checkpatch: if should not continue a preceeding brace
[linux-2.6/mini2440.git] / drivers / char / stallion.c
blobe1e0dd89ac9aa309e2f92c9183618948b09b6900
1 /*****************************************************************************/
3 /*
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44 #include <linux/ctype.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
49 #include <linux/pci.h>
51 /*****************************************************************************/
54 * Define different board types. Use the standard Stallion "assigned"
55 * board numbers. Boards supported in this driver are abbreviated as
56 * EIO = EasyIO and ECH = EasyConnection 8/32.
58 #define BRD_EASYIO 20
59 #define BRD_ECH 21
60 #define BRD_ECHMC 22
61 #define BRD_ECHPCI 26
62 #define BRD_ECH64PCI 27
63 #define BRD_EASYIOPCI 28
65 struct stlconf {
66 unsigned int brdtype;
67 int ioaddr1;
68 int ioaddr2;
69 unsigned long memaddr;
70 int irq;
71 int irqtype;
74 static unsigned int stl_nrbrds;
76 /*****************************************************************************/
79 * Define some important driver characteristics. Device major numbers
80 * allocated as per Linux Device Registry.
82 #ifndef STL_SIOMEMMAJOR
83 #define STL_SIOMEMMAJOR 28
84 #endif
85 #ifndef STL_SERIALMAJOR
86 #define STL_SERIALMAJOR 24
87 #endif
88 #ifndef STL_CALLOUTMAJOR
89 #define STL_CALLOUTMAJOR 25
90 #endif
93 * Set the TX buffer size. Bigger is better, but we don't want
94 * to chew too much memory with buffers!
96 #define STL_TXBUFLOW 512
97 #define STL_TXBUFSIZE 4096
99 /*****************************************************************************/
102 * Define our local driver identity first. Set up stuff to deal with
103 * all the local structures required by a serial tty driver.
105 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
106 static char *stl_drvname = "stallion";
107 static char *stl_drvversion = "5.6.0";
109 static struct tty_driver *stl_serial;
112 * Define a local default termios struct. All ports will be created
113 * with this termios initially. Basically all it defines is a raw port
114 * at 9600, 8 data bits, 1 stop bit.
116 static struct ktermios stl_deftermios = {
117 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 9600,
120 .c_ospeed = 9600,
124 * Define global place to put buffer overflow characters.
126 static char stl_unwanted[SC26198_RXFIFOSIZE];
128 /*****************************************************************************/
130 static DEFINE_MUTEX(stl_brdslock);
131 static struct stlbrd *stl_brds[STL_MAXBRDS];
133 static const struct tty_port_operations stl_port_ops;
136 * Per board state flags. Used with the state field of the board struct.
137 * Not really much here!
139 #define BRD_FOUND 0x1
140 #define STL_PROBED 0x2
144 * Define the port structure istate flags. These set of flags are
145 * modified at interrupt time - so setting and reseting them needs
146 * to be atomic. Use the bit clear/setting routines for this.
148 #define ASYI_TXBUSY 1
149 #define ASYI_TXLOW 2
150 #define ASYI_TXFLOWED 3
153 * Define an array of board names as printable strings. Handy for
154 * referencing boards when printing trace and stuff.
156 static char *stl_brdnames[] = {
157 NULL,
158 NULL,
159 NULL,
160 NULL,
161 NULL,
162 NULL,
163 NULL,
164 NULL,
165 NULL,
166 NULL,
167 NULL,
168 NULL,
169 NULL,
170 NULL,
171 NULL,
172 NULL,
173 NULL,
174 NULL,
175 NULL,
176 NULL,
177 "EasyIO",
178 "EC8/32-AT",
179 "EC8/32-MC",
180 NULL,
181 NULL,
182 NULL,
183 "EC8/32-PCI",
184 "EC8/64-PCI",
185 "EasyIO-PCI",
188 /*****************************************************************************/
191 * Define some string labels for arguments passed from the module
192 * load line. These allow for easy board definitions, and easy
193 * modification of the io, memory and irq resoucres.
195 static unsigned int stl_nargs;
196 static char *board0[4];
197 static char *board1[4];
198 static char *board2[4];
199 static char *board3[4];
201 static char **stl_brdsp[] = {
202 (char **) &board0,
203 (char **) &board1,
204 (char **) &board2,
205 (char **) &board3
209 * Define a set of common board names, and types. This is used to
210 * parse any module arguments.
213 static struct {
214 char *name;
215 int type;
216 } stl_brdstr[] = {
217 { "easyio", BRD_EASYIO },
218 { "eio", BRD_EASYIO },
219 { "20", BRD_EASYIO },
220 { "ec8/32", BRD_ECH },
221 { "ec8/32-at", BRD_ECH },
222 { "ec8/32-isa", BRD_ECH },
223 { "ech", BRD_ECH },
224 { "echat", BRD_ECH },
225 { "21", BRD_ECH },
226 { "ec8/32-mc", BRD_ECHMC },
227 { "ec8/32-mca", BRD_ECHMC },
228 { "echmc", BRD_ECHMC },
229 { "echmca", BRD_ECHMC },
230 { "22", BRD_ECHMC },
231 { "ec8/32-pc", BRD_ECHPCI },
232 { "ec8/32-pci", BRD_ECHPCI },
233 { "26", BRD_ECHPCI },
234 { "ec8/64-pc", BRD_ECH64PCI },
235 { "ec8/64-pci", BRD_ECH64PCI },
236 { "ech-pci", BRD_ECH64PCI },
237 { "echpci", BRD_ECH64PCI },
238 { "echpc", BRD_ECH64PCI },
239 { "27", BRD_ECH64PCI },
240 { "easyio-pc", BRD_EASYIOPCI },
241 { "easyio-pci", BRD_EASYIOPCI },
242 { "eio-pci", BRD_EASYIOPCI },
243 { "eiopci", BRD_EASYIOPCI },
244 { "28", BRD_EASYIOPCI },
248 * Define the module agruments.
251 module_param_array(board0, charp, &stl_nargs, 0);
252 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
253 module_param_array(board1, charp, &stl_nargs, 0);
254 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
255 module_param_array(board2, charp, &stl_nargs, 0);
256 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
257 module_param_array(board3, charp, &stl_nargs, 0);
258 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
260 /*****************************************************************************/
263 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
264 * to the directly accessible io ports of these boards (not the uarts -
265 * they are in cd1400.h and sc26198.h).
267 #define EIO_8PORTRS 0x04
268 #define EIO_4PORTRS 0x05
269 #define EIO_8PORTDI 0x00
270 #define EIO_8PORTM 0x06
271 #define EIO_MK3 0x03
272 #define EIO_IDBITMASK 0x07
274 #define EIO_BRDMASK 0xf0
275 #define ID_BRD4 0x10
276 #define ID_BRD8 0x20
277 #define ID_BRD16 0x30
279 #define EIO_INTRPEND 0x08
280 #define EIO_INTEDGE 0x00
281 #define EIO_INTLEVEL 0x08
282 #define EIO_0WS 0x10
284 #define ECH_ID 0xa0
285 #define ECH_IDBITMASK 0xe0
286 #define ECH_BRDENABLE 0x08
287 #define ECH_BRDDISABLE 0x00
288 #define ECH_INTENABLE 0x01
289 #define ECH_INTDISABLE 0x00
290 #define ECH_INTLEVEL 0x02
291 #define ECH_INTEDGE 0x00
292 #define ECH_INTRPEND 0x01
293 #define ECH_BRDRESET 0x01
295 #define ECHMC_INTENABLE 0x01
296 #define ECHMC_BRDRESET 0x02
298 #define ECH_PNLSTATUS 2
299 #define ECH_PNL16PORT 0x20
300 #define ECH_PNLIDMASK 0x07
301 #define ECH_PNLXPID 0x40
302 #define ECH_PNLINTRPEND 0x80
304 #define ECH_ADDR2MASK 0x1e0
307 * Define the vector mapping bits for the programmable interrupt board
308 * hardware. These bits encode the interrupt for the board to use - it
309 * is software selectable (except the EIO-8M).
311 static unsigned char stl_vecmap[] = {
312 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
313 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
317 * Lock ordering is that you may not take stallion_lock holding
318 * brd_lock.
321 static spinlock_t brd_lock; /* Guard the board mapping */
322 static spinlock_t stallion_lock; /* Guard the tty driver */
325 * Set up enable and disable macros for the ECH boards. They require
326 * the secondary io address space to be activated and deactivated.
327 * This way all ECH boards can share their secondary io region.
328 * If this is an ECH-PCI board then also need to set the page pointer
329 * to point to the correct page.
331 #define BRDENABLE(brdnr,pagenr) \
332 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
333 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
334 stl_brds[(brdnr)]->ioctrl); \
335 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
336 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
338 #define BRDDISABLE(brdnr) \
339 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
340 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
341 stl_brds[(brdnr)]->ioctrl);
343 #define STL_CD1400MAXBAUD 230400
344 #define STL_SC26198MAXBAUD 460800
346 #define STL_BAUDBASE 115200
347 #define STL_CLOSEDELAY (5 * HZ / 10)
349 /*****************************************************************************/
352 * Define the Stallion PCI vendor and device IDs.
354 #ifndef PCI_VENDOR_ID_STALLION
355 #define PCI_VENDOR_ID_STALLION 0x124d
356 #endif
357 #ifndef PCI_DEVICE_ID_ECHPCI832
358 #define PCI_DEVICE_ID_ECHPCI832 0x0000
359 #endif
360 #ifndef PCI_DEVICE_ID_ECHPCI864
361 #define PCI_DEVICE_ID_ECHPCI864 0x0002
362 #endif
363 #ifndef PCI_DEVICE_ID_EIOPCI
364 #define PCI_DEVICE_ID_EIOPCI 0x0003
365 #endif
368 * Define structure to hold all Stallion PCI boards.
371 static struct pci_device_id stl_pcibrds[] = {
372 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864),
373 .driver_data = BRD_ECH64PCI },
374 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI),
375 .driver_data = BRD_EASYIOPCI },
376 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832),
377 .driver_data = BRD_ECHPCI },
378 { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410),
379 .driver_data = BRD_ECHPCI },
382 MODULE_DEVICE_TABLE(pci, stl_pcibrds);
384 /*****************************************************************************/
387 * Define macros to extract a brd/port number from a minor number.
389 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
390 #define MINOR2PORT(min) ((min) & 0x3f)
393 * Define a baud rate table that converts termios baud rate selector
394 * into the actual baud rate value. All baud rate calculations are
395 * based on the actual baud rate required.
397 static unsigned int stl_baudrates[] = {
398 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
399 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
402 /*****************************************************************************/
405 * Declare all those functions in this driver!
408 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
409 static int stl_brdinit(struct stlbrd *brdp);
410 static int stl_getportstats(struct tty_struct *tty, struct stlport *portp, comstats_t __user *cp);
411 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
414 * CD1400 uart specific handling functions.
416 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
417 static int stl_cd1400getreg(struct stlport *portp, int regnr);
418 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
419 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
420 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
421 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
422 static int stl_cd1400getsignals(struct stlport *portp);
423 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
424 static void stl_cd1400ccrwait(struct stlport *portp);
425 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
426 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
427 static void stl_cd1400disableintrs(struct stlport *portp);
428 static void stl_cd1400sendbreak(struct stlport *portp, int len);
429 static void stl_cd1400flowctrl(struct stlport *portp, int state);
430 static void stl_cd1400sendflow(struct stlport *portp, int state);
431 static void stl_cd1400flush(struct stlport *portp);
432 static int stl_cd1400datastate(struct stlport *portp);
433 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
434 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
435 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
436 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
437 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
439 static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
442 * SC26198 uart specific handling functions.
444 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
445 static int stl_sc26198getreg(struct stlport *portp, int regnr);
446 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
447 static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
448 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
449 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
450 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
451 static int stl_sc26198getsignals(struct stlport *portp);
452 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
453 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
454 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
455 static void stl_sc26198disableintrs(struct stlport *portp);
456 static void stl_sc26198sendbreak(struct stlport *portp, int len);
457 static void stl_sc26198flowctrl(struct stlport *portp, int state);
458 static void stl_sc26198sendflow(struct stlport *portp, int state);
459 static void stl_sc26198flush(struct stlport *portp);
460 static int stl_sc26198datastate(struct stlport *portp);
461 static void stl_sc26198wait(struct stlport *portp);
462 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
463 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
464 static void stl_sc26198txisr(struct stlport *port);
465 static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
466 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
467 static void stl_sc26198rxbadchars(struct stlport *portp);
468 static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
470 /*****************************************************************************/
473 * Generic UART support structure.
475 typedef struct uart {
476 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
477 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
478 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
479 int (*getsignals)(struct stlport *portp);
480 void (*setsignals)(struct stlport *portp, int dtr, int rts);
481 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
482 void (*startrxtx)(struct stlport *portp, int rx, int tx);
483 void (*disableintrs)(struct stlport *portp);
484 void (*sendbreak)(struct stlport *portp, int len);
485 void (*flowctrl)(struct stlport *portp, int state);
486 void (*sendflow)(struct stlport *portp, int state);
487 void (*flush)(struct stlport *portp);
488 int (*datastate)(struct stlport *portp);
489 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
490 } uart_t;
493 * Define some macros to make calling these functions nice and clean.
495 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
496 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
497 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
498 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
499 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
500 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
501 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
502 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
503 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
504 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
505 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
506 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
507 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
509 /*****************************************************************************/
512 * CD1400 UART specific data initialization.
514 static uart_t stl_cd1400uart = {
515 stl_cd1400panelinit,
516 stl_cd1400portinit,
517 stl_cd1400setport,
518 stl_cd1400getsignals,
519 stl_cd1400setsignals,
520 stl_cd1400enablerxtx,
521 stl_cd1400startrxtx,
522 stl_cd1400disableintrs,
523 stl_cd1400sendbreak,
524 stl_cd1400flowctrl,
525 stl_cd1400sendflow,
526 stl_cd1400flush,
527 stl_cd1400datastate,
528 stl_cd1400eiointr
532 * Define the offsets within the register bank of a cd1400 based panel.
533 * These io address offsets are common to the EasyIO board as well.
535 #define EREG_ADDR 0
536 #define EREG_DATA 4
537 #define EREG_RXACK 5
538 #define EREG_TXACK 6
539 #define EREG_MDACK 7
541 #define EREG_BANKSIZE 8
543 #define CD1400_CLK 25000000
544 #define CD1400_CLK8M 20000000
547 * Define the cd1400 baud rate clocks. These are used when calculating
548 * what clock and divisor to use for the required baud rate. Also
549 * define the maximum baud rate allowed, and the default base baud.
551 static int stl_cd1400clkdivs[] = {
552 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
555 /*****************************************************************************/
558 * SC26198 UART specific data initization.
560 static uart_t stl_sc26198uart = {
561 stl_sc26198panelinit,
562 stl_sc26198portinit,
563 stl_sc26198setport,
564 stl_sc26198getsignals,
565 stl_sc26198setsignals,
566 stl_sc26198enablerxtx,
567 stl_sc26198startrxtx,
568 stl_sc26198disableintrs,
569 stl_sc26198sendbreak,
570 stl_sc26198flowctrl,
571 stl_sc26198sendflow,
572 stl_sc26198flush,
573 stl_sc26198datastate,
574 stl_sc26198intr
578 * Define the offsets within the register bank of a sc26198 based panel.
580 #define XP_DATA 0
581 #define XP_ADDR 1
582 #define XP_MODID 2
583 #define XP_STATUS 2
584 #define XP_IACK 3
586 #define XP_BANKSIZE 4
589 * Define the sc26198 baud rate table. Offsets within the table
590 * represent the actual baud rate selector of sc26198 registers.
592 static unsigned int sc26198_baudtable[] = {
593 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
594 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
595 230400, 460800, 921600
598 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
600 /*****************************************************************************/
603 * Define the driver info for a user level control device. Used mainly
604 * to get at port stats - only not using the port device itself.
606 static const struct file_operations stl_fsiomem = {
607 .owner = THIS_MODULE,
608 .ioctl = stl_memioctl,
611 static struct class *stallion_class;
613 static void stl_cd_change(struct stlport *portp)
615 unsigned int oldsigs = portp->sigs;
616 struct tty_struct *tty = tty_port_tty_get(&portp->port);
618 if (!tty)
619 return;
621 portp->sigs = stl_getsignals(portp);
623 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
624 wake_up_interruptible(&portp->port.open_wait);
626 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0))
627 if (portp->port.flags & ASYNC_CHECK_CD)
628 tty_hangup(tty);
629 tty_kref_put(tty);
633 * Check for any arguments passed in on the module load command line.
