checkpatch: if should not continue a preceeding brace
[linux-2.6/mini2440.git] / mm / memcontrol.c
blobe2996b80601f8fd20a3bb9d1216ebf3017d11afa
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
34 #include <linux/fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
39 #include "internal.h"
41 #include <asm/uaccess.h>
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44 #define MEM_CGROUP_RECLAIM_RETRIES 5
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly;
49 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50 #else
51 #define do_swap_account (0)
52 #endif
54 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
57 * Statistics for memory cgroup.
59 enum mem_cgroup_stat_index {
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
68 MEM_CGROUP_STAT_NSTATS,
71 struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73 } ____cacheline_aligned_in_smp;
75 struct mem_cgroup_stat {
76 struct mem_cgroup_stat_cpu cpustat[0];
80 * For accounting under irq disable, no need for increment preempt count.
82 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83 enum mem_cgroup_stat_index idx, int val)
85 stat->count[idx] += val;
88 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
99 * per-zone information in memory controller.
101 struct mem_cgroup_per_zone {
103 * spin_lock to protect the per cgroup LRU
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
108 struct zone_reclaim_stat reclaim_stat;
110 /* Macro for accessing counter */
111 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
113 struct mem_cgroup_per_node {
114 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
117 struct mem_cgroup_lru_info {
118 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
132 struct mem_cgroup {
133 struct cgroup_subsys_state css;
135 * the counter to account for memory usage
137 struct res_counter res;
139 * the counter to account for mem+swap usage.
141 struct res_counter memsw;
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
146 struct mem_cgroup_lru_info info;
149 protect against reclaim related member.
151 spinlock_t reclaim_param_lock;
153 int prev_priority; /* for recording reclaim priority */
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by hierarchy_mutex
159 struct mem_cgroup *last_scanned_child;
161 * Should the accounting and control be hierarchical, per subtree?
163 bool use_hierarchy;
164 unsigned long last_oom_jiffies;
165 atomic_t refcnt;
167 unsigned int swappiness;
170 * statistics. This must be placed at the end of memcg.
172 struct mem_cgroup_stat stat;
175 enum charge_type {
176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
181 NR_CHARGE_TYPE,
184 /* only for here (for easy reading.) */
185 #define PCGF_CACHE (1UL << PCG_CACHE)
186 #define PCGF_USED (1UL << PCG_USED)
187 #define PCGF_LOCK (1UL << PCG_LOCK)
188 static const unsigned long
189 pcg_default_flags[NR_CHARGE_TYPE] = {
190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191 PCGF_USED | PCGF_LOCK, /* Anon */
192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193 0, /* FORCE */
196 /* for encoding cft->private value on file */
197 #define _MEM (0)
198 #define _MEMSWAP (1)
199 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201 #define MEMFILE_ATTR(val) ((val) & 0xffff)
203 static void mem_cgroup_get(struct mem_cgroup *mem);
204 static void mem_cgroup_put(struct mem_cgroup *mem);
206 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207 struct page_cgroup *pc,
208 bool charge)
210 int val = (charge)? 1 : -1;
211 struct mem_cgroup_stat *stat = &mem->stat;
212 struct mem_cgroup_stat_cpu *cpustat;
213 int cpu = get_cpu();
215 cpustat = &stat->cpustat[cpu];
216 if (PageCgroupCache(pc))
217 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218 else
219 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
221 if (charge)
222 __mem_cgroup_stat_add_safe(cpustat,
223 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224 else
225 __mem_cgroup_stat_add_safe(cpustat,
226 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
227 put_cpu();
230 static struct mem_cgroup_per_zone *
231 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
233 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
236 static struct mem_cgroup_per_zone *
237 page_cgroup_zoneinfo(struct page_cgroup *pc)
239 struct mem_cgroup *mem = pc->mem_cgroup;
240 int nid = page_cgroup_nid(pc);
241 int zid = page_cgroup_zid(pc);
243 if (!mem)
244 return NULL;
246 return mem_cgroup_zoneinfo(mem, nid, zid);
249 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250 enum lru_list idx)
252 int nid, zid;
253 struct mem_cgroup_per_zone *mz;
254 u64 total = 0;
256 for_each_online_node(nid)
257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258 mz = mem_cgroup_zoneinfo(mem, nid, zid);
259 total += MEM_CGROUP_ZSTAT(mz, idx);
261 return total;
264 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
266 return container_of(cgroup_subsys_state(cont,
267 mem_cgroup_subsys_id), struct mem_cgroup,
268 css);
271 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
278 if (unlikely(!p))
279 return NULL;
281 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282 struct mem_cgroup, css);
285 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
287 struct mem_cgroup *mem = NULL;
289 * Because we have no locks, mm->owner's may be being moved to other
290 * cgroup. We use css_tryget() here even if this looks
291 * pessimistic (rather than adding locks here).
293 rcu_read_lock();
294 do {
295 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296 if (unlikely(!mem))
297 break;
298 } while (!css_tryget(&mem->css));
299 rcu_read_unlock();
300 return mem;
303 static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
305 if (!mem)
306 return true;
307 return css_is_removed(&mem->css);
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
315 * Changes to pc->mem_cgroup happens when
316 * 1. charge
317 * 2. moving account
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
324 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
326 struct page_cgroup *pc;
327 struct mem_cgroup *mem;
328 struct mem_cgroup_per_zone *mz;
330 if (mem_cgroup_disabled())
331 return;
332 pc = lookup_page_cgroup(page);
333 /* can happen while we handle swapcache. */
334 if (list_empty(&pc->lru) || !pc->mem_cgroup)
335 return;
337 * We don't check PCG_USED bit. It's cleared when the "page" is finally
338 * removed from global LRU.
340 mz = page_cgroup_zoneinfo(pc);
341 mem = pc->mem_cgroup;
342 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
343 list_del_init(&pc->lru);
344 return;
347 void mem_cgroup_del_lru(struct page *page)
349 mem_cgroup_del_lru_list(page, page_lru(page));
352 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
354 struct mem_cgroup_per_zone *mz;
355 struct page_cgroup *pc;
357 if (mem_cgroup_disabled())
358 return;
360 pc = lookup_page_cgroup(page);
361 smp_rmb();
362 /* unused page is not rotated. */
363 if (!PageCgroupUsed(pc))
364 return;
365 mz = page_cgroup_zoneinfo(pc);
366 list_move(&pc->lru, &mz->lists[lru]);
369 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
371 struct page_cgroup *pc;
372 struct mem_cgroup_per_zone *mz;
374 if (mem_cgroup_disabled())
375 return;
376 pc = lookup_page_cgroup(page);
377 /* barrier to sync with "charge" */
378 smp_rmb();
379 if (!PageCgroupUsed(pc))
380 return;
382 mz = page_cgroup_zoneinfo(pc);
383 MEM_CGROUP_ZSTAT(mz, lru) += 1;
384 list_add(&pc->lru, &mz->lists[lru]);
388 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
389 * lru because the page may.be reused after it's fully uncharged (because of
390 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
391 * it again. This function is only used to charge SwapCache. It's done under
392 * lock_page and expected that zone->lru_lock is never held.
