x86: x2apic, IR: Move eoi_ioapic_irq() into a CONFIG_INTR_REMAP section
[linux-2.6/mini2440.git] / arch / x86 / kernel / apic / io_apic.c
blob4baa9cbd630a3e2d2eca55d1a9f0e0768af3d32b
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/cpu.h>
50 #include <asm/desc.h>
51 #include <asm/proto.h>
52 #include <asm/acpi.h>
53 #include <asm/dma.h>
54 #include <asm/timer.h>
55 #include <asm/i8259.h>
56 #include <asm/nmi.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/uv/uv_hub.h>
63 #include <asm/uv/uv_irq.h>
65 #include <asm/apic.h>
67 #define __apicdebuginit(type) static type __init
70 * Is the SiS APIC rmw bug present ?
71 * -1 = don't know, 0 = no, 1 = yes
73 int sis_apic_bug = -1;
75 static DEFINE_SPINLOCK(ioapic_lock);
76 static DEFINE_SPINLOCK(vector_lock);
79 * # of IRQ routing registers
81 int nr_ioapic_registers[MAX_IO_APICS];
83 /* I/O APIC entries */
84 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
85 int nr_ioapics;
87 /* MP IRQ source entries */
88 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
90 /* # of MP IRQ source entries */
91 int mp_irq_entries;
93 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
94 int mp_bus_id_to_type[MAX_MP_BUSSES];
95 #endif
97 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
99 int skip_ioapic_setup;
101 void arch_disable_smp_support(void)
103 #ifdef CONFIG_PCI
104 noioapicquirk = 1;
105 noioapicreroute = -1;
106 #endif
107 skip_ioapic_setup = 1;
110 static int __init parse_noapic(char *str)
112 /* disable IO-APIC */
113 arch_disable_smp_support();
114 return 0;
116 early_param("noapic", parse_noapic);
118 struct irq_pin_list;
121 * This is performance-critical, we want to do it O(1)
123 * the indexing order of this array favors 1:1 mappings
124 * between pins and IRQs.
127 struct irq_pin_list {
128 int apic, pin;
129 struct irq_pin_list *next;
132 static struct irq_pin_list *get_one_free_irq_2_pin(int cpu)
134 struct irq_pin_list *pin;
135 int node;
137 node = cpu_to_node(cpu);
139 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
141 return pin;
144 struct irq_cfg {
145 struct irq_pin_list *irq_2_pin;
146 cpumask_var_t domain;
147 cpumask_var_t old_domain;
148 unsigned move_cleanup_count;
149 u8 vector;
150 u8 move_in_progress : 1;
151 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
152 u8 move_desc_pending : 1;
153 #endif
156 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
157 #ifdef CONFIG_SPARSE_IRQ
158 static struct irq_cfg irq_cfgx[] = {
159 #else
160 static struct irq_cfg irq_cfgx[NR_IRQS] = {
161 #endif
162 [0] = { .vector = IRQ0_VECTOR, },
163 [1] = { .vector = IRQ1_VECTOR, },
164 [2] = { .vector = IRQ2_VECTOR, },
165 [3] = { .vector = IRQ3_VECTOR, },
166 [4] = { .vector = IRQ4_VECTOR, },
167 [5] = { .vector = IRQ5_VECTOR, },
168 [6] = { .vector = IRQ6_VECTOR, },
169 [7] = { .vector = IRQ7_VECTOR, },
170 [8] = { .vector = IRQ8_VECTOR, },
171 [9] = { .vector = IRQ9_VECTOR, },
172 [10] = { .vector = IRQ10_VECTOR, },
173 [11] = { .vector = IRQ11_VECTOR, },
174 [12] = { .vector = IRQ12_VECTOR, },
175 [13] = { .vector = IRQ13_VECTOR, },
176 [14] = { .vector = IRQ14_VECTOR, },
177 [15] = { .vector = IRQ15_VECTOR, },
180 int __init arch_early_irq_init(void)
182 struct irq_cfg *cfg;
183 struct irq_desc *desc;
184 int count;
185 int i;
187 cfg = irq_cfgx;
188 count = ARRAY_SIZE(irq_cfgx);
190 for (i = 0; i < count; i++) {
191 desc = irq_to_desc(i);
192 desc->chip_data = &cfg[i];
193 alloc_bootmem_cpumask_var(&cfg[i].domain);
194 alloc_bootmem_cpumask_var(&cfg[i].old_domain);
195 if (i < NR_IRQS_LEGACY)
196 cpumask_setall(cfg[i].domain);
199 return 0;
202 #ifdef CONFIG_SPARSE_IRQ
203 static struct irq_cfg *irq_cfg(unsigned int irq)
205 struct irq_cfg *cfg = NULL;
206 struct irq_desc *desc;
208 desc = irq_to_desc(irq);
209 if (desc)
210 cfg = desc->chip_data;
212 return cfg;
215 static struct irq_cfg *get_one_free_irq_cfg(int cpu)
217 struct irq_cfg *cfg;
218 int node;
220 node = cpu_to_node(cpu);
222 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
223 if (cfg) {
224 if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
225 kfree(cfg);
226 cfg = NULL;
227 } else if (!alloc_cpumask_var_node(&cfg->old_domain,
228 GFP_ATOMIC, node)) {
229 free_cpumask_var(cfg->domain);
230 kfree(cfg);
231 cfg = NULL;
232 } else {
233 cpumask_clear(cfg->domain);
234 cpumask_clear(cfg->old_domain);
238 return cfg;
241 int arch_init_chip_data(struct irq_desc *desc, int cpu)
243 struct irq_cfg *cfg;
245 cfg = desc->chip_data;
246 if (!cfg) {
247 desc->chip_data = get_one_free_irq_cfg(cpu);
248 if (!desc->chip_data) {
249 printk(KERN_ERR "can not alloc irq_cfg\n");
250 BUG_ON(1);
254 return 0;
257 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
259 static void
260 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int cpu)
262 struct irq_pin_list *old_entry, *head, *tail, *entry;
264 cfg->irq_2_pin = NULL;
265 old_entry = old_cfg->irq_2_pin;
266 if (!old_entry)
267 return;
269 entry = get_one_free_irq_2_pin(cpu);
270 if (!entry)
271 return;
273 entry->apic = old_entry->apic;
274 entry->pin = old_entry->pin;
275 head = entry;
276 tail = entry;
277 old_entry = old_entry->next;
278 while (old_entry) {
279 entry = get_one_free_irq_2_pin(cpu);
280 if (!entry) {
281 entry = head;
282 while (entry) {
283 head = entry->next;
284 kfree(entry);
285 entry = head;
287 /* still use the old one */
288 return;
290 entry->apic = old_entry->apic;
291 entry->pin = old_entry->pin;
292 tail->next = entry;
293 tail = entry;
294 old_entry = old_entry->next;
297 tail->next = NULL;
298 cfg->irq_2_pin = head;
301 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
303 struct irq_pin_list *entry, *next;
305 if (old_cfg->irq_2_pin == cfg->irq_2_pin)
306 return;
308 entry = old_cfg->irq_2_pin;
310 while (entry) {
311 next = entry->next;
312 kfree(entry);
313 entry = next;
315 old_cfg->irq_2_pin = NULL;
318 void arch_init_copy_chip_data(struct irq_desc *old_desc,
319 struct irq_desc *desc, int cpu)
321 struct irq_cfg *cfg;
322 struct irq_cfg *old_cfg;
324 cfg = get_one_free_irq_cfg(cpu);
326 if (!cfg)
327 return;
329 desc->chip_data = cfg;
331 old_cfg = old_desc->chip_data;
333 memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
335 init_copy_irq_2_pin(old_cfg, cfg, cpu);
338 static void free_irq_cfg(struct irq_cfg *old_cfg)
340 kfree(old_cfg);
343 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
345 struct irq_cfg *old_cfg, *cfg;
347 old_cfg = old_desc->chip_data;
348 cfg = desc->chip_data;
350 if (old_cfg == cfg)
351 return;
353 if (old_cfg) {
354 free_irq_2_pin(old_cfg, cfg);
355 free_irq_cfg(old_cfg);
356 old_desc->chip_data = NULL;
360 static void
361 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
363 struct irq_cfg *cfg = desc->chip_data;
365 if (!cfg->move_in_progress) {
366 /* it means that domain is not changed */
367 if (!cpumask_intersects(desc->affinity, mask))
368 cfg->move_desc_pending = 1;
371 #endif
373 #else
374 static struct irq_cfg *irq_cfg(unsigned int irq)
376 return irq < nr_irqs ? irq_cfgx + irq : NULL;
379 #endif
381 #ifndef CONFIG_NUMA_MIGRATE_IRQ_DESC
382 static inline void
383 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
386 #endif
388 struct io_apic {
389 unsigned int index;
390 unsigned int unused[3];
391 unsigned int data;
392 unsigned int unused2[11];
393 unsigned int eoi;
396 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
398 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
399 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
402 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
404 struct io_apic __iomem *io_apic = io_apic_base(apic);
405 writel(vector, &io_apic->eoi);
408 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
410 struct io_apic __iomem *io_apic = io_apic_base(apic);
411 writel(reg, &io_apic->index);
412 return readl(&io_apic->data);
415 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
417 struct io_apic __iomem *io_apic = io_apic_base(apic);
418 writel(reg, &io_apic->index);
419 writel(value, &io_apic->data);
423 * Re-write a value: to be used for read-modify-write
424 * cycles where the read already set up the index register.
