mm: report the MMU pagesize in /proc/pid/smaps
[linux-2.6/mini2440.git] / mm / hugetlb.c
blob9595278b5ab47d7d093bed64113519799672db78
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
26 #include <linux/hugetlb.h>
27 #include "internal.h"
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
37 __initdata LIST_HEAD(huge_boot_pages);
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 static DEFINE_SPINLOCK(hugetlb_lock);
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
66 struct file_region {
67 struct list_head link;
68 long from;
69 long to;
72 static long region_add(struct list_head *head, long f, long t)
74 struct file_region *rg, *nrg, *trg;
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
108 static long region_chg(struct list_head *head, long f, long t)
110 struct file_region *rg, *nrg;
111 long chg = 0;
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
130 return t - f;
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
152 chg -= rg->to - rg->from;
154 return chg;
157 static long region_truncate(struct list_head *head, long end)
159 struct file_region *rg, *trg;
160 long chg = 0;
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
184 return chg;
187 static long region_count(struct list_head *head, long f, long t)
189 struct file_region *rg;
190 long chg = 0;
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
205 chg += seg_to - seg_from;
208 return chg;
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228 struct hstate *hstate;
230 if (!is_vm_hugetlb_page(vma))
231 return PAGE_SIZE;
233 hstate = hstate_vma(vma);
235 return 1UL << (hstate->order + PAGE_SHIFT);
239 * Return the page size being used by the MMU to back a VMA. In the majority
240 * of cases, the page size used by the kernel matches the MMU size. On
241 * architectures where it differs, an architecture-specific version of this
242 * function is required.
244 #ifndef vma_mmu_pagesize
245 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
247 return vma_kernel_pagesize(vma);
249 #endif
252 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
253 * bits of the reservation map pointer, which are always clear due to
254 * alignment.
256 #define HPAGE_RESV_OWNER (1UL << 0)
257 #define HPAGE_RESV_UNMAPPED (1UL << 1)
258 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
261 * These helpers are used to track how many pages are reserved for
262 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
263 * is guaranteed to have their future faults succeed.
265 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
266 * the reserve counters are updated with the hugetlb_lock held. It is safe
267 * to reset the VMA at fork() time as it is not in use yet and there is no
268 * chance of the global counters getting corrupted as a result of the values.
270 * The private mapping reservation is represented in a subtly different
271 * manner to a shared mapping. A shared mapping has a region map associated
272 * with the underlying file, this region map represents the backing file
273 * pages which have ever had a reservation assigned which this persists even
274 * after the page is instantiated. A private mapping has a region map
275 * associated with the original mmap which is attached to all VMAs which
276 * reference it, this region map represents those offsets which have consumed
277 * reservation ie. where pages have been instantiated.
279 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
281 return (unsigned long)vma->vm_private_data;
284 static void set_vma_private_data(struct vm_area_struct *vma,
285 unsigned long value)
287 vma->vm_private_data = (void *)value;
290 struct resv_map {
291 struct kref refs;
292 struct list_head regions;
295 static struct resv_map *resv_map_alloc(void)
297 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
298 if (!resv_map)
299 return NULL;
301 kref_init(&resv_map->refs);
302 INIT_LIST_HEAD(&resv_map->regions);
304 return resv_map;
307 static void resv_map_release(struct kref *ref)
309 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
311 /* Clear out any active regions before we release the map. */
312 region_truncate(&resv_map->regions, 0);
313 kfree(resv_map);
316 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318 VM_BUG_ON(!is_vm_hugetlb_page(vma));
319 if (!(vma->vm_flags & VM_SHARED))
320 return (struct resv_map *)(get_vma_private_data(vma) &
321 ~HPAGE_RESV_MASK);
322 return NULL;
325 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327 VM_BUG_ON(!is_vm_hugetlb_page(vma));
328 VM_BUG_ON(vma->vm_flags & VM_SHARED);
330 set_vma_private_data(vma, (get_vma_private_data(vma) &
331 HPAGE_RESV_MASK) | (unsigned long)map);
334 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
336 VM_BUG_ON(!is_vm_hugetlb_page(vma));
337 VM_BUG_ON(vma->vm_flags & VM_SHARED);
339 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
342 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
344 VM_BUG_ON(!is_vm_hugetlb_page(vma));
346 return (get_vma_private_data(vma) & flag) != 0;
349 /* Decrement the reserved pages in the hugepage pool by one */
350 static void decrement_hugepage_resv_vma(struct hstate *h,
351 struct vm_area_struct *vma)
353 if (vma->vm_flags & VM_NORESERVE)
354 return;
356 if (vma->vm_flags & VM_SHARED) {
357 /* Shared mappings always use reserves */
358 h->resv_huge_pages--;
359 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361 * Only the process that called mmap() has reserves for
362 * private mappings.
364 h->resv_huge_pages--;
368 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
369 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
371 VM_BUG_ON(!is_vm_hugetlb_page(vma));
372 if (!(vma->vm_flags & VM_SHARED))
373 vma->vm_private_data = (void *)0;
376 /* Returns true if the VMA has associated reserve pages */
377 static int vma_has_reserves(struct vm_area_struct *vma)
379 if (vma->vm_flags & VM_SHARED)
380 return 1;
381 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
382 return 1;
383 return 0;
386 static void clear_gigantic_page(struct page *page,
387 unsigned long addr, unsigned long sz)
389 int i;
390 struct page *p = page;
392 might_sleep();
393 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
394 cond_resched();
395 clear_user_highpage(p, addr + i * PAGE_SIZE);
398 static void clear_huge_page(struct page *page,
399 unsigned long addr, unsigned long sz)
401 int i;
403 if (unlikely(sz > MAX_ORDER_NR_PAGES))
404 return clear_gigantic_page(page, addr, sz);
406 might_sleep();
407 for (i = 0; i < sz/PAGE_SIZE; i++) {
408 cond_resched();
409 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413 static void copy_gigantic_page(struct page *dst, struct page *src,
414 unsigned long addr, struct vm_area_struct *vma)
416 int i;
417 struct hstate *h = hstate_vma(vma);
418 struct page *dst_base = dst;
419 struct page *src_base = src;
420 might_sleep();
421 for (i = 0; i < pages_per_huge_page(h); ) {
422 cond_resched();
423 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
425 i++;
426 dst = mem_map_next(dst, dst_base, i);
427 src = mem_map_next(src, src_base, i);
430 static void copy_huge_page(struct page *dst, struct page *src,
431 unsigned long addr, struct vm_area_struct *vma)
433 int i;
434 struct hstate *h = hstate_vma(vma);
436 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES))
437 return copy_gigantic_page(dst, src, addr, vma);
439 might_sleep();
440 for (i = 0; i < pages_per_huge_page(h); i++) {
441 cond_resched();
442 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
446 static void enqueue_huge_page(struct hstate *h, struct page *page)
448 int nid = page_to_nid(page);
449 list_add(&page->lru, &h->hugepage_freelists[nid]);