636 /*****************************************************************************/
639 * Parse the supplied argument string, into the board conf struct.
642 static int __init stl_parsebrd(struct stlconf *confp, char **argp)
644 char *sp;
645 unsigned int i;
647 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
649 if ((argp[0] == NULL) || (*argp[0] == 0))
650 return 0;
652 for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++)
653 *sp = tolower(*sp);
655 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++)
656 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
657 break;
659 if (i == ARRAY_SIZE(stl_brdstr)) {
660 printk("STALLION: unknown board name, %s?\n", argp[0]);
661 return 0;
664 confp->brdtype = stl_brdstr[i].type;
666 i = 1;
667 if ((argp[i] != NULL) && (*argp[i] != 0))
668 confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0);
669 i++;
670 if (confp->brdtype == BRD_ECH) {
671 if ((argp[i] != NULL) && (*argp[i] != 0))
672 confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0);
673 i++;
675 if ((argp[i] != NULL) && (*argp[i] != 0))
676 confp->irq = simple_strtoul(argp[i], NULL, 0);
677 return 1;
680 /*****************************************************************************/
683 * Allocate a new board structure. Fill out the basic info in it.
686 static struct stlbrd *stl_allocbrd(void)
688 struct stlbrd *brdp;
690 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
691 if (!brdp) {
692 printk("STALLION: failed to allocate memory (size=%Zd)\n",
693 sizeof(struct stlbrd));
694 return NULL;
697 brdp->magic = STL_BOARDMAGIC;
698 return brdp;
701 /*****************************************************************************/
703 static int stl_open(struct tty_struct *tty, struct file *filp)
705 struct stlport *portp;
706 struct stlbrd *brdp;
707 struct tty_port *port;
708 unsigned int minordev, brdnr, panelnr;
709 int portnr;
711 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
713 minordev = tty->index;
714 brdnr = MINOR2BRD(minordev);
715 if (brdnr >= stl_nrbrds)
716 return -ENODEV;
717 brdp = stl_brds[brdnr];
718 if (brdp == NULL)
719 return -ENODEV;
721 minordev = MINOR2PORT(minordev);
722 for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) {
723 if (brdp->panels[panelnr] == NULL)
724 break;
725 if (minordev < brdp->panels[panelnr]->nrports) {
726 portnr = minordev;
727 break;
729 minordev -= brdp->panels[panelnr]->nrports;
731 if (portnr < 0)
732 return -ENODEV;
734 portp = brdp->panels[panelnr]->ports[portnr];
735 if (portp == NULL)
736 return -ENODEV;
737 port = &portp->port;
740 * On the first open of the device setup the port hardware, and
741 * initialize the per port data structure.
743 tty_port_tty_set(port, tty);
744 tty->driver_data = portp;
745 port->count++;
747 if ((port->flags & ASYNC_INITIALIZED) == 0) {
748 if (!portp->tx.buf) {
749 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
750 if (!portp->tx.buf)
751 return -ENOMEM;
752 portp->tx.head = portp->tx.buf;
753 portp->tx.tail = portp->tx.buf;
755 stl_setport(portp, tty->termios);
756 portp->sigs = stl_getsignals(portp);
757 stl_setsignals(portp, 1, 1);
758 stl_enablerxtx(portp, 1, 1);
759 stl_startrxtx(portp, 1, 0);
760 clear_bit(TTY_IO_ERROR, &tty->flags);
761 port->flags |= ASYNC_INITIALIZED;
763 return tty_port_block_til_ready(port, tty, filp);
766 /*****************************************************************************/
768 static int stl_carrier_raised(struct tty_port *port)
770 struct stlport *portp = container_of(port, struct stlport, port);
771 return (portp->sigs & TIOCM_CD) ? 1 : 0;
774 static void stl_raise_dtr_rts(struct tty_port *port)
776 struct stlport *portp = container_of(port, struct stlport, port);
777 /* Takes brd_lock internally */
778 stl_setsignals(portp, 1, 1);
781 /*****************************************************************************/
783 static void stl_flushbuffer(struct tty_struct *tty)
785 struct stlport *portp;
787 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
789 portp = tty->driver_data;
790 if (portp == NULL)
791 return;
793 stl_flush(portp);
794 tty_wakeup(tty);
797 /*****************************************************************************/
799 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
801 struct stlport *portp;
802 unsigned long tend;
804 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
806 portp = tty->driver_data;
807 if (portp == NULL)
808 return;
810 if (timeout == 0)
811 timeout = HZ;
812 tend = jiffies + timeout;
814 lock_kernel();
815 while (stl_datastate(portp)) {
816 if (signal_pending(current))
817 break;
818 msleep_interruptible(20);
819 if (time_after_eq(jiffies, tend))
820 break;
822 unlock_kernel();
825 /*****************************************************************************/
827 static void stl_close(struct tty_struct *tty, struct file *filp)
829 struct stlport *portp;
830 struct tty_port *port;
831 unsigned long flags;
833 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
835 portp = tty->driver_data;
836 BUG_ON(portp == NULL);
838 port = &portp->port;
840 if (tty_port_close_start(port, tty, filp) == 0)
841 return;
843 * May want to wait for any data to drain before closing. The BUSY
844 * flag keeps track of whether we are still sending or not - it is
845 * very accurate for the cd1400, not quite so for the sc26198.
846 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
848 stl_waituntilsent(tty, (HZ / 2));
850 spin_lock_irqsave(&port->lock, flags);
851 portp->port.flags &= ~ASYNC_INITIALIZED;
852 spin_unlock_irqrestore(&port->lock, flags);
854 stl_disableintrs(portp);
855 if (tty->termios->c_cflag & HUPCL)
856 stl_setsignals(portp, 0, 0);
857 stl_enablerxtx(portp, 0, 0);
858 stl_flushbuffer(tty);
859 portp->istate = 0;
860 if (portp->tx.buf != NULL) {
861 kfree(portp->tx.buf);
862 portp->tx.buf = NULL;
863 portp->tx.head = NULL;
864 portp->tx.tail = NULL;
867 tty_port_close_end(port, tty);
868 tty_port_tty_set(port, NULL);
871 /*****************************************************************************/
874 * Write routine. Take data and stuff it in to the TX ring queue.
875 * If transmit interrupts are not running then start them.
878 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
880 struct stlport *portp;
881 unsigned int len, stlen;
882 unsigned char *chbuf;
883 char *head, *tail;
885 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
887 portp = tty->driver_data;
888 if (portp == NULL)
889 return 0;
890 if (portp->tx.buf == NULL)
891 return 0;
894 * If copying direct from user space we must cater for page faults,
895 * causing us to "sleep" here for a while. To handle this copy in all
896 * the data we need now, into a local buffer. Then when we got it all
897 * copy it into the TX buffer.
899 chbuf = (unsigned char *) buf;
901 head = portp->tx.head;
902 tail = portp->tx.tail;
903 if (head >= tail) {
904 len = STL_TXBUFSIZE - (head - tail) - 1;
905 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
906 } else {
907 len = tail - head - 1;
908 stlen = len;
911 len = min(len, (unsigned int)count);
912 count = 0;
913 while (len > 0) {
914 stlen = min(len, stlen);
915 memcpy(head, chbuf, stlen);
916 len -= stlen;
917 chbuf += stlen;
918 count += stlen;
919 head += stlen;
920 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
921 head = portp->tx.buf;
922 stlen = tail - head;
925 portp->tx.head = head;
927 clear_bit(ASYI_TXLOW, &portp->istate);
928 stl_startrxtx(portp, -1, 1);
930 return count;
933 /*****************************************************************************/
935 static int stl_putchar(struct tty_struct *tty, unsigned char ch)
937 struct stlport *portp;
938 unsigned int len;
939 char *head, *tail;
941 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
943 portp = tty->driver_data;
944 if (portp == NULL)
945 return -EINVAL;
946 if (portp->tx.buf == NULL)
947 return -EINVAL;
949 head = portp->tx.head;
950 tail = portp->tx.tail;
952 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
953 len--;
955 if (len > 0) {
956 *head++ = ch;
957 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
958 head = portp->tx.buf;
960 portp->tx.head = head;
961 return 0;
964 /*****************************************************************************/
967 * If there are any characters in the buffer then make sure that TX
968 * interrupts are on and get'em out. Normally used after the putchar
969 * routine has been called.
972 static void stl_flushchars(struct tty_struct *tty)
974 struct stlport *portp;
976 pr_debug("stl_flushchars(tty=%p)\n", tty);
978 portp = tty->driver_data;
979 if (portp == NULL)
980 return;
981 if (portp->tx.buf == NULL)
982 return;
984 stl_startrxtx(portp, -1, 1);
987 /*****************************************************************************/
989 static int stl_writeroom(struct tty_struct *tty)
991 struct stlport *portp;
992 char *head, *tail;
994 pr_debug("stl_writeroom(tty=%p)\n", tty);
996 portp = tty->driver_data;
997 if (portp == NULL)
998 return 0;
999 if (portp->tx.buf == NULL)
1000 return 0;
1002 head = portp->tx.head;
1003 tail = portp->tx.tail;
1004 return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1);
1007 /*****************************************************************************/
1010 * Return number of chars in the TX buffer. Normally we would just
1011 * calculate the number of chars in the buffer and return that, but if
1012 * the buffer is empty and TX interrupts are still on then we return
1013 * that the buffer still has 1 char in it. This way whoever called us
1014 * will not think that ALL chars have drained - since the UART still
1015 * must have some chars in it (we are busy after all).
1018 static int stl_charsinbuffer(struct tty_struct *tty)
1020 struct stlport *portp;
1021 unsigned int size;
1022 char *head, *tail;
1024 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1026 portp = tty->driver_data;
1027 if (portp == NULL)
1028 return 0;
1029 if (portp->tx.buf == NULL)
1030 return 0;
1032 head = portp->tx.head;
1033 tail = portp->tx.tail;
1034 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1035 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1036 size = 1;
1037 return size;
1040 /*****************************************************************************/
1043 * Generate the serial struct info.
1046 static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1048 struct serial_struct sio;
1049 struct stlbrd *brdp;
1051 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1053 memset(&sio, 0, sizeof(struct serial_struct));
1054 sio.line = portp->portnr;
1055 sio.port = portp->ioaddr;
1056 sio.flags = portp->port.flags;
1057 sio.baud_base = portp->baud_base;
1058 sio.close_delay = portp->close_delay;
1059 sio.closing_wait = portp->closing_wait;
1060 sio.custom_divisor = portp->custom_divisor;
1061 sio.hub6 = 0;
1062 if (portp->uartp == &stl_cd1400uart) {
1063 sio.type = PORT_CIRRUS;
1064 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1065 } else {
1066 sio.type = PORT_UNKNOWN;
1067 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1070 brdp = stl_brds[portp->brdnr];
1071 if (brdp != NULL)
1072 sio.irq = brdp->irq;
1074 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1077 /*****************************************************************************/
1080 * Set port according to the serial struct info.
1081 * At this point we do not do any auto-configure stuff, so we will
1082 * just quietly ignore any requests to change irq, etc.
1085 static int stl_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1087 struct stlport * portp = tty->driver_data;
1088 struct serial_struct sio;
1090 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1092 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1093 return -EFAULT;
1094 if (!capable(CAP_SYS_ADMIN)) {
1095 if ((sio.baud_base != portp->baud_base) ||
1096 (sio.close_delay != portp->close_delay) ||
1097 ((sio.flags & ~ASYNC_USR_MASK) !=
1098 (portp->port.flags & ~ASYNC_USR_MASK)))
1099 return -EPERM;
1102 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1103 (sio.flags & ASYNC_USR_MASK);
1104 portp->baud_base = sio.baud_base;
1105 portp->close_delay = sio.close_delay;
1106 portp->closing_wait = sio.closing_wait;
1107 portp->custom_divisor = sio.custom_divisor;
1108 stl_setport(portp, tty->termios);
1109 return 0;
1112 /*****************************************************************************/
1114 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1116 struct stlport *portp;
1118 portp = tty->driver_data;
1119 if (portp == NULL)
1120 return -ENODEV;
1121 if (tty->flags & (1 << TTY_IO_ERROR))
1122 return -EIO;
1124 return stl_getsignals(portp);
1127 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1128 unsigned int set, unsigned int clear)
1130 struct stlport *portp;
1131 int rts = -1, dtr = -1;
1133 portp = tty->driver_data;
1134 if (portp == NULL)
1135 return -ENODEV;
1136 if (tty->flags & (1 << TTY_IO_ERROR))
1137 return -EIO;
1139 if (set & TIOCM_RTS)
1140 rts = 1;
1141 if (set & TIOCM_DTR)
1142 dtr = 1;
1143 if (clear & TIOCM_RTS)
1144 rts = 0;
1145 if (clear & TIOCM_DTR)
1146 dtr = 0;
1148 stl_setsignals(portp, dtr, rts);
1149 return 0;
1152 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1154 struct stlport *portp;
1155 int rc;
1156 void __user *argp = (void __user *)arg;
1158 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd,
1159 arg);
1161 portp = tty->driver_data;
1162 if (portp == NULL)
1163 return -ENODEV;
1165 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1166 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS))
1167 if (tty->flags & (1 << TTY_IO_ERROR))
1168 return -EIO;
1170 rc = 0;
1172 lock_kernel();
1174 switch (cmd) {
1175 case TIOCGSERIAL:
1176 rc = stl_getserial(portp, argp);
1177 break;
1178 case TIOCSSERIAL:
1179 rc = stl_setserial(tty, argp);
1180 break;
1181 case COM_GETPORTSTATS:
1182 rc = stl_getportstats(tty, portp, argp);
1183 break;
1184 case COM_CLRPORTSTATS:
1185 rc = stl_clrportstats(portp, argp);
1186 break;
1187 case TIOCSERCONFIG:
1188 case TIOCSERGWILD:
1189 case TIOCSERSWILD:
1190 case TIOCSERGETLSR:
1191 case TIOCSERGSTRUCT:
1192 case TIOCSERGETMULTI:
1193 case TIOCSERSETMULTI:
1194 default:
1195 rc = -ENOIOCTLCMD;
1196 break;
1198 unlock_kernel();
1199 return rc;
1202 /*****************************************************************************/
1205 * Start the transmitter again. Just turn TX interrupts back on.
1208 static void stl_start(struct tty_struct *tty)
1210 struct stlport *portp;
1212 pr_debug("stl_start(tty=%p)\n", tty);
1214 portp = tty->driver_data;
1215 if (portp == NULL)
1216 return;
1217 stl_startrxtx(portp, -1, 1);
1220 /*****************************************************************************/
1222 static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1224 struct stlport *portp;
1225 struct ktermios *tiosp;
1227 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1229 portp = tty->driver_data;
1230 if (portp == NULL)
1231 return;
1233 tiosp = tty->termios;
1234 if ((tiosp->c_cflag == old->c_cflag) &&
1235 (tiosp->c_iflag == old->c_iflag))
1236 return;
1238 stl_setport(portp, tiosp);
1239 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1240 -1);
1241 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1242 tty->hw_stopped = 0;
1243 stl_start(tty);
1245 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1246 wake_up_interruptible(&portp->port.open_wait);
1249 /*****************************************************************************/
1252 * Attempt to flow control who ever is sending us data. Based on termios
1253 * settings use software or/and hardware flow control.
1256 static void stl_throttle(struct tty_struct *tty)
1258 struct stlport *portp;
1260 pr_debug("stl_throttle(tty=%p)\n", tty);
1262 portp = tty->driver_data;
1263 if (portp == NULL)
1264 return;
1265 stl_flowctrl(portp, 0);
1268 /*****************************************************************************/
1271 * Unflow control the device sending us data...
1274 static void stl_unthrottle(struct tty_struct *tty)
1276 struct stlport *portp;
1278 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1280 portp = tty->driver_data;
1281 if (portp == NULL)
1282 return;
1283 stl_flowctrl(portp, 1);
1286 /*****************************************************************************/
1289 * Stop the transmitter. Basically to do this we will just turn TX
1290 * interrupts off.