426 * Older SiS APIC requires we rewrite the index register
428 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
430 struct io_apic __iomem *io_apic = io_apic_base(apic);
432 if (sis_apic_bug)
433 writel(reg, &io_apic->index);
434 writel(value, &io_apic->data);
437 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
439 struct irq_pin_list *entry;
440 unsigned long flags;
442 spin_lock_irqsave(&ioapic_lock, flags);
443 entry = cfg->irq_2_pin;
444 for (;;) {
445 unsigned int reg;
446 int pin;
448 if (!entry)
449 break;
450 pin = entry->pin;
451 reg = io_apic_read(entry->apic, 0x10 + pin*2);
452 /* Is the remote IRR bit set? */
453 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
454 spin_unlock_irqrestore(&ioapic_lock, flags);
455 return true;
457 if (!entry->next)
458 break;
459 entry = entry->next;
461 spin_unlock_irqrestore(&ioapic_lock, flags);
463 return false;
466 union entry_union {
467 struct { u32 w1, w2; };
468 struct IO_APIC_route_entry entry;
471 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
473 union entry_union eu;
474 unsigned long flags;
475 spin_lock_irqsave(&ioapic_lock, flags);
476 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
477 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
478 spin_unlock_irqrestore(&ioapic_lock, flags);
479 return eu.entry;
483 * When we write a new IO APIC routing entry, we need to write the high
484 * word first! If the mask bit in the low word is clear, we will enable
485 * the interrupt, and we need to make sure the entry is fully populated
486 * before that happens.
488 static void
489 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
491 union entry_union eu;
492 eu.entry = e;
493 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
494 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
497 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
499 unsigned long flags;
500 spin_lock_irqsave(&ioapic_lock, flags);
501 __ioapic_write_entry(apic, pin, e);
502 spin_unlock_irqrestore(&ioapic_lock, flags);
506 * When we mask an IO APIC routing entry, we need to write the low
507 * word first, in order to set the mask bit before we change the
508 * high bits!
510 static void ioapic_mask_entry(int apic, int pin)
512 unsigned long flags;
513 union entry_union eu = { .entry.mask = 1 };
515 spin_lock_irqsave(&ioapic_lock, flags);
516 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
517 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
518 spin_unlock_irqrestore(&ioapic_lock, flags);
522 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
523 * shared ISA-space IRQs, so we have to support them. We are super
524 * fast in the common case, and fast for shared ISA-space IRQs.
526 static void add_pin_to_irq_cpu(struct irq_cfg *cfg, int cpu, int apic, int pin)
528 struct irq_pin_list *entry;
530 entry = cfg->irq_2_pin;
531 if (!entry) {
532 entry = get_one_free_irq_2_pin(cpu);
533 if (!entry) {
534 printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
535 apic, pin);
536 return;
538 cfg->irq_2_pin = entry;
539 entry->apic = apic;
540 entry->pin = pin;
541 return;
544 while (entry->next) {
545 /* not again, please */
546 if (entry->apic == apic && entry->pin == pin)
547 return;
549 entry = entry->next;
552 entry->next = get_one_free_irq_2_pin(cpu);
553 entry = entry->next;
554 entry->apic = apic;
555 entry->pin = pin;
559 * Reroute an IRQ to a different pin.
561 static void __init replace_pin_at_irq_cpu(struct irq_cfg *cfg, int cpu,
562 int oldapic, int oldpin,
563 int newapic, int newpin)
565 struct irq_pin_list *entry = cfg->irq_2_pin;
566 int replaced = 0;
568 while (entry) {
569 if (entry->apic == oldapic && entry->pin == oldpin) {
570 entry->apic = newapic;
571 entry->pin = newpin;
572 replaced = 1;
573 /* every one is different, right? */
574 break;
576 entry = entry->next;
579 /* why? call replace before add? */
580 if (!replaced)
581 add_pin_to_irq_cpu(cfg, cpu, newapic, newpin);
584 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
585 int mask_and, int mask_or,
586 void (*final)(struct irq_pin_list *entry))
588 int pin;
589 struct irq_pin_list *entry;
591 for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
592 unsigned int reg;
593 pin = entry->pin;
594 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
595 reg &= mask_and;
596 reg |= mask_or;
597 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
598 if (final)
599 final(entry);
603 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
605 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
608 #ifdef CONFIG_X86_64
609 static void io_apic_sync(struct irq_pin_list *entry)
612 * Synchronize the IO-APIC and the CPU by doing
613 * a dummy read from the IO-APIC
615 struct io_apic __iomem *io_apic;
616 io_apic = io_apic_base(entry->apic);
617 readl(&io_apic->data);
620 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
622 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
624 #else /* CONFIG_X86_32 */
625 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
627 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
630 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
632 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
633 IO_APIC_REDIR_MASKED, NULL);
636 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
638 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
639 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
641 #endif /* CONFIG_X86_32 */
643 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
645 struct irq_cfg *cfg = desc->chip_data;
646 unsigned long flags;
648 BUG_ON(!cfg);
650 spin_lock_irqsave(&ioapic_lock, flags);
651 __mask_IO_APIC_irq(cfg);
652 spin_unlock_irqrestore(&ioapic_lock, flags);
655 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
657 struct irq_cfg *cfg = desc->chip_data;
658 unsigned long flags;
660 spin_lock_irqsave(&ioapic_lock, flags);
661 __unmask_IO_APIC_irq(cfg);
662 spin_unlock_irqrestore(&ioapic_lock, flags);
665 static void mask_IO_APIC_irq(unsigned int irq)
667 struct irq_desc *desc = irq_to_desc(irq);
669 mask_IO_APIC_irq_desc(desc);
671 static void unmask_IO_APIC_irq(unsigned int irq)
673 struct irq_desc *desc = irq_to_desc(irq);
675 unmask_IO_APIC_irq_desc(desc);
678 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
680 struct IO_APIC_route_entry entry;
682 /* Check delivery_mode to be sure we're not clearing an SMI pin */
683 entry = ioapic_read_entry(apic, pin);
684 if (entry.delivery_mode == dest_SMI)
685 return;
687 * Disable it in the IO-APIC irq-routing table:
689 ioapic_mask_entry(apic, pin);
692 static void clear_IO_APIC (void)
694 int apic, pin;
696 for (apic = 0; apic < nr_ioapics; apic++)
697 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
698 clear_IO_APIC_pin(apic, pin);
701 #ifdef CONFIG_X86_32
703 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
704 * specific CPU-side IRQs.
707 #define MAX_PIRQS 8
708 static int pirq_entries[MAX_PIRQS] = {
709 [0 ... MAX_PIRQS - 1] = -1
712 static int __init ioapic_pirq_setup(char *str)
714 int i, max;
715 int ints[MAX_PIRQS+1];
717 get_options(str, ARRAY_SIZE(ints), ints);
719 apic_printk(APIC_VERBOSE, KERN_INFO
720 "PIRQ redirection, working around broken MP-BIOS.\n");
721 max = MAX_PIRQS;
722 if (ints[0] < MAX_PIRQS)
723 max = ints[0];
725 for (i = 0; i < max; i++) {
726 apic_printk(APIC_VERBOSE, KERN_DEBUG
727 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
729 * PIRQs are mapped upside down, usually.
731 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
733 return 1;
736 __setup("pirq=", ioapic_pirq_setup);
737 #endif /* CONFIG_X86_32 */
739 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
741 int apic;
742 struct IO_APIC_route_entry **ioapic_entries;
744 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
745 GFP_ATOMIC);
746 if (!ioapic_entries)
747 return 0;
749 for (apic = 0; apic < nr_ioapics; apic++) {
750 ioapic_entries[apic] =
751 kzalloc(sizeof(struct IO_APIC_route_entry) *
752 nr_ioapic_registers[apic], GFP_ATOMIC);
753 if (!ioapic_entries[apic])
754 goto nomem;
757 return ioapic_entries;
759 nomem:
760 while (--apic >= 0)
761 kfree(ioapic_entries[apic]);
762 kfree(ioapic_entries);
764 return 0;
768 * Saves all the IO-APIC RTE's
770 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
772 int apic, pin;
774 if (!ioapic_entries)
775 return -ENOMEM;
777 for (apic = 0; apic < nr_ioapics; apic++) {
778 if (!ioapic_entries[apic])
779 return -ENOMEM;
781 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
782 ioapic_entries[apic][pin] =
783 ioapic_read_entry(apic, pin);
786 return 0;
790 * Mask all IO APIC entries.
