 0;
3281 for_each_active_range_index_in_nid(i, nid) {
3282 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3283 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3286 if (*start_pfn == -1UL)
3287 *start_pfn = 0;
3291 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3292 * assumption is made that zones within a node are ordered in monotonic
3293 * increasing memory addresses so that the "highest" populated zone is used
3295 static void __init find_usable_zone_for_movable(void)
3297 int zone_index;
3298 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3299 if (zone_index == ZONE_MOVABLE)
3300 continue;
3302 if (arch_zone_highest_possible_pfn[zone_index] >
3303 arch_zone_lowest_possible_pfn[zone_index])
3304 break;
3307 VM_BUG_ON(zone_index == -1);
3308 movable_zone = zone_index;
3312 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3313 * because it is sized independant of architecture. Unlike the other zones,
3314 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3315 * in each node depending on the size of each node and how evenly kernelcore
3316 * is distributed. This helper function adjusts the zone ranges
3317 * provided by the architecture for a given node by using the end of the
3318 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3319 * zones within a node are in order of monotonic increases memory addresses
3321 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3322 unsigned long zone_type,
3323 unsigned long node_start_pfn,
3324 unsigned long node_end_pfn,
3325 unsigned long *zone_start_pfn,
3326 unsigned long *zone_end_pfn)
3328 /* Only adjust if ZONE_MOVABLE is on this node */
3329 if (zone_movable_pfn[nid]) {
3330 /* Size ZONE_MOVABLE */
3331 if (zone_type == ZONE_MOVABLE) {
3332 *zone_start_pfn = zone_movable_pfn[nid];
3333 *zone_end_pfn = min(node_end_pfn,
3334 arch_zone_highest_possible_pfn[movable_zone]);
3336 /* Adjust for ZONE_MOVABLE starting within this range */
3337 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3338 *zone_end_pfn > zone_movable_pfn[nid]) {
3339 *zone_end_pfn = zone_movable_pfn[nid];
3341 /* Check if this whole range is within ZONE_MOVABLE */
3342 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3343 *zone_start_pfn = *zone_end_pfn;
3348 * Return the number of pages a zone spans in a node, including holes
3349 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3351 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3352 unsigned long zone_type,
3353 unsigned long *ignored)
3355 unsigned long node_start_pfn, node_end_pfn;
3356 unsigned long zone_start_pfn, zone_end_pfn;
3358 /* Get the start and end of the node and zone */
3359 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3360 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3361 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3362 adjust_zone_range_for_zone_movable(nid, zone_type,
3363 node_start_pfn, node_end_pfn,
3364 &zone_start_pfn, &zone_end_pfn);
3366 /* Check that this node has pages within the zone's required range */
3367 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3368 return 0;
3370 /* Move the zone boundaries inside the node if necessary */
3371 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3372 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3374 /* Return the spanned pages */
3375 return zone_end_pfn - zone_start_pfn;
3379 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3380 * then all holes in the requested range will be accounted for.
3382 static unsigned long __meminit __absent_pages_in_range(int nid,
3383 unsigned long range_start_pfn,
3384 unsigned long range_end_pfn)
3386 int i = 0;
3387 unsigned long prev_end_pfn = 0, hole_pages = 0;
3388 unsigned long start_pfn;
3390 /* Find the end_pfn of the first active range of pfns in the node */
3391 i = first_active_region_index_in_nid(nid);
3392 if (i == -1)
3393 return 0;
3395 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3397 /* Account for ranges before physical memory on this node */
3398 if (early_node_map[i].start_pfn > range_start_pfn)
3399 hole_pages = prev_end_pfn - range_start_pfn;
3401 /* Find all holes for the zone within the node */
3402 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3404 /* No need to continue if prev_end_pfn is outside the zone */
3405 if (prev_end_pfn >= range_end_pfn)
3406 break;
3408 /* Make sure the end of the zone is not within the hole */
3409 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3410 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3412 /* Update the hole size cound and move on */
3413 if (start_pfn > range_start_pfn) {
3414 BUG_ON(prev_end_pfn > start_pfn);
3415 hole_pages += start_pfn - prev_end_pfn;
3417 prev_end_pfn = early_node_map[i].end_pfn;
3420 /* Account for ranges past physical memory on this node */
3421 if (range_end_pfn > prev_end_pfn)
3422 hole_pages += range_end_pfn -
3423 max(range_start_pfn, prev_end_pfn);
3425 return hole_pages;
3429 * absent_pages_in_range - Return number of page frames in holes within a range
3430 * @start_pfn: The start PFN to start searching for holes
3431 * @end_pfn: The end PFN to stop searching for holes
3433 * It returns the number of pages frames in memory holes within a range.
3435 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3436 unsigned long end_pfn)
3438 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3441 /* Return the number of page frames in holes in a zone on a node */
3442 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3443 unsigned long zone_type,
3444 unsigned long *ignored)
3446 unsigned long node_start_pfn, node_end_pfn;
3447 unsigned long zone_start_pfn, zone_end_pfn;
3449 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3450 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3451 node_start_pfn);
3452 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3453 node_end_pfn);
3455 adjust_zone_range_for_zone_movable(nid, zone_type,
3456 node_start_pfn, node_end_pfn,
3457 &zone_start_pfn, &zone_end_pfn);
3458 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3461 #else
3462 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3463 unsigned long zone_type,
3464 unsigned long *zones_size)
3466 return zones_size[zone_type];
3469 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3470 unsigned long zone_type,
3471 unsigned long *zholes_size)
3473 if (!zholes_size)
3474 return 0;
3476 return zholes_size[zone_type];
3479 #endif
3481 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3482 unsigned long *zones_size, unsigned long *zholes_size)
3484 unsigned long realtotalpages, totalpages = 0;
3485 enum zone_type i;
3487 for (i = 0; i < MAX_NR_ZONES; i++)
3488 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3489 zones_size);
3490 pgdat->node_spanned_pages = totalpages;
3492 realtotalpages = totalpages;
3493 for (i = 0; i < MAX_NR_ZONES; i++)
3494 realtotalpages -=
3495 zone_absent_pages_in_node(pgdat->node_id, i,
3496 zholes_size);
3497 pgdat->node_present_pages = realtotalpages;
3498 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3499 realtotalpages);
3502 #ifndef CONFIG_SPARSEMEM
3504 * Calculate the size of the zone->blockflags rounded to an unsigned long
3505 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3506 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3507 * round what is now in bits to nearest long in bits, then return it in
3508 * bytes.