1293 static void stl_stop(struct tty_struct *tty)
1295 struct stlport *portp;
1297 pr_debug("stl_stop(tty=%p)\n", tty);
1299 portp = tty->driver_data;
1300 if (portp == NULL)
1301 return;
1302 stl_startrxtx(portp, -1, 0);
1305 /*****************************************************************************/
1308 * Hangup this port. This is pretty much like closing the port, only
1309 * a little more brutal. No waiting for data to drain. Shutdown the
1310 * port and maybe drop signals.
1313 static void stl_hangup(struct tty_struct *tty)
1315 struct stlport *portp;
1316 struct tty_port *port;
1317 unsigned long flags;
1319 pr_debug("stl_hangup(tty=%p)\n", tty);
1321 portp = tty->driver_data;
1322 if (portp == NULL)
1323 return;
1324 port = &portp->port;
1326 spin_lock_irqsave(&port->lock, flags);
1327 port->flags &= ~ASYNC_INITIALIZED;
1328 spin_unlock_irqrestore(&port->lock, flags);
1330 stl_disableintrs(portp);
1331 if (tty->termios->c_cflag & HUPCL)
1332 stl_setsignals(portp, 0, 0);
1333 stl_enablerxtx(portp, 0, 0);
1334 stl_flushbuffer(tty);
1335 portp->istate = 0;
1336 set_bit(TTY_IO_ERROR, &tty->flags);
1337 if (portp->tx.buf != NULL) {
1338 kfree(portp->tx.buf);
1339 portp->tx.buf = NULL;
1340 portp->tx.head = NULL;
1341 portp->tx.tail = NULL;
1343 tty_port_hangup(port);
1346 /*****************************************************************************/
1348 static int stl_breakctl(struct tty_struct *tty, int state)
1350 struct stlport *portp;
1352 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1354 portp = tty->driver_data;
1355 if (portp == NULL)
1356 return -EINVAL;
1358 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1359 return 0;
1362 /*****************************************************************************/
1364 static void stl_sendxchar(struct tty_struct *tty, char ch)
1366 struct stlport *portp;
1368 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1370 portp = tty->driver_data;
1371 if (portp == NULL)
1372 return;
1374 if (ch == STOP_CHAR(tty))
1375 stl_sendflow(portp, 0);
1376 else if (ch == START_CHAR(tty))
1377 stl_sendflow(portp, 1);
1378 else
1379 stl_putchar(tty, ch);
1382 /*****************************************************************************/
1384 #define MAXLINE 80
1387 * Format info for a specified port. The line is deliberately limited
1388 * to 80 characters. (If it is too long it will be truncated, if too
1389 * short then padded with spaces).
1392 static int stl_portinfo(struct stlport *portp, int portnr, char *pos)
1394 char *sp;
1395 int sigs, cnt;
1397 sp = pos;
1398 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1399 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1400 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1402 if (portp->stats.rxframing)
1403 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1404 if (portp->stats.rxparity)
1405 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1406 if (portp->stats.rxbreaks)
1407 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1408 if (portp->stats.rxoverrun)
1409 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1411 sigs = stl_getsignals(portp);
1412 cnt = sprintf(sp, "%s%s%s%s%s ",
1413 (sigs & TIOCM_RTS) ? "|RTS" : "",
1414 (sigs & TIOCM_CTS) ? "|CTS" : "",
1415 (sigs & TIOCM_DTR) ? "|DTR" : "",
1416 (sigs & TIOCM_CD) ? "|DCD" : "",
1417 (sigs & TIOCM_DSR) ? "|DSR" : "");
1418 *sp = ' ';
1419 sp += cnt;
1421 for (cnt = sp - pos; cnt < (MAXLINE - 1); cnt++)
1422 *sp++ = ' ';
1423 if (cnt >= MAXLINE)
1424 pos[(MAXLINE - 2)] = '+';
1425 pos[(MAXLINE - 1)] = '\n';
1427 return MAXLINE;
1430 /*****************************************************************************/
1433 * Port info, read from the /proc file system.
1436 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1438 struct stlbrd *brdp;
1439 struct stlpanel *panelp;
1440 struct stlport *portp;
1441 unsigned int brdnr, panelnr, portnr;
1442 int totalport, curoff, maxoff;
1443 char *pos;
1445 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1446 "data=%p\n", page, start, off, count, eof, data);
1448 pos = page;
1449 totalport = 0;
1450 curoff = 0;
1452 if (off == 0) {
1453 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1454 stl_drvversion);
1455 while (pos < (page + MAXLINE - 1))
1456 *pos++ = ' ';
1457 *pos++ = '\n';
1459 curoff = MAXLINE;
1462 * We scan through for each board, panel and port. The offset is
1463 * calculated on the fly, and irrelevant ports are skipped.
1465 for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) {
1466 brdp = stl_brds[brdnr];
1467 if (brdp == NULL)
1468 continue;
1469 if (brdp->state == 0)
1470 continue;
1472 maxoff = curoff + (brdp->nrports * MAXLINE);
1473 if (off >= maxoff) {
1474 curoff = maxoff;
1475 continue;
1478 totalport = brdnr * STL_MAXPORTS;
1479 for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) {
1480 panelp = brdp->panels[panelnr];
1481 if (panelp == NULL)
1482 continue;
1484 maxoff = curoff + (panelp->nrports * MAXLINE);
1485 if (off >= maxoff) {
1486 curoff = maxoff;
1487 totalport += panelp->nrports;
1488 continue;
1491 for (portnr = 0; portnr < panelp->nrports; portnr++,
1492 totalport++) {
1493 portp = panelp->ports[portnr];
1494 if (portp == NULL)
1495 continue;
1496 if (off >= (curoff += MAXLINE))
1497 continue;
1498 if ((pos - page + MAXLINE) > count)
1499 goto stl_readdone;
1500 pos += stl_portinfo(portp, totalport, pos);
1505 *eof = 1;
1507 stl_readdone:
1508 *start = page;
1509 return pos - page;
1512 /*****************************************************************************/
1515 * All board interrupts are vectored through here first. This code then
1516 * calls off to the approrpriate board interrupt handlers.
1519 static irqreturn_t stl_intr(int irq, void *dev_id)
1521 struct stlbrd *brdp = dev_id;
1523 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, brdp->irq);
1525 return IRQ_RETVAL((* brdp->isr)(brdp));
1528 /*****************************************************************************/
1531 * Interrupt service routine for EasyIO board types.
1534 static int stl_eiointr(struct stlbrd *brdp)
1536 struct stlpanel *panelp;
1537 unsigned int iobase;
1538 int handled = 0;
1540 spin_lock(&brd_lock);
1541 panelp = brdp->panels[0];
1542 iobase = panelp->iobase;
1543 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1544 handled = 1;
1545 (* panelp->isr)(panelp, iobase);
1547 spin_unlock(&brd_lock);
1548 return handled;
1551 /*****************************************************************************/
1554 * Interrupt service routine for ECH-AT board types.
1557 static int stl_echatintr(struct stlbrd *brdp)
1559 struct stlpanel *panelp;
1560 unsigned int ioaddr, bnknr;
1561 int handled = 0;
1563 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1565 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1566 handled = 1;
1567 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1568 ioaddr = brdp->bnkstataddr[bnknr];
1569 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1570 panelp = brdp->bnk2panel[bnknr];
1571 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1576 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1578 return handled;
1581 /*****************************************************************************/
1584 * Interrupt service routine for ECH-MCA board types.
1587 static int stl_echmcaintr(struct stlbrd *brdp)
1589 struct stlpanel *panelp;
1590 unsigned int ioaddr, bnknr;
1591 int handled = 0;
1593 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1594 handled = 1;
1595 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1596 ioaddr = brdp->bnkstataddr[bnknr];
1597 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1598 panelp = brdp->bnk2panel[bnknr];
1599 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1603 return handled;
1606 /*****************************************************************************/
1609 * Interrupt service routine for ECH-PCI board types.
1612 static int stl_echpciintr(struct stlbrd *brdp)
1614 struct stlpanel *panelp;
1615 unsigned int ioaddr, bnknr, recheck;
1616 int handled = 0;
1618 while (1) {
1619 recheck = 0;
1620 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1621 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1622 ioaddr = brdp->bnkstataddr[bnknr];
1623 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1624 panelp = brdp->bnk2panel[bnknr];
1625 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1626 recheck++;
1627 handled = 1;
1630 if (! recheck)
1631 break;
1633 return handled;
1636 /*****************************************************************************/
1639 * Interrupt service routine for ECH-8/64-PCI board types.
1642 static int stl_echpci64intr(struct stlbrd *brdp)
1644 struct stlpanel *panelp;
1645 unsigned int ioaddr, bnknr;
1646 int handled = 0;
1648 while (inb(brdp->ioctrl) & 0x1) {
1649 handled = 1;
1650 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1651 ioaddr = brdp->bnkstataddr[bnknr];
1652 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1653 panelp = brdp->bnk2panel[bnknr];
1654 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1659 return handled;
1662 /*****************************************************************************/
1665 * Initialize all the ports on a panel.
1668 static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1670 struct stlport *portp;
1671 unsigned int i;
1672 int chipmask;
1674 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1676 chipmask = stl_panelinit(brdp, panelp);
1679 * All UART's are initialized (if found!). Now go through and setup
1680 * each ports data structures.
1682 for (i = 0; i < panelp->nrports; i++) {
1683 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1684 if (!portp) {
1685 printk("STALLION: failed to allocate memory "
1686 "(size=%Zd)\n", sizeof(struct stlport));
1687 break;
1689 tty_port_init(&portp->port);
1690 portp->port.ops = &stl_port_ops;
1691 portp->magic = STL_PORTMAGIC;
1692 portp->portnr = i;
1693 portp->brdnr = panelp->brdnr;
1694 portp->panelnr = panelp->panelnr;
1695 portp->uartp = panelp->uartp;
1696 portp->clk = brdp->clk;
1697 portp->baud_base = STL_BAUDBASE;
1698 portp->close_delay = STL_CLOSEDELAY;
1699 portp->closing_wait = 30 * HZ;
1700 init_waitqueue_head(&portp->port.open_wait);
1701 init_waitqueue_head(&portp->port.close_wait);
1702 portp->stats.brd = portp->brdnr;
1703 portp->stats.panel = portp->panelnr;
1704 portp->stats.port = portp->portnr;
1705 panelp->ports[i] = portp;
1706 stl_portinit(brdp, panelp, portp);
1709 return 0;
1712 static void stl_cleanup_panels(struct stlbrd *brdp)
1714 struct stlpanel *panelp;
1715 struct stlport *portp;
1716 unsigned int j, k;
1717 struct tty_struct *tty;
1719 for (j = 0; j < STL_MAXPANELS; j++) {
1720 panelp = brdp->panels[j];
1721 if (panelp == NULL)
1722 continue;
1723 for (k = 0; k < STL_PORTSPERPANEL; k++) {
1724 portp = panelp->ports[k];
1725 if (portp == NULL)
1726 continue;
1727 tty = tty_port_tty_get(&portp->port);
1728 if (tty != NULL) {
1729 stl_hangup(tty);
1730 tty_kref_put(tty);
1732 kfree(portp->tx.buf);
1733 kfree(portp);
1735 kfree(panelp);
1739 /*****************************************************************************/
1742 * Try to find and initialize an EasyIO board.
1745 static int __devinit stl_initeio(struct stlbrd *brdp)
1747 struct stlpanel *panelp;
1748 unsigned int status;
1749 char *name;
1750 int retval;
1752 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1754 brdp->ioctrl = brdp->ioaddr1 + 1;
1755 brdp->iostatus = brdp->ioaddr1 + 2;
1757 status = inb(brdp->iostatus);
1758 if ((status & EIO_IDBITMASK) == EIO_MK3)
1759 brdp->ioctrl++;
1762 * Handle board specific stuff now. The real difference is PCI
1763 * or not PCI.
1765 if (brdp->brdtype == BRD_EASYIOPCI) {
1766 brdp->iosize1 = 0x80;
1767 brdp->iosize2 = 0x80;
1768 name = "serial(EIO-PCI)";
1769 outb(0x41, (brdp->ioaddr2 + 0x4c));
1770 } else {
1771 brdp->iosize1 = 8;
1772 name = "serial(EIO)";
1773 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1774 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1775 printk("STALLION: invalid irq=%d for brd=%d\n",
1776 brdp->irq, brdp->brdnr);
1777 retval = -EINVAL;
1778 goto err;
1780 outb((stl_vecmap[brdp->irq] | EIO_0WS |
1781 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
1782 brdp->ioctrl);
1785 retval = -EBUSY;
1786 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1787 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1788 "%x conflicts with another device\n", brdp->brdnr,
1789 brdp->ioaddr1);
1790 goto err;
1793 if (brdp->iosize2 > 0)
1794 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1795 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1796 "address %x conflicts with another device\n",
1797 brdp->brdnr, brdp->ioaddr2);
1798 printk(KERN_WARNING "STALLION: Warning, also "
1799 "releasing board %d I/O address %x \n",
1800 brdp->brdnr, brdp->ioaddr1);
1801 goto err_rel1;
1805 * Everything looks OK, so let's go ahead and probe for the hardware.
1807 brdp->clk = CD1400_CLK;
1808 brdp->isr = stl_eiointr;
1810 retval = -ENODEV;
1811 switch (status & EIO_IDBITMASK) {
1812 case EIO_8PORTM:
1813 brdp->clk = CD1400_CLK8M;
1814 /* fall thru */
1815 case EIO_8PORTRS:
1816 case EIO_8PORTDI:
1817 brdp->nrports = 8;
1818 break;
1819 case EIO_4PORTRS:
1820 brdp->nrports = 4;
1821 break;
1822 case EIO_MK3:
1823 switch (status & EIO_BRDMASK) {
1824 case ID_BRD4:
1825 brdp->nrports = 4;
1826 break;
1827 case ID_BRD8:
1828 brdp->nrports = 8;
1829 break;
1830 case ID_BRD16:
1831 brdp->nrports = 16;
1832 break;
1833 default:
1834 goto err_rel2;
1836 break;
1837 default:
1838 goto err_rel2;
1842 * We have verified that the board is actually present, so now we
1843 * can complete the setup.
1846 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1847 if (!panelp) {
1848 printk(KERN_WARNING "STALLION: failed to allocate memory "
1849 "(size=%Zd)\n", sizeof(struct stlpanel));
1850 retval = -ENOMEM;
1851 goto err_rel2;
1854 panelp->magic = STL_PANELMAGIC;
1855 panelp->brdnr = brdp->brdnr;
1856 panelp->panelnr = 0;
1857 panelp->nrports = brdp->nrports;
1858 panelp->iobase = brdp->ioaddr1;
1859 panelp->hwid = status;
1860 if ((status & EIO_IDBITMASK) == EIO_MK3) {
1861 panelp->uartp = &stl_sc26198uart;
1862 panelp->isr = stl_sc26198intr;
1863 } else {
1864 panelp->uartp = &stl_cd1400uart;
1865 panelp->isr = stl_cd1400eiointr;
1868 brdp->panels[0] = panelp;
1869 brdp->nrpanels = 1;
1870 brdp->state |= BRD_FOUND;
1871 brdp->hwid = status;
1872 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
1873 printk("STALLION: failed to register interrupt "
1874 "routine for %s irq=%d\n", name, brdp->irq);
1875 retval = -ENODEV;
1876 goto err_fr;
1879 return 0;
1880 err_fr:
1881 stl_cleanup_panels(brdp);
1882 err_rel2:
1883 if (brdp->iosize2 > 0)
1884 release_region(brdp->ioaddr2, brdp->iosize2);
1885 err_rel1:
1886 release_region(brdp->ioaddr1, brdp->iosize1);
1887 err:
1888 return retval;
1891 /*****************************************************************************/
1894 * Try to find an ECH board and initialize it. This code is capable of
1895 * dealing with all types of ECH board.
1898 static int __devinit stl_initech(struct stlbrd *brdp)
1900 struct stlpanel *panelp;
1901 unsigned int status, nxtid, ioaddr, conflict, panelnr, banknr, i;
1902 int retval;
1903 char *name;
1905 pr_debug("stl_initech(brdp=%p)\n", brdp);
1907 status = 0;
1908 conflict = 0;
1911 * Set up the initial board register contents for boards. This varies a
1912 * bit between the different board types. So we need to handle each
1913 * separately. Also do a check that the supplied IRQ is good.