792 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
794 int apic, pin;
796 if (!ioapic_entries)
797 return;
799 for (apic = 0; apic < nr_ioapics; apic++) {
800 if (!ioapic_entries[apic])
801 break;
803 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
804 struct IO_APIC_route_entry entry;
806 entry = ioapic_entries[apic][pin];
807 if (!entry.mask) {
808 entry.mask = 1;
809 ioapic_write_entry(apic, pin, entry);
816 * Restore IO APIC entries which was saved in ioapic_entries.
818 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
820 int apic, pin;
822 if (!ioapic_entries)
823 return -ENOMEM;
825 for (apic = 0; apic < nr_ioapics; apic++) {
826 if (!ioapic_entries[apic])
827 return -ENOMEM;
829 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
830 ioapic_write_entry(apic, pin,
831 ioapic_entries[apic][pin]);
833 return 0;
836 void reinit_intr_remapped_IO_APIC(int intr_remapping,
837 struct IO_APIC_route_entry **ioapic_entries)
841 * for now plain restore of previous settings.
842 * TBD: In the case of OS enabling interrupt-remapping,
843 * IO-APIC RTE's need to be setup to point to interrupt-remapping
844 * table entries. for now, do a plain restore, and wait for
845 * the setup_IO_APIC_irqs() to do proper initialization.
847 restore_IO_APIC_setup(ioapic_entries);
850 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
852 int apic;
854 for (apic = 0; apic < nr_ioapics; apic++)
855 kfree(ioapic_entries[apic]);
857 kfree(ioapic_entries);
861 * Find the IRQ entry number of a certain pin.
863 static int find_irq_entry(int apic, int pin, int type)
865 int i;
867 for (i = 0; i < mp_irq_entries; i++)
868 if (mp_irqs[i].irqtype == type &&
869 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
870 mp_irqs[i].dstapic == MP_APIC_ALL) &&
871 mp_irqs[i].dstirq == pin)
872 return i;
874 return -1;
878 * Find the pin to which IRQ[irq] (ISA) is connected
880 static int __init find_isa_irq_pin(int irq, int type)
882 int i;
884 for (i = 0; i < mp_irq_entries; i++) {
885 int lbus = mp_irqs[i].srcbus;
887 if (test_bit(lbus, mp_bus_not_pci) &&
888 (mp_irqs[i].irqtype == type) &&
889 (mp_irqs[i].srcbusirq == irq))
891 return mp_irqs[i].dstirq;
893 return -1;
896 static int __init find_isa_irq_apic(int irq, int type)
898 int i;
900 for (i = 0; i < mp_irq_entries; i++) {
901 int lbus = mp_irqs[i].srcbus;
903 if (test_bit(lbus, mp_bus_not_pci) &&
904 (mp_irqs[i].irqtype == type) &&
905 (mp_irqs[i].srcbusirq == irq))
906 break;
908 if (i < mp_irq_entries) {
909 int apic;
910 for(apic = 0; apic < nr_ioapics; apic++) {
911 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
912 return apic;
916 return -1;
920 * Find a specific PCI IRQ entry.
921 * Not an __init, possibly needed by modules
923 static int pin_2_irq(int idx, int apic, int pin);
925 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
927 int apic, i, best_guess = -1;
929 apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
930 bus, slot, pin);
931 if (test_bit(bus, mp_bus_not_pci)) {
932 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
933 return -1;
935 for (i = 0; i < mp_irq_entries; i++) {
936 int lbus = mp_irqs[i].srcbus;
938 for (apic = 0; apic < nr_ioapics; apic++)
939 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
940 mp_irqs[i].dstapic == MP_APIC_ALL)
941 break;
943 if (!test_bit(lbus, mp_bus_not_pci) &&
944 !mp_irqs[i].irqtype &&
945 (bus == lbus) &&
946 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
947 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
949 if (!(apic || IO_APIC_IRQ(irq)))
950 continue;
952 if (pin == (mp_irqs[i].srcbusirq & 3))
953 return irq;
955 * Use the first all-but-pin matching entry as a
956 * best-guess fuzzy result for broken mptables.
958 if (best_guess < 0)
959 best_guess = irq;
962 return best_guess;
965 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
967 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
969 * EISA Edge/Level control register, ELCR
971 static int EISA_ELCR(unsigned int irq)
973 if (irq < NR_IRQS_LEGACY) {
974 unsigned int port = 0x4d0 + (irq >> 3);
975 return (inb(port) >> (irq & 7)) & 1;
977 apic_printk(APIC_VERBOSE, KERN_INFO
978 "Broken MPtable reports ISA irq %d\n", irq);
979 return 0;
982 #endif
984 /* ISA interrupts are always polarity zero edge triggered,
985 * when listed as conforming in the MP table. */
987 #define default_ISA_trigger(idx) (0)
988 #define default_ISA_polarity(idx) (0)
990 /* EISA interrupts are always polarity zero and can be edge or level
991 * trigger depending on the ELCR value. If an interrupt is listed as
992 * EISA conforming in the MP table, that means its trigger type must
993 * be read in from the ELCR */
995 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
996 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
998 /* PCI interrupts are always polarity one level triggered,
999 * when listed as conforming in the MP table. */
1001 #define default_PCI_trigger(idx) (1)
1002 #define default_PCI_polarity(idx) (1)
1004 /* MCA interrupts are always polarity zero level triggered,
1005 * when listed as conforming in the MP table. */
1007 #define default_MCA_trigger(idx) (1)
1008 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
1010 static int MPBIOS_polarity(int idx)
1012 int bus = mp_irqs[idx].srcbus;
1013 int polarity;
1016 * Determine IRQ line polarity (high active or low active):
1018 switch (mp_irqs[idx].irqflag & 3)
1020 case 0: /* conforms, ie. bus-type dependent polarity */
1021 if (test_bit(bus, mp_bus_not_pci))
1022 polarity = default_ISA_polarity(idx);
1023 else
1024 polarity = default_PCI_polarity(idx);
1025 break;
1026 case 1: /* high active */
1028 polarity = 0;
1029 break;
1031 case 2: /* reserved */
1033 printk(KERN_WARNING "broken BIOS!!\n");
1034 polarity = 1;
1035 break;
1037 case 3: /* low active */
1039 polarity = 1;
1040 break;
1042 default: /* invalid */
1044 printk(KERN_WARNING "broken BIOS!!\n");
1045 polarity = 1;
1046 break;
1049 return polarity;
1052 static int MPBIOS_trigger(int idx)
1054 int bus = mp_irqs[idx].srcbus;
1055 int trigger;
1058 * Determine IRQ trigger mode (edge or level sensitive):
1060 switch ((mp_irqs[idx].irqflag>>2) & 3)
1062 case 0: /* conforms, ie. bus-type dependent */
1063 if (test_bit(bus, mp_bus_not_pci))
1064 trigger = default_ISA_trigger(idx);
1065 else
1066 trigger = default_PCI_trigger(idx);
1067 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1068 switch (mp_bus_id_to_type[bus]) {
1069 case MP_BUS_ISA: /* ISA pin */
1071 /* set before the switch */
1072 break;
1074 case MP_BUS_EISA: /* EISA pin */
1076 trigger = default_EISA_trigger(idx);
1077 break;
1079 case MP_BUS_PCI: /* PCI pin */
1081 /* set before the switch */
1082 break;
1084 case MP_BUS_MCA: /* MCA pin */
1086 trigger = default_MCA_trigger(idx);
1087 break;
1089 default:
1091 printk(KERN_WARNING "broken BIOS!!\n");
1092 trigger = 1;
1093 break;
1096 #endif
1097 break;
1098 case 1: /* edge */
1100 trigger = 0;
1101 break;
1103 case 2: /* reserved */
1105 printk(KERN_WARNING "broken BIOS!!\n");
1106 trigger = 1;
1107 break;
1109 case 3: /* level */
1111 trigger = 1;
1112 break;
1114 default: /* invalid */
1116 printk(KERN_WARNING "broken BIOS!!\n");
1117 trigger = 0;
1118 break;
1121 return trigger;
1124 static inline int irq_polarity(int idx)
1126 return MPBIOS_polarity(idx);
1129 static inline int irq_trigger(int idx)
1131 return MPBIOS_trigger(idx);
1134 int (*ioapic_renumber_irq)(int ioapic, int irq);
1135 static int pin_2_irq(int idx, int apic, int pin)
1137 int irq, i;
1138 int bus = mp_irqs[idx].srcbus;
1141 * Debugging check, we are in big trouble if this message pops up!