3510 static unsigned long __init usemap_size(unsigned long zonesize)
3512 unsigned long usemapsize;
3514 usemapsize = roundup(zonesize, pageblock_nr_pages);
3515 usemapsize = usemapsize >> pageblock_order;
3516 usemapsize *= NR_PAGEBLOCK_BITS;
3517 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3519 return usemapsize / 8;
3522 static void __init setup_usemap(struct pglist_data *pgdat,
3523 struct zone *zone, unsigned long zonesize)
3525 unsigned long usemapsize = usemap_size(zonesize);
3526 zone->pageblock_flags = NULL;
3527 if (usemapsize)
3528 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3530 #else
3531 static void inline setup_usemap(struct pglist_data *pgdat,
3532 struct zone *zone, unsigned long zonesize) {}
3533 #endif /* CONFIG_SPARSEMEM */
3535 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3537 /* Return a sensible default order for the pageblock size. */
3538 static inline int pageblock_default_order(void)
3540 if (HPAGE_SHIFT > PAGE_SHIFT)
3541 return HUGETLB_PAGE_ORDER;
3543 return MAX_ORDER-1;
3546 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3547 static inline void __init set_pageblock_order(unsigned int order)
3549 /* Check that pageblock_nr_pages has not already been setup */
3550 if (pageblock_order)
3551 return;
3554 * Assume the largest contiguous order of interest is a huge page.
3555 * This value may be variable depending on boot parameters on IA64
3557 pageblock_order = order;
3559 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3562 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3563 * and pageblock_default_order() are unused as pageblock_order is set
3564 * at compile-time. See include/linux/pageblock-flags.h for the values of
3565 * pageblock_order based on the kernel config
3567 static inline int pageblock_default_order(unsigned int order)
3569 return MAX_ORDER-1;
3571 #define set_pageblock_order(x) do {} while (0)
3573 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3576 * Set up the zone data structures:
3577 * - mark all pages reserved
3578 * - mark all memory queues empty
3579 * - clear the memory bitmaps
3581 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3582 unsigned long *zones_size, unsigned long *zholes_size)
3584 enum zone_type j;
3585 int nid = pgdat->node_id;
3586 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3587 int ret;
3589 pgdat_resize_init(pgdat);
3590 pgdat->nr_zones = 0;
3591 init_waitqueue_head(&pgdat->kswapd_wait);
3592 pgdat->kswapd_max_order = 0;
3593 pgdat_page_cgroup_init(pgdat);
3595 for (j = 0; j < MAX_NR_ZONES; j++) {
3596 struct zone *zone = pgdat->node_zones + j;
3597 unsigned long size, realsize, memmap_pages;
3598 enum lru_list l;
3600 size = zone_spanned_pages_in_node(nid, j, zones_size);
3601 realsize = size - zone_absent_pages_in_node(nid, j,
3602 zholes_size);
3605 * Adjust realsize so that it accounts for how much memory
3606 * is used by this zone for memmap. This affects the watermark
3607 * and per-cpu initialisations
3609 memmap_pages =
3610 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3611 if (realsize >= memmap_pages) {
3612 realsize -= memmap_pages;
3613 if (memmap_pages)
3614 printk(KERN_DEBUG
3615 " %s zone: %lu pages used for memmap\n",
3616 zone_names[j], memmap_pages);
3617 } else
3618 printk(KERN_WARNING
3619 " %s zone: %lu pages exceeds realsize %lu\n",
3620 zone_names[j], memmap_pages, realsize);
3622 /* Account for reserved pages */
3623 if (j == 0 && realsize > dma_reserve) {
3624 realsize -= dma_reserve;
3625 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3626 zone_names[0], dma_reserve);
3629 if (!is_highmem_idx(j))
3630 nr_kernel_pages += realsize;
3631 nr_all_pages += realsize;
3633 zone->spanned_pages = size;
3634 zone->present_pages = realsize;
3635 #ifdef CONFIG_NUMA
3636 zone->node = nid;
3637 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3638 / 100;
3639 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3640 #endif
3641 zone->name = zone_names[j];
3642 spin_lock_init(&zone->lock);
3643 spin_lock_init(&zone->lru_lock);
3644 zone_seqlock_init(zone);
3645 zone->zone_pgdat = pgdat;
3647 zone->prev_priority = DEF_PRIORITY;
3649 zone_pcp_init(zone);
3650 for_each_lru(l) {
3651 INIT_LIST_HEAD(&zone->lru[l].list);
3652 zone->lru[l].nr_scan = 0;
3654 zone->reclaim_stat.recent_rotated[0] = 0;
3655 zone->reclaim_stat.recent_rotated[1] = 0;
3656 zone->reclaim_stat.recent_scanned[0] = 0;
3657 zone->reclaim_stat.recent_scanned[1] = 0;
3658 zap_zone_vm_stats(zone);
3659 zone->flags = 0;
3660 if (!size)
3661 continue;
3663 set_pageblock_order(pageblock_default_order());
3664 setup_usemap(pgdat, zone, size);
3665 ret = init_currently_empty_zone(zone, zone_start_pfn,
3666 size, MEMMAP_EARLY);
3667 BUG_ON(ret);
3668 memmap_init(size, nid, j, zone_start_pfn);
3669 zone_start_pfn += size;
3673 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3675 /* Skip empty nodes */
3676 if (!pgdat->node_spanned_pages)
3677 return;
3679 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3680 /* ia64 gets its own node_mem_map, before this, without bootmem */
3681 if (!pgdat->node_mem_map) {
3682 unsigned long size, start, end;
3683 struct page *map;
3686 * The zone's endpoints aren't required to be MAX_ORDER
3687 * aligned but the node_mem_map endpoints must be in order
3688 * for the buddy allocator to function correctly.