1915 switch (brdp->brdtype) {
1917 case BRD_ECH:
1918 brdp->isr = stl_echatintr;
1919 brdp->ioctrl = brdp->ioaddr1 + 1;
1920 brdp->iostatus = brdp->ioaddr1 + 1;
1921 status = inb(brdp->iostatus);
1922 if ((status & ECH_IDBITMASK) != ECH_ID) {
1923 retval = -ENODEV;
1924 goto err;
1926 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1927 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1928 printk("STALLION: invalid irq=%d for brd=%d\n",
1929 brdp->irq, brdp->brdnr);
1930 retval = -EINVAL;
1931 goto err;
1933 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
1934 status |= (stl_vecmap[brdp->irq] << 1);
1935 outb((status | ECH_BRDRESET), brdp->ioaddr1);
1936 brdp->ioctrlval = ECH_INTENABLE |
1937 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
1938 for (i = 0; i < 10; i++)
1939 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1940 brdp->iosize1 = 2;
1941 brdp->iosize2 = 32;
1942 name = "serial(EC8/32)";
1943 outb(status, brdp->ioaddr1);
1944 break;
1946 case BRD_ECHMC:
1947 brdp->isr = stl_echmcaintr;
1948 brdp->ioctrl = brdp->ioaddr1 + 0x20;
1949 brdp->iostatus = brdp->ioctrl;
1950 status = inb(brdp->iostatus);
1951 if ((status & ECH_IDBITMASK) != ECH_ID) {
1952 retval = -ENODEV;
1953 goto err;
1955 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1956 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1957 printk("STALLION: invalid irq=%d for brd=%d\n",
1958 brdp->irq, brdp->brdnr);
1959 retval = -EINVAL;
1960 goto err;
1962 outb(ECHMC_BRDRESET, brdp->ioctrl);
1963 outb(ECHMC_INTENABLE, brdp->ioctrl);
1964 brdp->iosize1 = 64;
1965 name = "serial(EC8/32-MC)";
1966 break;
1968 case BRD_ECHPCI:
1969 brdp->isr = stl_echpciintr;
1970 brdp->ioctrl = brdp->ioaddr1 + 2;
1971 brdp->iosize1 = 4;
1972 brdp->iosize2 = 8;
1973 name = "serial(EC8/32-PCI)";
1974 break;
1976 case BRD_ECH64PCI:
1977 brdp->isr = stl_echpci64intr;
1978 brdp->ioctrl = brdp->ioaddr2 + 0x40;
1979 outb(0x43, (brdp->ioaddr1 + 0x4c));
1980 brdp->iosize1 = 0x80;
1981 brdp->iosize2 = 0x80;
1982 name = "serial(EC8/64-PCI)";
1983 break;
1985 default:
1986 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
1987 retval = -EINVAL;
1988 goto err;
1992 * Check boards for possible IO address conflicts and return fail status
1993 * if an IO conflict found.
1995 retval = -EBUSY;
1996 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1997 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1998 "%x conflicts with another device\n", brdp->brdnr,
1999 brdp->ioaddr1);
2000 goto err;
2003 if (brdp->iosize2 > 0)
2004 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2005 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2006 "address %x conflicts with another device\n",
2007 brdp->brdnr, brdp->ioaddr2);
2008 printk(KERN_WARNING "STALLION: Warning, also "
2009 "releasing board %d I/O address %x \n",
2010 brdp->brdnr, brdp->ioaddr1);
2011 goto err_rel1;
2015 * Scan through the secondary io address space looking for panels.
2016 * As we find'em allocate and initialize panel structures for each.
2018 brdp->clk = CD1400_CLK;
2019 brdp->hwid = status;
2021 ioaddr = brdp->ioaddr2;
2022 banknr = 0;
2023 panelnr = 0;
2024 nxtid = 0;
2026 for (i = 0; i < STL_MAXPANELS; i++) {
2027 if (brdp->brdtype == BRD_ECHPCI) {
2028 outb(nxtid, brdp->ioctrl);
2029 ioaddr = brdp->ioaddr2;
2031 status = inb(ioaddr + ECH_PNLSTATUS);
2032 if ((status & ECH_PNLIDMASK) != nxtid)
2033 break;
2034 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2035 if (!panelp) {
2036 printk("STALLION: failed to allocate memory "
2037 "(size=%Zd)\n", sizeof(struct stlpanel));
2038 retval = -ENOMEM;
2039 goto err_fr;
2041 panelp->magic = STL_PANELMAGIC;
2042 panelp->brdnr = brdp->brdnr;
2043 panelp->panelnr = panelnr;
2044 panelp->iobase = ioaddr;
2045 panelp->pagenr = nxtid;
2046 panelp->hwid = status;
2047 brdp->bnk2panel[banknr] = panelp;
2048 brdp->bnkpageaddr[banknr] = nxtid;
2049 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2051 if (status & ECH_PNLXPID) {
2052 panelp->uartp = &stl_sc26198uart;
2053 panelp->isr = stl_sc26198intr;
2054 if (status & ECH_PNL16PORT) {
2055 panelp->nrports = 16;
2056 brdp->bnk2panel[banknr] = panelp;
2057 brdp->bnkpageaddr[banknr] = nxtid;
2058 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2059 ECH_PNLSTATUS;
2060 } else
2061 panelp->nrports = 8;
2062 } else {
2063 panelp->uartp = &stl_cd1400uart;
2064 panelp->isr = stl_cd1400echintr;
2065 if (status & ECH_PNL16PORT) {
2066 panelp->nrports = 16;
2067 panelp->ackmask = 0x80;
2068 if (brdp->brdtype != BRD_ECHPCI)
2069 ioaddr += EREG_BANKSIZE;
2070 brdp->bnk2panel[banknr] = panelp;
2071 brdp->bnkpageaddr[banknr] = ++nxtid;
2072 brdp->bnkstataddr[banknr++] = ioaddr +
2073 ECH_PNLSTATUS;
2074 } else {
2075 panelp->nrports = 8;
2076 panelp->ackmask = 0xc0;
2080 nxtid++;
2081 ioaddr += EREG_BANKSIZE;
2082 brdp->nrports += panelp->nrports;
2083 brdp->panels[panelnr++] = panelp;
2084 if ((brdp->brdtype != BRD_ECHPCI) &&
2085 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) {
2086 retval = -EINVAL;
2087 goto err_fr;
2091 brdp->nrpanels = panelnr;
2092 brdp->nrbnks = banknr;
2093 if (brdp->brdtype == BRD_ECH)
2094 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2096 brdp->state |= BRD_FOUND;
2097 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2098 printk("STALLION: failed to register interrupt "
2099 "routine for %s irq=%d\n", name, brdp->irq);
2100 retval = -ENODEV;
2101 goto err_fr;
2104 return 0;
2105 err_fr:
2106 stl_cleanup_panels(brdp);
2107 if (brdp->iosize2 > 0)
2108 release_region(brdp->ioaddr2, brdp->iosize2);
2109 err_rel1:
2110 release_region(brdp->ioaddr1, brdp->iosize1);
2111 err:
2112 return retval;
2115 /*****************************************************************************/
2118 * Initialize and configure the specified board.
2119 * Scan through all the boards in the configuration and see what we
2120 * can find. Handle EIO and the ECH boards a little differently here
2121 * since the initial search and setup is very different.
2124 static int __devinit stl_brdinit(struct stlbrd *brdp)
2126 int i, retval;
2128 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2130 switch (brdp->brdtype) {
2131 case BRD_EASYIO:
2132 case BRD_EASYIOPCI:
2133 retval = stl_initeio(brdp);
2134 if (retval)
2135 goto err;
2136 break;
2137 case BRD_ECH:
2138 case BRD_ECHMC:
2139 case BRD_ECHPCI:
2140 case BRD_ECH64PCI:
2141 retval = stl_initech(brdp);
2142 if (retval)
2143 goto err;
2144 break;
2145 default:
2146 printk("STALLION: board=%d is unknown board type=%d\n",
2147 brdp->brdnr, brdp->brdtype);
2148 retval = -ENODEV;
2149 goto err;
2152 if ((brdp->state & BRD_FOUND) == 0) {
2153 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2154 stl_brdnames[brdp->brdtype], brdp->brdnr,
2155 brdp->ioaddr1, brdp->irq);
2156 goto err_free;
2159 for (i = 0; i < STL_MAXPANELS; i++)
2160 if (brdp->panels[i] != NULL)
2161 stl_initports(brdp, brdp->panels[i]);
2163 printk("STALLION: %s found, board=%d io=%x irq=%d "
2164 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2165 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2166 brdp->nrports);
2168 return 0;
2169 err_free:
2170 free_irq(brdp->irq, brdp);
2172 stl_cleanup_panels(brdp);
2174 release_region(brdp->ioaddr1, brdp->iosize1);
2175 if (brdp->iosize2 > 0)
2176 release_region(brdp->ioaddr2, brdp->iosize2);
2177 err:
2178 return retval;
2181 /*****************************************************************************/
2184 * Find the next available board number that is free.
2187 static int __devinit stl_getbrdnr(void)
2189 unsigned int i;
2191 for (i = 0; i < STL_MAXBRDS; i++)
2192 if (stl_brds[i] == NULL) {
2193 if (i >= stl_nrbrds)
2194 stl_nrbrds = i + 1;
2195 return i;
2198 return -1;
2201 /*****************************************************************************/
2203 * We have a Stallion board. Allocate a board structure and
2204 * initialize it. Read its IO and IRQ resources from PCI
2205 * configuration space.
2208 static int __devinit stl_pciprobe(struct pci_dev *pdev,
2209 const struct pci_device_id *ent)
2211 struct stlbrd *brdp;
2212 unsigned int i, brdtype = ent->driver_data;
2213 int brdnr, retval = -ENODEV;
2215 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2216 goto err;
2218 retval = pci_enable_device(pdev);
2219 if (retval)
2220 goto err;
2221 brdp = stl_allocbrd();
2222 if (brdp == NULL) {
2223 retval = -ENOMEM;
2224 goto err;
2226 mutex_lock(&stl_brdslock);
2227 brdnr = stl_getbrdnr();
2228 if (brdnr < 0) {
2229 dev_err(&pdev->dev, "too many boards found, "
2230 "maximum supported %d\n", STL_MAXBRDS);
2231 mutex_unlock(&stl_brdslock);
2232 retval = -ENODEV;
2233 goto err_fr;
2235 brdp->brdnr = (unsigned int)brdnr;
2236 stl_brds[brdp->brdnr] = brdp;
2237 mutex_unlock(&stl_brdslock);
2239 brdp->brdtype = brdtype;
2240 brdp->state |= STL_PROBED;
2243 * We have all resources from the board, so let's setup the actual
2244 * board structure now.
2246 switch (brdtype) {
2247 case BRD_ECHPCI:
2248 brdp->ioaddr2 = pci_resource_start(pdev, 0);
2249 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2250 break;
2251 case BRD_ECH64PCI:
2252 brdp->ioaddr2 = pci_resource_start(pdev, 2);
2253 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2254 break;
2255 case BRD_EASYIOPCI:
2256 brdp->ioaddr1 = pci_resource_start(pdev, 2);
2257 brdp->ioaddr2 = pci_resource_start(pdev, 1);
2258 break;
2259 default:
2260 dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype);
2261 break;
2264 brdp->irq = pdev->irq;
2265 retval = stl_brdinit(brdp);
2266 if (retval)
2267 goto err_null;
2269 pci_set_drvdata(pdev, brdp);
2271 for (i = 0; i < brdp->nrports; i++)
2272 tty_register_device(stl_serial,
2273 brdp->brdnr * STL_MAXPORTS + i, &pdev->dev);
2275 return 0;
2276 err_null:
2277 stl_brds[brdp->brdnr] = NULL;
2278 err_fr:
2279 kfree(brdp);
2280 err:
2281 return retval;
2284 static void __devexit stl_pciremove(struct pci_dev *pdev)
2286 struct stlbrd *brdp = pci_get_drvdata(pdev);
2287 unsigned int i;
2289 free_irq(brdp->irq, brdp);
2291 stl_cleanup_panels(brdp);
2293 release_region(brdp->ioaddr1, brdp->iosize1);
2294 if (brdp->iosize2 > 0)
2295 release_region(brdp->ioaddr2, brdp->iosize2);
2297 for (i = 0; i < brdp->nrports; i++)
2298 tty_unregister_device(stl_serial,
2299 brdp->brdnr * STL_MAXPORTS + i);
2301 stl_brds[brdp->brdnr] = NULL;
2302 kfree(brdp);
2305 static struct pci_driver stl_pcidriver = {
2306 .name = "stallion",
2307 .id_table = stl_pcibrds,
2308 .probe = stl_pciprobe,
2309 .remove = __devexit_p(stl_pciremove)
2312 /*****************************************************************************/
2315 * Return the board stats structure to user app.
2318 static int stl_getbrdstats(combrd_t __user *bp)
2320 combrd_t stl_brdstats;
2321 struct stlbrd *brdp;
2322 struct stlpanel *panelp;
2323 unsigned int i;
2325 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2326 return -EFAULT;
2327 if (stl_brdstats.brd >= STL_MAXBRDS)
2328 return -ENODEV;
2329 brdp = stl_brds[stl_brdstats.brd];
2330 if (brdp == NULL)
2331 return -ENODEV;
2333 memset(&stl_brdstats, 0, sizeof(combrd_t));
2334 stl_brdstats.brd = brdp->brdnr;
2335 stl_brdstats.type = brdp->brdtype;
2336 stl_brdstats.hwid = brdp->hwid;
2337 stl_brdstats.state = brdp->state;
2338 stl_brdstats.ioaddr = brdp->ioaddr1;
2339 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2340 stl_brdstats.irq = brdp->irq;
2341 stl_brdstats.nrpanels = brdp->nrpanels;
2342 stl_brdstats.nrports = brdp->nrports;
2343 for (i = 0; i < brdp->nrpanels; i++) {
2344 panelp = brdp->panels[i];
2345 stl_brdstats.panels[i].panel = i;
2346 stl_brdstats.panels[i].hwid = panelp->hwid;
2347 stl_brdstats.panels[i].nrports = panelp->nrports;
2350 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2353 /*****************************************************************************/
2356 * Resolve the referenced port number into a port struct pointer.
2359 static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2361 struct stlbrd *brdp;
2362 struct stlpanel *panelp;
2364 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
2365 return NULL;
2366 brdp = stl_brds[brdnr];
2367 if (brdp == NULL)
2368 return NULL;
2369 if (panelnr < 0 || (unsigned int)panelnr >= brdp->nrpanels)
2370 return NULL;
2371 panelp = brdp->panels[panelnr];
2372 if (panelp == NULL)
2373 return NULL;
2374 if (portnr < 0 || (unsigned int)portnr >= panelp->nrports)
2375 return NULL;
2376 return panelp->ports[portnr];
2379 /*****************************************************************************/
2382 * Return the port stats structure to user app. A NULL port struct
2383 * pointer passed in means that we need to find out from the app
2384 * what port to get stats for (used through board control device).
2387 static int stl_getportstats(struct tty_struct *tty, struct stlport *portp, comstats_t __user *cp)
2389 comstats_t stl_comstats;
2390 unsigned char *head, *tail;
2391 unsigned long flags;
2393 if (!portp) {
2394 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2395 return -EFAULT;
2396 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2397 stl_comstats.port);
2398 if (portp == NULL)
2399 return -ENODEV;
2402 portp->stats.state = portp->istate;
2403 portp->stats.flags = portp->port.flags;
2404 portp->stats.hwid = portp->hwid;
2406 portp->stats.ttystate = 0;
2407 portp->stats.cflags = 0;
2408 portp->stats.iflags = 0;
2409 portp->stats.oflags = 0;
2410 portp->stats.lflags = 0;
2411 portp->stats.rxbuffered = 0;
2413 spin_lock_irqsave(&stallion_lock, flags);
2414 if (tty != NULL && portp->port.tty == tty) {
2415 portp->stats.ttystate = tty->flags;
2416 /* No longer available as a statistic */
2417 portp->stats.rxbuffered = 1; /*tty->flip.count; */
2418 if (tty->termios != NULL) {
2419 portp->stats.cflags = tty->termios->c_cflag;
2420 portp->stats.iflags = tty->termios->c_iflag;
2421 portp->stats.oflags = tty->termios->c_oflag;
2422 portp->stats.lflags = tty->termios->c_lflag;
2425 spin_unlock_irqrestore(&stallion_lock, flags);
2427 head = portp->tx.head;
2428 tail = portp->tx.tail;
2429 portp->stats.txbuffered = (head >= tail) ? (head - tail) :
2430 (STL_TXBUFSIZE - (tail - head));
2432 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2434 return copy_to_user(cp, &portp->stats,
2435 sizeof(comstats_t)) ? -EFAULT : 0;
2438 /*****************************************************************************/
2441 * Clear the port stats structure. We also return it zeroed out...