1143 if (mp_irqs[idx].dstirq != pin)
1144 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1146 if (test_bit(bus, mp_bus_not_pci)) {
1147 irq = mp_irqs[idx].srcbusirq;
1148 } else {
1150 * PCI IRQs are mapped in order
1152 i = irq = 0;
1153 while (i < apic)
1154 irq += nr_ioapic_registers[i++];
1155 irq += pin;
1157 * For MPS mode, so far only needed by ES7000 platform
1159 if (ioapic_renumber_irq)
1160 irq = ioapic_renumber_irq(apic, irq);
1163 #ifdef CONFIG_X86_32
1165 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1167 if ((pin >= 16) && (pin <= 23)) {
1168 if (pirq_entries[pin-16] != -1) {
1169 if (!pirq_entries[pin-16]) {
1170 apic_printk(APIC_VERBOSE, KERN_DEBUG
1171 "disabling PIRQ%d\n", pin-16);
1172 } else {
1173 irq = pirq_entries[pin-16];
1174 apic_printk(APIC_VERBOSE, KERN_DEBUG
1175 "using PIRQ%d -> IRQ %d\n",
1176 pin-16, irq);
1180 #endif
1182 return irq;
1185 void lock_vector_lock(void)
1187 /* Used to the online set of cpus does not change
1188 * during assign_irq_vector.
1190 spin_lock(&vector_lock);
1193 void unlock_vector_lock(void)
1195 spin_unlock(&vector_lock);
1198 static int
1199 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1202 * NOTE! The local APIC isn't very good at handling
1203 * multiple interrupts at the same interrupt level.
1204 * As the interrupt level is determined by taking the
1205 * vector number and shifting that right by 4, we
1206 * want to spread these out a bit so that they don't
1207 * all fall in the same interrupt level.
1209 * Also, we've got to be careful not to trash gate
1210 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1212 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1213 unsigned int old_vector;
1214 int cpu, err;
1215 cpumask_var_t tmp_mask;
1217 if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1218 return -EBUSY;
1220 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1221 return -ENOMEM;
1223 old_vector = cfg->vector;
1224 if (old_vector) {
1225 cpumask_and(tmp_mask, mask, cpu_online_mask);
1226 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1227 if (!cpumask_empty(tmp_mask)) {
1228 free_cpumask_var(tmp_mask);
1229 return 0;
1233 /* Only try and allocate irqs on cpus that are present */
1234 err = -ENOSPC;
1235 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1236 int new_cpu;
1237 int vector, offset;
1239 apic->vector_allocation_domain(cpu, tmp_mask);
1241 vector = current_vector;
1242 offset = current_offset;
1243 next:
1244 vector += 8;
1245 if (vector >= first_system_vector) {
1246 /* If out of vectors on large boxen, must share them. */
1247 offset = (offset + 1) % 8;
1248 vector = FIRST_DEVICE_VECTOR + offset;
1250 if (unlikely(current_vector == vector))
1251 continue;
1253 if (test_bit(vector, used_vectors))
1254 goto next;
1256 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1257 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1258 goto next;
1259 /* Found one! */
1260 current_vector = vector;
1261 current_offset = offset;
1262 if (old_vector) {
1263 cfg->move_in_progress = 1;
1264 cpumask_copy(cfg->old_domain, cfg->domain);
1266 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1267 per_cpu(vector_irq, new_cpu)[vector] = irq;
1268 cfg->vector = vector;
1269 cpumask_copy(cfg->domain, tmp_mask);
1270 err = 0;
1271 break;
1273 free_cpumask_var(tmp_mask);
1274 return err;
1277 static int
1278 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1280 int err;
1281 unsigned long flags;
1283 spin_lock_irqsave(&vector_lock, flags);
1284 err = __assign_irq_vector(irq, cfg, mask);
1285 spin_unlock_irqrestore(&vector_lock, flags);
1286 return err;
1289 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1291 int cpu, vector;
1293 BUG_ON(!cfg->vector);
1295 vector = cfg->vector;
1296 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1297 per_cpu(vector_irq, cpu)[vector] = -1;
1299 cfg->vector = 0;
1300 cpumask_clear(cfg->domain);
1302 if (likely(!cfg->move_in_progress))
1303 return;
1304 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1305 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1306 vector++) {
1307 if (per_cpu(vector_irq, cpu)[vector] != irq)
1308 continue;
1309 per_cpu(vector_irq, cpu)[vector] = -1;
1310 break;
1313 cfg->move_in_progress = 0;
1316 void __setup_vector_irq(int cpu)
1318 /* Initialize vector_irq on a new cpu */
1319 /* This function must be called with vector_lock held */
1320 int irq, vector;
1321 struct irq_cfg *cfg;
1322 struct irq_desc *desc;
1324 /* Mark the inuse vectors */
1325 for_each_irq_desc(irq, desc) {
1326 cfg = desc->chip_data;
1327 if (!cpumask_test_cpu(cpu, cfg->domain))
1328 continue;
1329 vector = cfg->vector;
1330 per_cpu(vector_irq, cpu)[vector] = irq;
1332 /* Mark the free vectors */
1333 for (vector = 0; vector < NR_VECTORS; ++vector) {
1334 irq = per_cpu(vector_irq, cpu)[vector];
1335 if (irq < 0)
1336 continue;
1338 cfg = irq_cfg(irq);
1339 if (!cpumask_test_cpu(cpu, cfg->domain))
1340 per_cpu(vector_irq, cpu)[vector] = -1;
1344 static struct irq_chip ioapic_chip;
1345 static struct irq_chip ir_ioapic_chip;
1347 #define IOAPIC_AUTO -1
1348 #define IOAPIC_EDGE 0
1349 #define IOAPIC_LEVEL 1
1351 #ifdef CONFIG_X86_32
1352 static inline int IO_APIC_irq_trigger(int irq)
1354 int apic, idx, pin;
1356 for (apic = 0; apic < nr_ioapics; apic++) {
1357 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1358 idx = find_irq_entry(apic, pin, mp_INT);
1359 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1360 return irq_trigger(idx);
1364 * nonexistent IRQs are edge default
1366 return 0;
1368 #else
1369 static inline int IO_APIC_irq_trigger(int irq)
1371 return 1;
1373 #endif
1375 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1378 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1379 trigger == IOAPIC_LEVEL)
1380 desc->status |= IRQ_LEVEL;
1381 else
1382 desc->status &= ~IRQ_LEVEL;
1384 if (irq_remapped(irq)) {
1385 desc->status |= IRQ_MOVE_PCNTXT;
1386 if (trigger)
1387 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1388 handle_fasteoi_irq,
1389 "fasteoi");
1390 else
1391 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1392 handle_edge_irq, "edge");
1393 return;
1396 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1397 trigger == IOAPIC_LEVEL)
1398 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1399 handle_fasteoi_irq,
1400 "fasteoi");
1401 else
1402 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1403 handle_edge_irq, "edge");
1406 int setup_ioapic_entry(int apic_id, int irq,
1407 struct IO_APIC_route_entry *entry,
1408 unsigned int destination, int trigger,
1409 int polarity, int vector, int pin)
1412 * add it to the IO-APIC irq-routing table:
1414 memset(entry,0,sizeof(*entry));
1416 if (intr_remapping_enabled) {
1417 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1418 struct irte irte;
1419 struct IR_IO_APIC_route_entry *ir_entry =
1420 (struct IR_IO_APIC_route_entry *) entry;
1421 int index;
1423 if (!iommu)
1424 panic("No mapping iommu for ioapic %d\n", apic_id);
1426 index = alloc_irte(iommu, irq, 1);
1427 if (index < 0)
1428 panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1430 memset(&irte, 0, sizeof(irte));
1432 irte.present = 1;
1433 irte.dst_mode = apic->irq_dest_mode;
1435 * Trigger mode in the IRTE will always be edge, and the
1436 * actual level or edge trigger will be setup in the IO-APIC
1437 * RTE. This will help simplify level triggered irq migration.
1438 * For more details, see the comments above explainig IO-APIC
1439 * irq migration in the presence of interrupt-remapping.
1441 irte.trigger_mode = 0;
1442 irte.dlvry_mode = apic->irq_delivery_mode;
1443 irte.vector = vector;
1444 irte.dest_id = IRTE_DEST(destination);
1446 modify_irte(irq, &irte);
1448 ir_entry->index2 = (index >> 15) & 0x1;
1449 ir_entry->zero = 0;
1450 ir_entry->format = 1;
1451 ir_entry->index = (index & 0x7fff);
1453 * IO-APIC RTE will be configured with virtual vector.
1454 * irq handler will do the explicit EOI to the io-apic.
1456 ir_entry->vector = pin;
1457 } else {
1458 entry->delivery_mode = apic->irq_delivery_mode;
1459 entry->dest_mode = apic->irq_dest_mode;
1460 entry->dest = destination;
1461 entry->vector = vector;
1464 entry->mask = 0; /* enable IRQ */
1465 entry->trigger = trigger;
1466 entry->polarity = polarity;
1468 /* Mask level triggered irqs.