3690 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3691 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3692 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3693 size = (end - start) * sizeof(struct page);
3694 map = alloc_remap(pgdat->node_id, size);
3695 if (!map)
3696 map = alloc_bootmem_node(pgdat, size);
3697 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3699 #ifndef CONFIG_NEED_MULTIPLE_NODES
3701 * With no DISCONTIG, the global mem_map is just set as node 0's
3703 if (pgdat == NODE_DATA(0)) {
3704 mem_map = NODE_DATA(0)->node_mem_map;
3705 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3706 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3707 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3708 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3710 #endif
3711 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3714 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3715 unsigned long node_start_pfn, unsigned long *zholes_size)
3717 pg_data_t *pgdat = NODE_DATA(nid);
3719 pgdat->node_id = nid;
3720 pgdat->node_start_pfn = node_start_pfn;
3721 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3723 alloc_node_mem_map(pgdat);
3724 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3725 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3726 nid, (unsigned long)pgdat,
3727 (unsigned long)pgdat->node_mem_map);
3728 #endif
3730 free_area_init_core(pgdat, zones_size, zholes_size);
3733 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3735 #if MAX_NUMNODES > 1
3737 * Figure out the number of possible node ids.
3739 static void __init setup_nr_node_ids(void)
3741 unsigned int node;
3742 unsigned int highest = 0;
3744 for_each_node_mask(node, node_possible_map)
3745 highest = node;
3746 nr_node_ids = highest + 1;
3748 #else
3749 static inline void setup_nr_node_ids(void)
3752 #endif
3755 * add_active_range - Register a range of PFNs backed by physical memory
3756 * @nid: The node ID the range resides on
3757 * @start_pfn: The start PFN of the available physical memory
3758 * @end_pfn: The end PFN of the available physical memory
3760 * These ranges are stored in an early_node_map[] and later used by
3761 * free_area_init_nodes() to calculate zone sizes and holes. If the
3762 * range spans a memory hole, it is up to the architecture to ensure
3763 * the memory is not freed by the bootmem allocator. If possible
3764 * the range being registered will be merged with existing ranges.
3766 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3767 unsigned long end_pfn)
3769 int i;
3771 mminit_dprintk(MMINIT_TRACE, "memory_register",
3772 "Entering add_active_range(%d, %#lx, %#lx) "
3773 "%d entries of %d used\n",
3774 nid, start_pfn, end_pfn,
3775 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3777 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3779 /* Merge with existing active regions if possible */
3780 for (i = 0; i < nr_nodemap_entries; i++) {
3781 if (early_node_map[i].nid != nid)
3782 continue;
3784 /* Skip if an existing region covers this new one */
3785 if (start_pfn >= early_node_map[i].start_pfn &&
3786 end_pfn <= early_node_map[i].end_pfn)
3787 return;
3789 /* Merge forward if suitable */
3790 if (start_pfn <= early_node_map[i].end_pfn &&
3791 end_pfn > early_node_map[i].end_pfn) {
3792 early_node_map[i].end_pfn = end_pfn;
3793 return;
3796 /* Merge backward if suitable */
3797 if (start_pfn < early_node_map[i].end_pfn &&
3798 end_pfn >= early_node_map[i].start_pfn) {
3799 early_node_map[i].start_pfn = start_pfn;
3800 return;
3804 /* Check that early_node_map is large enough */
3805 if (i >= MAX_ACTIVE_REGIONS) {
3806 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3807 MAX_ACTIVE_REGIONS);
3808 return;
3811 early_node_map[i].nid = nid;
3812 early_node_map[i].start_pfn = start_pfn;
3813 early_node_map[i].end_pfn = end_pfn;
3814 nr_nodemap_entries = i + 1;
3818 * remove_active_range - Shrink an existing registered range of PFNs
3819 * @nid: The node id the range is on that should be shrunk
3820 * @start_pfn: The new PFN of the range
3821 * @end_pfn: The new PFN of the range
3823 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3824 * The map is kept near the end physical page range that has already been
3825 * registered. This function allows an arch to shrink an existing registered
3826 * range.
3828 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3829 unsigned long end_pfn)
3831 int i, j;
3832 int removed = 0;
3834 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3835 nid, start_pfn, end_pfn);
3837 /* Find the old active region end and shrink */
3838 for_each_active_range_index_in_nid(i, nid) {
3839 if (early_node_map[i].start_pfn >= start_pfn &&
3840 early_node_map[i].end_pfn <= end_pfn) {
3841 /* clear it */
3842 early_node_map[i].start_pfn = 0;
3843 early_node_map[i].end_pfn = 0;
3844 removed = 1;
3845 continue;
3847 if (early_node_map[i].start_pfn < start_pfn &&
3848 early_node_map[i].end_pfn > start_pfn) {
3849 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3850 early_node_map[i].end_pfn = start_pfn;
3851 if (temp_end_pfn > end_pfn)
3852 add_active_range(nid, end_pfn, temp_end_pfn);
3853 continue;
3855 if (early_node_map[i].start_pfn >= start_pfn &&
3856 early_node_map[i].end_pfn > end_pfn &&
3857 early_node_map[i].start_pfn < end_pfn) {
3858 early_node_map[i].start_pfn = end_pfn;
3859 continue;
3863 if (!removed)
3864 return;
3866 /* remove the blank ones */
3867 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3868 if (early_node_map[i].nid != nid)
3869 continue;
3870 if (early_node_map[i].end_pfn)
3871 continue;
3872 /* we found it, get rid of it */
3873 for (j = i; j < nr_nodemap_entries - 1; j++)
3874 memcpy(&early_node_map[j], &early_node_map[j+1],
3875 sizeof(early_node_map[j]));
3876 j = nr_nodemap_entries - 1;
3877 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3878 nr_nodemap_entries--;
3883 * remove_all_active_ranges - Remove all currently registered regions
3885 * During discovery, it may be found that a table like SRAT is invalid
3886 * and an alternative discovery method must be used. This function removes
3887 * all currently registered regions.