450 h->free_huge_pages++;
451 h->free_huge_pages_node[nid]++;
454 static struct page *dequeue_huge_page(struct hstate *h)
456 int nid;
457 struct page *page = NULL;
459 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
460 if (!list_empty(&h->hugepage_freelists[nid])) {
461 page = list_entry(h->hugepage_freelists[nid].next,
462 struct page, lru);
463 list_del(&page->lru);
464 h->free_huge_pages--;
465 h->free_huge_pages_node[nid]--;
466 break;
469 return page;
472 static struct page *dequeue_huge_page_vma(struct hstate *h,
473 struct vm_area_struct *vma,
474 unsigned long address, int avoid_reserve)
476 int nid;
477 struct page *page = NULL;
478 struct mempolicy *mpol;
479 nodemask_t *nodemask;
480 struct zonelist *zonelist = huge_zonelist(vma, address,
481 htlb_alloc_mask, &mpol, &nodemask);
482 struct zone *zone;
483 struct zoneref *z;
486 * A child process with MAP_PRIVATE mappings created by their parent
487 * have no page reserves. This check ensures that reservations are
488 * not "stolen". The child may still get SIGKILLed
490 if (!vma_has_reserves(vma) &&
491 h->free_huge_pages - h->resv_huge_pages == 0)
492 return NULL;
494 /* If reserves cannot be used, ensure enough pages are in the pool */
495 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
496 return NULL;
498 for_each_zone_zonelist_nodemask(zone, z, zonelist,
499 MAX_NR_ZONES - 1, nodemask) {
500 nid = zone_to_nid(zone);
501 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
502 !list_empty(&h->hugepage_freelists[nid])) {
503 page = list_entry(h->hugepage_freelists[nid].next,
504 struct page, lru);
505 list_del(&page->lru);
506 h->free_huge_pages--;
507 h->free_huge_pages_node[nid]--;
509 if (!avoid_reserve)
510 decrement_hugepage_resv_vma(h, vma);
512 break;
515 mpol_cond_put(mpol);
516 return page;
519 static void update_and_free_page(struct hstate *h, struct page *page)
521 int i;
523 VM_BUG_ON(h->order >= MAX_ORDER);
525 h->nr_huge_pages--;
526 h->nr_huge_pages_node[page_to_nid(page)]--;
527 for (i = 0; i < pages_per_huge_page(h); i++) {
528 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
529 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
530 1 << PG_private | 1<< PG_writeback);
532 set_compound_page_dtor(page, NULL);
533 set_page_refcounted(page);
534 arch_release_hugepage(page);
535 __free_pages(page, huge_page_order(h));
538 struct hstate *size_to_hstate(unsigned long size)
540 struct hstate *h;
542 for_each_hstate(h) {
543 if (huge_page_size(h) == size)
544 return h;
546 return NULL;
549 static void free_huge_page(struct page *page)
552 * Can't pass hstate in here because it is called from the
553 * compound page destructor.
555 struct hstate *h = page_hstate(page);
556 int nid = page_to_nid(page);
557 struct address_space *mapping;
559 mapping = (struct address_space *) page_private(page);
560 set_page_private(page, 0);
561 BUG_ON(page_count(page));
562 INIT_LIST_HEAD(&page->lru);
564 spin_lock(&hugetlb_lock);
565 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
566 update_and_free_page(h, page);
567 h->surplus_huge_pages--;
568 h->surplus_huge_pages_node[nid]--;
569 } else {
570 enqueue_huge_page(h, page);
572 spin_unlock(&hugetlb_lock);
573 if (mapping)
574 hugetlb_put_quota(mapping, 1);
578 * Increment or decrement surplus_huge_pages. Keep node-specific counters
579 * balanced by operating on them in a round-robin fashion.
580 * Returns 1 if an adjustment was made.
582 static int adjust_pool_surplus(struct hstate *h, int delta)
584 static int prev_nid;
585 int nid = prev_nid;
586 int ret = 0;
588 VM_BUG_ON(delta != -1 && delta != 1);
589 do {
590 nid = next_node(nid, node_online_map);
591 if (nid == MAX_NUMNODES)
592 nid = first_node(node_online_map);
594 /* To shrink on this node, there must be a surplus page */
595 if (delta < 0 && !h->surplus_huge_pages_node[nid])
596 continue;
597 /* Surplus cannot exceed the total number of pages */
598 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
599 h->nr_huge_pages_node[nid])
600 continue;
602 h->surplus_huge_pages += delta;
603 h->surplus_huge_pages_node[nid] += delta;
604 ret = 1;
605 break;
606 } while (nid != prev_nid);
608 prev_nid = nid;
609 return ret;
612 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
614 set_compound_page_dtor(page, free_huge_page);
615 spin_lock(&hugetlb_lock);
616 h->nr_huge_pages++;
617 h->nr_huge_pages_node[nid]++;
618 spin_unlock(&hugetlb_lock);
619 put_page(page); /* free it into the hugepage allocator */
622 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
624 struct page *page;
626 if (h->order >= MAX_ORDER)
627 return NULL;
629 page = alloc_pages_node(nid,
630 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
631 __GFP_REPEAT|__GFP_NOWARN,
632 huge_page_order(h));
633 if (page) {
634 if (arch_prepare_hugepage(page)) {
635 __free_pages(page, huge_page_order(h));
636 return NULL;
638 prep_new_huge_page(h, page, nid);
641 return page;
645 * Use a helper variable to find the next node and then
646 * copy it back to hugetlb_next_nid afterwards:
647 * otherwise there's a window in which a racer might
648 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
649 * But we don't need to use a spin_lock here: it really
650 * doesn't matter if occasionally a racer chooses the
651 * same nid as we do. Move nid forward in the mask even
652 * if we just successfully allocated a hugepage so that
653 * the next caller gets hugepages on the next node.
655 static int hstate_next_node(struct hstate *h)
657 int next_nid;
658 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
659 if (next_nid == MAX_NUMNODES)
660 next_nid = first_node(node_online_map);
661 h->hugetlb_next_nid = next_nid;
662 return next_nid;
665 static int alloc_fresh_huge_page(struct hstate *h)
667 struct page *page;
668 int start_nid;
669 int next_nid;
670 int ret = 0;
672 start_nid = h->hugetlb_next_nid;
674 do {
675 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
676 if (page)
677 ret = 1;
678 next_nid = hstate_next_node(h);
679 } while (!page && h->hugetlb_next_nid != start_nid);
681 if (ret)
682 count_vm_event(HTLB_BUDDY_PGALLOC);
683 else
684 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686 return ret;
689 static struct page *alloc_buddy_huge_page(struct hstate *h,
690 struct vm_area_struct *vma, unsigned long address)
692 struct page *page;
693 unsigned int nid;
695 if (h->order >= MAX_ORDER)
696 return NULL;
699 * Assume we will successfully allocate the surplus page to
700 * prevent racing processes from causing the surplus to exceed
701 * overcommit
703 * This however introduces a different race, where a process B
704 * tries to grow the static hugepage pool while alloc_pages() is
705 * called by process A. B will only examine the per-node
706 * counters in determining if surplus huge pages can be
707 * converted to normal huge pages in adjust_pool_surplus(). A
708 * won't be able to increment the per-node counter, until the
709 * lock is dropped by B, but B doesn't drop hugetlb_lock until
710 * no more huge pages can be converted from surplus to normal
711 * state (and doesn't try to convert again). Thus, we have a
712 * case where a surplus huge page exists, the pool is grown, and
713 * the surplus huge page still exists after, even though it
714 * should just have been converted to a normal huge page. This
715 * does not leak memory, though, as the hugepage will be freed
716 * once it is out of use. It also does not allow the counters to
717 * go out of whack in adjust_pool_surplus() as we don't modify
718 * the node values until we've gotten the hugepage and only the
719 * per-node value is checked there.