1469 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1471 if (trigger)
1472 entry->mask = 1;
1473 return 0;
1476 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1477 int trigger, int polarity)
1479 struct irq_cfg *cfg;
1480 struct IO_APIC_route_entry entry;
1481 unsigned int dest;
1483 if (!IO_APIC_IRQ(irq))
1484 return;
1486 cfg = desc->chip_data;
1488 if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1489 return;
1491 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1493 apic_printk(APIC_VERBOSE,KERN_DEBUG
1494 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1495 "IRQ %d Mode:%i Active:%i)\n",
1496 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1497 irq, trigger, polarity);
1500 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1501 dest, trigger, polarity, cfg->vector, pin)) {
1502 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1503 mp_ioapics[apic_id].apicid, pin);
1504 __clear_irq_vector(irq, cfg);
1505 return;
1508 ioapic_register_intr(irq, desc, trigger);
1509 if (irq < NR_IRQS_LEGACY)
1510 disable_8259A_irq(irq);
1512 ioapic_write_entry(apic_id, pin, entry);
1515 static void __init setup_IO_APIC_irqs(void)
1517 int apic_id, pin, idx, irq;
1518 int notcon = 0;
1519 struct irq_desc *desc;
1520 struct irq_cfg *cfg;
1521 int cpu = boot_cpu_id;
1523 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1525 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1526 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1528 idx = find_irq_entry(apic_id, pin, mp_INT);
1529 if (idx == -1) {
1530 if (!notcon) {
1531 notcon = 1;
1532 apic_printk(APIC_VERBOSE,
1533 KERN_DEBUG " %d-%d",
1534 mp_ioapics[apic_id].apicid, pin);
1535 } else
1536 apic_printk(APIC_VERBOSE, " %d-%d",
1537 mp_ioapics[apic_id].apicid, pin);
1538 continue;
1540 if (notcon) {
1541 apic_printk(APIC_VERBOSE,
1542 " (apicid-pin) not connected\n");
1543 notcon = 0;
1546 irq = pin_2_irq(idx, apic_id, pin);
1549 * Skip the timer IRQ if there's a quirk handler
1550 * installed and if it returns 1:
1552 if (apic->multi_timer_check &&
1553 apic->multi_timer_check(apic_id, irq))
1554 continue;
1556 desc = irq_to_desc_alloc_cpu(irq, cpu);
1557 if (!desc) {
1558 printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1559 continue;
1561 cfg = desc->chip_data;
1562 add_pin_to_irq_cpu(cfg, cpu, apic_id, pin);
1564 setup_IO_APIC_irq(apic_id, pin, irq, desc,
1565 irq_trigger(idx), irq_polarity(idx));
1569 if (notcon)
1570 apic_printk(APIC_VERBOSE,
1571 " (apicid-pin) not connected\n");
1575 * Set up the timer pin, possibly with the 8259A-master behind.
1577 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1578 int vector)
1580 struct IO_APIC_route_entry entry;
1582 if (intr_remapping_enabled)
1583 return;
1585 memset(&entry, 0, sizeof(entry));
1588 * We use logical delivery to get the timer IRQ
1589 * to the first CPU.
1591 entry.dest_mode = apic->irq_dest_mode;
1592 entry.mask = 0; /* don't mask IRQ for edge */
1593 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1594 entry.delivery_mode = apic->irq_delivery_mode;
1595 entry.polarity = 0;
1596 entry.trigger = 0;
1597 entry.vector = vector;
1600 * The timer IRQ doesn't have to know that behind the
1601 * scene we may have a 8259A-master in AEOI mode ...
1603 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1606 * Add it to the IO-APIC irq-routing table:
1608 ioapic_write_entry(apic_id, pin, entry);
1612 __apicdebuginit(void) print_IO_APIC(void)
1614 int apic, i;
1615 union IO_APIC_reg_00 reg_00;
1616 union IO_APIC_reg_01 reg_01;
1617 union IO_APIC_reg_02 reg_02;
1618 union IO_APIC_reg_03 reg_03;
1619 unsigned long flags;
1620 struct irq_cfg *cfg;
1621 struct irq_desc *desc;
1622 unsigned int irq;
1624 if (apic_verbosity == APIC_QUIET)
1625 return;
1627 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1628 for (i = 0; i < nr_ioapics; i++)
1629 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1630 mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1633 * We are a bit conservative about what we expect. We have to
1634 * know about every hardware change ASAP.
1636 printk(KERN_INFO "testing the IO APIC.......................\n");
1638 for (apic = 0; apic < nr_ioapics; apic++) {
1640 spin_lock_irqsave(&ioapic_lock, flags);
1641 reg_00.raw = io_apic_read(apic, 0);
1642 reg_01.raw = io_apic_read(apic, 1);
1643 if (reg_01.bits.version >= 0x10)
1644 reg_02.raw = io_apic_read(apic, 2);
1645 if (reg_01.bits.version >= 0x20)
1646 reg_03.raw = io_apic_read(apic, 3);
1647 spin_unlock_irqrestore(&ioapic_lock, flags);
1649 printk("\n");
1650 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1651 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1652 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1653 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1654 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1656 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1657 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1659 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1660 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1663 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1664 * but the value of reg_02 is read as the previous read register
1665 * value, so ignore it if reg_02 == reg_01.
1667 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1668 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1669 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1673 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1674 * or reg_03, but the value of reg_0[23] is read as the previous read
1675 * register value, so ignore it if reg_03 == reg_0[12].
1677 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1678 reg_03.raw != reg_01.raw) {
1679 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1680 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1683 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1685 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1686 " Stat Dmod Deli Vect: \n");
1688 for (i = 0; i <= reg_01.bits.entries; i++) {
1689 struct IO_APIC_route_entry entry;
1691 entry = ioapic_read_entry(apic, i);
1693 printk(KERN_DEBUG " %02x %03X ",
1695 entry.dest
1698 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1699 entry.mask,
1700 entry.trigger,
1701 entry.irr,
1702 entry.polarity,
1703 entry.delivery_status,
1704 entry.dest_mode,
1705 entry.delivery_mode,
1706 entry.vector
1710 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1711 for_each_irq_desc(irq, desc) {
1712 struct irq_pin_list *entry;
1714 cfg = desc->chip_data;
1715 entry = cfg->irq_2_pin;
1716 if (!entry)
1717 continue;
1718 printk(KERN_DEBUG "IRQ%d ", irq);
1719 for (;;) {
1720 printk("-> %d:%d", entry->apic, entry->pin);
1721 if (!entry->next)
1722 break;
1723 entry = entry->next;
1725 printk("\n");
1728 printk(KERN_INFO ".................................... done.\n");
1730 return;
1733 __apicdebuginit(void) print_APIC_bitfield(int base)
1735 unsigned int v;
1736 int i, j;
1738 if (apic_verbosity == APIC_QUIET)
1739 return;
1741 printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1742 for (i = 0; i < 8; i++) {
1743 v = apic_read(base + i*0x10);
1744 for (j = 0; j < 32; j++) {
1745 if (v & (1<<j))
1746 printk("1");
1747 else
1748 printk("0");
1750 printk("\n");
1754 __apicdebuginit(void) print_local_APIC(void *dummy)
1756 unsigned int v, ver, maxlvt;
1757 u64 icr;
1759 if (apic_verbosity == APIC_QUIET)
1760 return;
1762 printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1763 smp_processor_id(), hard_smp_processor_id());
1764 v = apic_read(APIC_ID);
1765 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1766 v = apic_read(APIC_LVR);
1767 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1768 ver = GET_APIC_VERSION(v);
1769 maxlvt = lapic_get_maxlvt();
1771 v = apic_read(APIC_TASKPRI);
1772 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1774 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1775 if (!APIC_XAPIC(ver)) {
1776 v = apic_read(APIC_ARBPRI);
1777 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1778 v & APIC_ARBPRI_MASK);
1780 v = apic_read(APIC_PROCPRI);
1781 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1785 * Remote read supported only in the 82489DX and local APIC for
1786 * Pentium processors.