3889 void __init remove_all_active_ranges(void)
3891 memset(early_node_map, 0, sizeof(early_node_map));
3892 nr_nodemap_entries = 0;
3895 /* Compare two active node_active_regions */
3896 static int __init cmp_node_active_region(const void *a, const void *b)
3898 struct node_active_region *arange = (struct node_active_region *)a;
3899 struct node_active_region *brange = (struct node_active_region *)b;
3901 /* Done this way to avoid overflows */
3902 if (arange->start_pfn > brange->start_pfn)
3903 return 1;
3904 if (arange->start_pfn < brange->start_pfn)
3905 return -1;
3907 return 0;
3910 /* sort the node_map by start_pfn */
3911 static void __init sort_node_map(void)
3913 sort(early_node_map, (size_t)nr_nodemap_entries,
3914 sizeof(struct node_active_region),
3915 cmp_node_active_region, NULL);
3918 /* Find the lowest pfn for a node */
3919 static unsigned long __init find_min_pfn_for_node(int nid)
3921 int i;
3922 unsigned long min_pfn = ULONG_MAX;
3924 /* Assuming a sorted map, the first range found has the starting pfn */
3925 for_each_active_range_index_in_nid(i, nid)
3926 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3928 if (min_pfn == ULONG_MAX) {
3929 printk(KERN_WARNING
3930 "Could not find start_pfn for node %d\n", nid);
3931 return 0;
3934 return min_pfn;
3938 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3940 * It returns the minimum PFN based on information provided via
3941 * add_active_range().
3943 unsigned long __init find_min_pfn_with_active_regions(void)
3945 return find_min_pfn_for_node(MAX_NUMNODES);
3949 * early_calculate_totalpages()
3950 * Sum pages in active regions for movable zone.
3951 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3953 static unsigned long __init early_calculate_totalpages(void)
3955 int i;
3956 unsigned long totalpages = 0;
3958 for (i = 0; i < nr_nodemap_entries; i++) {
3959 unsigned long pages = early_node_map[i].end_pfn -
3960 early_node_map[i].start_pfn;
3961 totalpages += pages;
3962 if (pages)
3963 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3965 return totalpages;
3969 * Find the PFN the Movable zone begins in each node. Kernel memory
3970 * is spread evenly between nodes as long as the nodes have enough
3971 * memory. When they don't, some nodes will have more kernelcore than
3972 * others
3974 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3976 int i, nid;
3977 unsigned long usable_startpfn;
3978 unsigned long kernelcore_node, kernelcore_remaining;
3979 unsigned long totalpages = early_calculate_totalpages();
3980 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3983 * If movablecore was specified, calculate what size of
3984 * kernelcore that corresponds so that memory usable for
3985 * any allocation type is evenly spread. If both kernelcore
3986 * and movablecore are specified, then the value of kernelcore
3987 * will be used for required_kernelcore if it's greater than
3988 * what movablecore would have allowed.
3990 if (required_movablecore) {
3991 unsigned long corepages;
3994 * Round-up so that ZONE_MOVABLE is at least as large as what
3995 * was requested by the user
3997 required_movablecore =
3998 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3999 corepages = totalpages - required_movablecore;
4001 required_kernelcore = max(required_kernelcore, corepages);
4004 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4005 if (!required_kernelcore)
4006 return;
4008 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4009 find_usable_zone_for_movable();
4010 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4012 restart:
4013 /* Spread kernelcore memory as evenly as possible throughout nodes */
4014 kernelcore_node = required_kernelcore / usable_nodes;
4015 for_each_node_state(nid, N_HIGH_MEMORY) {
4017 * Recalculate kernelcore_node if the division per node
4018 * now exceeds what is necessary to satisfy the requested
4019 * amount of memory for the kernel
4021 if (required_kernelcore < kernelcore_node)
4022 kernelcore_node = required_kernelcore / usable_nodes;
4025 * As the map is walked, we track how much memory is usable
4026 * by the kernel using kernelcore_remaining. When it is
4027 * 0, the rest of the node is usable by ZONE_MOVABLE
4029 kernelcore_remaining = kernelcore_node;
4031 /* Go through each range of PFNs within this node */
4032 for_each_active_range_index_in_nid(i, nid) {
4033 unsigned long start_pfn, end_pfn;
4034 unsigned long size_pages;
4036 start_pfn = max(early_node_map[i].start_pfn,
4037 zone_movable_pfn[nid]);
4038 end_pfn = early_node_map[i].end_pfn;
4039 if (start_pfn >= end_pfn)
4040 continue;
4042 /* Account for what is only usable for kernelcore */
4043 if (start_pfn < usable_startpfn) {
4044 unsigned long kernel_pages;
4045 kernel_pages = min(end_pfn, usable_startpfn)
4046 - start_pfn;
4048 kernelcore_remaining -= min(kernel_pages,
4049 kernelcore_remaining);
4050 required_kernelcore -= min(kernel_pages,
4051 required_kernelcore);
4053 /* Continue if range is now fully accounted */
4054 if (end_pfn <= usable_startpfn) {
4057 * Push zone_movable_pfn to the end so
4058 * that if we have to rebalance
4059 * kernelcore across nodes, we will
4060 * not double account here
4062 zone_movable_pfn[nid] = end_pfn;
4063 continue;
4065 start_pfn = usable_startpfn;
4069 * The usable PFN range for ZONE_MOVABLE is from
4070 * start_pfn->end_pfn. Calculate size_pages as the
4071 * number of pages used as kernelcore
4073 size_pages = end_pfn - start_pfn;
4074 if (size_pages > kernelcore_remaining)
4075 size_pages = kernelcore_remaining;
4076 zone_movable_pfn[nid] = start_pfn + size_pages;