394 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
396 unsigned long flags;
397 struct zone *zone = page_zone(page);
398 struct page_cgroup *pc = lookup_page_cgroup(page);
400 spin_lock_irqsave(&zone->lru_lock, flags);
402 * Forget old LRU when this page_cgroup is *not* used. This Used bit
403 * is guarded by lock_page() because the page is SwapCache.
405 if (!PageCgroupUsed(pc))
406 mem_cgroup_del_lru_list(page, page_lru(page));
407 spin_unlock_irqrestore(&zone->lru_lock, flags);
410 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
412 unsigned long flags;
413 struct zone *zone = page_zone(page);
414 struct page_cgroup *pc = lookup_page_cgroup(page);
416 spin_lock_irqsave(&zone->lru_lock, flags);
417 /* link when the page is linked to LRU but page_cgroup isn't */
418 if (PageLRU(page) && list_empty(&pc->lru))
419 mem_cgroup_add_lru_list(page, page_lru(page));
420 spin_unlock_irqrestore(&zone->lru_lock, flags);
424 void mem_cgroup_move_lists(struct page *page,
425 enum lru_list from, enum lru_list to)
427 if (mem_cgroup_disabled())
428 return;
429 mem_cgroup_del_lru_list(page, from);
430 mem_cgroup_add_lru_list(page, to);
433 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
435 int ret;
437 task_lock(task);
438 ret = task->mm && mm_match_cgroup(task->mm, mem);
439 task_unlock(task);
440 return ret;
444 * Calculate mapped_ratio under memory controller. This will be used in
445 * vmscan.c for deteremining we have to reclaim mapped pages.
447 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
449 long total, rss;
452 * usage is recorded in bytes. But, here, we assume the number of
453 * physical pages can be represented by "long" on any arch.
455 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
456 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
457 return (int)((rss * 100L) / total);
461 * prev_priority control...this will be used in memory reclaim path.
463 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
465 int prev_priority;
467 spin_lock(&mem->reclaim_param_lock);
468 prev_priority = mem->prev_priority;
469 spin_unlock(&mem->reclaim_param_lock);
471 return prev_priority;
474 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
476 spin_lock(&mem->reclaim_param_lock);
477 if (priority < mem->prev_priority)
478 mem->prev_priority = priority;
479 spin_unlock(&mem->reclaim_param_lock);
482 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
484 spin_lock(&mem->reclaim_param_lock);
485 mem->prev_priority = priority;
486 spin_unlock(&mem->reclaim_param_lock);
489 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
491 unsigned long active;
492 unsigned long inactive;
493 unsigned long gb;
494 unsigned long inactive_ratio;
496 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
497 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
499 gb = (inactive + active) >> (30 - PAGE_SHIFT);
500 if (gb)
501 inactive_ratio = int_sqrt(10 * gb);
502 else
503 inactive_ratio = 1;
505 if (present_pages) {
506 present_pages[0] = inactive;
507 present_pages[1] = active;
510 return inactive_ratio;
513 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
515 unsigned long active;
516 unsigned long inactive;
517 unsigned long present_pages[2];
518 unsigned long inactive_ratio;
520 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
522 inactive = present_pages[0];
523 active = present_pages[1];
525 if (inactive * inactive_ratio < active)
526 return 1;
528 return 0;
531 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
532 struct zone *zone,
533 enum lru_list lru)
535 int nid = zone->zone_pgdat->node_id;
536 int zid = zone_idx(zone);
537 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
539 return MEM_CGROUP_ZSTAT(mz, lru);
542 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
543 struct zone *zone)
545 int nid = zone->zone_pgdat->node_id;
546 int zid = zone_idx(zone);
547 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
549 return &mz->reclaim_stat;
552 struct zone_reclaim_stat *
553 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
555 struct page_cgroup *pc;
556 struct mem_cgroup_per_zone *mz;
558 if (mem_cgroup_disabled())
559 return NULL;
561 pc = lookup_page_cgroup(page);
562 mz = page_cgroup_zoneinfo(pc);
563 if (!mz)
564 return NULL;
566 return &mz->reclaim_stat;
569 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
570 struct list_head *dst,
571 unsigned long *scanned, int order,
572 int mode, struct zone *z,
573 struct mem_cgroup *mem_cont,
574 int active, int file)
576 unsigned long nr_taken = 0;
577 struct page *page;
578 unsigned long scan;
579 LIST_HEAD(pc_list);
580 struct list_head *src;
581 struct page_cgroup *pc, *tmp;
582 int nid = z->zone_pgdat->node_id;
583 int zid = zone_idx(z);
584 struct mem_cgroup_per_zone *mz;
585 int lru = LRU_FILE * !!file + !!active;
587 BUG_ON(!mem_cont);
588 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
589 src = &mz->lists[lru];
591 scan = 0;
592 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
593 if (scan >= nr_to_scan)
594 break;
596 page = pc->page;
597 if (unlikely(!PageCgroupUsed(pc)))
598 continue;
599 if (unlikely(!PageLRU(page)))
600 continue;
602 scan++;
603 if (__isolate_lru_page(page, mode, file) == 0) {
604 list_move(&page->lru, dst);
605 nr_taken++;
609 *scanned = scan;
610 return nr_taken;
613 #define mem_cgroup_from_res_counter(counter, member) \
614 container_of(counter, struct mem_cgroup, member)
617 * This routine finds the DFS walk successor. This routine should be
618 * called with hierarchy_mutex held
620 static struct mem_cgroup *
621 mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
623 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
625 curr_cgroup = curr->css.cgroup;
626 root_cgroup = root_mem->css.cgroup;
628 if (!list_empty(&curr_cgroup->children)) {
630 * Walk down to children
632 mem_cgroup_put(curr);
633 cgroup = list_entry(curr_cgroup->children.next,
634 struct cgroup, sibling);
635 curr = mem_cgroup_from_cont(cgroup);
636 mem_cgroup_get(curr);
637 goto done;
640 visit_parent:
641 if (curr_cgroup == root_cgroup) {
642 mem_cgroup_put(curr);
643 curr = root_mem;
644 mem_cgroup_get(curr);
645 goto done;
649 * Goto next sibling
651 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
652 mem_cgroup_put(curr);
653 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
654 sibling);
655 curr = mem_cgroup_from_cont(cgroup);
656 mem_cgroup_get(curr);
657 goto done;
661 * Go up to next parent and next parent's sibling if need be
663 curr_cgroup = curr_cgroup->parent;
664 goto visit_parent;
666 done:
667 root_mem->last_scanned_child = curr;
668 return curr;
672 * Visit the first child (need not be the first child as per the ordering
673 * of the cgroup list, since we track last_scanned_child) of @mem and use
674 * that to reclaim free pages from.