1788 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1789 v = apic_read(APIC_RRR);
1790 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1793 v = apic_read(APIC_LDR);
1794 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1795 if (!x2apic_enabled()) {
1796 v = apic_read(APIC_DFR);
1797 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1799 v = apic_read(APIC_SPIV);
1800 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1802 printk(KERN_DEBUG "... APIC ISR field:\n");
1803 print_APIC_bitfield(APIC_ISR);
1804 printk(KERN_DEBUG "... APIC TMR field:\n");
1805 print_APIC_bitfield(APIC_TMR);
1806 printk(KERN_DEBUG "... APIC IRR field:\n");
1807 print_APIC_bitfield(APIC_IRR);
1809 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1810 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1811 apic_write(APIC_ESR, 0);
1813 v = apic_read(APIC_ESR);
1814 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1817 icr = apic_icr_read();
1818 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1819 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1821 v = apic_read(APIC_LVTT);
1822 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1824 if (maxlvt > 3) { /* PC is LVT#4. */
1825 v = apic_read(APIC_LVTPC);
1826 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1828 v = apic_read(APIC_LVT0);
1829 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1830 v = apic_read(APIC_LVT1);
1831 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1833 if (maxlvt > 2) { /* ERR is LVT#3. */
1834 v = apic_read(APIC_LVTERR);
1835 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1838 v = apic_read(APIC_TMICT);
1839 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1840 v = apic_read(APIC_TMCCT);
1841 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1842 v = apic_read(APIC_TDCR);
1843 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1844 printk("\n");
1847 __apicdebuginit(void) print_all_local_APICs(void)
1849 int cpu;
1851 preempt_disable();
1852 for_each_online_cpu(cpu)
1853 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1854 preempt_enable();
1857 __apicdebuginit(void) print_PIC(void)
1859 unsigned int v;
1860 unsigned long flags;
1862 if (apic_verbosity == APIC_QUIET)
1863 return;
1865 printk(KERN_DEBUG "\nprinting PIC contents\n");
1867 spin_lock_irqsave(&i8259A_lock, flags);
1869 v = inb(0xa1) << 8 | inb(0x21);
1870 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1872 v = inb(0xa0) << 8 | inb(0x20);
1873 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1875 outb(0x0b,0xa0);
1876 outb(0x0b,0x20);
1877 v = inb(0xa0) << 8 | inb(0x20);
1878 outb(0x0a,0xa0);
1879 outb(0x0a,0x20);
1881 spin_unlock_irqrestore(&i8259A_lock, flags);
1883 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1885 v = inb(0x4d1) << 8 | inb(0x4d0);
1886 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1889 __apicdebuginit(int) print_all_ICs(void)
1891 print_PIC();
1892 print_all_local_APICs();
1893 print_IO_APIC();
1895 return 0;
1898 fs_initcall(print_all_ICs);
1901 /* Where if anywhere is the i8259 connect in external int mode */
1902 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1904 void __init enable_IO_APIC(void)
1906 union IO_APIC_reg_01 reg_01;
1907 int i8259_apic, i8259_pin;
1908 int apic;
1909 unsigned long flags;
1912 * The number of IO-APIC IRQ registers (== #pins):
1914 for (apic = 0; apic < nr_ioapics; apic++) {
1915 spin_lock_irqsave(&ioapic_lock, flags);
1916 reg_01.raw = io_apic_read(apic, 1);
1917 spin_unlock_irqrestore(&ioapic_lock, flags);
1918 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
1920 for(apic = 0; apic < nr_ioapics; apic++) {
1921 int pin;
1922 /* See if any of the pins is in ExtINT mode */
1923 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1924 struct IO_APIC_route_entry entry;
1925 entry = ioapic_read_entry(apic, pin);
1927 /* If the interrupt line is enabled and in ExtInt mode
1928 * I have found the pin where the i8259 is connected.
1930 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1931 ioapic_i8259.apic = apic;
1932 ioapic_i8259.pin = pin;
1933 goto found_i8259;
1937 found_i8259:
1938 /* Look to see what if the MP table has reported the ExtINT */
1939 /* If we could not find the appropriate pin by looking at the ioapic
1940 * the i8259 probably is not connected the ioapic but give the
1941 * mptable a chance anyway.
1943 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1944 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1945 /* Trust the MP table if nothing is setup in the hardware */
1946 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1947 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1948 ioapic_i8259.pin = i8259_pin;
1949 ioapic_i8259.apic = i8259_apic;
1951 /* Complain if the MP table and the hardware disagree */
1952 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1953 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1955 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1959 * Do not trust the IO-APIC being empty at bootup
1961 clear_IO_APIC();
1965 * Not an __init, needed by the reboot code
1967 void disable_IO_APIC(void)
1970 * Clear the IO-APIC before rebooting:
1972 clear_IO_APIC();
1975 * If the i8259 is routed through an IOAPIC
1976 * Put that IOAPIC in virtual wire mode
1977 * so legacy interrupts can be delivered.
1979 * With interrupt-remapping, for now we will use virtual wire A mode,
1980 * as virtual wire B is little complex (need to configure both
1981 * IOAPIC RTE aswell as interrupt-remapping table entry).
1982 * As this gets called during crash dump, keep this simple for now.
1984 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1985 struct IO_APIC_route_entry entry;
1987 memset(&entry, 0, sizeof(entry));
1988 entry.mask = 0; /* Enabled */
1989 entry.trigger = 0; /* Edge */
1990 entry.irr = 0;
1991 entry.polarity = 0; /* High */
1992 entry.delivery_status = 0;
1993 entry.dest_mode = 0; /* Physical */
1994 entry.delivery_mode = dest_ExtINT; /* ExtInt */
1995 entry.vector = 0;
1996 entry.dest = read_apic_id();
1999 * Add it to the IO-APIC irq-routing table:
2001 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2005 * Use virtual wire A mode when interrupt remapping is enabled.
2007 disconnect_bsp_APIC(!intr_remapping_enabled && ioapic_i8259.pin != -1);
2010 #ifdef CONFIG_X86_32
2012 * function to set the IO-APIC physical IDs based on the
2013 * values stored in the MPC table.
2015 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
2018 static void __init setup_ioapic_ids_from_mpc(void)
2020 union IO_APIC_reg_00 reg_00;
2021 physid_mask_t phys_id_present_map;
2022 int apic_id;
2023 int i;
2024 unsigned char old_id;
2025 unsigned long flags;
2027 if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2028 return;
2031 * Don't check I/O APIC IDs for xAPIC systems. They have
2032 * no meaning without the serial APIC bus.
2034 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2035 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2036 return;
2038 * This is broken; anything with a real cpu count has to
2039 * circumvent this idiocy regardless.
2041 phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
2044 * Set the IOAPIC ID to the value stored in the MPC table.
2046 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2048 /* Read the register 0 value */
2049 spin_lock_irqsave(&ioapic_lock, flags);
2050 reg_00.raw = io_apic_read(apic_id, 0);
2051 spin_unlock_irqrestore(&ioapic_lock, flags);
2053 old_id = mp_ioapics[apic_id].apicid;
2055 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2056 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2057 apic_id, mp_ioapics[apic_id].apicid);
2058 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2059 reg_00.bits.ID);
2060 mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2064 * Sanity check, is the ID really free? Every APIC in a
2065 * system must have a unique ID or we get lots of nice
2066 * 'stuck on smp_invalidate_needed IPI wait' messages.
2068 if (apic->check_apicid_used(phys_id_present_map,
2069 mp_ioapics[apic_id].apicid)) {
2070 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2071 apic_id, mp_ioapics[apic_id].apicid);
2072 for (i = 0; i < get_physical_broadcast(); i++)
2073 if (!physid_isset(i, phys_id_present_map))
2074 break;
2075 if (i >= get_physical_broadcast())
2076 panic("Max APIC ID exceeded!\n");
2077 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2079 physid_set(i, phys_id_present_map);
2080 mp_ioapics[apic_id].apicid = i;
2081 } else {
2082 physid_mask_t tmp;
2083 tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid);
2084 apic_printk(APIC_VERBOSE, "Setting %d in the "
2085 "phys_id_present_map\n",
2086 mp_ioapics[apic_id].apicid);
2087 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2092 * We need to adjust the IRQ routing table
2093 * if the ID changed.
2095 if (old_id != mp_ioapics[apic_id].apicid)
2096 for (i = 0; i < mp_irq_entries; i++)
2097 if (mp_irqs[i].dstapic == old_id)
2098 mp_irqs[i].dstapic
2099 = mp_ioapics[apic_id].apicid;
2102 * Read the right value from the MPC table and
2103 * write it into the ID register.
2105 apic_printk(APIC_VERBOSE, KERN_INFO
2106 "...changing IO-APIC physical APIC ID to %d ...",
2107 mp_ioapics[apic_id].apicid);
2109 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2110 spin_lock_irqsave(&ioapic_lock, flags);
2111 io_apic_write(apic_id, 0, reg_00.raw);
2112 spin_unlock_irqrestore(&ioapic_lock, flags);
2115 * Sanity check
2117 spin_lock_irqsave(&ioapic_lock, flags);
2118 reg_00.raw = io_apic_read(apic_id, 0);
2119 spin_unlock_irqrestore(&ioapic_lock, flags);
2120 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2121 printk("could not set ID!\n");
2122 else
2123 apic_printk(APIC_VERBOSE, " ok.\n");
2126 #endif
2128 int no_timer_check __initdata;
2130 static int __init notimercheck(char *s)
2132 no_timer_check = 1;
2133 return 1;
2135 __setup("no_timer_check", notimercheck);
2138 * There is a nasty bug in some older SMP boards, their mptable lies
2139 * about the timer IRQ. We do the following to work around the situation:
2141 * - timer IRQ defaults to IO-APIC IRQ
2142 * - if this function detects that timer IRQs are defunct, then we fall
2143 * back to ISA timer IRQs
2145 static int __init timer_irq_works(void)
2147 unsigned long t1 = jiffies;
2148 unsigned long flags;
2150 if (no_timer_check)
2151 return 1;
2153 local_save_flags(flags);
2154 local_irq_enable();
2155 /* Let ten ticks pass... */
2156 mdelay((10 * 1000) / HZ);
2157 local_irq_restore(flags);
2160 * Expect a few ticks at least, to be sure some possible
2161 * glue logic does not lock up after one or two first
2162 * ticks in a non-ExtINT mode. Also the local APIC
2163 * might have cached one ExtINT interrupt. Finally, at
2164 * least one tick may be lost due to delays.