4079 * Some kernelcore has been met, update counts and
4080 * break if the kernelcore for this node has been
4081 * satisified
4083 required_kernelcore -= min(required_kernelcore,
4084 size_pages);
4085 kernelcore_remaining -= size_pages;
4086 if (!kernelcore_remaining)
4087 break;
4092 * If there is still required_kernelcore, we do another pass with one
4093 * less node in the count. This will push zone_movable_pfn[nid] further
4094 * along on the nodes that still have memory until kernelcore is
4095 * satisified
4097 usable_nodes--;
4098 if (usable_nodes && required_kernelcore > usable_nodes)
4099 goto restart;
4101 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4102 for (nid = 0; nid < MAX_NUMNODES; nid++)
4103 zone_movable_pfn[nid] =
4104 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4107 /* Any regular memory on that node ? */
4108 static void check_for_regular_memory(pg_data_t *pgdat)
4110 #ifdef CONFIG_HIGHMEM
4111 enum zone_type zone_type;
4113 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4114 struct zone *zone = &pgdat->node_zones[zone_type];
4115 if (zone->present_pages)
4116 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4118 #endif
4122 * free_area_init_nodes - Initialise all pg_data_t and zone data
4123 * @max_zone_pfn: an array of max PFNs for each zone
4125 * This will call free_area_init_node() for each active node in the system.
4126 * Using the page ranges provided by add_active_range(), the size of each
4127 * zone in each node and their holes is calculated. If the maximum PFN
4128 * between two adjacent zones match, it is assumed that the zone is empty.
4129 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4130 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4131 * starts where the previous one ended. For example, ZONE_DMA32 starts
4132 * at arch_max_dma_pfn.
4134 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4136 unsigned long nid;
4137 int i;
4139 /* Sort early_node_map as initialisation assumes it is sorted */
4140 sort_node_map();
4142 /* Record where the zone boundaries are */
4143 memset(arch_zone_lowest_possible_pfn, 0,
4144 sizeof(arch_zone_lowest_possible_pfn));
4145 memset(arch_zone_highest_possible_pfn, 0,
4146 sizeof(arch_zone_highest_possible_pfn));
4147 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4148 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4149 for (i = 1; i < MAX_NR_ZONES; i++) {
4150 if (i == ZONE_MOVABLE)
4151 continue;
4152 arch_zone_lowest_possible_pfn[i] =
4153 arch_zone_highest_possible_pfn[i-1];
4154 arch_zone_highest_possible_pfn[i] =
4155 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4157 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4158 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4160 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4161 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4162 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4164 /* Print out the zone ranges */
4165 printk("Zone PFN ranges:\n");
4166 for (i = 0; i < MAX_NR_ZONES; i++) {
4167 if (i == ZONE_MOVABLE)
4168 continue;
4169 printk(" %-8s %0#10lx -> %0#10lx\n",
4170 zone_names[i],
4171 arch_zone_lowest_possible_pfn[i],
4172 arch_zone_highest_possible_pfn[i]);
4175 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4176 printk("Movable zone start PFN for each node\n");
4177 for (i = 0; i < MAX_NUMNODES; i++) {
4178 if (zone_movable_pfn[i])
4179 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4182 /* Print out the early_node_map[] */
4183 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4184 for (i = 0; i < nr_nodemap_entries; i++)
4185 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4186 early_node_map[i].start_pfn,
4187 early_node_map[i].end_pfn);
4189 /* Initialise every node */
4190 mminit_verify_pageflags_layout();
4191 setup_nr_node_ids();
4192 for_each_online_node(nid) {
4193 pg_data_t *pgdat = NODE_DATA(nid);
4194 free_area_init_node(nid, NULL,
4195 find_min_pfn_for_node(nid), NULL);
4197 /* Any memory on that node */
4198 if (pgdat->node_present_pages)
4199 node_set_state(nid, N_HIGH_MEMORY);
4200 check_for_regular_memory(pgdat);
4204 static int __init cmdline_parse_core(char *p, unsigned long *core)
4206 unsigned long long coremem;
4207 if (!p)
4208 return -EINVAL;
4210 coremem = memparse(p, &p);
4211 *core = coremem >> PAGE_SHIFT;
4213 /* Paranoid check that UL is enough for the coremem value */
4214 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4216 return 0;
4220 * kernelcore=size sets the amount of memory for use for allocations that
4221 * cannot be reclaimed or migrated.
4223 static int __init cmdline_parse_kernelcore(char *p)
4225 return cmdline_parse_core(p, &required_kernelcore);
4229 * movablecore=size sets the amount of memory for use for allocations that
4230 * can be reclaimed or migrated.
4232 static int __init cmdline_parse_movablecore(char *p)
4234 return cmdline_parse_core(p, &required_movablecore);
4237 early_param("kernelcore", cmdline_parse_kernelcore);
4238 early_param("movablecore", cmdline_parse_movablecore);
4240 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4243 * set_dma_reserve - set the specified number of pages reserved in the first zone
4244 * @new_dma_reserve: The number of pages to mark reserved
4246 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4247 * In the DMA zone, a significant percentage may be consumed by kernel image
4248 * and other unfreeable allocations which can skew the watermarks badly. This
4249 * function may optionally be used to account for unfreeable pages in the
4250 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4251 * smaller per-cpu batchsize.