676 static struct mem_cgroup *
677 mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
679 struct cgroup *cgroup;
680 struct mem_cgroup *ret;
681 bool obsolete;
683 obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
686 * Scan all children under the mem_cgroup mem
688 mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
689 if (list_empty(&root_mem->css.cgroup->children)) {
690 ret = root_mem;
691 goto done;
694 if (!root_mem->last_scanned_child || obsolete) {
696 if (obsolete && root_mem->last_scanned_child)
697 mem_cgroup_put(root_mem->last_scanned_child);
699 cgroup = list_first_entry(&root_mem->css.cgroup->children,
700 struct cgroup, sibling);
701 ret = mem_cgroup_from_cont(cgroup);
702 mem_cgroup_get(ret);
703 } else
704 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
705 root_mem);
707 done:
708 root_mem->last_scanned_child = ret;
709 mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
710 return ret;
713 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
715 if (do_swap_account) {
716 if (res_counter_check_under_limit(&mem->res) &&
717 res_counter_check_under_limit(&mem->memsw))
718 return true;
719 } else
720 if (res_counter_check_under_limit(&mem->res))
721 return true;
722 return false;
725 static unsigned int get_swappiness(struct mem_cgroup *memcg)
727 struct cgroup *cgrp = memcg->css.cgroup;
728 unsigned int swappiness;
730 /* root ? */
731 if (cgrp->parent == NULL)
732 return vm_swappiness;
734 spin_lock(&memcg->reclaim_param_lock);
735 swappiness = memcg->swappiness;
736 spin_unlock(&memcg->reclaim_param_lock);
738 return swappiness;
742 * Dance down the hierarchy if needed to reclaim memory. We remember the
743 * last child we reclaimed from, so that we don't end up penalizing
744 * one child extensively based on its position in the children list.
746 * root_mem is the original ancestor that we've been reclaim from.
748 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
749 gfp_t gfp_mask, bool noswap)
751 struct mem_cgroup *next_mem;
752 int ret = 0;
755 * Reclaim unconditionally and don't check for return value.
756 * We need to reclaim in the current group and down the tree.
757 * One might think about checking for children before reclaiming,
758 * but there might be left over accounting, even after children
759 * have left.
761 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
762 get_swappiness(root_mem));
763 if (mem_cgroup_check_under_limit(root_mem))
764 return 0;
765 if (!root_mem->use_hierarchy)
766 return ret;
768 next_mem = mem_cgroup_get_first_node(root_mem);
770 while (next_mem != root_mem) {
771 if (mem_cgroup_is_obsolete(next_mem)) {
772 mem_cgroup_put(next_mem);
773 next_mem = mem_cgroup_get_first_node(root_mem);
774 continue;
776 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
777 get_swappiness(next_mem));
778 if (mem_cgroup_check_under_limit(root_mem))
779 return 0;
780 mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
781 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
782 mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
784 return ret;
787 bool mem_cgroup_oom_called(struct task_struct *task)
789 bool ret = false;
790 struct mem_cgroup *mem;
791 struct mm_struct *mm;
793 rcu_read_lock();
794 mm = task->mm;
795 if (!mm)
796 mm = &init_mm;
797 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
798 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
799 ret = true;
800 rcu_read_unlock();
801 return ret;
804 * Unlike exported interface, "oom" parameter is added. if oom==true,
805 * oom-killer can be invoked.
807 static int __mem_cgroup_try_charge(struct mm_struct *mm,
808 gfp_t gfp_mask, struct mem_cgroup **memcg,
809 bool oom)
811 struct mem_cgroup *mem, *mem_over_limit;
812 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
813 struct res_counter *fail_res;
815 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
816 /* Don't account this! */
817 *memcg = NULL;
818 return 0;
822 * We always charge the cgroup the mm_struct belongs to.
823 * The mm_struct's mem_cgroup changes on task migration if the
824 * thread group leader migrates. It's possible that mm is not
825 * set, if so charge the init_mm (happens for pagecache usage).
827 mem = *memcg;
828 if (likely(!mem)) {
829 mem = try_get_mem_cgroup_from_mm(mm);
830 *memcg = mem;
831 } else {
832 css_get(&mem->css);
834 if (unlikely(!mem))
835 return 0;
837 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
839 while (1) {
840 int ret;
841 bool noswap = false;
843 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
844 if (likely(!ret)) {
845 if (!do_swap_account)
846 break;
847 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
848 &fail_res);
849 if (likely(!ret))
850 break;
851 /* mem+swap counter fails */
852 res_counter_uncharge(&mem->res, PAGE_SIZE);
853 noswap = true;
854 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
855 memsw);
856 } else
857 /* mem counter fails */
858 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
859 res);
861 if (!(gfp_mask & __GFP_WAIT))
862 goto nomem;
864 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
865 noswap);
868 * try_to_free_mem_cgroup_pages() might not give us a full
869 * picture of reclaim. Some pages are reclaimed and might be
870 * moved to swap cache or just unmapped from the cgroup.
871 * Check the limit again to see if the reclaim reduced the
872 * current usage of the cgroup before giving up
875 if (mem_cgroup_check_under_limit(mem_over_limit))
876 continue;
878 if (!nr_retries--) {
879 if (oom) {
880 mutex_lock(&memcg_tasklist);
881 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
882 mutex_unlock(&memcg_tasklist);
883 mem_over_limit->last_oom_jiffies = jiffies;
885 goto nomem;
888 return 0;
889 nomem:
890 css_put(&mem->css);
891 return -ENOMEM;
894 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
896 struct mem_cgroup *mem;
897 swp_entry_t ent;
899 if (!PageSwapCache(page))
900 return NULL;
902 ent.val = page_private(page);
903 mem = lookup_swap_cgroup(ent);
904 if (!mem)
905 return NULL;
906 if (!css_tryget(&mem->css))
907 return NULL;
908 return mem;
912 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
913 * USED state. If already USED, uncharge and return.
916 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
917 struct page_cgroup *pc,
918 enum charge_type ctype)
920 /* try_charge() can return NULL to *memcg, taking care of it. */
921 if (!mem)
922 return;
924 lock_page_cgroup(pc);
925 if (unlikely(PageCgroupUsed(pc))) {
926 unlock_page_cgroup(pc);
927 res_counter_uncharge(&mem->res, PAGE_SIZE);
928 if (do_swap_account)
929 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
930 css_put(&mem->css);
931 return;
933 pc->mem_cgroup = mem;
934 smp_wmb();
935 pc->flags = pcg_default_flags[ctype];
937 mem_cgroup_charge_statistics(mem, pc, true);
939 unlock_page_cgroup(pc);
943 * mem_cgroup_move_account - move account of the page
944 * @pc: page_cgroup of the page.
945 * @from: mem_cgroup which the page is moved from.