2444 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2446 comstats_t stl_comstats;
2448 if (!portp) {
2449 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2450 return -EFAULT;
2451 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2452 stl_comstats.port);
2453 if (portp == NULL)
2454 return -ENODEV;
2457 memset(&portp->stats, 0, sizeof(comstats_t));
2458 portp->stats.brd = portp->brdnr;
2459 portp->stats.panel = portp->panelnr;
2460 portp->stats.port = portp->portnr;
2461 return copy_to_user(cp, &portp->stats,
2462 sizeof(comstats_t)) ? -EFAULT : 0;
2465 /*****************************************************************************/
2468 * Return the entire driver ports structure to a user app.
2471 static int stl_getportstruct(struct stlport __user *arg)
2473 struct stlport stl_dummyport;
2474 struct stlport *portp;
2476 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2477 return -EFAULT;
2478 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2479 stl_dummyport.portnr);
2480 if (!portp)
2481 return -ENODEV;
2482 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2485 /*****************************************************************************/
2488 * Return the entire driver board structure to a user app.
2491 static int stl_getbrdstruct(struct stlbrd __user *arg)
2493 struct stlbrd stl_dummybrd;
2494 struct stlbrd *brdp;
2496 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2497 return -EFAULT;
2498 if (stl_dummybrd.brdnr >= STL_MAXBRDS)
2499 return -ENODEV;
2500 brdp = stl_brds[stl_dummybrd.brdnr];
2501 if (!brdp)
2502 return -ENODEV;
2503 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2506 /*****************************************************************************/
2509 * The "staliomem" device is also required to do some special operations
2510 * on the board and/or ports. In this driver it is mostly used for stats
2511 * collection.
2514 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2516 int brdnr, rc;
2517 void __user *argp = (void __user *)arg;
2519 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg);
2521 brdnr = iminor(ip);
2522 if (brdnr >= STL_MAXBRDS)
2523 return -ENODEV;
2524 rc = 0;
2526 switch (cmd) {
2527 case COM_GETPORTSTATS:
2528 rc = stl_getportstats(NULL, NULL, argp);
2529 break;
2530 case COM_CLRPORTSTATS:
2531 rc = stl_clrportstats(NULL, argp);
2532 break;
2533 case COM_GETBRDSTATS:
2534 rc = stl_getbrdstats(argp);
2535 break;
2536 case COM_READPORT:
2537 rc = stl_getportstruct(argp);
2538 break;
2539 case COM_READBOARD:
2540 rc = stl_getbrdstruct(argp);
2541 break;
2542 default:
2543 rc = -ENOIOCTLCMD;
2544 break;
2547 return rc;
2550 static const struct tty_operations stl_ops = {
2551 .open = stl_open,
2552 .close = stl_close,
2553 .write = stl_write,
2554 .put_char = stl_putchar,
2555 .flush_chars = stl_flushchars,
2556 .write_room = stl_writeroom,
2557 .chars_in_buffer = stl_charsinbuffer,
2558 .ioctl = stl_ioctl,
2559 .set_termios = stl_settermios,
2560 .throttle = stl_throttle,
2561 .unthrottle = stl_unthrottle,
2562 .stop = stl_stop,
2563 .start = stl_start,
2564 .hangup = stl_hangup,
2565 .flush_buffer = stl_flushbuffer,
2566 .break_ctl = stl_breakctl,
2567 .wait_until_sent = stl_waituntilsent,
2568 .send_xchar = stl_sendxchar,
2569 .read_proc = stl_readproc,
2570 .tiocmget = stl_tiocmget,
2571 .tiocmset = stl_tiocmset,
2574 static const struct tty_port_operations stl_port_ops = {
2575 .carrier_raised = stl_carrier_raised,
2576 .raise_dtr_rts = stl_raise_dtr_rts,
2579 /*****************************************************************************/
2580 /* CD1400 HARDWARE FUNCTIONS */
2581 /*****************************************************************************/
2584 * These functions get/set/update the registers of the cd1400 UARTs.
2585 * Access to the cd1400 registers is via an address/data io port pair.
2586 * (Maybe should make this inline...)
2589 static int stl_cd1400getreg(struct stlport *portp, int regnr)
2591 outb((regnr + portp->uartaddr), portp->ioaddr);
2592 return inb(portp->ioaddr + EREG_DATA);
2595 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2597 outb(regnr + portp->uartaddr, portp->ioaddr);
2598 outb(value, portp->ioaddr + EREG_DATA);
2601 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2603 outb(regnr + portp->uartaddr, portp->ioaddr);
2604 if (inb(portp->ioaddr + EREG_DATA) != value) {
2605 outb(value, portp->ioaddr + EREG_DATA);
2606 return 1;
2608 return 0;
2611 /*****************************************************************************/
2614 * Inbitialize the UARTs in a panel. We don't care what sort of board
2615 * these ports are on - since the port io registers are almost
2616 * identical when dealing with ports.
2619 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2621 unsigned int gfrcr;
2622 int chipmask, i, j;
2623 int nrchips, uartaddr, ioaddr;
2624 unsigned long flags;
2626 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2628 spin_lock_irqsave(&brd_lock, flags);
2629 BRDENABLE(panelp->brdnr, panelp->pagenr);
2632 * Check that each chip is present and started up OK.
2634 chipmask = 0;
2635 nrchips = panelp->nrports / CD1400_PORTS;
2636 for (i = 0; i < nrchips; i++) {
2637 if (brdp->brdtype == BRD_ECHPCI) {
2638 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2639 ioaddr = panelp->iobase;
2640 } else
2641 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2642 uartaddr = (i & 0x01) ? 0x080 : 0;
2643 outb((GFRCR + uartaddr), ioaddr);
2644 outb(0, (ioaddr + EREG_DATA));
2645 outb((CCR + uartaddr), ioaddr);
2646 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2647 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2648 outb((GFRCR + uartaddr), ioaddr);
2649 for (j = 0; j < CCR_MAXWAIT; j++)
2650 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2651 break;
2653 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2654 printk("STALLION: cd1400 not responding, "
2655 "brd=%d panel=%d chip=%d\n",
2656 panelp->brdnr, panelp->panelnr, i);
2657 continue;
2659 chipmask |= (0x1 << i);
2660 outb((PPR + uartaddr), ioaddr);
2661 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2664 BRDDISABLE(panelp->brdnr);
2665 spin_unlock_irqrestore(&brd_lock, flags);
2666 return chipmask;
2669 /*****************************************************************************/
2672 * Initialize hardware specific port registers.
2675 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2677 unsigned long flags;
2678 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2679 panelp, portp);
2681 if ((brdp == NULL) || (panelp == NULL) ||
2682 (portp == NULL))
2683 return;
2685 spin_lock_irqsave(&brd_lock, flags);
2686 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2687 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2688 portp->uartaddr = (portp->portnr & 0x04) << 5;
2689 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2691 BRDENABLE(portp->brdnr, portp->pagenr);
2692 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2693 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2694 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2695 BRDDISABLE(portp->brdnr);
2696 spin_unlock_irqrestore(&brd_lock, flags);
2699 /*****************************************************************************/
2702 * Wait for the command register to be ready. We will poll this,
2703 * since it won't usually take too long to be ready.
2706 static void stl_cd1400ccrwait(struct stlport *portp)
2708 int i;
2710 for (i = 0; i < CCR_MAXWAIT; i++)
2711 if (stl_cd1400getreg(portp, CCR) == 0)
2712 return;
2714 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2715 portp->portnr, portp->panelnr, portp->brdnr);
2718 /*****************************************************************************/
2721 * Set up the cd1400 registers for a port based on the termios port
2722 * settings.
2725 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2727 struct stlbrd *brdp;
2728 unsigned long flags;
2729 unsigned int clkdiv, baudrate;
2730 unsigned char cor1, cor2, cor3;
2731 unsigned char cor4, cor5, ccr;
2732 unsigned char srer, sreron, sreroff;
2733 unsigned char mcor1, mcor2, rtpr;
2734 unsigned char clk, div;
2736 cor1 = 0;
2737 cor2 = 0;
2738 cor3 = 0;
2739 cor4 = 0;
2740 cor5 = 0;
2741 ccr = 0;
2742 rtpr = 0;
2743 clk = 0;
2744 div = 0;
2745 mcor1 = 0;
2746 mcor2 = 0;
2747 sreron = 0;
2748 sreroff = 0;
2750 brdp = stl_brds[portp->brdnr];
2751 if (brdp == NULL)
2752 return;
2755 * Set up the RX char ignore mask with those RX error types we
2756 * can ignore. We can get the cd1400 to help us out a little here,
2757 * it will ignore parity errors and breaks for us.
2759 portp->rxignoremsk = 0;
2760 if (tiosp->c_iflag & IGNPAR) {
2761 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2762 cor1 |= COR1_PARIGNORE;
2764 if (tiosp->c_iflag & IGNBRK) {
2765 portp->rxignoremsk |= ST_BREAK;
2766 cor4 |= COR4_IGNBRK;
2769 portp->rxmarkmsk = ST_OVERRUN;
2770 if (tiosp->c_iflag & (INPCK | PARMRK))
2771 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2772 if (tiosp->c_iflag & BRKINT)
2773 portp->rxmarkmsk |= ST_BREAK;
2776 * Go through the char size, parity and stop bits and set all the
2777 * option register appropriately.
2779 switch (tiosp->c_cflag & CSIZE) {
2780 case CS5:
2781 cor1 |= COR1_CHL5;
2782 break;
2783 case CS6:
2784 cor1 |= COR1_CHL6;
2785 break;
2786 case CS7:
2787 cor1 |= COR1_CHL7;
2788 break;
2789 default:
2790 cor1 |= COR1_CHL8;
2791 break;
2794 if (tiosp->c_cflag & CSTOPB)
2795 cor1 |= COR1_STOP2;
2796 else
2797 cor1 |= COR1_STOP1;
2799 if (tiosp->c_cflag & PARENB) {
2800 if (tiosp->c_cflag & PARODD)
2801 cor1 |= (COR1_PARENB | COR1_PARODD);
2802 else
2803 cor1 |= (COR1_PARENB | COR1_PAREVEN);
2804 } else {
2805 cor1 |= COR1_PARNONE;
2809 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2810 * space for hardware flow control and the like. This should be set to
2811 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2812 * really be based on VTIME.
2814 cor3 |= FIFO_RXTHRESHOLD;
2815 rtpr = 2;
2818 * Calculate the baud rate timers. For now we will just assume that
2819 * the input and output baud are the same. Could have used a baud
2820 * table here, but this way we can generate virtually any baud rate
2821 * we like!
2823 baudrate = tiosp->c_cflag & CBAUD;
2824 if (baudrate & CBAUDEX) {
2825 baudrate &= ~CBAUDEX;
2826 if ((baudrate < 1) || (baudrate > 4))
2827 tiosp->c_cflag &= ~CBAUDEX;
2828 else
2829 baudrate += 15;
2831 baudrate = stl_baudrates[baudrate];
2832 if ((tiosp->c_cflag & CBAUD) == B38400) {
2833 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2834 baudrate = 57600;
2835 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2836 baudrate = 115200;
2837 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2838 baudrate = 230400;
2839 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2840 baudrate = 460800;
2841 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2842 baudrate = (portp->baud_base / portp->custom_divisor);
2844 if (baudrate > STL_CD1400MAXBAUD)
2845 baudrate = STL_CD1400MAXBAUD;
2847 if (baudrate > 0) {
2848 for (clk = 0; clk < CD1400_NUMCLKS; clk++) {
2849 clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate;
2850 if (clkdiv < 0x100)
2851 break;
2853 div = (unsigned char) clkdiv;
2857 * Check what form of modem signaling is required and set it up.
2859 if ((tiosp->c_cflag & CLOCAL) == 0) {
2860 mcor1 |= MCOR1_DCD;
2861 mcor2 |= MCOR2_DCD;
2862 sreron |= SRER_MODEM;
2863 portp->port.flags |= ASYNC_CHECK_CD;
2864 } else
2865 portp->port.flags &= ~ASYNC_CHECK_CD;
2868 * Setup cd1400 enhanced modes if we can. In particular we want to
2869 * handle as much of the flow control as possible automatically. As
2870 * well as saving a few CPU cycles it will also greatly improve flow
2871 * control reliability.
2873 if (tiosp->c_iflag & IXON) {
2874 cor2 |= COR2_TXIBE;
2875 cor3 |= COR3_SCD12;
2876 if (tiosp->c_iflag & IXANY)
2877 cor2 |= COR2_IXM;
2880 if (tiosp->c_cflag & CRTSCTS) {
2881 cor2 |= COR2_CTSAE;
2882 mcor1 |= FIFO_RTSTHRESHOLD;
2886 * All cd1400 register values calculated so go through and set
2887 * them all up.
2890 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
2891 portp->portnr, portp->panelnr, portp->brdnr);
2892 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
2893 cor1, cor2, cor3, cor4, cor5);
2894 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
2895 mcor1, mcor2, rtpr, sreron, sreroff);
2896 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
2897 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
2898 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
2899 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
2901 spin_lock_irqsave(&brd_lock, flags);
2902 BRDENABLE(portp->brdnr, portp->pagenr);
2903 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
2904 srer = stl_cd1400getreg(portp, SRER);
2905 stl_cd1400setreg(portp, SRER, 0);
2906 if (stl_cd1400updatereg(portp, COR1, cor1))
2907 ccr = 1;
2908 if (stl_cd1400updatereg(portp, COR2, cor2))
2909 ccr = 1;
2910 if (stl_cd1400updatereg(portp, COR3, cor3))
2911 ccr = 1;
2912 if (ccr) {
2913 stl_cd1400ccrwait(portp);
2914 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
2916 stl_cd1400setreg(portp, COR4, cor4);
2917 stl_cd1400setreg(portp, COR5, cor5);
2918 stl_cd1400setreg(portp, MCOR1, mcor1);
2919 stl_cd1400setreg(portp, MCOR2, mcor2);
2920 if (baudrate > 0) {
2921 stl_cd1400setreg(portp, TCOR, clk);
2922 stl_cd1400setreg(portp, TBPR, div);
2923 stl_cd1400setreg(portp, RCOR, clk);
2924 stl_cd1400setreg(portp, RBPR, div);
2926 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
2927 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
2928 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
2929 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
2930 stl_cd1400setreg(portp, RTPR, rtpr);
2931 mcor1 = stl_cd1400getreg(portp, MSVR1);
2932 if (mcor1 & MSVR1_DCD)
2933 portp->sigs |= TIOCM_CD;
2934 else
2935 portp->sigs &= ~TIOCM_CD;
2936 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
2937 BRDDISABLE(portp->brdnr);
2938 spin_unlock_irqrestore(&brd_lock, flags);
2941 /*****************************************************************************/
2944 * Set the state of the DTR and RTS signals.
2947 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
2949 unsigned char msvr1, msvr2;
2950 unsigned long flags;
2952 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
2953 portp, dtr, rts);
2955 msvr1 = 0;
2956 msvr2 = 0;
2957 if (dtr > 0)
2958 msvr1 = MSVR1_DTR;
2959 if (rts > 0)
2960 msvr2 = MSVR2_RTS;
2962 spin_lock_irqsave(&brd_lock, flags);
2963 BRDENABLE(portp->brdnr, portp->pagenr);
2964 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2965 if (rts >= 0)
2966 stl_cd1400setreg(portp, MSVR2, msvr2);
2967 if (dtr >= 0)
2968 stl_cd1400setreg(portp, MSVR1, msvr1);
2969 BRDDISABLE(portp->brdnr);
2970 spin_unlock_irqrestore(&brd_lock, flags);
2973 /*****************************************************************************/
2976 * Return the state of the signals.
2979 static int stl_cd1400getsignals(struct stlport *portp)
2981 unsigned char msvr1, msvr2;
2982 unsigned long flags;
2983 int sigs;
2985 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
2987 spin_lock_irqsave(&brd_lock, flags);
2988 BRDENABLE(portp->brdnr, portp->pagenr);
2989 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2990 msvr1 = stl_cd1400getreg(portp, MSVR1);
2991 msvr2 = stl_cd1400getreg(portp, MSVR2);
2992 BRDDISABLE(portp->brdnr);
2993 spin_unlock_irqrestore(&brd_lock, flags);
2995 sigs = 0;
2996 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
2997 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
2998 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
2999 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3000 #if 0
3001 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3002 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3003 #else
3004 sigs |= TIOCM_DSR;
3005 #endif
3006 return sigs;
3009 /*****************************************************************************/
3012 * Enable/Disable the Transmitter and/or Receiver.