4253 void __init set_dma_reserve(unsigned long new_dma_reserve)
4255 dma_reserve = new_dma_reserve;
4258 #ifndef CONFIG_NEED_MULTIPLE_NODES
4259 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4260 EXPORT_SYMBOL(contig_page_data);
4261 #endif
4263 void __init free_area_init(unsigned long *zones_size)
4265 free_area_init_node(0, zones_size,
4266 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4269 static int page_alloc_cpu_notify(struct notifier_block *self,
4270 unsigned long action, void *hcpu)
4272 int cpu = (unsigned long)hcpu;
4274 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4275 drain_pages(cpu);
4278 * Spill the event counters of the dead processor
4279 * into the current processors event counters.
4280 * This artificially elevates the count of the current
4281 * processor.
4283 vm_events_fold_cpu(cpu);
4286 * Zero the differential counters of the dead processor
4287 * so that the vm statistics are consistent.
4289 * This is only okay since the processor is dead and cannot
4290 * race with what we are doing.
4292 refresh_cpu_vm_stats(cpu);
4294 return NOTIFY_OK;
4297 void __init page_alloc_init(void)
4299 hotcpu_notifier(page_alloc_cpu_notify, 0);
4303 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4304 * or min_free_kbytes changes.
4306 static void calculate_totalreserve_pages(void)
4308 struct pglist_data *pgdat;
4309 unsigned long reserve_pages = 0;
4310 enum zone_type i, j;
4312 for_each_online_pgdat(pgdat) {
4313 for (i = 0; i < MAX_NR_ZONES; i++) {
4314 struct zone *zone = pgdat->node_zones + i;
4315 unsigned long max = 0;
4317 /* Find valid and maximum lowmem_reserve in the zone */
4318 for (j = i; j < MAX_NR_ZONES; j++) {
4319 if (zone->lowmem_reserve[j] > max)
4320 max = zone->lowmem_reserve[j];
4323 /* we treat the high watermark as reserved pages. */
4324 max += high_wmark_pages(zone);
4326 if (max > zone->present_pages)
4327 max = zone->present_pages;
4328 reserve_pages += max;
4331 totalreserve_pages = reserve_pages;
4335 * setup_per_zone_lowmem_reserve - called whenever
4336 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4337 * has a correct pages reserved value, so an adequate number of
4338 * pages are left in the zone after a successful __alloc_pages().
4340 static void setup_per_zone_lowmem_reserve(void)
4342 struct pglist_data *pgdat;
4343 enum zone_type j, idx;
4345 for_each_online_pgdat(pgdat) {
4346 for (j = 0; j < MAX_NR_ZONES; j++) {
4347 struct zone *zone = pgdat->node_zones + j;
4348 unsigned long present_pages = zone->present_pages;
4350 zone->lowmem_reserve[j] = 0;
4352 idx = j;
4353 while (idx) {
4354 struct zone *lower_zone;
4356 idx--;
4358 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4359 sysctl_lowmem_reserve_ratio[idx] = 1;
4361 lower_zone = pgdat->node_zones + idx;
4362 lower_zone->lowmem_reserve[j] = present_pages /
4363 sysctl_lowmem_reserve_ratio[idx];
4364 present_pages += lower_zone->present_pages;
4369 /* update totalreserve_pages */
4370 calculate_totalreserve_pages();
4374 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4376 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4377 * with respect to min_free_kbytes.
4379 void setup_per_zone_pages_min(void)
4381 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4382 unsigned long lowmem_pages = 0;
4383 struct zone *zone;
4384 unsigned long flags;
4386 /* Calculate total number of !ZONE_HIGHMEM pages */
4387 for_each_zone(zone) {
4388 if (!is_highmem(zone))
4389 lowmem_pages += zone->present_pages;
4392 for_each_zone(zone) {
4393 u64 tmp;
4395 spin_lock_irqsave(&zone->lock, flags);
4396 tmp = (u64)pages_min * zone->present_pages;
4397 do_div(tmp, lowmem_pages);
4398 if (is_highmem(zone)) {
4400 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4401 * need highmem pages, so cap pages_min to a small
4402 * value here.
4404 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4405 * deltas controls asynch page reclaim, and so should
4406 * not be capped for highmem.
4408 int min_pages;
4410 min_pages = zone->present_pages / 1024;
4411 if (min_pages < SWAP_CLUSTER_MAX)
4412 min_pages = SWAP_CLUSTER_MAX;
4413 if (min_pages > 128)
4414 min_pages = 128;
4415 zone->watermark[WMARK_MIN] = min_pages;
4416 } else {
4418 * If it's a lowmem zone, reserve a number of pages
4419 * proportionate to the zone's size.
4421 zone->watermark[WMARK_MIN] = tmp;
4424 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4425 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4426 setup_zone_migrate_reserve(zone);
4427 spin_unlock_irqrestore(&zone->lock, flags);
4430 /* update totalreserve_pages */
4431 calculate_totalreserve_pages();
4435 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4437 * The inactive anon list should be small enough that the VM never has to
4438 * do too much work, but large enough that each inactive page has a chance
4439 * to be referenced again before it is swapped out.
4441 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4442 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4443 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4444 * the anonymous pages are kept on the inactive list.
4446 * total target max
4447 * memory ratio inactive anon
4448 * -------------------------------------
4449 * 10MB 1 5MB
4450 * 100MB 1 50MB
4451 * 1GB 3 250MB
4452 * 10GB 10 0.9GB
4453 * 100GB 31 3GB
4454 * 1TB 101 10GB
4455 * 10TB 320 32GB
4457 static void setup_per_zone_inactive_ratio(void)
4459 struct zone *zone;
4461 for_each_zone(zone) {
4462 unsigned int gb, ratio;
4464 /* Zone size in gigabytes */
4465 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4466 ratio = int_sqrt(10 * gb);
4467 if (!ratio)
4468 ratio = 1;
4470 zone->inactive_ratio = ratio;
4475 * Initialise min_free_kbytes.