946 * @to: mem_cgroup which the page is moved to. @from != @to.
948 * The caller must confirm following.
949 * - page is not on LRU (isolate_page() is useful.)
951 * returns 0 at success,
952 * returns -EBUSY when lock is busy or "pc" is unstable.
954 * This function does "uncharge" from old cgroup but doesn't do "charge" to
955 * new cgroup. It should be done by a caller.
958 static int mem_cgroup_move_account(struct page_cgroup *pc,
959 struct mem_cgroup *from, struct mem_cgroup *to)
961 struct mem_cgroup_per_zone *from_mz, *to_mz;
962 int nid, zid;
963 int ret = -EBUSY;
965 VM_BUG_ON(from == to);
966 VM_BUG_ON(PageLRU(pc->page));
968 nid = page_cgroup_nid(pc);
969 zid = page_cgroup_zid(pc);
970 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
971 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
973 if (!trylock_page_cgroup(pc))
974 return ret;
976 if (!PageCgroupUsed(pc))
977 goto out;
979 if (pc->mem_cgroup != from)
980 goto out;
982 css_put(&from->css);
983 res_counter_uncharge(&from->res, PAGE_SIZE);
984 mem_cgroup_charge_statistics(from, pc, false);
985 if (do_swap_account)
986 res_counter_uncharge(&from->memsw, PAGE_SIZE);
987 pc->mem_cgroup = to;
988 mem_cgroup_charge_statistics(to, pc, true);
989 css_get(&to->css);
990 ret = 0;
991 out:
992 unlock_page_cgroup(pc);
993 return ret;
997 * move charges to its parent.
1000 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1001 struct mem_cgroup *child,
1002 gfp_t gfp_mask)
1004 struct page *page = pc->page;
1005 struct cgroup *cg = child->css.cgroup;
1006 struct cgroup *pcg = cg->parent;
1007 struct mem_cgroup *parent;
1008 int ret;
1010 /* Is ROOT ? */
1011 if (!pcg)
1012 return -EINVAL;
1015 parent = mem_cgroup_from_cont(pcg);
1018 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1019 if (ret || !parent)
1020 return ret;
1022 if (!get_page_unless_zero(page))
1023 return -EBUSY;
1025 ret = isolate_lru_page(page);
1027 if (ret)
1028 goto cancel;
1030 ret = mem_cgroup_move_account(pc, child, parent);
1032 /* drop extra refcnt by try_charge() (move_account increment one) */
1033 css_put(&parent->css);
1034 putback_lru_page(page);
1035 if (!ret) {
1036 put_page(page);
1037 return 0;
1039 /* uncharge if move fails */
1040 cancel:
1041 res_counter_uncharge(&parent->res, PAGE_SIZE);
1042 if (do_swap_account)
1043 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1044 put_page(page);
1045 return ret;
1049 * Charge the memory controller for page usage.
1050 * Return
1051 * 0 if the charge was successful
1052 * < 0 if the cgroup is over its limit
1054 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1055 gfp_t gfp_mask, enum charge_type ctype,
1056 struct mem_cgroup *memcg)
1058 struct mem_cgroup *mem;
1059 struct page_cgroup *pc;
1060 int ret;
1062 pc = lookup_page_cgroup(page);
1063 /* can happen at boot */
1064 if (unlikely(!pc))
1065 return 0;
1066 prefetchw(pc);
1068 mem = memcg;
1069 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1070 if (ret || !mem)
1071 return ret;
1073 __mem_cgroup_commit_charge(mem, pc, ctype);
1074 return 0;
1077 int mem_cgroup_newpage_charge(struct page *page,
1078 struct mm_struct *mm, gfp_t gfp_mask)
1080 if (mem_cgroup_disabled())
1081 return 0;
1082 if (PageCompound(page))
1083 return 0;
1085 * If already mapped, we don't have to account.
1086 * If page cache, page->mapping has address_space.
1087 * But page->mapping may have out-of-use anon_vma pointer,
1088 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1089 * is NULL.
1091 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1092 return 0;
1093 if (unlikely(!mm))
1094 mm = &init_mm;
1095 return mem_cgroup_charge_common(page, mm, gfp_mask,
1096 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1099 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1100 gfp_t gfp_mask)
1102 struct mem_cgroup *mem = NULL;
1103 int ret;
1105 if (mem_cgroup_disabled())
1106 return 0;
1107 if (PageCompound(page))
1108 return 0;
1110 * Corner case handling. This is called from add_to_page_cache()
1111 * in usual. But some FS (shmem) precharges this page before calling it
1112 * and call add_to_page_cache() with GFP_NOWAIT.
1114 * For GFP_NOWAIT case, the page may be pre-charged before calling
1115 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1116 * charge twice. (It works but has to pay a bit larger cost.)
1117 * And when the page is SwapCache, it should take swap information
1118 * into account. This is under lock_page() now.
1120 if (!(gfp_mask & __GFP_WAIT)) {
1121 struct page_cgroup *pc;
1124 pc = lookup_page_cgroup(page);
1125 if (!pc)
1126 return 0;
1127 lock_page_cgroup(pc);
1128 if (PageCgroupUsed(pc)) {
1129 unlock_page_cgroup(pc);
1130 return 0;
1132 unlock_page_cgroup(pc);
1135 if (do_swap_account && PageSwapCache(page)) {
1136 mem = try_get_mem_cgroup_from_swapcache(page);
1137 if (mem)
1138 mm = NULL;
1139 else
1140 mem = NULL;
1141 /* SwapCache may be still linked to LRU now. */
1142 mem_cgroup_lru_del_before_commit_swapcache(page);
1145 if (unlikely(!mm && !mem))
1146 mm = &init_mm;
1148 if (page_is_file_cache(page))
1149 return mem_cgroup_charge_common(page, mm, gfp_mask,
1150 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1152 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1153 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1154 if (mem)
1155 css_put(&mem->css);
1156 if (PageSwapCache(page))
1157 mem_cgroup_lru_add_after_commit_swapcache(page);
1159 if (do_swap_account && !ret && PageSwapCache(page)) {
1160 swp_entry_t ent = {.val = page_private(page)};
1161 /* avoid double counting */
1162 mem = swap_cgroup_record(ent, NULL);
1163 if (mem) {
1164 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1165 mem_cgroup_put(mem);
1168 return ret;
1172 * While swap-in, try_charge -> commit or cancel, the page is locked.
1173 * And when try_charge() successfully returns, one refcnt to memcg without
1174 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1175 * "commit()" or removed by "cancel()"
1177 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1178 struct page *page,
1179 gfp_t mask, struct mem_cgroup **ptr)
1181 struct mem_cgroup *mem;
1182 int ret;
1184 if (mem_cgroup_disabled())
1185 return 0;
1187 if (!do_swap_account)
1188 goto charge_cur_mm;
1190 * A racing thread's fault, or swapoff, may have already updated
1191 * the pte, and even removed page from swap cache: return success
1192 * to go on to do_swap_page()'s pte_same() test, which should fail.