721 spin_lock(&hugetlb_lock);
722 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
723 spin_unlock(&hugetlb_lock);
724 return NULL;
725 } else {
726 h->nr_huge_pages++;
727 h->surplus_huge_pages++;
729 spin_unlock(&hugetlb_lock);
731 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
732 __GFP_REPEAT|__GFP_NOWARN,
733 huge_page_order(h));
735 if (page && arch_prepare_hugepage(page)) {
736 __free_pages(page, huge_page_order(h));
737 return NULL;
740 spin_lock(&hugetlb_lock);
741 if (page) {
743 * This page is now managed by the hugetlb allocator and has
744 * no users -- drop the buddy allocator's reference.
746 put_page_testzero(page);
747 VM_BUG_ON(page_count(page));
748 nid = page_to_nid(page);
749 set_compound_page_dtor(page, free_huge_page);
751 * We incremented the global counters already
753 h->nr_huge_pages_node[nid]++;
754 h->surplus_huge_pages_node[nid]++;
755 __count_vm_event(HTLB_BUDDY_PGALLOC);
756 } else {
757 h->nr_huge_pages--;
758 h->surplus_huge_pages--;
759 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
761 spin_unlock(&hugetlb_lock);
763 return page;
767 * Increase the hugetlb pool such that it can accomodate a reservation
768 * of size 'delta'.
770 static int gather_surplus_pages(struct hstate *h, int delta)
772 struct list_head surplus_list;
773 struct page *page, *tmp;
774 int ret, i;
775 int needed, allocated;
777 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
778 if (needed <= 0) {
779 h->resv_huge_pages += delta;
780 return 0;
783 allocated = 0;
784 INIT_LIST_HEAD(&surplus_list);
786 ret = -ENOMEM;
787 retry:
788 spin_unlock(&hugetlb_lock);
789 for (i = 0; i < needed; i++) {
790 page = alloc_buddy_huge_page(h, NULL, 0);
791 if (!page) {
793 * We were not able to allocate enough pages to
794 * satisfy the entire reservation so we free what
795 * we've allocated so far.
797 spin_lock(&hugetlb_lock);
798 needed = 0;
799 goto free;
802 list_add(&page->lru, &surplus_list);
804 allocated += needed;
807 * After retaking hugetlb_lock, we need to recalculate 'needed'
808 * because either resv_huge_pages or free_huge_pages may have changed.
810 spin_lock(&hugetlb_lock);
811 needed = (h->resv_huge_pages + delta) -
812 (h->free_huge_pages + allocated);
813 if (needed > 0)
814 goto retry;
817 * The surplus_list now contains _at_least_ the number of extra pages
818 * needed to accomodate the reservation. Add the appropriate number
819 * of pages to the hugetlb pool and free the extras back to the buddy
820 * allocator. Commit the entire reservation here to prevent another
821 * process from stealing the pages as they are added to the pool but
822 * before they are reserved.
824 needed += allocated;
825 h->resv_huge_pages += delta;
826 ret = 0;
827 free:
828 /* Free the needed pages to the hugetlb pool */
829 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
830 if ((--needed) < 0)
831 break;
832 list_del(&page->lru);
833 enqueue_huge_page(h, page);
836 /* Free unnecessary surplus pages to the buddy allocator */
837 if (!list_empty(&surplus_list)) {
838 spin_unlock(&hugetlb_lock);
839 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
840 list_del(&page->lru);
842 * The page has a reference count of zero already, so
843 * call free_huge_page directly instead of using
844 * put_page. This must be done with hugetlb_lock
845 * unlocked which is safe because free_huge_page takes
846 * hugetlb_lock before deciding how to free the page.
848 free_huge_page(page);
850 spin_lock(&hugetlb_lock);
853 return ret;
857 * When releasing a hugetlb pool reservation, any surplus pages that were
858 * allocated to satisfy the reservation must be explicitly freed if they were
859 * never used.
861 static void return_unused_surplus_pages(struct hstate *h,
862 unsigned long unused_resv_pages)
864 static int nid = -1;
865 struct page *page;
866 unsigned long nr_pages;
869 * We want to release as many surplus pages as possible, spread
870 * evenly across all nodes. Iterate across all nodes until we
871 * can no longer free unreserved surplus pages. This occurs when
872 * the nodes with surplus pages have no free pages.
874 unsigned long remaining_iterations = num_online_nodes();
876 /* Uncommit the reservation */
877 h->resv_huge_pages -= unused_resv_pages;
879 /* Cannot return gigantic pages currently */
880 if (h->order >= MAX_ORDER)
881 return;
883 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
885 while (remaining_iterations-- && nr_pages) {
886 nid = next_node(nid, node_online_map);
887 if (nid == MAX_NUMNODES)
888 nid = first_node(node_online_map);
890 if (!h->surplus_huge_pages_node[nid])
891 continue;
893 if (!list_empty(&h->hugepage_freelists[nid])) {
894 page = list_entry(h->hugepage_freelists[nid].next,
895 struct page, lru);
896 list_del(&page->lru);
897 update_and_free_page(h, page);
898 h->free_huge_pages--;
899 h->free_huge_pages_node[nid]--;
900 h->surplus_huge_pages--;
901 h->surplus_huge_pages_node[nid]--;
902 nr_pages--;
903 remaining_iterations = num_online_nodes();
909 * Determine if the huge page at addr within the vma has an associated
910 * reservation. Where it does not we will need to logically increase
911 * reservation and actually increase quota before an allocation can occur.
912 * Where any new reservation would be required the reservation change is
913 * prepared, but not committed. Once the page has been quota'd allocated
914 * an instantiated the change should be committed via vma_commit_reservation.
915 * No action is required on failure.
917 static int vma_needs_reservation(struct hstate *h,
918 struct vm_area_struct *vma, unsigned long addr)
920 struct address_space *mapping = vma->vm_file->f_mapping;
921 struct inode *inode = mapping->host;
923 if (vma->vm_flags & VM_SHARED) {
924 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
925 return region_chg(&inode->i_mapping->private_list,
926 idx, idx + 1);
928 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
929 return 1;
931 } else {
932 int err;
933 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
934 struct resv_map *reservations = vma_resv_map(vma);
936 err = region_chg(&reservations->regions, idx, idx + 1);
937 if (err < 0)
938 return err;
939 return 0;
942 static void vma_commit_reservation(struct hstate *h,
943 struct vm_area_struct *vma, unsigned long addr)
945 struct address_space *mapping = vma->vm_file->f_mapping;
946 struct inode *inode = mapping->host;
948 if (vma->vm_flags & VM_SHARED) {
949 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
950 region_add(&inode->i_mapping->private_list, idx, idx + 1);
952 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
953 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
954 struct resv_map *reservations = vma_resv_map(vma);
956 /* Mark this page used in the map. */
957 region_add(&reservations->regions, idx, idx + 1);
961 static struct page *alloc_huge_page(struct vm_area_struct *vma,
962 unsigned long addr, int avoid_reserve)
964 struct hstate *h = hstate_vma(vma);
965 struct page *page;
966 struct address_space *mapping = vma->vm_file->f_mapping;
967 struct inode *inode = mapping->host;
968 unsigned int chg;
971 * Processes that did not create the mapping will have no reserves and
972 * will not have accounted against quota. Check that the quota can be
973 * made before satisfying the allocation
974 * MAP_NORESERVE mappings may also need pages and quota allocated
975 * if no reserve mapping overlaps.