4477 * For small machines we want it small (128k min). For large machines
4478 * we want it large (64MB max). But it is not linear, because network
4479 * bandwidth does not increase linearly with machine size. We use
4481 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4482 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4484 * which yields
4486 * 16MB: 512k
4487 * 32MB: 724k
4488 * 64MB: 1024k
4489 * 128MB: 1448k
4490 * 256MB: 2048k
4491 * 512MB: 2896k
4492 * 1024MB: 4096k
4493 * 2048MB: 5792k
4494 * 4096MB: 8192k
4495 * 8192MB: 11584k
4496 * 16384MB: 16384k
4498 static int __init init_per_zone_pages_min(void)
4500 unsigned long lowmem_kbytes;
4502 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4504 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4505 if (min_free_kbytes < 128)
4506 min_free_kbytes = 128;
4507 if (min_free_kbytes > 65536)
4508 min_free_kbytes = 65536;
4509 setup_per_zone_pages_min();
4510 setup_per_zone_lowmem_reserve();
4511 setup_per_zone_inactive_ratio();
4512 return 0;
4514 module_init(init_per_zone_pages_min)
4517 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4518 * that we can call two helper functions whenever min_free_kbytes
4519 * changes.
4521 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4522 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4524 proc_dointvec(table, write, file, buffer, length, ppos);
4525 if (write)
4526 setup_per_zone_pages_min();
4527 return 0;
4530 #ifdef CONFIG_NUMA
4531 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4532 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4534 struct zone *zone;
4535 int rc;
4537 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4538 if (rc)
4539 return rc;
4541 for_each_zone(zone)
4542 zone->min_unmapped_pages = (zone->present_pages *
4543 sysctl_min_unmapped_ratio) / 100;
4544 return 0;
4547 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4548 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4550 struct zone *zone;
4551 int rc;
4553 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4554 if (rc)
4555 return rc;
4557 for_each_zone(zone)
4558 zone->min_slab_pages = (zone->present_pages *
4559 sysctl_min_slab_ratio) / 100;
4560 return 0;
4562 #endif
4565 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4566 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4567 * whenever sysctl_lowmem_reserve_ratio changes.
4569 * The reserve ratio obviously has absolutely no relation with the
4570 * minimum watermarks. The lowmem reserve ratio can only make sense
4571 * if in function of the boot time zone sizes.
4573 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4574 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4576 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4577 setup_per_zone_lowmem_reserve();
4578 return 0;
4582 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4583 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4584 * can have before it gets flushed back to buddy allocator.
4587 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4588 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4590 struct zone *zone;
4591 unsigned int cpu;
4592 int ret;
4594 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4595 if (!write || (ret == -EINVAL))
4596 return ret;
4597 for_each_zone(zone) {
4598 for_each_online_cpu(cpu) {
4599 unsigned long high;
4600 high = zone->present_pages / percpu_pagelist_fraction;
4601 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4604 return 0;
4607 int hashdist = HASHDIST_DEFAULT;
4609 #ifdef CONFIG_NUMA
4610 static int __init set_hashdist(char *str)
4612 if (!str)
4613 return 0;
4614 hashdist = simple_strtoul(str, &str, 0);
4615 return 1;
4617 __setup("hashdist=", set_hashdist);
4618 #endif
4621 * allocate a large system hash table from bootmem
4622 * - it is assumed that the hash table must contain an exact power-of-2
4623 * quantity of entries
4624 * - limit is the number of hash buckets, not the total allocation size
4626 void *__init alloc_large_system_hash(const char *tablename,
4627 unsigned long bucketsize,
4628 unsigned long numentries,
4629 int scale,
4630 int flags,
4631 unsigned int *_hash_shift,
4632 unsigned int *_hash_mask,
4633 unsigned long limit)
4635 unsigned long long max = limit;
4636 unsigned long log2qty, size;
4637 void *table = NULL;
4639 /* allow the kernel cmdline to have a say */
4640 if (!numentries) {
4641 /* round applicable memory size up to nearest megabyte */
4642 numentries = nr_kernel_pages;
4643 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4644 numentries >>= 20 - PAGE_SHIFT;
4645 numentries <<= 20 - PAGE_SHIFT;
4647 /* limit to 1 bucket per 2^scale bytes of low memory */
4648 if (scale > PAGE_SHIFT)
4649 numentries >>= (scale - PAGE_SHIFT);
4650 else
4651 numentries <<= (PAGE_SHIFT - scale);
4653 /* Make sure we've got at least a 0-order allocation.. */
4654 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4655 numentries = PAGE_SIZE / bucketsize;
4657 numentries = roundup_pow_of_two(numentries);
4659 /* limit allocation size to 1/16 total memory by default */
4660 if (max == 0) {
4661 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4662 do_div(max, bucketsize);
4665 if (numentries > max)
4666 numentries = max;
4668 log2qty = ilog2(numentries);
4670 do {
4671 size = bucketsize << log2qty;
4672 if (flags & HASH_EARLY)
4673 table = alloc_bootmem_nopanic(size);
4674 else if (hashdist)
4675 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4676 else {
4677 unsigned long order = get_order(size);
4679 if (order < MAX_ORDER)
4680 table = (void *)__get_free_pages(GFP_ATOMIC,
4681 order);
4683 * If bucketsize is not a power-of-two, we may free
4684 * some pages at the end of hash table.