1194 if (!PageSwapCache(page))
1195 return 0;
1196 mem = try_get_mem_cgroup_from_swapcache(page);
1197 if (!mem)
1198 goto charge_cur_mm;
1199 *ptr = mem;
1200 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1201 /* drop extra refcnt from tryget */
1202 css_put(&mem->css);
1203 return ret;
1204 charge_cur_mm:
1205 if (unlikely(!mm))
1206 mm = &init_mm;
1207 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1210 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1212 struct page_cgroup *pc;
1214 if (mem_cgroup_disabled())
1215 return;
1216 if (!ptr)
1217 return;
1218 pc = lookup_page_cgroup(page);
1219 mem_cgroup_lru_del_before_commit_swapcache(page);
1220 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1221 mem_cgroup_lru_add_after_commit_swapcache(page);
1223 * Now swap is on-memory. This means this page may be
1224 * counted both as mem and swap....double count.
1225 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1226 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1227 * may call delete_from_swap_cache() before reach here.
1229 if (do_swap_account && PageSwapCache(page)) {
1230 swp_entry_t ent = {.val = page_private(page)};
1231 struct mem_cgroup *memcg;
1232 memcg = swap_cgroup_record(ent, NULL);
1233 if (memcg) {
1234 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1235 mem_cgroup_put(memcg);
1239 /* add this page(page_cgroup) to the LRU we want. */
1243 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1245 if (mem_cgroup_disabled())
1246 return;
1247 if (!mem)
1248 return;
1249 res_counter_uncharge(&mem->res, PAGE_SIZE);
1250 if (do_swap_account)
1251 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1252 css_put(&mem->css);
1257 * uncharge if !page_mapped(page)
1259 static struct mem_cgroup *
1260 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1262 struct page_cgroup *pc;
1263 struct mem_cgroup *mem = NULL;
1264 struct mem_cgroup_per_zone *mz;
1266 if (mem_cgroup_disabled())
1267 return NULL;
1269 if (PageSwapCache(page))
1270 return NULL;
1273 * Check if our page_cgroup is valid
1275 pc = lookup_page_cgroup(page);
1276 if (unlikely(!pc || !PageCgroupUsed(pc)))
1277 return NULL;
1279 lock_page_cgroup(pc);
1281 mem = pc->mem_cgroup;
1283 if (!PageCgroupUsed(pc))
1284 goto unlock_out;
1286 switch (ctype) {
1287 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1288 if (page_mapped(page))
1289 goto unlock_out;
1290 break;
1291 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1292 if (!PageAnon(page)) { /* Shared memory */
1293 if (page->mapping && !page_is_file_cache(page))
1294 goto unlock_out;
1295 } else if (page_mapped(page)) /* Anon */
1296 goto unlock_out;
1297 break;
1298 default:
1299 break;
1302 res_counter_uncharge(&mem->res, PAGE_SIZE);
1303 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1304 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1306 mem_cgroup_charge_statistics(mem, pc, false);
1307 ClearPageCgroupUsed(pc);
1309 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1310 * freed from LRU. This is safe because uncharged page is expected not
1311 * to be reused (freed soon). Exception is SwapCache, it's handled by
1312 * special functions.
1315 mz = page_cgroup_zoneinfo(pc);
1316 unlock_page_cgroup(pc);
1318 /* at swapout, this memcg will be accessed to record to swap */
1319 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1320 css_put(&mem->css);
1322 return mem;
1324 unlock_out:
1325 unlock_page_cgroup(pc);
1326 return NULL;
1329 void mem_cgroup_uncharge_page(struct page *page)
1331 /* early check. */
1332 if (page_mapped(page))
1333 return;
1334 if (page->mapping && !PageAnon(page))
1335 return;
1336 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1339 void mem_cgroup_uncharge_cache_page(struct page *page)
1341 VM_BUG_ON(page_mapped(page));
1342 VM_BUG_ON(page->mapping);
1343 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1347 * called from __delete_from_swap_cache() and drop "page" account.
1348 * memcg information is recorded to swap_cgroup of "ent"
1350 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1352 struct mem_cgroup *memcg;
1354 memcg = __mem_cgroup_uncharge_common(page,
1355 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1356 /* record memcg information */
1357 if (do_swap_account && memcg) {
1358 swap_cgroup_record(ent, memcg);
1359 mem_cgroup_get(memcg);
1361 if (memcg)
1362 css_put(&memcg->css);
1365 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1367 * called from swap_entry_free(). remove record in swap_cgroup and
1368 * uncharge "memsw" account.
1370 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1372 struct mem_cgroup *memcg;
1374 if (!do_swap_account)
1375 return;
1377 memcg = swap_cgroup_record(ent, NULL);
1378 if (memcg) {
1379 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1380 mem_cgroup_put(memcg);
1383 #endif
1386 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1387 * page belongs to.
1389 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1391 struct page_cgroup *pc;
1392 struct mem_cgroup *mem = NULL;
1393 int ret = 0;
1395 if (mem_cgroup_disabled())
1396 return 0;
1398 pc = lookup_page_cgroup(page);
1399 lock_page_cgroup(pc);
1400 if (PageCgroupUsed(pc)) {
1401 mem = pc->mem_cgroup;
1402 css_get(&mem->css);
1404 unlock_page_cgroup(pc);
1406 if (mem) {
1407 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1408 css_put(&mem->css);
1410 *ptr = mem;
1411 return ret;
1414 /* remove redundant charge if migration failed*/
1415 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1416 struct page *oldpage, struct page *newpage)
1418 struct page *target, *unused;
1419 struct page_cgroup *pc;
1420 enum charge_type ctype;
1422 if (!mem)
1423 return;
1425 /* at migration success, oldpage->mapping is NULL. */
1426 if (oldpage->mapping) {
1427 target = oldpage;
1428 unused = NULL;
1429 } else {
1430 target = newpage;
1431 unused = oldpage;
1434 if (PageAnon(target))
1435 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1436 else if (page_is_file_cache(target))
1437 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1438 else
1439 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1441 /* unused page is not on radix-tree now. */
1442 if (unused)
1443 __mem_cgroup_uncharge_common(unused, ctype);
1445 pc = lookup_page_cgroup(target);
1447 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1448 * So, double-counting is effectively avoided.
1450 __mem_cgroup_commit_charge(mem, pc, ctype);
1453 * Both of oldpage and newpage are still under lock_page().
1454 * Then, we don't have to care about race in radix-tree.
1455 * But we have to be careful that this page is unmapped or not.
1457 * There is a case for !page_mapped(). At the start of
1458 * migration, oldpage was mapped. But now, it's zapped.
1459 * But we know *target* page is not freed/reused under us.
1460 * mem_cgroup_uncharge_page() does all necessary checks.
1462 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1463 mem_cgroup_uncharge_page(target);
1467 * A call to try to shrink memory usage under specified resource controller.