3015 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
3017 unsigned char ccr;
3018 unsigned long flags;
3020 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3022 ccr = 0;
3024 if (tx == 0)
3025 ccr |= CCR_TXDISABLE;
3026 else if (tx > 0)
3027 ccr |= CCR_TXENABLE;
3028 if (rx == 0)
3029 ccr |= CCR_RXDISABLE;
3030 else if (rx > 0)
3031 ccr |= CCR_RXENABLE;
3033 spin_lock_irqsave(&brd_lock, flags);
3034 BRDENABLE(portp->brdnr, portp->pagenr);
3035 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3036 stl_cd1400ccrwait(portp);
3037 stl_cd1400setreg(portp, CCR, ccr);
3038 stl_cd1400ccrwait(portp);
3039 BRDDISABLE(portp->brdnr);
3040 spin_unlock_irqrestore(&brd_lock, flags);
3043 /*****************************************************************************/
3046 * Start/stop the Transmitter and/or Receiver.
3049 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
3051 unsigned char sreron, sreroff;
3052 unsigned long flags;
3054 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3056 sreron = 0;
3057 sreroff = 0;
3058 if (tx == 0)
3059 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3060 else if (tx == 1)
3061 sreron |= SRER_TXDATA;
3062 else if (tx >= 2)
3063 sreron |= SRER_TXEMPTY;
3064 if (rx == 0)
3065 sreroff |= SRER_RXDATA;
3066 else if (rx > 0)
3067 sreron |= SRER_RXDATA;
3069 spin_lock_irqsave(&brd_lock, flags);
3070 BRDENABLE(portp->brdnr, portp->pagenr);
3071 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3072 stl_cd1400setreg(portp, SRER,
3073 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3074 BRDDISABLE(portp->brdnr);
3075 if (tx > 0)
3076 set_bit(ASYI_TXBUSY, &portp->istate);
3077 spin_unlock_irqrestore(&brd_lock, flags);
3080 /*****************************************************************************/
3083 * Disable all interrupts from this port.
3086 static void stl_cd1400disableintrs(struct stlport *portp)
3088 unsigned long flags;
3090 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3092 spin_lock_irqsave(&brd_lock, flags);
3093 BRDENABLE(portp->brdnr, portp->pagenr);
3094 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3095 stl_cd1400setreg(portp, SRER, 0);
3096 BRDDISABLE(portp->brdnr);
3097 spin_unlock_irqrestore(&brd_lock, flags);
3100 /*****************************************************************************/
3102 static void stl_cd1400sendbreak(struct stlport *portp, int len)
3104 unsigned long flags;
3106 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3108 spin_lock_irqsave(&brd_lock, flags);
3109 BRDENABLE(portp->brdnr, portp->pagenr);
3110 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3111 stl_cd1400setreg(portp, SRER,
3112 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3113 SRER_TXEMPTY));
3114 BRDDISABLE(portp->brdnr);
3115 portp->brklen = len;
3116 if (len == 1)
3117 portp->stats.txbreaks++;
3118 spin_unlock_irqrestore(&brd_lock, flags);
3121 /*****************************************************************************/
3124 * Take flow control actions...
3127 static void stl_cd1400flowctrl(struct stlport *portp, int state)
3129 struct tty_struct *tty;
3130 unsigned long flags;
3132 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3134 if (portp == NULL)
3135 return;
3136 tty = tty_port_tty_get(&portp->port);
3137 if (tty == NULL)
3138 return;
3140 spin_lock_irqsave(&brd_lock, flags);
3141 BRDENABLE(portp->brdnr, portp->pagenr);
3142 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3144 if (state) {
3145 if (tty->termios->c_iflag & IXOFF) {
3146 stl_cd1400ccrwait(portp);
3147 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3148 portp->stats.rxxon++;
3149 stl_cd1400ccrwait(portp);
3152 * Question: should we return RTS to what it was before? It may
3153 * have been set by an ioctl... Suppose not, since if you have
3154 * hardware flow control set then it is pretty silly to go and
3155 * set the RTS line by hand.
3157 if (tty->termios->c_cflag & CRTSCTS) {
3158 stl_cd1400setreg(portp, MCOR1,
3159 (stl_cd1400getreg(portp, MCOR1) |
3160 FIFO_RTSTHRESHOLD));
3161 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3162 portp->stats.rxrtson++;
3164 } else {
3165 if (tty->termios->c_iflag & IXOFF) {
3166 stl_cd1400ccrwait(portp);
3167 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3168 portp->stats.rxxoff++;
3169 stl_cd1400ccrwait(portp);
3171 if (tty->termios->c_cflag & CRTSCTS) {
3172 stl_cd1400setreg(portp, MCOR1,
3173 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3174 stl_cd1400setreg(portp, MSVR2, 0);
3175 portp->stats.rxrtsoff++;
3179 BRDDISABLE(portp->brdnr);
3180 spin_unlock_irqrestore(&brd_lock, flags);
3181 tty_kref_put(tty);
3184 /*****************************************************************************/
3187 * Send a flow control character...
3190 static void stl_cd1400sendflow(struct stlport *portp, int state)
3192 struct tty_struct *tty;
3193 unsigned long flags;
3195 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3197 if (portp == NULL)
3198 return;
3199 tty = tty_port_tty_get(&portp->port);
3200 if (tty == NULL)
3201 return;
3203 spin_lock_irqsave(&brd_lock, flags);
3204 BRDENABLE(portp->brdnr, portp->pagenr);
3205 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3206 if (state) {
3207 stl_cd1400ccrwait(portp);
3208 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3209 portp->stats.rxxon++;
3210 stl_cd1400ccrwait(portp);
3211 } else {
3212 stl_cd1400ccrwait(portp);
3213 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3214 portp->stats.rxxoff++;
3215 stl_cd1400ccrwait(portp);
3217 BRDDISABLE(portp->brdnr);
3218 spin_unlock_irqrestore(&brd_lock, flags);
3219 tty_kref_put(tty);
3222 /*****************************************************************************/
3224 static void stl_cd1400flush(struct stlport *portp)
3226 unsigned long flags;
3228 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3230 if (portp == NULL)
3231 return;
3233 spin_lock_irqsave(&brd_lock, flags);
3234 BRDENABLE(portp->brdnr, portp->pagenr);
3235 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3236 stl_cd1400ccrwait(portp);
3237 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3238 stl_cd1400ccrwait(portp);
3239 portp->tx.tail = portp->tx.head;
3240 BRDDISABLE(portp->brdnr);
3241 spin_unlock_irqrestore(&brd_lock, flags);
3244 /*****************************************************************************/
3247 * Return the current state of data flow on this port. This is only
3248 * really interresting when determining if data has fully completed
3249 * transmission or not... This is easy for the cd1400, it accurately
3250 * maintains the busy port flag.
3253 static int stl_cd1400datastate(struct stlport *portp)
3255 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3257 if (portp == NULL)
3258 return 0;
3260 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3263 /*****************************************************************************/
3266 * Interrupt service routine for cd1400 EasyIO boards.
3269 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3271 unsigned char svrtype;
3273 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3275 spin_lock(&brd_lock);
3276 outb(SVRR, iobase);
3277 svrtype = inb(iobase + EREG_DATA);
3278 if (panelp->nrports > 4) {
3279 outb((SVRR + 0x80), iobase);
3280 svrtype |= inb(iobase + EREG_DATA);
3283 if (svrtype & SVRR_RX)
3284 stl_cd1400rxisr(panelp, iobase);
3285 else if (svrtype & SVRR_TX)
3286 stl_cd1400txisr(panelp, iobase);
3287 else if (svrtype & SVRR_MDM)
3288 stl_cd1400mdmisr(panelp, iobase);
3290 spin_unlock(&brd_lock);
3293 /*****************************************************************************/
3296 * Interrupt service routine for cd1400 panels.
3299 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3301 unsigned char svrtype;
3303 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3305 outb(SVRR, iobase);
3306 svrtype = inb(iobase + EREG_DATA);
3307 outb((SVRR + 0x80), iobase);
3308 svrtype |= inb(iobase + EREG_DATA);
3309 if (svrtype & SVRR_RX)
3310 stl_cd1400rxisr(panelp, iobase);
3311 else if (svrtype & SVRR_TX)
3312 stl_cd1400txisr(panelp, iobase);
3313 else if (svrtype & SVRR_MDM)
3314 stl_cd1400mdmisr(panelp, iobase);
3318 /*****************************************************************************/
3321 * Unfortunately we need to handle breaks in the TX data stream, since
3322 * this is the only way to generate them on the cd1400.
3325 static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3327 if (portp->brklen == 1) {
3328 outb((COR2 + portp->uartaddr), ioaddr);
3329 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3330 (ioaddr + EREG_DATA));
3331 outb((TDR + portp->uartaddr), ioaddr);
3332 outb(ETC_CMD, (ioaddr + EREG_DATA));
3333 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3334 outb((SRER + portp->uartaddr), ioaddr);
3335 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3336 (ioaddr + EREG_DATA));
3337 return 1;
3338 } else if (portp->brklen > 1) {
3339 outb((TDR + portp->uartaddr), ioaddr);
3340 outb(ETC_CMD, (ioaddr + EREG_DATA));
3341 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3342 portp->brklen = -1;
3343 return 1;
3344 } else {
3345 outb((COR2 + portp->uartaddr), ioaddr);
3346 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3347 (ioaddr + EREG_DATA));
3348 portp->brklen = 0;
3350 return 0;
3353 /*****************************************************************************/
3356 * Transmit interrupt handler. This has gotta be fast! Handling TX
3357 * chars is pretty simple, stuff as many as possible from the TX buffer
3358 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3359 * are embedded as commands in the data stream. Oh no, had to use a goto!
3360 * This could be optimized more, will do when I get time...
3361 * In practice it is possible that interrupts are enabled but that the
3362 * port has been hung up. Need to handle not having any TX buffer here,
3363 * this is done by using the side effect that head and tail will also
3364 * be NULL if the buffer has been freed.
3367 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3369 struct stlport *portp;
3370 int len, stlen;
3371 char *head, *tail;
3372 unsigned char ioack, srer;
3373 struct tty_struct *tty;
3375 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3377 ioack = inb(ioaddr + EREG_TXACK);
3378 if (((ioack & panelp->ackmask) != 0) ||
3379 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3380 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3381 return;
3383 portp = panelp->ports[(ioack >> 3)];
3386 * Unfortunately we need to handle breaks in the data stream, since
3387 * this is the only way to generate them on the cd1400. Do it now if
3388 * a break is to be sent.
3390 if (portp->brklen != 0)
3391 if (stl_cd1400breakisr(portp, ioaddr))
3392 goto stl_txalldone;
3394 head = portp->tx.head;
3395 tail = portp->tx.tail;
3396 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3397 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3398 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3399 set_bit(ASYI_TXLOW, &portp->istate);
3400 tty = tty_port_tty_get(&portp->port);
3401 if (tty) {
3402 tty_wakeup(tty);
3403 tty_kref_put(tty);
3407 if (len == 0) {
3408 outb((SRER + portp->uartaddr), ioaddr);
3409 srer = inb(ioaddr + EREG_DATA);
3410 if (srer & SRER_TXDATA) {
3411 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3412 } else {
3413 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3414 clear_bit(ASYI_TXBUSY, &portp->istate);
3416 outb(srer, (ioaddr + EREG_DATA));
3417 } else {
3418 len = min(len, CD1400_TXFIFOSIZE);
3419 portp->stats.txtotal += len;
3420 stlen = min_t(unsigned int, len,
3421 (portp->tx.buf + STL_TXBUFSIZE) - tail);
3422 outb((TDR + portp->uartaddr), ioaddr);
3423 outsb((ioaddr + EREG_DATA), tail, stlen);
3424 len -= stlen;
3425 tail += stlen;
3426 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3427 tail = portp->tx.buf;
3428 if (len > 0) {
3429 outsb((ioaddr + EREG_DATA), tail, len);
3430 tail += len;
3432 portp->tx.tail = tail;
3435 stl_txalldone:
3436 outb((EOSRR + portp->uartaddr), ioaddr);
3437 outb(0, (ioaddr + EREG_DATA));
3440 /*****************************************************************************/
3443 * Receive character interrupt handler. Determine if we have good chars
3444 * or bad chars and then process appropriately. Good chars are easy
3445 * just shove the lot into the RX buffer and set all status byte to 0.
3446 * If a bad RX char then process as required. This routine needs to be
3447 * fast! In practice it is possible that we get an interrupt on a port
3448 * that is closed. This can happen on hangups - since they completely
3449 * shutdown a port not in user context. Need to handle this case.
3452 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3454 struct stlport *portp;
3455 struct tty_struct *tty;
3456 unsigned int ioack, len, buflen;
3457 unsigned char status;
3458 char ch;
3460 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3462 ioack = inb(ioaddr + EREG_RXACK);
3463 if ((ioack & panelp->ackmask) != 0) {
3464 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3465 return;
3467 portp = panelp->ports[(ioack >> 3)];
3468 tty = tty_port_tty_get(&portp->port);
3470 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3471 outb((RDCR + portp->uartaddr), ioaddr);
3472 len = inb(ioaddr + EREG_DATA);
3473 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3474 len = min_t(unsigned int, len, sizeof(stl_unwanted));
3475 outb((RDSR + portp->uartaddr), ioaddr);
3476 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3477 portp->stats.rxlost += len;
3478 portp->stats.rxtotal += len;
3479 } else {
3480 len = min(len, buflen);
3481 if (len > 0) {
3482 unsigned char *ptr;
3483 outb((RDSR + portp->uartaddr), ioaddr);
3484 tty_prepare_flip_string(tty, &ptr, len);
3485 insb((ioaddr + EREG_DATA), ptr, len);
3486 tty_schedule_flip(tty);
3487 portp->stats.rxtotal += len;
3490 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3491 outb((RDSR + portp->uartaddr), ioaddr);
3492 status = inb(ioaddr + EREG_DATA);
3493 ch = inb(ioaddr + EREG_DATA);
3494 if (status & ST_PARITY)
3495 portp->stats.rxparity++;
3496 if (status & ST_FRAMING)
3497 portp->stats.rxframing++;
3498 if (status & ST_OVERRUN)
3499 portp->stats.rxoverrun++;
3500 if (status & ST_BREAK)
3501 portp->stats.rxbreaks++;
3502 if (status & ST_SCHARMASK) {
3503 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3504 portp->stats.txxon++;
3505 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3506 portp->stats.txxoff++;
3507 goto stl_rxalldone;
3509 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3510 if (portp->rxmarkmsk & status) {
3511 if (status & ST_BREAK) {
3512 status = TTY_BREAK;
3513 if (portp->port.flags & ASYNC_SAK) {
3514 do_SAK(tty);
3515 BRDENABLE(portp->brdnr, portp->pagenr);
3517 } else if (status & ST_PARITY)
3518 status = TTY_PARITY;
3519 else if (status & ST_FRAMING)
3520 status = TTY_FRAME;
3521 else if(status & ST_OVERRUN)
3522 status = TTY_OVERRUN;
3523 else
3524 status = 0;
3525 } else
3526 status = 0;
3527 tty_insert_flip_char(tty, ch, status);
3528 tty_schedule_flip(tty);
3530 } else {
3531 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3532 tty_kref_put(tty);
3533 return;
3536 stl_rxalldone:
3537 tty_kref_put(tty);
3538 outb((EOSRR + portp->uartaddr), ioaddr);
3539 outb(0, (ioaddr + EREG_DATA));
3542 /*****************************************************************************/
3545 * Modem interrupt handler. The is called when the modem signal line
3546 * (DCD) has changed state. Leave most of the work to the off-level
3547 * processing routine.