977 chg = vma_needs_reservation(h, vma, addr);
978 if (chg < 0)
979 return ERR_PTR(chg);
980 if (chg)
981 if (hugetlb_get_quota(inode->i_mapping, chg))
982 return ERR_PTR(-ENOSPC);
984 spin_lock(&hugetlb_lock);
985 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
986 spin_unlock(&hugetlb_lock);
988 if (!page) {
989 page = alloc_buddy_huge_page(h, vma, addr);
990 if (!page) {
991 hugetlb_put_quota(inode->i_mapping, chg);
992 return ERR_PTR(-VM_FAULT_OOM);
996 set_page_refcounted(page);
997 set_page_private(page, (unsigned long) mapping);
999 vma_commit_reservation(h, vma, addr);
1001 return page;
1004 __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
1006 struct huge_bootmem_page *m;
1007 int nr_nodes = nodes_weight(node_online_map);
1009 while (nr_nodes) {
1010 void *addr;
1012 addr = __alloc_bootmem_node_nopanic(
1013 NODE_DATA(h->hugetlb_next_nid),
1014 huge_page_size(h), huge_page_size(h), 0);
1016 if (addr) {
1018 * Use the beginning of the huge page to store the
1019 * huge_bootmem_page struct (until gather_bootmem
1020 * puts them into the mem_map).
1022 m = addr;
1023 if (m)
1024 goto found;
1026 hstate_next_node(h);
1027 nr_nodes--;
1029 return 0;
1031 found:
1032 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1033 /* Put them into a private list first because mem_map is not up yet */
1034 list_add(&m->list, &huge_boot_pages);
1035 m->hstate = h;
1036 return 1;
1039 static void prep_compound_huge_page(struct page *page, int order)
1041 if (unlikely(order > (MAX_ORDER - 1)))
1042 prep_compound_gigantic_page(page, order);
1043 else
1044 prep_compound_page(page, order);
1047 /* Put bootmem huge pages into the standard lists after mem_map is up */
1048 static void __init gather_bootmem_prealloc(void)
1050 struct huge_bootmem_page *m;
1052 list_for_each_entry(m, &huge_boot_pages, list) {
1053 struct page *page = virt_to_page(m);
1054 struct hstate *h = m->hstate;
1055 __ClearPageReserved(page);
1056 WARN_ON(page_count(page) != 1);
1057 prep_compound_huge_page(page, h->order);
1058 prep_new_huge_page(h, page, page_to_nid(page));
1062 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1064 unsigned long i;
1066 for (i = 0; i < h->max_huge_pages; ++i) {
1067 if (h->order >= MAX_ORDER) {
1068 if (!alloc_bootmem_huge_page(h))
1069 break;
1070 } else if (!alloc_fresh_huge_page(h))
1071 break;
1073 h->max_huge_pages = i;
1076 static void __init hugetlb_init_hstates(void)
1078 struct hstate *h;
1080 for_each_hstate(h) {
1081 /* oversize hugepages were init'ed in early boot */
1082 if (h->order < MAX_ORDER)
1083 hugetlb_hstate_alloc_pages(h);
1087 static char * __init memfmt(char *buf, unsigned long n)
1089 if (n >= (1UL << 30))
1090 sprintf(buf, "%lu GB", n >> 30);
1091 else if (n >= (1UL << 20))
1092 sprintf(buf, "%lu MB", n >> 20);
1093 else
1094 sprintf(buf, "%lu KB", n >> 10);
1095 return buf;
1098 static void __init report_hugepages(void)
1100 struct hstate *h;
1102 for_each_hstate(h) {
1103 char buf[32];
1104 printk(KERN_INFO "HugeTLB registered %s page size, "
1105 "pre-allocated %ld pages\n",
1106 memfmt(buf, huge_page_size(h)),
1107 h->free_huge_pages);
1111 #ifdef CONFIG_HIGHMEM
1112 static void try_to_free_low(struct hstate *h, unsigned long count)
1114 int i;
1116 if (h->order >= MAX_ORDER)
1117 return;
1119 for (i = 0; i < MAX_NUMNODES; ++i) {
1120 struct page *page, *next;
1121 struct list_head *freel = &h->hugepage_freelists[i];
1122 list_for_each_entry_safe(page, next, freel, lru) {
1123 if (count >= h->nr_huge_pages)
1124 return;
1125 if (PageHighMem(page))
1126 continue;
1127 list_del(&page->lru);
1128 update_and_free_page(h, page);
1129 h->free_huge_pages--;
1130 h->free_huge_pages_node[page_to_nid(page)]--;
1134 #else
1135 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1138 #endif
1140 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1141 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1143 unsigned long min_count, ret;
1145 if (h->order >= MAX_ORDER)
1146 return h->max_huge_pages;
1149 * Increase the pool size
1150 * First take pages out of surplus state. Then make up the
1151 * remaining difference by allocating fresh huge pages.
1153 * We might race with alloc_buddy_huge_page() here and be unable
1154 * to convert a surplus huge page to a normal huge page. That is
1155 * not critical, though, it just means the overall size of the
1156 * pool might be one hugepage larger than it needs to be, but
1157 * within all the constraints specified by the sysctls.
1159 spin_lock(&hugetlb_lock);
1160 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1161 if (!adjust_pool_surplus(h, -1))
1162 break;
1165 while (count > persistent_huge_pages(h)) {
1167 * If this allocation races such that we no longer need the
1168 * page, free_huge_page will handle it by freeing the page
1169 * and reducing the surplus.
1171 spin_unlock(&hugetlb_lock);
1172 ret = alloc_fresh_huge_page(h);
1173 spin_lock(&hugetlb_lock);
1174 if (!ret)
1175 goto out;
1180 * Decrease the pool size
1181 * First return free pages to the buddy allocator (being careful
1182 * to keep enough around to satisfy reservations). Then place
1183 * pages into surplus state as needed so the pool will shrink
1184 * to the desired size as pages become free.
1186 * By placing pages into the surplus state independent of the
1187 * overcommit value, we are allowing the surplus pool size to
1188 * exceed overcommit. There are few sane options here. Since
1189 * alloc_buddy_huge_page() is checking the global counter,
1190 * though, we'll note that we're not allowed to exceed surplus
1191 * and won't grow the pool anywhere else. Not until one of the
1192 * sysctls are changed, or the surplus pages go out of use.