1468 * This is typically used for page reclaiming for shmem for reducing side
1469 * effect of page allocation from shmem, which is used by some mem_cgroup.
1471 int mem_cgroup_shrink_usage(struct page *page,
1472 struct mm_struct *mm,
1473 gfp_t gfp_mask)
1475 struct mem_cgroup *mem = NULL;
1476 int progress = 0;
1477 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1479 if (mem_cgroup_disabled())
1480 return 0;
1481 if (page)
1482 mem = try_get_mem_cgroup_from_swapcache(page);
1483 if (!mem && mm)
1484 mem = try_get_mem_cgroup_from_mm(mm);
1485 if (unlikely(!mem))
1486 return 0;
1488 do {
1489 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1490 progress += mem_cgroup_check_under_limit(mem);
1491 } while (!progress && --retry);
1493 css_put(&mem->css);
1494 if (!retry)
1495 return -ENOMEM;
1496 return 0;
1499 static DEFINE_MUTEX(set_limit_mutex);
1501 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1502 unsigned long long val)
1505 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1506 int progress;
1507 u64 memswlimit;
1508 int ret = 0;
1510 while (retry_count) {
1511 if (signal_pending(current)) {
1512 ret = -EINTR;
1513 break;
1516 * Rather than hide all in some function, I do this in
1517 * open coded manner. You see what this really does.
1518 * We have to guarantee mem->res.limit < mem->memsw.limit.
1520 mutex_lock(&set_limit_mutex);
1521 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1522 if (memswlimit < val) {
1523 ret = -EINVAL;
1524 mutex_unlock(&set_limit_mutex);
1525 break;
1527 ret = res_counter_set_limit(&memcg->res, val);
1528 mutex_unlock(&set_limit_mutex);
1530 if (!ret)
1531 break;
1533 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1534 false);
1535 if (!progress) retry_count--;
1538 return ret;
1541 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1542 unsigned long long val)
1544 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1545 u64 memlimit, oldusage, curusage;
1546 int ret;
1548 if (!do_swap_account)
1549 return -EINVAL;
1551 while (retry_count) {
1552 if (signal_pending(current)) {
1553 ret = -EINTR;
1554 break;
1557 * Rather than hide all in some function, I do this in
1558 * open coded manner. You see what this really does.
1559 * We have to guarantee mem->res.limit < mem->memsw.limit.
1561 mutex_lock(&set_limit_mutex);
1562 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1563 if (memlimit > val) {
1564 ret = -EINVAL;
1565 mutex_unlock(&set_limit_mutex);
1566 break;
1568 ret = res_counter_set_limit(&memcg->memsw, val);
1569 mutex_unlock(&set_limit_mutex);
1571 if (!ret)
1572 break;
1574 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1575 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1576 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1577 if (curusage >= oldusage)
1578 retry_count--;
1580 return ret;
1584 * This routine traverse page_cgroup in given list and drop them all.
1585 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1587 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1588 int node, int zid, enum lru_list lru)
1590 struct zone *zone;
1591 struct mem_cgroup_per_zone *mz;
1592 struct page_cgroup *pc, *busy;
1593 unsigned long flags, loop;
1594 struct list_head *list;
1595 int ret = 0;
1597 zone = &NODE_DATA(node)->node_zones[zid];
1598 mz = mem_cgroup_zoneinfo(mem, node, zid);
1599 list = &mz->lists[lru];
1601 loop = MEM_CGROUP_ZSTAT(mz, lru);
1602 /* give some margin against EBUSY etc...*/
1603 loop += 256;
1604 busy = NULL;
1605 while (loop--) {
1606 ret = 0;
1607 spin_lock_irqsave(&zone->lru_lock, flags);
1608 if (list_empty(list)) {
1609 spin_unlock_irqrestore(&zone->lru_lock, flags);
1610 break;
1612 pc = list_entry(list->prev, struct page_cgroup, lru);
1613 if (busy == pc) {
1614 list_move(&pc->lru, list);
1615 busy = 0;
1616 spin_unlock_irqrestore(&zone->lru_lock, flags);
1617 continue;
1619 spin_unlock_irqrestore(&zone->lru_lock, flags);
1621 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1622 if (ret == -ENOMEM)
1623 break;
1625 if (ret == -EBUSY || ret == -EINVAL) {
1626 /* found lock contention or "pc" is obsolete. */
1627 busy = pc;
1628 cond_resched();
1629 } else
1630 busy = NULL;
1633 if (!ret && !list_empty(list))
1634 return -EBUSY;
1635 return ret;
1639 * make mem_cgroup's charge to be 0 if there is no task.
1640 * This enables deleting this mem_cgroup.
1642 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1644 int ret;
1645 int node, zid, shrink;
1646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1647 struct cgroup *cgrp = mem->css.cgroup;
1649 css_get(&mem->css);
1651 shrink = 0;
1652 /* should free all ? */
1653 if (free_all)
1654 goto try_to_free;
1655 move_account:
1656 while (mem->res.usage > 0) {
1657 ret = -EBUSY;
1658 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1659 goto out;
1660 ret = -EINTR;
1661 if (signal_pending(current))
1662 goto out;
1663 /* This is for making all *used* pages to be on LRU. */
1664 lru_add_drain_all();
1665 ret = 0;
1666 for_each_node_state(node, N_POSSIBLE) {
1667 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1668 enum lru_list l;
1669 for_each_lru(l) {
1670 ret = mem_cgroup_force_empty_list(mem,
1671 node, zid, l);
1672 if (ret)
1673 break;
1676 if (ret)
1677 break;
1679 /* it seems parent cgroup doesn't have enough mem */
1680 if (ret == -ENOMEM)
1681 goto try_to_free;
1682 cond_resched();
1684 ret = 0;
1685 out:
1686 css_put(&mem->css);
1687 return ret;
1689 try_to_free:
1690 /* returns EBUSY if there is a task or if we come here twice. */
1691 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1692 ret = -EBUSY;
1693 goto out;
1695 /* we call try-to-free pages for make this cgroup empty */
1696 lru_add_drain_all();
1697 /* try to free all pages in this cgroup */
1698 shrink = 1;
1699 while (nr_retries && mem->res.usage > 0) {
1700 int progress;
1702 if (signal_pending(current)) {
1703 ret = -EINTR;
1704 goto out;
1706 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1707 false, get_swappiness(mem));
1708 if (!progress) {
1709 nr_retries--;
1710 /* maybe some writeback is necessary */
1711 congestion_wait(WRITE, HZ/10);
1715 lru_add_drain();
1716 /* try move_account...there may be some *locked* pages. */
1717 if (mem->res.usage)
1718 goto move_account;
1719 ret = 0;
1720 goto out;
1723 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1725 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1729 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1731 return mem_cgroup_from_cont(cont)->use_hierarchy;
1734 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1735 u64 val)
1737 int retval = 0;
1738 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1739 struct cgroup *parent = cont->parent;
1740 struct mem_cgroup *parent_mem = NULL;
1742 if (parent)
1743 parent_mem = mem_cgroup_from_cont(parent);
1745 cgroup_lock();
1747 * If parent's use_hiearchy is set, we can't make any modifications
1748 * in the child subtrees. If it is unset, then the change can
1749 * occur, provided the current cgroup has no children.