2167 /* jiffies wrap? */
2168 if (time_after(jiffies, t1 + 4))
2169 return 1;
2170 return 0;
2174 * In the SMP+IOAPIC case it might happen that there are an unspecified
2175 * number of pending IRQ events unhandled. These cases are very rare,
2176 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2177 * better to do it this way as thus we do not have to be aware of
2178 * 'pending' interrupts in the IRQ path, except at this point.
2181 * Edge triggered needs to resend any interrupt
2182 * that was delayed but this is now handled in the device
2183 * independent code.
2187 * Starting up a edge-triggered IO-APIC interrupt is
2188 * nasty - we need to make sure that we get the edge.
2189 * If it is already asserted for some reason, we need
2190 * return 1 to indicate that is was pending.
2192 * This is not complete - we should be able to fake
2193 * an edge even if it isn't on the 8259A...
2196 static unsigned int startup_ioapic_irq(unsigned int irq)
2198 int was_pending = 0;
2199 unsigned long flags;
2200 struct irq_cfg *cfg;
2202 spin_lock_irqsave(&ioapic_lock, flags);
2203 if (irq < NR_IRQS_LEGACY) {
2204 disable_8259A_irq(irq);
2205 if (i8259A_irq_pending(irq))
2206 was_pending = 1;
2208 cfg = irq_cfg(irq);
2209 __unmask_IO_APIC_irq(cfg);
2210 spin_unlock_irqrestore(&ioapic_lock, flags);
2212 return was_pending;
2215 #ifdef CONFIG_X86_64
2216 static int ioapic_retrigger_irq(unsigned int irq)
2219 struct irq_cfg *cfg = irq_cfg(irq);
2220 unsigned long flags;
2222 spin_lock_irqsave(&vector_lock, flags);
2223 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2224 spin_unlock_irqrestore(&vector_lock, flags);
2226 return 1;
2228 #else
2229 static int ioapic_retrigger_irq(unsigned int irq)
2231 apic->send_IPI_self(irq_cfg(irq)->vector);
2233 return 1;
2235 #endif
2238 * Level and edge triggered IO-APIC interrupts need different handling,
2239 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2240 * handled with the level-triggered descriptor, but that one has slightly
2241 * more overhead. Level-triggered interrupts cannot be handled with the
2242 * edge-triggered handler, without risking IRQ storms and other ugly
2243 * races.
2246 #ifdef CONFIG_SMP
2247 static void send_cleanup_vector(struct irq_cfg *cfg)
2249 cpumask_var_t cleanup_mask;
2251 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2252 unsigned int i;
2253 cfg->move_cleanup_count = 0;
2254 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2255 cfg->move_cleanup_count++;
2256 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2257 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2258 } else {
2259 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2260 cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
2261 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2262 free_cpumask_var(cleanup_mask);
2264 cfg->move_in_progress = 0;
2267 static void
2268 __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2270 int apic, pin;
2271 struct irq_pin_list *entry;
2272 u8 vector = cfg->vector;
2274 entry = cfg->irq_2_pin;
2275 for (;;) {
2276 unsigned int reg;
2278 if (!entry)
2279 break;
2281 apic = entry->apic;
2282 pin = entry->pin;
2284 * With interrupt-remapping, destination information comes
2285 * from interrupt-remapping table entry.
2287 if (!irq_remapped(irq))
2288 io_apic_write(apic, 0x11 + pin*2, dest);
2289 reg = io_apic_read(apic, 0x10 + pin*2);
2290 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2291 reg |= vector;
2292 io_apic_modify(apic, 0x10 + pin*2, reg);
2293 if (!entry->next)
2294 break;
2295 entry = entry->next;
2300 * Either sets desc->affinity to a valid value, and returns
2301 * ->cpu_mask_to_apicid of that, or returns BAD_APICID and
2302 * leaves desc->affinity untouched.
2304 static unsigned int
2305 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
2307 struct irq_cfg *cfg;
2308 unsigned int irq;
2310 if (!cpumask_intersects(mask, cpu_online_mask))
2311 return BAD_APICID;
2313 irq = desc->irq;
2314 cfg = desc->chip_data;
2315 if (assign_irq_vector(irq, cfg, mask))
2316 return BAD_APICID;
2318 /* check that before desc->addinity get updated */
2319 set_extra_move_desc(desc, mask);
2321 cpumask_copy(desc->affinity, mask);
2323 return apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain);
2326 static void
2327 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2329 struct irq_cfg *cfg;
2330 unsigned long flags;
2331 unsigned int dest;
2332 unsigned int irq;
2334 irq = desc->irq;
2335 cfg = desc->chip_data;
2337 spin_lock_irqsave(&ioapic_lock, flags);
2338 dest = set_desc_affinity(desc, mask);
2339 if (dest != BAD_APICID) {
2340 /* Only the high 8 bits are valid. */
2341 dest = SET_APIC_LOGICAL_ID(dest);
2342 __target_IO_APIC_irq(irq, dest, cfg);
2344 spin_unlock_irqrestore(&ioapic_lock, flags);
2347 static void
2348 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
2350 struct irq_desc *desc;
2352 desc = irq_to_desc(irq);
2354 set_ioapic_affinity_irq_desc(desc, mask);
2357 #ifdef CONFIG_INTR_REMAP
2360 * Migrate the IO-APIC irq in the presence of intr-remapping.
2362 * For both level and edge triggered, irq migration is a simple atomic
2363 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2365 * For level triggered, we eliminate the io-apic RTE modification (with the
2366 * updated vector information), by using a virtual vector (io-apic pin number).
2367 * Real vector that is used for interrupting cpu will be coming from
2368 * the interrupt-remapping table entry.
2370 static void
2371 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2373 struct irq_cfg *cfg;
2374 struct irte irte;
2375 unsigned int dest;
2376 unsigned int irq;
2378 if (!cpumask_intersects(mask, cpu_online_mask))
2379 return;
2381 irq = desc->irq;
2382 if (get_irte(irq, &irte))
2383 return;
2385 cfg = desc->chip_data;
2386 if (assign_irq_vector(irq, cfg, mask))
2387 return;
2389 set_extra_move_desc(desc, mask);
2391 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2393 irte.vector = cfg->vector;
2394 irte.dest_id = IRTE_DEST(dest);
2397 * Modified the IRTE and flushes the Interrupt entry cache.
2399 modify_irte(irq, &irte);
2401 if (cfg->move_in_progress)
2402 send_cleanup_vector(cfg);
2404 cpumask_copy(desc->affinity, mask);
2408 * Migrates the IRQ destination in the process context.
2410 static void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2411 const struct cpumask *mask)
2413 migrate_ioapic_irq_desc(desc, mask);
2415 static void set_ir_ioapic_affinity_irq(unsigned int irq,
2416 const struct cpumask *mask)
2418 struct irq_desc *desc = irq_to_desc(irq);
2420 set_ir_ioapic_affinity_irq_desc(desc, mask);
2422 #else
2423 static inline void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2424 const struct cpumask *mask)
2427 #endif
2429 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2431 unsigned vector, me;
2433 ack_APIC_irq();
2434 exit_idle();
2435 irq_enter();
2437 me = smp_processor_id();
2438 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2439 unsigned int irq;
2440 unsigned int irr;
2441 struct irq_desc *desc;
2442 struct irq_cfg *cfg;
2443 irq = __get_cpu_var(vector_irq)[vector];
2445 if (irq == -1)
2446 continue;
2448 desc = irq_to_desc(irq);
2449 if (!desc)
2450 continue;
2452 cfg = irq_cfg(irq);
2453 spin_lock(&desc->lock);
2454 if (!cfg->move_cleanup_count)
2455 goto unlock;
2457 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2458 goto unlock;
2460 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2462 * Check if the vector that needs to be cleanedup is
2463 * registered at the cpu's IRR. If so, then this is not
2464 * the best time to clean it up. Lets clean it up in the
2465 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2466 * to myself.