4686 if (table) {
4687 unsigned long alloc_end = (unsigned long)table +
4688 (PAGE_SIZE << order);
4689 unsigned long used = (unsigned long)table +
4690 PAGE_ALIGN(size);
4691 split_page(virt_to_page(table), order);
4692 while (used < alloc_end) {
4693 free_page(used);
4694 used += PAGE_SIZE;
4698 } while (!table && size > PAGE_SIZE && --log2qty);
4700 if (!table)
4701 panic("Failed to allocate %s hash table\n", tablename);
4703 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4704 tablename,
4705 (1U << log2qty),
4706 ilog2(size) - PAGE_SHIFT,
4707 size);
4709 if (_hash_shift)
4710 *_hash_shift = log2qty;
4711 if (_hash_mask)
4712 *_hash_mask = (1 << log2qty) - 1;
4715 * If hashdist is set, the table allocation is done with __vmalloc()
4716 * which invokes the kmemleak_alloc() callback. This function may also
4717 * be called before the slab and kmemleak are initialised when
4718 * kmemleak simply buffers the request to be executed later
4719 * (GFP_ATOMIC flag ignored in this case).
4721 if (!hashdist)
4722 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4724 return table;
4727 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4728 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4729 unsigned long pfn)
4731 #ifdef CONFIG_SPARSEMEM
4732 return __pfn_to_section(pfn)->pageblock_flags;
4733 #else
4734 return zone->pageblock_flags;
4735 #endif /* CONFIG_SPARSEMEM */
4738 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4740 #ifdef CONFIG_SPARSEMEM
4741 pfn &= (PAGES_PER_SECTION-1);
4742 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4743 #else
4744 pfn = pfn - zone->zone_start_pfn;
4745 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4746 #endif /* CONFIG_SPARSEMEM */
4750 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4751 * @page: The page within the block of interest
4752 * @start_bitidx: The first bit of interest to retrieve
4753 * @end_bitidx: The last bit of interest
4754 * returns pageblock_bits flags
4756 unsigned long get_pageblock_flags_group(struct page *page,
4757 int start_bitidx, int end_bitidx)
4759 struct zone *zone;
4760 unsigned long *bitmap;
4761 unsigned long pfn, bitidx;
4762 unsigned long flags = 0;
4763 unsigned long value = 1;
4765 zone = page_zone(page);
4766 pfn = page_to_pfn(page);
4767 bitmap = get_pageblock_bitmap(zone, pfn);
4768 bitidx = pfn_to_bitidx(zone, pfn);
4770 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4771 if (test_bit(bitidx + start_bitidx, bitmap))
4772 flags |= value;
4774 return flags;
4778 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4779 * @page: The page within the block of interest
4780 * @start_bitidx: The first bit of interest
4781 * @end_bitidx: The last bit of interest
4782 * @flags: The flags to set
4784 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4785 int start_bitidx, int end_bitidx)
4787 struct zone *zone;
4788 unsigned long *bitmap;
4789 unsigned long pfn, bitidx;
4790 unsigned long value = 1;
4792 zone = page_zone(page);
4793 pfn = page_to_pfn(page);
4794 bitmap = get_pageblock_bitmap(zone, pfn);
4795 bitidx = pfn_to_bitidx(zone, pfn);
4796 VM_BUG_ON(pfn < zone->zone_start_pfn);
4797 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4799 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4800 if (flags & value)
4801 __set_bit(bitidx + start_bitidx, bitmap);
4802 else
4803 __clear_bit(bitidx + start_bitidx, bitmap);
4807 * This is designed as sub function...plz see page_isolation.c also.
4808 * set/clear page block's type to be ISOLATE.
4809 * page allocater never alloc memory from ISOLATE block.
4812 int set_migratetype_isolate(struct page *page)
4814 struct zone *zone;
4815 unsigned long flags;
4816 int ret = -EBUSY;
4818 zone = page_zone(page);
4819 spin_lock_irqsave(&zone->lock, flags);
4821 * In future, more migrate types will be able to be isolation target.
4823 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4824 goto out;
4825 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4826 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4827 ret = 0;
4828 out:
4829 spin_unlock_irqrestore(&zone->lock, flags);
4830 if (!ret)
4831 drain_all_pages();
4832 return ret;
4835 void unset_migratetype_isolate(struct page *page)
4837 struct zone *zone;
4838 unsigned long flags;
4839 zone = page_zone(page);
4840 spin_lock_irqsave(&zone->lock, flags);
4841 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4842 goto out;
4843 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4844 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4845 out:
4846 spin_unlock_irqrestore(&zone->lock, flags);
4849 #ifdef CONFIG_MEMORY_HOTREMOVE
4851 * All pages in the range must be isolated before calling this.
4853 void
4854 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4856 struct page *page;
4857 struct zone *zone;
4858 int order, i;
4859 unsigned long pfn;
4860 unsigned long flags;
4861 /* find the first valid pfn */
4862 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4863 if (pfn_valid(pfn))
4864 break;
4865 if (pfn == end_pfn)
4866 return;
4867 zone = page_zone(pfn_to_page(pfn));
4868 spin_lock_irqsave(&zone->lock, flags);
4869 pfn = start_pfn;
4870 while (pfn < end_pfn) {
4871 if (!pfn_valid(pfn)) {
4872 pfn++;
4873 continue;
4875 page = pfn_to_page(pfn);
4876 BUG_ON(page_count(page));
4877 BUG_ON(!PageBuddy(page));
4878 order = page_order(page);
4879 #ifdef CONFIG_DEBUG_VM
4880 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4881 pfn, 1 << order, end_pfn);
4882 #endif
4883 list_del(&page->lru);
4884 rmv_page_order(page);
4885 zone->free_area[order].nr_free--;
4886 __mod_zone_page_state(zone, NR_FREE_PAGES,
4887 - (1UL << order));
4888 for (i = 0; i < (1 << order); i++)
4889 SetPageReserved((page+i));
4890 pfn += (1 << order);
4892 spin_unlock_irqrestore(&zone->lock, flags);
4894 #endif