3550 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3552 struct stlport *portp;
3553 unsigned int ioack;
3554 unsigned char misr;
3556 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3558 ioack = inb(ioaddr + EREG_MDACK);
3559 if (((ioack & panelp->ackmask) != 0) ||
3560 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3561 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3562 return;
3564 portp = panelp->ports[(ioack >> 3)];
3566 outb((MISR + portp->uartaddr), ioaddr);
3567 misr = inb(ioaddr + EREG_DATA);
3568 if (misr & MISR_DCD) {
3569 stl_cd_change(portp);
3570 portp->stats.modem++;
3573 outb((EOSRR + portp->uartaddr), ioaddr);
3574 outb(0, (ioaddr + EREG_DATA));
3577 /*****************************************************************************/
3578 /* SC26198 HARDWARE FUNCTIONS */
3579 /*****************************************************************************/
3582 * These functions get/set/update the registers of the sc26198 UARTs.
3583 * Access to the sc26198 registers is via an address/data io port pair.
3584 * (Maybe should make this inline...)
3587 static int stl_sc26198getreg(struct stlport *portp, int regnr)
3589 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3590 return inb(portp->ioaddr + XP_DATA);
3593 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3595 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3596 outb(value, (portp->ioaddr + XP_DATA));
3599 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3601 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3602 if (inb(portp->ioaddr + XP_DATA) != value) {
3603 outb(value, (portp->ioaddr + XP_DATA));
3604 return 1;
3606 return 0;
3609 /*****************************************************************************/
3612 * Functions to get and set the sc26198 global registers.
3615 static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3617 outb(regnr, (portp->ioaddr + XP_ADDR));
3618 return inb(portp->ioaddr + XP_DATA);
3621 #if 0
3622 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3624 outb(regnr, (portp->ioaddr + XP_ADDR));
3625 outb(value, (portp->ioaddr + XP_DATA));
3627 #endif
3629 /*****************************************************************************/
3632 * Inbitialize the UARTs in a panel. We don't care what sort of board
3633 * these ports are on - since the port io registers are almost
3634 * identical when dealing with ports.
3637 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3639 int chipmask, i;
3640 int nrchips, ioaddr;
3642 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3644 BRDENABLE(panelp->brdnr, panelp->pagenr);
3647 * Check that each chip is present and started up OK.
3649 chipmask = 0;
3650 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3651 if (brdp->brdtype == BRD_ECHPCI)
3652 outb(panelp->pagenr, brdp->ioctrl);
3654 for (i = 0; i < nrchips; i++) {
3655 ioaddr = panelp->iobase + (i * 4);
3656 outb(SCCR, (ioaddr + XP_ADDR));
3657 outb(CR_RESETALL, (ioaddr + XP_DATA));
3658 outb(TSTR, (ioaddr + XP_ADDR));
3659 if (inb(ioaddr + XP_DATA) != 0) {
3660 printk("STALLION: sc26198 not responding, "
3661 "brd=%d panel=%d chip=%d\n",
3662 panelp->brdnr, panelp->panelnr, i);
3663 continue;
3665 chipmask |= (0x1 << i);
3666 outb(GCCR, (ioaddr + XP_ADDR));
3667 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3668 outb(WDTRCR, (ioaddr + XP_ADDR));
3669 outb(0xff, (ioaddr + XP_DATA));
3672 BRDDISABLE(panelp->brdnr);
3673 return chipmask;
3676 /*****************************************************************************/
3679 * Initialize hardware specific port registers.
3682 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3684 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3685 panelp, portp);
3687 if ((brdp == NULL) || (panelp == NULL) ||
3688 (portp == NULL))
3689 return;
3691 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3692 portp->uartaddr = (portp->portnr & 0x07) << 4;
3693 portp->pagenr = panelp->pagenr;
3694 portp->hwid = 0x1;
3696 BRDENABLE(portp->brdnr, portp->pagenr);
3697 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3698 BRDDISABLE(portp->brdnr);
3701 /*****************************************************************************/
3704 * Set up the sc26198 registers for a port based on the termios port
3705 * settings.
3708 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3710 struct stlbrd *brdp;
3711 unsigned long flags;
3712 unsigned int baudrate;
3713 unsigned char mr0, mr1, mr2, clk;
3714 unsigned char imron, imroff, iopr, ipr;
3716 mr0 = 0;
3717 mr1 = 0;
3718 mr2 = 0;
3719 clk = 0;
3720 iopr = 0;
3721 imron = 0;
3722 imroff = 0;
3724 brdp = stl_brds[portp->brdnr];
3725 if (brdp == NULL)
3726 return;
3729 * Set up the RX char ignore mask with those RX error types we
3730 * can ignore.
3732 portp->rxignoremsk = 0;
3733 if (tiosp->c_iflag & IGNPAR)
3734 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3735 SR_RXOVERRUN);
3736 if (tiosp->c_iflag & IGNBRK)
3737 portp->rxignoremsk |= SR_RXBREAK;
3739 portp->rxmarkmsk = SR_RXOVERRUN;
3740 if (tiosp->c_iflag & (INPCK | PARMRK))
3741 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3742 if (tiosp->c_iflag & BRKINT)
3743 portp->rxmarkmsk |= SR_RXBREAK;
3746 * Go through the char size, parity and stop bits and set all the
3747 * option register appropriately.
3749 switch (tiosp->c_cflag & CSIZE) {
3750 case CS5:
3751 mr1 |= MR1_CS5;
3752 break;
3753 case CS6:
3754 mr1 |= MR1_CS6;
3755 break;
3756 case CS7:
3757 mr1 |= MR1_CS7;
3758 break;
3759 default:
3760 mr1 |= MR1_CS8;
3761 break;
3764 if (tiosp->c_cflag & CSTOPB)
3765 mr2 |= MR2_STOP2;
3766 else
3767 mr2 |= MR2_STOP1;
3769 if (tiosp->c_cflag & PARENB) {
3770 if (tiosp->c_cflag & PARODD)
3771 mr1 |= (MR1_PARENB | MR1_PARODD);
3772 else
3773 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3774 } else
3775 mr1 |= MR1_PARNONE;
3777 mr1 |= MR1_ERRBLOCK;
3780 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3781 * space for hardware flow control and the like. This should be set to
3782 * VMIN.
3784 mr2 |= MR2_RXFIFOHALF;
3787 * Calculate the baud rate timers. For now we will just assume that
3788 * the input and output baud are the same. The sc26198 has a fixed
3789 * baud rate table, so only discrete baud rates possible.
3791 baudrate = tiosp->c_cflag & CBAUD;
3792 if (baudrate & CBAUDEX) {
3793 baudrate &= ~CBAUDEX;
3794 if ((baudrate < 1) || (baudrate > 4))
3795 tiosp->c_cflag &= ~CBAUDEX;
3796 else
3797 baudrate += 15;
3799 baudrate = stl_baudrates[baudrate];
3800 if ((tiosp->c_cflag & CBAUD) == B38400) {
3801 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3802 baudrate = 57600;
3803 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3804 baudrate = 115200;
3805 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3806 baudrate = 230400;
3807 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3808 baudrate = 460800;
3809 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3810 baudrate = (portp->baud_base / portp->custom_divisor);
3812 if (baudrate > STL_SC26198MAXBAUD)
3813 baudrate = STL_SC26198MAXBAUD;
3815 if (baudrate > 0)
3816 for (clk = 0; clk < SC26198_NRBAUDS; clk++)
3817 if (baudrate <= sc26198_baudtable[clk])
3818 break;
3821 * Check what form of modem signaling is required and set it up.
3823 if (tiosp->c_cflag & CLOCAL) {
3824 portp->port.flags &= ~ASYNC_CHECK_CD;
3825 } else {
3826 iopr |= IOPR_DCDCOS;
3827 imron |= IR_IOPORT;
3828 portp->port.flags |= ASYNC_CHECK_CD;
3832 * Setup sc26198 enhanced modes if we can. In particular we want to
3833 * handle as much of the flow control as possible automatically. As
3834 * well as saving a few CPU cycles it will also greatly improve flow
3835 * control reliability.
3837 if (tiosp->c_iflag & IXON) {
3838 mr0 |= MR0_SWFTX | MR0_SWFT;
3839 imron |= IR_XONXOFF;
3840 } else
3841 imroff |= IR_XONXOFF;
3843 if (tiosp->c_iflag & IXOFF)
3844 mr0 |= MR0_SWFRX;
3846 if (tiosp->c_cflag & CRTSCTS) {
3847 mr2 |= MR2_AUTOCTS;
3848 mr1 |= MR1_AUTORTS;
3852 * All sc26198 register values calculated so go through and set
3853 * them all up.
3856 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3857 portp->portnr, portp->panelnr, portp->brdnr);
3858 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
3859 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
3860 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3861 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3862 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3864 spin_lock_irqsave(&brd_lock, flags);
3865 BRDENABLE(portp->brdnr, portp->pagenr);
3866 stl_sc26198setreg(portp, IMR, 0);
3867 stl_sc26198updatereg(portp, MR0, mr0);
3868 stl_sc26198updatereg(portp, MR1, mr1);
3869 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
3870 stl_sc26198updatereg(portp, MR2, mr2);
3871 stl_sc26198updatereg(portp, IOPIOR,
3872 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
3874 if (baudrate > 0) {
3875 stl_sc26198setreg(portp, TXCSR, clk);
3876 stl_sc26198setreg(portp, RXCSR, clk);
3879 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
3880 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
3882 ipr = stl_sc26198getreg(portp, IPR);
3883 if (ipr & IPR_DCD)
3884 portp->sigs &= ~TIOCM_CD;
3885 else
3886 portp->sigs |= TIOCM_CD;
3888 portp->imr = (portp->imr & ~imroff) | imron;
3889 stl_sc26198setreg(portp, IMR, portp->imr);
3890 BRDDISABLE(portp->brdnr);
3891 spin_unlock_irqrestore(&brd_lock, flags);
3894 /*****************************************************************************/
3897 * Set the state of the DTR and RTS signals.
3900 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
3902 unsigned char iopioron, iopioroff;
3903 unsigned long flags;
3905 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
3906 dtr, rts);
3908 iopioron = 0;
3909 iopioroff = 0;
3910 if (dtr == 0)
3911 iopioroff |= IPR_DTR;
3912 else if (dtr > 0)
3913 iopioron |= IPR_DTR;
3914 if (rts == 0)
3915 iopioroff |= IPR_RTS;
3916 else if (rts > 0)
3917 iopioron |= IPR_RTS;
3919 spin_lock_irqsave(&brd_lock, flags);
3920 BRDENABLE(portp->brdnr, portp->pagenr);
3921 stl_sc26198setreg(portp, IOPIOR,
3922 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
3923 BRDDISABLE(portp->brdnr);
3924 spin_unlock_irqrestore(&brd_lock, flags);
3927 /*****************************************************************************/
3930 * Return the state of the signals.
3933 static int stl_sc26198getsignals(struct stlport *portp)
3935 unsigned char ipr;
3936 unsigned long flags;
3937 int sigs;
3939 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
3941 spin_lock_irqsave(&brd_lock, flags);
3942 BRDENABLE(portp->brdnr, portp->pagenr);
3943 ipr = stl_sc26198getreg(portp, IPR);
3944 BRDDISABLE(portp->brdnr);
3945 spin_unlock_irqrestore(&brd_lock, flags);
3947 sigs = 0;
3948 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
3949 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
3950 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
3951 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
3952 sigs |= TIOCM_DSR;
3953 return sigs;
3956 /*****************************************************************************/
3959 * Enable/Disable the Transmitter and/or Receiver.
3962 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
3964 unsigned char ccr;
3965 unsigned long flags;
3967 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
3969 ccr = portp->crenable;
3970 if (tx == 0)
3971 ccr &= ~CR_TXENABLE;
3972 else if (tx > 0)
3973 ccr |= CR_TXENABLE;
3974 if (rx == 0)
3975 ccr &= ~CR_RXENABLE;
3976 else if (rx > 0)
3977 ccr |= CR_RXENABLE;
3979 spin_lock_irqsave(&brd_lock, flags);
3980 BRDENABLE(portp->brdnr, portp->pagenr);
3981 stl_sc26198setreg(portp, SCCR, ccr);
3982 BRDDISABLE(portp->brdnr);
3983 portp->crenable = ccr;
3984 spin_unlock_irqrestore(&brd_lock, flags);
3987 /*****************************************************************************/
3990 * Start/stop the Transmitter and/or Receiver.
3993 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
3995 unsigned char imr;
3996 unsigned long flags;
3998 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
4000 imr = portp->imr;
4001 if (tx == 0)
4002 imr &= ~IR_TXRDY;
4003 else if (tx == 1)
4004 imr |= IR_TXRDY;
4005 if (rx == 0)
4006 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4007 else if (rx > 0)
4008 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4010 spin_lock_irqsave(&brd_lock, flags);
4011 BRDENABLE(portp->brdnr, portp->pagenr);
4012 stl_sc26198setreg(portp, IMR, imr);
4013 BRDDISABLE(portp->brdnr);
4014 portp->imr = imr;
4015 if (tx > 0)
4016 set_bit(ASYI_TXBUSY, &portp->istate);
4017 spin_unlock_irqrestore(&brd_lock, flags);
4020 /*****************************************************************************/
4023 * Disable all interrupts from this port.
4026 static void stl_sc26198disableintrs(struct stlport *portp)
4028 unsigned long flags;
4030 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
4032 spin_lock_irqsave(&brd_lock, flags);
4033 BRDENABLE(portp->brdnr, portp->pagenr);
4034 portp->imr = 0;
4035 stl_sc26198setreg(portp, IMR, 0);
4036 BRDDISABLE(portp->brdnr);
4037 spin_unlock_irqrestore(&brd_lock, flags);
4040 /*****************************************************************************/
4042 static void stl_sc26198sendbreak(struct stlport *portp, int len)
4044 unsigned long flags;
4046 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
4048 spin_lock_irqsave(&brd_lock, flags);
4049 BRDENABLE(portp->brdnr, portp->pagenr);
4050 if (len == 1) {
4051 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4052 portp->stats.txbreaks++;
4053 } else
4054 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4056 BRDDISABLE(portp->brdnr);
4057 spin_unlock_irqrestore(&brd_lock, flags);
4060 /*****************************************************************************/
4063 * Take flow control actions...
4066 static void stl_sc26198flowctrl(struct stlport *portp, int state)
4068 struct tty_struct *tty;
4069 unsigned long flags;
4070 unsigned char mr0;
4072 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4074 if (portp == NULL)
4075 return;
4076 tty = tty_port_tty_get(&portp->port);
4077 if (tty == NULL)
4078 return;
4080 spin_lock_irqsave(&brd_lock, flags);
4081 BRDENABLE(portp->brdnr, portp->pagenr);
4083 if (state) {
4084 if (tty->termios->c_iflag & IXOFF) {
4085 mr0 = stl_sc26198getreg(portp, MR0);
4086 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4087 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4088 mr0 |= MR0_SWFRX;
4089 portp->stats.rxxon++;
4090 stl_sc26198wait(portp);
4091 stl_sc26198setreg(portp, MR0, mr0);
4094 * Question: should we return RTS to what it was before? It may
4095 * have been set by an ioctl... Suppose not, since if you have
4096 * hardware flow control set then it is pretty silly to go and
4097 * set the RTS line by hand.
4099 if (tty->termios->c_cflag & CRTSCTS) {
4100 stl_sc26198setreg(portp, MR1,
4101 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4102 stl_sc26198setreg(portp, IOPIOR,
4103 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4104 portp->stats.rxrtson++;
4106 } else {
4107 if (tty->termios->c_iflag & IXOFF) {
4108 mr0 = stl_sc26198getreg(portp, MR0);
4109 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4110 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4111 mr0 &= ~MR0_SWFRX;
4112 portp->stats.rxxoff++;
4113 stl_sc26198wait(portp);
4114 stl_sc26198setreg(portp, MR0, mr0);
4116 if (tty->termios->c_cflag & CRTSCTS) {
4117 stl_sc26198setreg(portp, MR1,
4118 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4119 stl_sc26198setreg(portp, IOPIOR,
4120 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4121 portp->stats.rxrtsoff++;
4125 BRDDISABLE(portp->brdnr);
4126 spin_unlock_irqrestore(&brd_lock, flags);
4127 tty_kref_put(tty);
4130 /*****************************************************************************/
4133 * Send a flow control character.