1194 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1195 min_count = max(count, min_count);
1196 try_to_free_low(h, min_count);
1197 while (min_count < persistent_huge_pages(h)) {
1198 struct page *page = dequeue_huge_page(h);
1199 if (!page)
1200 break;
1201 update_and_free_page(h, page);
1203 while (count < persistent_huge_pages(h)) {
1204 if (!adjust_pool_surplus(h, 1))
1205 break;
1207 out:
1208 ret = persistent_huge_pages(h);
1209 spin_unlock(&hugetlb_lock);
1210 return ret;
1213 #define HSTATE_ATTR_RO(_name) \
1214 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1216 #define HSTATE_ATTR(_name) \
1217 static struct kobj_attribute _name##_attr = \
1218 __ATTR(_name, 0644, _name##_show, _name##_store)
1220 static struct kobject *hugepages_kobj;
1221 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1223 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1225 int i;
1226 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1227 if (hstate_kobjs[i] == kobj)
1228 return &hstates[i];
1229 BUG();
1230 return NULL;
1233 static ssize_t nr_hugepages_show(struct kobject *kobj,
1234 struct kobj_attribute *attr, char *buf)
1236 struct hstate *h = kobj_to_hstate(kobj);
1237 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1239 static ssize_t nr_hugepages_store(struct kobject *kobj,
1240 struct kobj_attribute *attr, const char *buf, size_t count)
1242 int err;
1243 unsigned long input;
1244 struct hstate *h = kobj_to_hstate(kobj);
1246 err = strict_strtoul(buf, 10, &input);
1247 if (err)
1248 return 0;
1250 h->max_huge_pages = set_max_huge_pages(h, input);
1252 return count;
1254 HSTATE_ATTR(nr_hugepages);
1256 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1257 struct kobj_attribute *attr, char *buf)
1259 struct hstate *h = kobj_to_hstate(kobj);
1260 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1262 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1263 struct kobj_attribute *attr, const char *buf, size_t count)
1265 int err;
1266 unsigned long input;
1267 struct hstate *h = kobj_to_hstate(kobj);
1269 err = strict_strtoul(buf, 10, &input);
1270 if (err)
1271 return 0;
1273 spin_lock(&hugetlb_lock);
1274 h->nr_overcommit_huge_pages = input;
1275 spin_unlock(&hugetlb_lock);
1277 return count;
1279 HSTATE_ATTR(nr_overcommit_hugepages);
1281 static ssize_t free_hugepages_show(struct kobject *kobj,
1282 struct kobj_attribute *attr, char *buf)
1284 struct hstate *h = kobj_to_hstate(kobj);
1285 return sprintf(buf, "%lu\n", h->free_huge_pages);
1287 HSTATE_ATTR_RO(free_hugepages);
1289 static ssize_t resv_hugepages_show(struct kobject *kobj,
1290 struct kobj_attribute *attr, char *buf)
1292 struct hstate *h = kobj_to_hstate(kobj);
1293 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1295 HSTATE_ATTR_RO(resv_hugepages);
1297 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1298 struct kobj_attribute *attr, char *buf)
1300 struct hstate *h = kobj_to_hstate(kobj);
1301 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1303 HSTATE_ATTR_RO(surplus_hugepages);
1305 static struct attribute *hstate_attrs[] = {
1306 &nr_hugepages_attr.attr,
1307 &nr_overcommit_hugepages_attr.attr,
1308 &free_hugepages_attr.attr,
1309 &resv_hugepages_attr.attr,
1310 &surplus_hugepages_attr.attr,
1311 NULL,
1314 static struct attribute_group hstate_attr_group = {
1315 .attrs = hstate_attrs,
1318 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1320 int retval;
1322 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1323 hugepages_kobj);
1324 if (!hstate_kobjs[h - hstates])
1325 return -ENOMEM;
1327 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1328 &hstate_attr_group);
1329 if (retval)
1330 kobject_put(hstate_kobjs[h - hstates]);
1332 return retval;
1335 static void __init hugetlb_sysfs_init(void)
1337 struct hstate *h;
1338 int err;
1340 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1341 if (!hugepages_kobj)
1342 return;
1344 for_each_hstate(h) {
1345 err = hugetlb_sysfs_add_hstate(h);
1346 if (err)
1347 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1348 h->name);
1352 static void __exit hugetlb_exit(void)
1354 struct hstate *h;
1356 for_each_hstate(h) {
1357 kobject_put(hstate_kobjs[h - hstates]);
1360 kobject_put(hugepages_kobj);
1362 module_exit(hugetlb_exit);
1364 static int __init hugetlb_init(void)
1366 /* Some platform decide whether they support huge pages at boot
1367 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1368 * there is no such support
1370 if (HPAGE_SHIFT == 0)
1371 return 0;
1373 if (!size_to_hstate(default_hstate_size)) {
1374 default_hstate_size = HPAGE_SIZE;
1375 if (!size_to_hstate(default_hstate_size))
1376 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1378 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1379 if (default_hstate_max_huge_pages)
1380 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1382 hugetlb_init_hstates();
1384 gather_bootmem_prealloc();
1386 report_hugepages();
1388 hugetlb_sysfs_init();
1390 return 0;
1392 module_init(hugetlb_init);
1394 /* Should be called on processing a hugepagesz=... option */
1395 void __init hugetlb_add_hstate(unsigned order)
1397 struct hstate *h;
1398 unsigned long i;
1400 if (size_to_hstate(PAGE_SIZE << order)) {
1401 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1402 return;
1404 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1405 BUG_ON(order == 0);
1406 h = &hstates[max_hstate++];
1407 h->order = order;
1408 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1409 h->nr_huge_pages = 0;
1410 h->free_huge_pages = 0;
1411 for (i = 0; i < MAX_NUMNODES; ++i)
1412 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1413 h->hugetlb_next_nid = first_node(node_online_map);
1414 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1415 huge_page_size(h)/1024);
1417 parsed_hstate = h;
1420 static int __init hugetlb_nrpages_setup(char *s)
1422 unsigned long *mhp;
1423 static unsigned long *last_mhp;
1426 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1427 * so this hugepages= parameter goes to the "default hstate".
1429 if (!max_hstate)
1430 mhp = &default_hstate_max_huge_pages;
1431 else
1432 mhp = &parsed_hstate->max_huge_pages;
1434 if (mhp == last_mhp) {
1435 printk(KERN_WARNING "hugepages= specified twice without "
1436 "interleaving hugepagesz=, ignoring\n");
1437 return 1;
1440 if (sscanf(s, "%lu", mhp) <= 0)
1441 *mhp = 0;
1444 * Global state is always initialized later in hugetlb_init.
1445 * But we need to allocate >= MAX_ORDER hstates here early to still
1446 * use the bootmem allocator.
1448 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1449 hugetlb_hstate_alloc_pages(parsed_hstate);
1451 last_mhp = mhp;
1453 return 1;
1455 __setup("hugepages=", hugetlb_nrpages_setup);
1457 static int __init hugetlb_default_setup(char *s)
1459 default_hstate_size = memparse(s, &s);
1460 return 1;
1462 __setup("default_hugepagesz=", hugetlb_default_setup);
1464 static unsigned int cpuset_mems_nr(unsigned int *array)
1466 int node;
1467 unsigned int nr = 0;
1469 for_each_node_mask(node, cpuset_current_mems_allowed)
1470 nr += array[node];
1472 return nr;
1475 #ifdef CONFIG_SYSCTL
1476 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1477 struct file *file, void __user *buffer,
1478 size_t *length, loff_t *ppos)
1480 struct hstate *h = &default_hstate;
1481 unsigned long tmp;
1483 if (!write)
1484 tmp = h->max_huge_pages;
1486 table->data = &tmp;
1487 table->maxlen = sizeof(unsigned long);
1488 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1490 if (write)
1491 h->max_huge_pages = set_max_huge_pages(h, tmp);
1493 return 0;
1496 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1497 struct file *file, void __user *buffer,
1498 size_t *length, loff_t *ppos)
1500 proc_dointvec(table, write, file, buffer, length, ppos);
1501 if (hugepages_treat_as_movable)
1502 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1503 else
1504 htlb_alloc_mask = GFP_HIGHUSER;
1505 return 0;
1508 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1509 struct file *file, void __user *buffer,
1510 size_t *length, loff_t *ppos)
1512 struct hstate *h = &default_hstate;
1513 unsigned long tmp;
1515 if (!write)
1516 tmp = h->nr_overcommit_huge_pages;
1518 table->data = &tmp;
1519 table->maxlen = sizeof(unsigned long);
1520 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1522 if (write) {
1523 spin_lock(&hugetlb_lock);
1524 h->nr_overcommit_huge_pages = tmp;
1525 spin_unlock(&hugetlb_lock);
1528 return 0;
1531 #endif /* CONFIG_SYSCTL */
1533 void hugetlb_report_meminfo(struct seq_file *m)
1535 struct hstate *h = &default_hstate;
1536 seq_printf(m,
1537 "HugePages_Total: %5lu\n"
1538 "HugePages_Free: %5lu\n"
1539 "HugePages_Rsvd: %5lu\n"
1540 "HugePages_Surp: %5lu\n"
1541 "Hugepagesize: %8lu kB\n",
1542 h->nr_huge_pages,
1543 h->free_huge_pages,
1544 h->resv_huge_pages,
1545 h->surplus_huge_pages,
1546 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1549 int hugetlb_report_node_meminfo(int nid, char *buf)
1551 struct hstate *h = &default_hstate;
1552 return sprintf(buf,
1553 "Node %d HugePages_Total: %5u\n"
1554 "Node %d HugePages_Free: %5u\n"
1555 "Node %d HugePages_Surp: %5u\n",
1556 nid, h->nr_huge_pages_node[nid],
1557 nid, h->free_huge_pages_node[nid],
1558 nid, h->surplus_huge_pages_node[nid]);
1561 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1562 unsigned long hugetlb_total_pages(void)
1564 struct hstate *h = &default_hstate;
1565 return h->nr_huge_pages * pages_per_huge_page(h);
1568 static int hugetlb_acct_memory(struct hstate *h, long delta)
1570 int ret = -ENOMEM;
1572 spin_lock(&hugetlb_lock);
1574 * When cpuset is configured, it breaks the strict hugetlb page
1575 * reservation as the accounting is done on a global variable. Such
1576 * reservation is completely rubbish in the presence of cpuset because
1577 * the reservation is not checked against page availability for the
1578 * current cpuset. Application can still potentially OOM'ed by kernel
1579 * with lack of free htlb page in cpuset that the task is in.