1751 * For the root cgroup, parent_mem is NULL, we allow value to be
1752 * set if there are no children.
1754 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1755 (val == 1 || val == 0)) {
1756 if (list_empty(&cont->children))
1757 mem->use_hierarchy = val;
1758 else
1759 retval = -EBUSY;
1760 } else
1761 retval = -EINVAL;
1762 cgroup_unlock();
1764 return retval;
1767 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1769 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1770 u64 val = 0;
1771 int type, name;
1773 type = MEMFILE_TYPE(cft->private);
1774 name = MEMFILE_ATTR(cft->private);
1775 switch (type) {
1776 case _MEM:
1777 val = res_counter_read_u64(&mem->res, name);
1778 break;
1779 case _MEMSWAP:
1780 if (do_swap_account)
1781 val = res_counter_read_u64(&mem->memsw, name);
1782 break;
1783 default:
1784 BUG();
1785 break;
1787 return val;
1790 * The user of this function is...
1791 * RES_LIMIT.
1793 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1794 const char *buffer)
1796 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1797 int type, name;
1798 unsigned long long val;
1799 int ret;
1801 type = MEMFILE_TYPE(cft->private);
1802 name = MEMFILE_ATTR(cft->private);
1803 switch (name) {
1804 case RES_LIMIT:
1805 /* This function does all necessary parse...reuse it */
1806 ret = res_counter_memparse_write_strategy(buffer, &val);
1807 if (ret)
1808 break;
1809 if (type == _MEM)
1810 ret = mem_cgroup_resize_limit(memcg, val);
1811 else
1812 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1813 break;
1814 default:
1815 ret = -EINVAL; /* should be BUG() ? */
1816 break;
1818 return ret;
1821 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1822 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1824 struct cgroup *cgroup;
1825 unsigned long long min_limit, min_memsw_limit, tmp;
1827 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1828 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1829 cgroup = memcg->css.cgroup;
1830 if (!memcg->use_hierarchy)
1831 goto out;
1833 while (cgroup->parent) {
1834 cgroup = cgroup->parent;
1835 memcg = mem_cgroup_from_cont(cgroup);
1836 if (!memcg->use_hierarchy)
1837 break;
1838 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1839 min_limit = min(min_limit, tmp);
1840 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1841 min_memsw_limit = min(min_memsw_limit, tmp);
1843 out:
1844 *mem_limit = min_limit;
1845 *memsw_limit = min_memsw_limit;
1846 return;
1849 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1851 struct mem_cgroup *mem;
1852 int type, name;
1854 mem = mem_cgroup_from_cont(cont);
1855 type = MEMFILE_TYPE(event);
1856 name = MEMFILE_ATTR(event);
1857 switch (name) {
1858 case RES_MAX_USAGE:
1859 if (type == _MEM)
1860 res_counter_reset_max(&mem->res);
1861 else
1862 res_counter_reset_max(&mem->memsw);
1863 break;
1864 case RES_FAILCNT:
1865 if (type == _MEM)
1866 res_counter_reset_failcnt(&mem->res);
1867 else
1868 res_counter_reset_failcnt(&mem->memsw);
1869 break;
1871 return 0;
1874 static const struct mem_cgroup_stat_desc {
1875 const char *msg;
1876 u64 unit;
1877 } mem_cgroup_stat_desc[] = {
1878 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1879 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1880 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1881 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1884 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1885 struct cgroup_map_cb *cb)
1887 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1888 struct mem_cgroup_stat *stat = &mem_cont->stat;
1889 int i;
1891 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1892 s64 val;
1894 val = mem_cgroup_read_stat(stat, i);
1895 val *= mem_cgroup_stat_desc[i].unit;
1896 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1898 /* showing # of active pages */
1900 unsigned long active_anon, inactive_anon;
1901 unsigned long active_file, inactive_file;
1902 unsigned long unevictable;
1904 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1905 LRU_INACTIVE_ANON);
1906 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1907 LRU_ACTIVE_ANON);
1908 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1909 LRU_INACTIVE_FILE);
1910 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1911 LRU_ACTIVE_FILE);
1912 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1913 LRU_UNEVICTABLE);
1915 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1916 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1917 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1918 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1919 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1923 unsigned long long limit, memsw_limit;
1924 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1925 cb->fill(cb, "hierarchical_memory_limit", limit);
1926 if (do_swap_account)
1927 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1930 #ifdef CONFIG_DEBUG_VM
1931 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1934 int nid, zid;
1935 struct mem_cgroup_per_zone *mz;
1936 unsigned long recent_rotated[2] = {0, 0};
1937 unsigned long recent_scanned[2] = {0, 0};
1939 for_each_online_node(nid)
1940 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1941 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1943 recent_rotated[0] +=
1944 mz->reclaim_stat.recent_rotated[0];
1945 recent_rotated[1] +=
1946 mz->reclaim_stat.recent_rotated[1];
1947 recent_scanned[0] +=
1948 mz->reclaim_stat.recent_scanned[0];
1949 recent_scanned[1] +=
1950 mz->reclaim_stat.recent_scanned[1];
1952 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1953 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1954 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1955 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1957 #endif
1959 return 0;
1962 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1964 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1966 return get_swappiness(memcg);
1969 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1970 u64 val)
1972 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1973 struct mem_cgroup *parent;
1974 if (val > 100)
1975 return -EINVAL;
1977 if (cgrp->parent == NULL)
1978 return -EINVAL;
1980 parent = mem_cgroup_from_cont(cgrp->parent);
1981 /* If under hierarchy, only empty-root can set this value */
1982 if ((parent->use_hierarchy) ||
1983 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1984 return -EINVAL;
1986 spin_lock(&memcg->reclaim_param_lock);
1987 memcg->swappiness = val;
1988 spin_unlock(&memcg->reclaim_param_lock);
1990 return 0;
1994 static struct cftype mem_cgroup_files[] = {
1996 .name = "usage_in_bytes",
1997 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1998 .read_u64 = mem_cgroup_read,
2001 .name = "max_usage_in_bytes",
2002 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2003 .trigger = mem_cgroup_reset,
2004 .read_u64 = mem_cgroup_read,
2007 .name = "limit_in_bytes",
2008 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2009 .write_string = mem_cgroup_write,
2010 .read_u64 = mem_cgroup_read,
2013 .name = "failcnt",
2014 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2015 .trigger = mem_cgroup_reset,
2016 .read_u64 = mem_cgroup_read,
2019 .name = "stat",
2020 .read_map = mem_control_stat_show,
2023 .name = "force_empty",
2024 .trigger = mem_cgroup_force_empty_write,
2027 .name = "use_hierarchy",
2028 .write_u64 = mem_cgroup_hierarchy_write,
2029 .read_u64 = mem_cgroup_hierarchy_read,
2032 .name = "swappiness",
2033 .read_u64 = mem_cgroup_swappiness_read,
2034 .write_u64 = mem_cgroup_swappiness_write,
2038 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2039 static struct cftype memsw_cgroup_files[] = {
2041 .name = "memsw.usage_in_bytes",
2042 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2043 .read_u64 = mem_cgroup_read,
2046 .name = "memsw.max_usage_in_bytes",
2047 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2048 .trigger = mem_cgroup_reset,
2049 .read_u64 = mem_cgroup_read,
2052 .name = "memsw.limit_in_bytes",
2053 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2054 .write_string = mem_cgroup_write,
2055 .read_u64 = mem_cgroup_read,
2058 .name = "memsw.failcnt",
2059 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2060 .trigger = mem_cgroup_reset,
2061 .read_u64 = mem_cgroup_read,
2065 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2067 if (!do_swap_account)
2068 return 0;
2069 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2070 ARRAY_SIZE(memsw_cgroup_files));
2072 #else
2073 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2075 return 0;
2077 #endif
2079 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2081 struct mem_cgroup_per_node *pn;
2082 struct mem_cgroup_per_zone *mz;
2083 enum lru_list l;
2084 int zone, tmp = node;
2086 * This routine is called against possible nodes.