4136 static void stl_sc26198sendflow(struct stlport *portp, int state)
4138 struct tty_struct *tty;
4139 unsigned long flags;
4140 unsigned char mr0;
4142 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4144 if (portp == NULL)
4145 return;
4146 tty = tty_port_tty_get(&portp->port);
4147 if (tty == NULL)
4148 return;
4150 spin_lock_irqsave(&brd_lock, flags);
4151 BRDENABLE(portp->brdnr, portp->pagenr);
4152 if (state) {
4153 mr0 = stl_sc26198getreg(portp, MR0);
4154 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4155 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4156 mr0 |= MR0_SWFRX;
4157 portp->stats.rxxon++;
4158 stl_sc26198wait(portp);
4159 stl_sc26198setreg(portp, MR0, mr0);
4160 } else {
4161 mr0 = stl_sc26198getreg(portp, MR0);
4162 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4163 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4164 mr0 &= ~MR0_SWFRX;
4165 portp->stats.rxxoff++;
4166 stl_sc26198wait(portp);
4167 stl_sc26198setreg(portp, MR0, mr0);
4169 BRDDISABLE(portp->brdnr);
4170 spin_unlock_irqrestore(&brd_lock, flags);
4171 tty_kref_put(tty);
4174 /*****************************************************************************/
4176 static void stl_sc26198flush(struct stlport *portp)
4178 unsigned long flags;
4180 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4182 if (portp == NULL)
4183 return;
4185 spin_lock_irqsave(&brd_lock, flags);
4186 BRDENABLE(portp->brdnr, portp->pagenr);
4187 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4188 stl_sc26198setreg(portp, SCCR, portp->crenable);
4189 BRDDISABLE(portp->brdnr);
4190 portp->tx.tail = portp->tx.head;
4191 spin_unlock_irqrestore(&brd_lock, flags);
4194 /*****************************************************************************/
4197 * Return the current state of data flow on this port. This is only
4198 * really interresting when determining if data has fully completed
4199 * transmission or not... The sc26198 interrupt scheme cannot
4200 * determine when all data has actually drained, so we need to
4201 * check the port statusy register to be sure.
4204 static int stl_sc26198datastate(struct stlport *portp)
4206 unsigned long flags;
4207 unsigned char sr;
4209 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4211 if (portp == NULL)
4212 return 0;
4213 if (test_bit(ASYI_TXBUSY, &portp->istate))
4214 return 1;
4216 spin_lock_irqsave(&brd_lock, flags);
4217 BRDENABLE(portp->brdnr, portp->pagenr);
4218 sr = stl_sc26198getreg(portp, SR);
4219 BRDDISABLE(portp->brdnr);
4220 spin_unlock_irqrestore(&brd_lock, flags);
4222 return (sr & SR_TXEMPTY) ? 0 : 1;
4225 /*****************************************************************************/
4228 * Delay for a small amount of time, to give the sc26198 a chance
4229 * to process a command...
4232 static void stl_sc26198wait(struct stlport *portp)
4234 int i;
4236 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4238 if (portp == NULL)
4239 return;
4241 for (i = 0; i < 20; i++)
4242 stl_sc26198getglobreg(portp, TSTR);
4245 /*****************************************************************************/
4248 * If we are TX flow controlled and in IXANY mode then we may
4249 * need to unflow control here. We gotta do this because of the
4250 * automatic flow control modes of the sc26198.
4253 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4255 unsigned char mr0;
4257 mr0 = stl_sc26198getreg(portp, MR0);
4258 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4259 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4260 stl_sc26198wait(portp);
4261 stl_sc26198setreg(portp, MR0, mr0);
4262 clear_bit(ASYI_TXFLOWED, &portp->istate);
4265 /*****************************************************************************/
4268 * Interrupt service routine for sc26198 panels.
4271 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4273 struct stlport *portp;
4274 unsigned int iack;
4276 spin_lock(&brd_lock);
4279 * Work around bug in sc26198 chip... Cannot have A6 address
4280 * line of UART high, else iack will be returned as 0.
4282 outb(0, (iobase + 1));
4284 iack = inb(iobase + XP_IACK);
4285 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4287 if (iack & IVR_RXDATA)
4288 stl_sc26198rxisr(portp, iack);
4289 else if (iack & IVR_TXDATA)
4290 stl_sc26198txisr(portp);
4291 else
4292 stl_sc26198otherisr(portp, iack);
4294 spin_unlock(&brd_lock);
4297 /*****************************************************************************/
4300 * Transmit interrupt handler. This has gotta be fast! Handling TX
4301 * chars is pretty simple, stuff as many as possible from the TX buffer
4302 * into the sc26198 FIFO.
4303 * In practice it is possible that interrupts are enabled but that the
4304 * port has been hung up. Need to handle not having any TX buffer here,
4305 * this is done by using the side effect that head and tail will also
4306 * be NULL if the buffer has been freed.
4309 static void stl_sc26198txisr(struct stlport *portp)
4311 struct tty_struct *tty;
4312 unsigned int ioaddr;
4313 unsigned char mr0;
4314 int len, stlen;
4315 char *head, *tail;
4317 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4319 ioaddr = portp->ioaddr;
4320 head = portp->tx.head;
4321 tail = portp->tx.tail;
4322 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4323 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4324 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4325 set_bit(ASYI_TXLOW, &portp->istate);
4326 tty = tty_port_tty_get(&portp->port);
4327 if (tty) {
4328 tty_wakeup(tty);
4329 tty_kref_put(tty);
4333 if (len == 0) {
4334 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4335 mr0 = inb(ioaddr + XP_DATA);
4336 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4337 portp->imr &= ~IR_TXRDY;
4338 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4339 outb(portp->imr, (ioaddr + XP_DATA));
4340 clear_bit(ASYI_TXBUSY, &portp->istate);
4341 } else {
4342 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4343 outb(mr0, (ioaddr + XP_DATA));
4345 } else {
4346 len = min(len, SC26198_TXFIFOSIZE);
4347 portp->stats.txtotal += len;
4348 stlen = min_t(unsigned int, len,
4349 (portp->tx.buf + STL_TXBUFSIZE) - tail);
4350 outb(GTXFIFO, (ioaddr + XP_ADDR));
4351 outsb((ioaddr + XP_DATA), tail, stlen);
4352 len -= stlen;
4353 tail += stlen;
4354 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4355 tail = portp->tx.buf;
4356 if (len > 0) {
4357 outsb((ioaddr + XP_DATA), tail, len);
4358 tail += len;
4360 portp->tx.tail = tail;
4364 /*****************************************************************************/
4367 * Receive character interrupt handler. Determine if we have good chars
4368 * or bad chars and then process appropriately. Good chars are easy
4369 * just shove the lot into the RX buffer and set all status byte to 0.
4370 * If a bad RX char then process as required. This routine needs to be
4371 * fast! In practice it is possible that we get an interrupt on a port
4372 * that is closed. This can happen on hangups - since they completely
4373 * shutdown a port not in user context. Need to handle this case.
4376 static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4378 struct tty_struct *tty;
4379 unsigned int len, buflen, ioaddr;
4381 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4383 tty = tty_port_tty_get(&portp->port);
4384 ioaddr = portp->ioaddr;
4385 outb(GIBCR, (ioaddr + XP_ADDR));
4386 len = inb(ioaddr + XP_DATA) + 1;
4388 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4389 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4390 len = min_t(unsigned int, len, sizeof(stl_unwanted));
4391 outb(GRXFIFO, (ioaddr + XP_ADDR));
4392 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4393 portp->stats.rxlost += len;
4394 portp->stats.rxtotal += len;
4395 } else {
4396 len = min(len, buflen);
4397 if (len > 0) {
4398 unsigned char *ptr;
4399 outb(GRXFIFO, (ioaddr + XP_ADDR));
4400 tty_prepare_flip_string(tty, &ptr, len);
4401 insb((ioaddr + XP_DATA), ptr, len);
4402 tty_schedule_flip(tty);
4403 portp->stats.rxtotal += len;
4406 } else {
4407 stl_sc26198rxbadchars(portp);
4411 * If we are TX flow controlled and in IXANY mode then we may need
4412 * to unflow control here. We gotta do this because of the automatic
4413 * flow control modes of the sc26198.
4415 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4416 if ((tty != NULL) &&
4417 (tty->termios != NULL) &&
4418 (tty->termios->c_iflag & IXANY)) {
4419 stl_sc26198txunflow(portp, tty);
4422 tty_kref_put(tty);
4425 /*****************************************************************************/
4428 * Process an RX bad character.
4431 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4433 struct tty_struct *tty;
4434 unsigned int ioaddr;
4436 tty = tty_port_tty_get(&portp->port);
4437 ioaddr = portp->ioaddr;
4439 if (status & SR_RXPARITY)
4440 portp->stats.rxparity++;
4441 if (status & SR_RXFRAMING)
4442 portp->stats.rxframing++;
4443 if (status & SR_RXOVERRUN)
4444 portp->stats.rxoverrun++;
4445 if (status & SR_RXBREAK)
4446 portp->stats.rxbreaks++;
4448 if ((tty != NULL) &&
4449 ((portp->rxignoremsk & status) == 0)) {
4450 if (portp->rxmarkmsk & status) {
4451 if (status & SR_RXBREAK) {
4452 status = TTY_BREAK;
4453 if (portp->port.flags & ASYNC_SAK) {
4454 do_SAK(tty);
4455 BRDENABLE(portp->brdnr, portp->pagenr);
4457 } else if (status & SR_RXPARITY)
4458 status = TTY_PARITY;
4459 else if (status & SR_RXFRAMING)
4460 status = TTY_FRAME;
4461 else if(status & SR_RXOVERRUN)
4462 status = TTY_OVERRUN;
4463 else
4464 status = 0;
4465 } else
4466 status = 0;
4468 tty_insert_flip_char(tty, ch, status);
4469 tty_schedule_flip(tty);
4471 if (status == 0)
4472 portp->stats.rxtotal++;
4474 tty_kref_put(tty);
4477 /*****************************************************************************/
4480 * Process all characters in the RX FIFO of the UART. Check all char
4481 * status bytes as well, and process as required. We need to check
4482 * all bytes in the FIFO, in case some more enter the FIFO while we
4483 * are here. To get the exact character error type we need to switch
4484 * into CHAR error mode (that is why we need to make sure we empty
4485 * the FIFO).
4488 static void stl_sc26198rxbadchars(struct stlport *portp)
4490 unsigned char status, mr1;
4491 char ch;
4494 * To get the precise error type for each character we must switch
4495 * back into CHAR error mode.
4497 mr1 = stl_sc26198getreg(portp, MR1);
4498 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4500 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4501 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4502 ch = stl_sc26198getreg(portp, RXFIFO);
4503 stl_sc26198rxbadch(portp, status, ch);
4507 * To get correct interrupt class we must switch back into BLOCK
4508 * error mode.
4510 stl_sc26198setreg(portp, MR1, mr1);
4513 /*****************************************************************************/
4516 * Other interrupt handler. This includes modem signals, flow
4517 * control actions, etc. Most stuff is left to off-level interrupt
4518 * processing time.
4521 static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4523 unsigned char cir, ipr, xisr;
4525 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4527 cir = stl_sc26198getglobreg(portp, CIR);
4529 switch (cir & CIR_SUBTYPEMASK) {
4530 case CIR_SUBCOS:
4531 ipr = stl_sc26198getreg(portp, IPR);
4532 if (ipr & IPR_DCDCHANGE) {
4533 stl_cd_change(portp);
4534 portp->stats.modem++;
4536 break;
4537 case CIR_SUBXONXOFF:
4538 xisr = stl_sc26198getreg(portp, XISR);
4539 if (xisr & XISR_RXXONGOT) {
4540 set_bit(ASYI_TXFLOWED, &portp->istate);
4541 portp->stats.txxoff++;
4543 if (xisr & XISR_RXXOFFGOT) {
4544 clear_bit(ASYI_TXFLOWED, &portp->istate);
4545 portp->stats.txxon++;
4547 break;
4548 case CIR_SUBBREAK:
4549 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4550 stl_sc26198rxbadchars(portp);
4551 break;
4552 default:
4553 break;
4557 static void stl_free_isabrds(void)
4559 struct stlbrd *brdp;
4560 unsigned int i;
4562 for (i = 0; i < stl_nrbrds; i++) {
4563 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4564 continue;
4566 free_irq(brdp->irq, brdp);
4568 stl_cleanup_panels(brdp);
4570 release_region(brdp->ioaddr1, brdp->iosize1);
4571 if (brdp->iosize2 > 0)
4572 release_region(brdp->ioaddr2, brdp->iosize2);
4574 kfree(brdp);
4575 stl_brds[i] = NULL;
4580 * Loadable module initialization stuff.
4582 static int __init stallion_module_init(void)
4584 struct stlbrd *brdp;
4585 struct stlconf conf;
4586 unsigned int i, j;
4587 int retval;
4589 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4591 spin_lock_init(&stallion_lock);
4592 spin_lock_init(&brd_lock);
4594 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4595 if (!stl_serial) {
4596 retval = -ENOMEM;
4597 goto err;
4600 stl_serial->owner = THIS_MODULE;
4601 stl_serial->driver_name = stl_drvname;
4602 stl_serial->name = "ttyE";
4603 stl_serial->major = STL_SERIALMAJOR;
4604 stl_serial->minor_start = 0;
4605 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4606 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4607 stl_serial->init_termios = stl_deftermios;
4608 stl_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4609 tty_set_operations(stl_serial, &stl_ops);
4611 retval = tty_register_driver(stl_serial);
4612 if (retval) {
4613 printk("STALLION: failed to register serial driver\n");
4614 goto err_frtty;
4618 * Find any dynamically supported boards. That is via module load
4619 * line options.
4621 for (i = stl_nrbrds; i < stl_nargs; i++) {
4622 memset(&conf, 0, sizeof(conf));
4623 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
4624 continue;
4625 if ((brdp = stl_allocbrd()) == NULL)
4626 continue;
4627 brdp->brdnr = i;
4628 brdp->brdtype = conf.brdtype;
4629 brdp->ioaddr1 = conf.ioaddr1;
4630 brdp->ioaddr2 = conf.ioaddr2;
4631 brdp->irq = conf.irq;
4632 brdp->irqtype = conf.irqtype;
4633 stl_brds[brdp->brdnr] = brdp;
4634 if (stl_brdinit(brdp)) {
4635 stl_brds[brdp->brdnr] = NULL;
4636 kfree(brdp);
4637 } else {
4638 for (j = 0; j < brdp->nrports; j++)
4639 tty_register_device(stl_serial,
4640 brdp->brdnr * STL_MAXPORTS + j, NULL);
4641 stl_nrbrds = i + 1;
4645 /* this has to be _after_ isa finding because of locking */
4646 retval = pci_register_driver(&stl_pcidriver);
4647 if (retval && stl_nrbrds == 0) {
4648 printk(KERN_ERR "STALLION: can't register pci driver\n");
4649 goto err_unrtty;
4653 * Set up a character driver for per board stuff. This is mainly used
4654 * to do stats ioctls on the ports.
4656 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4657 printk("STALLION: failed to register serial board device\n");
4659 stallion_class = class_create(THIS_MODULE, "staliomem");
4660 if (IS_ERR(stallion_class))
4661 printk("STALLION: failed to create class\n");
4662 for (i = 0; i < 4; i++)
4663 device_create(stallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4664 NULL, "staliomem%d", i);
4666 return 0;
4667 err_unrtty:
4668 tty_unregister_driver(stl_serial);
4669 err_frtty:
4670 put_tty_driver(stl_serial);
4671 err:
4672 return retval;
4675 static void __exit stallion_module_exit(void)
4677 struct stlbrd *brdp;
4678 unsigned int i, j;
4680 pr_debug("cleanup_module()\n");
4682 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4683 stl_drvversion);
4686 * Free up all allocated resources used by the ports. This includes
4687 * memory and interrupts. As part of this process we will also do
4688 * a hangup on every open port - to try to flush out any processes
4689 * hanging onto ports.
4691 for (i = 0; i < stl_nrbrds; i++) {
4692 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4693 continue;
4694 for (j = 0; j < brdp->nrports; j++)
4695 tty_unregister_device(stl_serial,
4696 brdp->brdnr * STL_MAXPORTS + j);
4699 for (i = 0; i < 4; i++)
4700 device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4701 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4702 class_destroy(stallion_class);
4704 pci_unregister_driver(&stl_pcidriver);
4706 stl_free_isabrds();
4708 tty_unregister_driver(stl_serial);
4709 put_tty_driver(stl_serial);
4712 module_init(stallion_module_init);
4713 module_exit(stallion_module_exit);
4715 MODULE_AUTHOR("Greg Ungerer");
4716 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4717 MODULE_LICENSE("GPL");