1580 * Attempt to enforce strict accounting with cpuset is almost
1581 * impossible (or too ugly) because cpuset is too fluid that
1582 * task or memory node can be dynamically moved between cpusets.
1584 * The change of semantics for shared hugetlb mapping with cpuset is
1585 * undesirable. However, in order to preserve some of the semantics,
1586 * we fall back to check against current free page availability as
1587 * a best attempt and hopefully to minimize the impact of changing
1588 * semantics that cpuset has.
1590 if (delta > 0) {
1591 if (gather_surplus_pages(h, delta) < 0)
1592 goto out;
1594 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1595 return_unused_surplus_pages(h, delta);
1596 goto out;
1600 ret = 0;
1601 if (delta < 0)
1602 return_unused_surplus_pages(h, (unsigned long) -delta);
1604 out:
1605 spin_unlock(&hugetlb_lock);
1606 return ret;
1609 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1611 struct resv_map *reservations = vma_resv_map(vma);
1614 * This new VMA should share its siblings reservation map if present.
1615 * The VMA will only ever have a valid reservation map pointer where
1616 * it is being copied for another still existing VMA. As that VMA
1617 * has a reference to the reservation map it cannot dissappear until
1618 * after this open call completes. It is therefore safe to take a
1619 * new reference here without additional locking.
1621 if (reservations)
1622 kref_get(&reservations->refs);
1625 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1627 struct hstate *h = hstate_vma(vma);
1628 struct resv_map *reservations = vma_resv_map(vma);
1629 unsigned long reserve;
1630 unsigned long start;
1631 unsigned long end;
1633 if (reservations) {
1634 start = vma_hugecache_offset(h, vma, vma->vm_start);
1635 end = vma_hugecache_offset(h, vma, vma->vm_end);
1637 reserve = (end - start) -
1638 region_count(&reservations->regions, start, end);
1640 kref_put(&reservations->refs, resv_map_release);
1642 if (reserve) {
1643 hugetlb_acct_memory(h, -reserve);
1644 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1650 * We cannot handle pagefaults against hugetlb pages at all. They cause
1651 * handle_mm_fault() to try to instantiate regular-sized pages in the
1652 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1653 * this far.
1655 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1657 BUG();
1658 return 0;
1661 struct vm_operations_struct hugetlb_vm_ops = {
1662 .fault = hugetlb_vm_op_fault,
1663 .open = hugetlb_vm_op_open,
1664 .close = hugetlb_vm_op_close,
1667 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1668 int writable)
1670 pte_t entry;
1672 if (writable) {
1673 entry =
1674 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1675 } else {
1676 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1678 entry = pte_mkyoung(entry);
1679 entry = pte_mkhuge(entry);
1681 return entry;
1684 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1685 unsigned long address, pte_t *ptep)
1687 pte_t entry;
1689 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1690 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1691 update_mmu_cache(vma, address, entry);
1696 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1697 struct vm_area_struct *vma)
1699 pte_t *src_pte, *dst_pte, entry;
1700 struct page *ptepage;
1701 unsigned long addr;
1702 int cow;
1703 struct hstate *h = hstate_vma(vma);
1704 unsigned long sz = huge_page_size(h);
1706 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1708 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1709 src_pte = huge_pte_offset(src, addr);
1710 if (!src_pte)
1711 continue;
1712 dst_pte = huge_pte_alloc(dst, addr, sz);
1713 if (!dst_pte)
1714 goto nomem;
1716 /* If the pagetables are shared don't copy or take references */
1717 if (dst_pte == src_pte)
1718 continue;
1720 spin_lock(&dst->page_table_lock);
1721 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1722 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1723 if (cow)
1724 huge_ptep_set_wrprotect(src, addr, src_pte);
1725 entry = huge_ptep_get(src_pte);
1726 ptepage = pte_page(entry);
1727 get_page(ptepage);
1728 set_huge_pte_at(dst, addr, dst_pte, entry);
1730 spin_unlock(&src->page_table_lock);
1731 spin_unlock(&dst->page_table_lock);
1733 return 0;
1735 nomem:
1736 return -ENOMEM;
1739 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1740 unsigned long end, struct page *ref_page)
1742 struct mm_struct *mm = vma->vm_mm;
1743 unsigned long address;
1744 pte_t *ptep;
1745 pte_t pte;
1746 struct page *page;
1747 struct page *tmp;
1748 struct hstate *h = hstate_vma(vma);
1749 unsigned long sz = huge_page_size(h);
1752 * A page gathering list, protected by per file i_mmap_lock. The
1753 * lock is used to avoid list corruption from multiple unmapping
1754 * of the same page since we are using page->lru.
1756 LIST_HEAD(page_list);
1758 WARN_ON(!is_vm_hugetlb_page(vma));
1759 BUG_ON(start & ~huge_page_mask(h));
1760 BUG_ON(end & ~huge_page_mask(h));
1762 mmu_notifier_invalidate_range_start(mm, start, end);
1763 spin_lock(&mm->page_table_lock);
1764 for (address = start; address < end; address += sz) {
1765 ptep = huge_pte_offset(mm, address);
1766 if (!ptep)
1767 continue;
1769 if (huge_pmd_unshare(mm, &address, ptep))
1770 continue;
1773 * If a reference page is supplied, it is because a specific
1774 * page is being unmapped, not a range. Ensure the page we
1775 * are about to unmap is the actual page of interest.
1777 if (ref_page) {
1778 pte = huge_ptep_get(ptep);
1779 if (huge_pte_none(pte))
1780 continue;
1781 page = pte_page(pte);
1782 if (page != ref_page)
1783 continue;
1786 * Mark the VMA as having unmapped its page so that
1787 * future faults in this VMA will fail rather than
1788 * looking like data was lost
1790 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1793 pte = huge_ptep_get_and_clear(mm, address, ptep);
1794 if (huge_pte_none(pte))
1795 continue;
1797 page = pte_page(pte);
1798 if (pte_dirty(pte))
1799 set_page_dirty(page);
1800 list_add(&page->lru, &page_list);
1802 spin_unlock(&mm->page_table_lock);
1803 flush_tlb_range(vma, start, end);
1804 mmu_notifier_invalidate_range_end(mm, start, end);
1805 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1806 list_del(&page->lru);
1807 put_page(page);
1811 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1812 unsigned long end, struct page *ref_page)
1814 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1815 __unmap_hugepage_range(vma, start, end, ref_page);
1816 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1820 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1821 * mappping it owns the reserve page for. The intention is to unmap the page
1822 * from other VMAs and let the children be SIGKILLed if they are faulting the
1823 * same region.