2087 * But it's BUG to call kmalloc() against offline node.
2089 * TODO: this routine can waste much memory for nodes which will
2090 * never be onlined. It's better to use memory hotplug callback
2091 * function.
2093 if (!node_state(node, N_NORMAL_MEMORY))
2094 tmp = -1;
2095 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2096 if (!pn)
2097 return 1;
2099 mem->info.nodeinfo[node] = pn;
2100 memset(pn, 0, sizeof(*pn));
2102 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2103 mz = &pn->zoneinfo[zone];
2104 for_each_lru(l)
2105 INIT_LIST_HEAD(&mz->lists[l]);
2107 return 0;
2110 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2112 kfree(mem->info.nodeinfo[node]);
2115 static int mem_cgroup_size(void)
2117 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2118 return sizeof(struct mem_cgroup) + cpustat_size;
2121 static struct mem_cgroup *mem_cgroup_alloc(void)
2123 struct mem_cgroup *mem;
2124 int size = mem_cgroup_size();
2126 if (size < PAGE_SIZE)
2127 mem = kmalloc(size, GFP_KERNEL);
2128 else
2129 mem = vmalloc(size);
2131 if (mem)
2132 memset(mem, 0, size);
2133 return mem;
2137 * At destroying mem_cgroup, references from swap_cgroup can remain.
2138 * (scanning all at force_empty is too costly...)
2140 * Instead of clearing all references at force_empty, we remember
2141 * the number of reference from swap_cgroup and free mem_cgroup when
2142 * it goes down to 0.
2144 * Removal of cgroup itself succeeds regardless of refs from swap.
2147 static void __mem_cgroup_free(struct mem_cgroup *mem)
2149 int node;
2151 for_each_node_state(node, N_POSSIBLE)
2152 free_mem_cgroup_per_zone_info(mem, node);
2154 if (mem_cgroup_size() < PAGE_SIZE)
2155 kfree(mem);
2156 else
2157 vfree(mem);
2160 static void mem_cgroup_get(struct mem_cgroup *mem)
2162 atomic_inc(&mem->refcnt);
2165 static void mem_cgroup_put(struct mem_cgroup *mem)
2167 if (atomic_dec_and_test(&mem->refcnt))
2168 __mem_cgroup_free(mem);
2172 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2173 static void __init enable_swap_cgroup(void)
2175 if (!mem_cgroup_disabled() && really_do_swap_account)
2176 do_swap_account = 1;
2178 #else
2179 static void __init enable_swap_cgroup(void)
2182 #endif
2184 static struct cgroup_subsys_state *
2185 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2187 struct mem_cgroup *mem, *parent;
2188 int node;
2190 mem = mem_cgroup_alloc();
2191 if (!mem)
2192 return ERR_PTR(-ENOMEM);
2194 for_each_node_state(node, N_POSSIBLE)
2195 if (alloc_mem_cgroup_per_zone_info(mem, node))
2196 goto free_out;
2197 /* root ? */
2198 if (cont->parent == NULL) {
2199 enable_swap_cgroup();
2200 parent = NULL;
2201 } else {
2202 parent = mem_cgroup_from_cont(cont->parent);
2203 mem->use_hierarchy = parent->use_hierarchy;
2206 if (parent && parent->use_hierarchy) {
2207 res_counter_init(&mem->res, &parent->res);
2208 res_counter_init(&mem->memsw, &parent->memsw);
2209 } else {
2210 res_counter_init(&mem->res, NULL);
2211 res_counter_init(&mem->memsw, NULL);
2213 mem->last_scanned_child = NULL;
2214 spin_lock_init(&mem->reclaim_param_lock);
2216 if (parent)
2217 mem->swappiness = get_swappiness(parent);
2218 atomic_set(&mem->refcnt, 1);
2219 return &mem->css;
2220 free_out:
2221 __mem_cgroup_free(mem);
2222 return ERR_PTR(-ENOMEM);
2225 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2226 struct cgroup *cont)
2228 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2229 mem_cgroup_force_empty(mem, false);
2232 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2233 struct cgroup *cont)
2235 mem_cgroup_put(mem_cgroup_from_cont(cont));
2238 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2239 struct cgroup *cont)
2241 int ret;
2243 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2244 ARRAY_SIZE(mem_cgroup_files));
2246 if (!ret)
2247 ret = register_memsw_files(cont, ss);
2248 return ret;
2251 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2252 struct cgroup *cont,
2253 struct cgroup *old_cont,
2254 struct task_struct *p)
2256 mutex_lock(&memcg_tasklist);
2258 * FIXME: It's better to move charges of this process from old
2259 * memcg to new memcg. But it's just on TODO-List now.
2261 mutex_unlock(&memcg_tasklist);
2264 struct cgroup_subsys mem_cgroup_subsys = {
2265 .name = "memory",
2266 .subsys_id = mem_cgroup_subsys_id,
2267 .create = mem_cgroup_create,
2268 .pre_destroy = mem_cgroup_pre_destroy,
2269 .destroy = mem_cgroup_destroy,
2270 .populate = mem_cgroup_populate,
2271 .attach = mem_cgroup_move_task,
2272 .early_init = 0,
2275 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2277 static int __init disable_swap_account(char *s)
2279 really_do_swap_account = 0;
2280 return 1;
2282 __setup("noswapaccount", disable_swap_account);
2283 #endif