1825 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1826 struct page *page, unsigned long address)
1828 struct hstate *h = hstate_vma(vma);
1829 struct vm_area_struct *iter_vma;
1830 struct address_space *mapping;
1831 struct prio_tree_iter iter;
1832 pgoff_t pgoff;
1835 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1836 * from page cache lookup which is in HPAGE_SIZE units.
1838 address = address & huge_page_mask(h);
1839 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1840 + (vma->vm_pgoff >> PAGE_SHIFT);
1841 mapping = (struct address_space *)page_private(page);
1843 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1844 /* Do not unmap the current VMA */
1845 if (iter_vma == vma)
1846 continue;
1849 * Unmap the page from other VMAs without their own reserves.
1850 * They get marked to be SIGKILLed if they fault in these
1851 * areas. This is because a future no-page fault on this VMA
1852 * could insert a zeroed page instead of the data existing
1853 * from the time of fork. This would look like data corruption
1855 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1856 unmap_hugepage_range(iter_vma,
1857 address, address + huge_page_size(h),
1858 page);
1861 return 1;
1864 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1865 unsigned long address, pte_t *ptep, pte_t pte,
1866 struct page *pagecache_page)
1868 struct hstate *h = hstate_vma(vma);
1869 struct page *old_page, *new_page;
1870 int avoidcopy;
1871 int outside_reserve = 0;
1873 old_page = pte_page(pte);
1875 retry_avoidcopy:
1876 /* If no-one else is actually using this page, avoid the copy
1877 * and just make the page writable */
1878 avoidcopy = (page_count(old_page) == 1);
1879 if (avoidcopy) {
1880 set_huge_ptep_writable(vma, address, ptep);
1881 return 0;
1885 * If the process that created a MAP_PRIVATE mapping is about to
1886 * perform a COW due to a shared page count, attempt to satisfy
1887 * the allocation without using the existing reserves. The pagecache
1888 * page is used to determine if the reserve at this address was
1889 * consumed or not. If reserves were used, a partial faulted mapping
1890 * at the time of fork() could consume its reserves on COW instead
1891 * of the full address range.
1893 if (!(vma->vm_flags & VM_SHARED) &&
1894 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1895 old_page != pagecache_page)
1896 outside_reserve = 1;
1898 page_cache_get(old_page);
1899 new_page = alloc_huge_page(vma, address, outside_reserve);
1901 if (IS_ERR(new_page)) {
1902 page_cache_release(old_page);
1905 * If a process owning a MAP_PRIVATE mapping fails to COW,
1906 * it is due to references held by a child and an insufficient
1907 * huge page pool. To guarantee the original mappers
1908 * reliability, unmap the page from child processes. The child
1909 * may get SIGKILLed if it later faults.
1911 if (outside_reserve) {
1912 BUG_ON(huge_pte_none(pte));
1913 if (unmap_ref_private(mm, vma, old_page, address)) {
1914 BUG_ON(page_count(old_page) != 1);
1915 BUG_ON(huge_pte_none(pte));
1916 goto retry_avoidcopy;
1918 WARN_ON_ONCE(1);
1921 return -PTR_ERR(new_page);
1924 spin_unlock(&mm->page_table_lock);
1925 copy_huge_page(new_page, old_page, address, vma);
1926 __SetPageUptodate(new_page);
1927 spin_lock(&mm->page_table_lock);
1929 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1930 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1931 /* Break COW */
1932 huge_ptep_clear_flush(vma, address, ptep);
1933 set_huge_pte_at(mm, address, ptep,
1934 make_huge_pte(vma, new_page, 1));
1935 /* Make the old page be freed below */
1936 new_page = old_page;
1938 page_cache_release(new_page);
1939 page_cache_release(old_page);
1940 return 0;
1943 /* Return the pagecache page at a given address within a VMA */
1944 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1945 struct vm_area_struct *vma, unsigned long address)
1947 struct address_space *mapping;
1948 pgoff_t idx;
1950 mapping = vma->vm_file->f_mapping;
1951 idx = vma_hugecache_offset(h, vma, address);
1953 return find_lock_page(mapping, idx);
1956 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1957 unsigned long address, pte_t *ptep, int write_access)
1959 struct hstate *h = hstate_vma(vma);
1960 int ret = VM_FAULT_SIGBUS;
1961 pgoff_t idx;
1962 unsigned long size;
1963 struct page *page;
1964 struct address_space *mapping;
1965 pte_t new_pte;
1968 * Currently, we are forced to kill the process in the event the
1969 * original mapper has unmapped pages from the child due to a failed
1970 * COW. Warn that such a situation has occured as it may not be obvious
1972 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1973 printk(KERN_WARNING
1974 "PID %d killed due to inadequate hugepage pool\n",
1975 current->pid);
1976 return ret;
1979 mapping = vma->vm_file->f_mapping;
1980 idx = vma_hugecache_offset(h, vma, address);
1983 * Use page lock to guard against racing truncation
1984 * before we get page_table_lock.
1986 retry:
1987 page = find_lock_page(mapping, idx);
1988 if (!page) {
1989 size = i_size_read(mapping->host) >> huge_page_shift(h);
1990 if (idx >= size)
1991 goto out;
1992 page = alloc_huge_page(vma, address, 0);
1993 if (IS_ERR(page)) {
1994 ret = -PTR_ERR(page);
1995 goto out;
1997 clear_huge_page(page, address, huge_page_size(h));
1998 __SetPageUptodate(page);
2000 if (vma->vm_flags & VM_SHARED) {
2001 int err;
2002 struct inode *inode = mapping->host;
2004 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2005 if (err) {
2006 put_page(page);
2007 if (err == -EEXIST)
2008 goto retry;
2009 goto out;
2012 spin_lock(&inode->i_lock);
2013 inode->i_blocks += blocks_per_huge_page(h);
2014 spin_unlock(&inode->i_lock);
2015 } else
2016 lock_page(page);
2020 * If we are going to COW a private mapping later, we examine the
2021 * pending reservations for this page now. This will ensure that
2022 * any allocations necessary to record that reservation occur outside
2023 * the spinlock.
2025 if (write_access && !(vma->vm_flags & VM_SHARED))
2026 if (vma_needs_reservation(h, vma, address) < 0) {
2027 ret = VM_FAULT_OOM;
2028 goto backout_unlocked;
2031 spin_lock(&mm->page_table_lock);
2032 size = i_size_read(mapping->host) >> huge_page_shift(h);
2033 if (idx >= size)
2034 goto backout;
2036 ret = 0;
2037 if (!huge_pte_none(huge_ptep_get(ptep)))
2038 goto backout;
2040 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2041 && (vma->vm_flags & VM_SHARED)));
2042 set_huge_pte_at(mm, address, ptep, new_pte);
2044 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2045 /* Optimization, do the COW without a second fault */
2046 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2049 spin_unlock(&mm->page_table_lock);
2050 unlock_page(page);
2051 out:
2052 return ret;
2054 backout:
2055 spin_unlock(&mm->page_table_lock);
2056 backout_unlocked:
2057 unlock_page(page);
2058 put_page(page);
2059 goto out;
2062 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2063 unsigned long address, int write_access)
2065 pte_t *ptep;
2066 pte_t entry;
2067 int ret;
2068 struct page *pagecache_page = NULL;
2069 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2070 struct hstate *h = hstate_vma(vma);
2072 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2073 if (!ptep)
2074 return VM_FAULT_OOM;
2077 * Serialize hugepage allocation and instantiation, so that we don't
2078 * get spurious allocation failures if two CPUs race to instantiate
2079 * the same page in the page cache.
2081 mutex_lock(&hugetlb_instantiation_mutex);
2082 entry = huge_ptep_get(ptep);
2083 if (huge_pte_none(entry)) {
2084 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2085 goto out_mutex;
2088 ret = 0;
2091 * If we are going to COW the mapping later, we examine the pending
2092 * reservations for this page now. This will ensure that any
2093 * allocations necessary to record that reservation occur outside the
2094 * spinlock. For private mappings, we also lookup the pagecache
2095 * page now as it is used to determine if a reservation has been
2096 * consumed.
2098 if (write_access && !pte_write(entry)) {
2099 if (vma_needs_reservation(h, vma, address) < 0) {
2100 ret = VM_FAULT_OOM;
2101 goto out_mutex;
2104 if (!(vma->vm_flags & VM_SHARED))
2105 pagecache_page = hugetlbfs_pagecache_page(h,
2106 vma, address);
2109 spin_lock(&mm->page_table_lock);
2110 /* Check for a racing update before calling hugetlb_cow */
2111 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2112 goto out_page_table_lock;
2115 if (write_access) {
2116 if (!pte_write(entry)) {
2117 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2118 pagecache_page);
2119 goto out_page_table_lock;
2121 entry = pte_mkdirty(entry);
2123 entry = pte_mkyoung(entry);
2124 if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2125 update_mmu_cache(vma, address, entry);
2127 out_page_table_lock:
2128 spin_unlock(&mm->page_table_lock);
2130 if (pagecache_page) {
2131 unlock_page(pagecache_page);
2132 put_page(pagecache_page);
2135 out_mutex:
2136 mutex_unlock(&hugetlb_instantiation_mutex);
2138 return ret;
2141 /* Can be overriden by architectures */
2142 __attribute__((weak)) struct page *
2143 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2144 pud_t *pud, int write)
2146 BUG();
2147 return NULL;
2150 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2152 if (!ptep || write || shared)
2153 return 0;
2154 else
2155 return huge_pte_none(huge_ptep_get(ptep));
2158 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2159 struct page **pages, struct vm_area_struct **vmas,
2160 unsigned long *position, int *length, int i,
2161 int write)
2163 unsigned long pfn_offset;
2164 unsigned long vaddr = *position;
2165 int remainder = *length;
2166 struct hstate *h = hstate_vma(vma);
2167 int zeropage_ok = 0;
2168 int shared = vma->vm_flags & VM_SHARED;
2170 spin_lock(&mm->page_table_lock);
2171 while (vaddr < vma->vm_end && remainder) {
2172 pte_t *pte;
2173 struct page *page;
2176 * Some archs (sparc64, sh*) have multiple pte_ts to
2177 * each hugepage. We have to make * sure we get the
2178 * first, for the page indexing below to work.
2180 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2181 if (huge_zeropage_ok(pte, write, shared))
2182 zeropage_ok = 1;
2184 if (!pte ||
2185 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2186 (write && !pte_write(huge_ptep_get(pte)))) {
2187 int ret;
2189 spin_unlock(&mm->page_table_lock);
2190 ret = hugetlb_fault(mm, vma, vaddr, write);
2191 spin_lock(&mm->page_table_lock);
2192 if (!(ret & VM_FAULT_ERROR))
2193 continue;
2195 remainder = 0;
2196 if (!i)
2197 i = -EFAULT;
2198 break;
2201 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2202 page = pte_page(huge_ptep_get(pte));
2203 same_page:
2204 if (pages) {
2205 if (zeropage_ok)
2206 pages[i] = ZERO_PAGE(0);
2207 else
2208 pages[i] = mem_map_offset(page, pfn_offset);
2209 get_page(pages[i]);
2212 if (vmas)
2213 vmas[i] = vma;
2215 vaddr += PAGE_SIZE;
2216 ++pfn_offset;
2217 --remainder;
2218 ++i;
2219 if (vaddr < vma->vm_end && remainder &&
2220 pfn_offset < pages_per_huge_page(h)) {
2222 * We use pfn_offset to avoid touching the pageframes
2223 * of this compound page.
2225 goto same_page;
2228 spin_unlock(&mm->page_table_lock);
2229 *length = remainder;
2230 *position = vaddr;
2232 return i;
2235 void hugetlb_change_protection(struct vm_area_struct *vma,
2236 unsigned long address, unsigned long end, pgprot_t newprot)
2238 struct mm_struct *mm = vma->vm_mm;
2239 unsigned long start = address;
2240 pte_t *ptep;
2241 pte_t pte;
2242 struct hstate *h = hstate_vma(vma);
2244 BUG_ON(address >= end);
2245 flush_cache_range(vma, address, end);
2247 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2248 spin_lock(&mm->page_table_lock);
2249 for (; address < end; address += huge_page_size(h)) {
2250 ptep = huge_pte_offset(mm, address);
2251 if (!ptep)
2252 continue;
2253 if (huge_pmd_unshare(mm, &address, ptep))
2254 continue;
2255 if (!huge_pte_none(huge_ptep_get(ptep))) {
2256 pte = huge_ptep_get_and_clear(mm, address, ptep);
2257 pte = pte_mkhuge(pte_modify(pte, newprot));
2258 set_huge_pte_at(mm, address, ptep, pte);
2261 spin_unlock(&mm->page_table_lock);
2262 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2264 flush_tlb_range(vma, start, end);
2267 int hugetlb_reserve_pages(struct inode *inode,
2268 long from, long to,
2269 struct vm_area_struct *vma)
2271 long ret, chg;
2272 struct hstate *h = hstate_inode(inode);
2274 if (vma && vma->vm_flags & VM_NORESERVE)
2275 return 0;
2278 * Shared mappings base their reservation on the number of pages that
2279 * are already allocated on behalf of the file. Private mappings need
2280 * to reserve the full area even if read-only as mprotect() may be
2281 * called to make the mapping read-write. Assume !vma is a shm mapping
2283 if (!vma || vma->vm_flags & VM_SHARED)
2284 chg = region_chg(&inode->i_mapping->private_list, from, to);
2285 else {
2286 struct resv_map *resv_map = resv_map_alloc();
2287 if (!resv_map)
2288 return -ENOMEM;
2290 chg = to - from;
2292 set_vma_resv_map(vma, resv_map);
2293 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2296 if (chg < 0)
2297 return chg;
2299 if (hugetlb_get_quota(inode->i_mapping, chg))
2300 return -ENOSPC;
2301 ret = hugetlb_acct_memory(h, chg);
2302 if (ret < 0) {
2303 hugetlb_put_quota(inode->i_mapping, chg);
2304 return ret;
2306 if (!vma || vma->vm_flags & VM_SHARED)
2307 region_add(&inode->i_mapping->private_list, from, to);
2308 return 0;
2311 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2313 struct hstate *h = hstate_inode(inode);
2314 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2316 spin_lock(&inode->i_lock);
2317 inode->i_blocks -= blocks_per_huge_page(h);
2318 spin_unlock(&inode->i_lock);
2320 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2321 hugetlb_acct_memory(h, -(chg - freed));