2468 if (irr & (1 << (vector % 32))) {
2469 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2470 goto unlock;
2472 __get_cpu_var(vector_irq)[vector] = -1;
2473 cfg->move_cleanup_count--;
2474 unlock:
2475 spin_unlock(&desc->lock);
2478 irq_exit();
2481 static void irq_complete_move(struct irq_desc **descp)
2483 struct irq_desc *desc = *descp;
2484 struct irq_cfg *cfg = desc->chip_data;
2485 unsigned vector, me;
2487 if (likely(!cfg->move_in_progress)) {
2488 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2489 if (likely(!cfg->move_desc_pending))
2490 return;
2492 /* domain has not changed, but affinity did */
2493 me = smp_processor_id();
2494 if (cpumask_test_cpu(me, desc->affinity)) {
2495 *descp = desc = move_irq_desc(desc, me);
2496 /* get the new one */
2497 cfg = desc->chip_data;
2498 cfg->move_desc_pending = 0;
2500 #endif
2501 return;
2504 vector = ~get_irq_regs()->orig_ax;
2505 me = smp_processor_id();
2507 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) {
2508 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2509 *descp = desc = move_irq_desc(desc, me);
2510 /* get the new one */
2511 cfg = desc->chip_data;
2512 #endif
2513 send_cleanup_vector(cfg);
2516 #else
2517 static inline void irq_complete_move(struct irq_desc **descp) {}
2518 #endif
2520 static void ack_apic_edge(unsigned int irq)
2522 struct irq_desc *desc = irq_to_desc(irq);
2524 irq_complete_move(&desc);
2525 move_native_irq(irq);
2526 ack_APIC_irq();
2529 atomic_t irq_mis_count;
2531 static void ack_apic_level(unsigned int irq)
2533 struct irq_desc *desc = irq_to_desc(irq);
2535 #ifdef CONFIG_X86_32
2536 unsigned long v;
2537 int i;
2538 #endif
2539 struct irq_cfg *cfg;
2540 int do_unmask_irq = 0;
2542 irq_complete_move(&desc);
2543 #ifdef CONFIG_GENERIC_PENDING_IRQ
2544 /* If we are moving the irq we need to mask it */
2545 if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2546 do_unmask_irq = 1;
2547 mask_IO_APIC_irq_desc(desc);
2549 #endif
2551 #ifdef CONFIG_X86_32
2553 * It appears there is an erratum which affects at least version 0x11
2554 * of I/O APIC (that's the 82093AA and cores integrated into various
2555 * chipsets). Under certain conditions a level-triggered interrupt is
2556 * erroneously delivered as edge-triggered one but the respective IRR
2557 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2558 * message but it will never arrive and further interrupts are blocked
2559 * from the source. The exact reason is so far unknown, but the
2560 * phenomenon was observed when two consecutive interrupt requests
2561 * from a given source get delivered to the same CPU and the source is
2562 * temporarily disabled in between.
2564 * A workaround is to simulate an EOI message manually. We achieve it
2565 * by setting the trigger mode to edge and then to level when the edge
2566 * trigger mode gets detected in the TMR of a local APIC for a
2567 * level-triggered interrupt. We mask the source for the time of the
2568 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2569 * The idea is from Manfred Spraul. --macro
2571 cfg = desc->chip_data;
2572 i = cfg->vector;
2574 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2575 #endif
2578 * We must acknowledge the irq before we move it or the acknowledge will
2579 * not propagate properly.
2581 ack_APIC_irq();
2583 /* Now we can move and renable the irq */
2584 if (unlikely(do_unmask_irq)) {
2585 /* Only migrate the irq if the ack has been received.
2587 * On rare occasions the broadcast level triggered ack gets
2588 * delayed going to ioapics, and if we reprogram the
2589 * vector while Remote IRR is still set the irq will never
2590 * fire again.
2592 * To prevent this scenario we read the Remote IRR bit
2593 * of the ioapic. This has two effects.
2594 * - On any sane system the read of the ioapic will
2595 * flush writes (and acks) going to the ioapic from
2596 * this cpu.
2597 * - We get to see if the ACK has actually been delivered.
2599 * Based on failed experiments of reprogramming the
2600 * ioapic entry from outside of irq context starting
2601 * with masking the ioapic entry and then polling until
2602 * Remote IRR was clear before reprogramming the
2603 * ioapic I don't trust the Remote IRR bit to be
2604 * completey accurate.
2606 * However there appears to be no other way to plug
2607 * this race, so if the Remote IRR bit is not
2608 * accurate and is causing problems then it is a hardware bug
2609 * and you can go talk to the chipset vendor about it.
2611 cfg = desc->chip_data;
2612 if (!io_apic_level_ack_pending(cfg))
2613 move_masked_irq(irq);
2614 unmask_IO_APIC_irq_desc(desc);
2617 #ifdef CONFIG_X86_32
2618 if (!(v & (1 << (i & 0x1f)))) {
2619 atomic_inc(&irq_mis_count);
2620 spin_lock(&ioapic_lock);
2621 __mask_and_edge_IO_APIC_irq(cfg);
2622 __unmask_and_level_IO_APIC_irq(cfg);
2623 spin_unlock(&ioapic_lock);
2625 #endif
2628 #ifdef CONFIG_INTR_REMAP
2629 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2631 int apic, pin;
2632 struct irq_pin_list *entry;
2634 entry = cfg->irq_2_pin;
2635 for (;;) {
2637 if (!entry)
2638 break;
2640 apic = entry->apic;
2641 pin = entry->pin;
2642 io_apic_eoi(apic, pin);
2643 entry = entry->next;
2647 static void
2648 eoi_ioapic_irq(struct irq_desc *desc)
2650 struct irq_cfg *cfg;
2651 unsigned long flags;
2652 unsigned int irq;
2654 irq = desc->irq;
2655 cfg = desc->chip_data;
2657 spin_lock_irqsave(&ioapic_lock, flags);
2658 __eoi_ioapic_irq(irq, cfg);
2659 spin_unlock_irqrestore(&ioapic_lock, flags);
2662 static void ir_ack_apic_edge(unsigned int irq)
2664 ack_APIC_irq();
2667 static void ir_ack_apic_level(unsigned int irq)
2669 struct irq_desc *desc = irq_to_desc(irq);
2671 ack_APIC_irq();
2672 eoi_ioapic_irq(desc);
2674 #endif /* CONFIG_INTR_REMAP */
2676 static struct irq_chip ioapic_chip __read_mostly = {
2677 .name = "IO-APIC",
2678 .startup = startup_ioapic_irq,
2679 .mask = mask_IO_APIC_irq,
2680 .unmask = unmask_IO_APIC_irq,
2681 .ack = ack_apic_edge,
2682 .eoi = ack_apic_level,
2683 #ifdef CONFIG_SMP
2684 .set_affinity = set_ioapic_affinity_irq,
2685 #endif
2686 .retrigger = ioapic_retrigger_irq,
2689 static struct irq_chip ir_ioapic_chip __read_mostly = {
2690 .name = "IR-IO-APIC",
2691 .startup = startup_ioapic_irq,
2692 .mask = mask_IO_APIC_irq,
2693 .unmask = unmask_IO_APIC_irq,
2694 #ifdef CONFIG_INTR_REMAP
2695 .ack = ir_ack_apic_edge,
2696 .eoi = ir_ack_apic_level,
2697 #ifdef CONFIG_SMP
2698 .set_affinity = set_ir_ioapic_affinity_irq,
2699 #endif
2700 #endif
2701 .retrigger = ioapic_retrigger_irq,
2704 static inline void init_IO_APIC_traps(void)
2706 int irq;
2707 struct irq_desc *desc;
2708 struct irq_cfg *cfg;
2711 * NOTE! The local APIC isn't very good at handling
2712 * multiple interrupts at the same interrupt level.
2713 * As the interrupt level is determined by taking the
2714 * vector number and shifting that right by 4, we
2715 * want to spread these out a bit so that they don't
2716 * all fall in the same interrupt level.
2718 * Also, we've got to be careful not to trash gate
2719 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2721 for_each_irq_desc(irq, desc) {
2722 cfg = desc->chip_data;
2723 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2725 * Hmm.. We don't have an entry for this,
2726 * so default to an old-fashioned 8259
2727 * interrupt if we can..
2729 if (irq < NR_IRQS_LEGACY)
2730 make_8259A_irq(irq);
2731 else
2732 /* Strange. Oh, well.. */
2733 desc->chip = &no_irq_chip;
2739 * The local APIC irq-chip implementation:
2742 static void mask_lapic_irq(unsigned int irq)
2744 unsigned long v;
2746 v = apic_read(APIC_LVT0);
2747 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2750 static void unmask_lapic_irq(unsigned int irq)
2752 unsigned long v;
2754 v = apic_read(APIC_LVT0);
2755 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2758 static void ack_lapic_irq(unsigned int irq)
2760 ack_APIC_irq();
2763 static struct irq_chip lapic_chip __read_mostly = {
2764 .name = "local-APIC",
2765 .mask = mask_lapic_irq,
2766 .unmask = unmask_lapic_irq,
2767 .ack = ack_lapic_irq,
2770 static void lapic_register_intr(int irq, struct irq_desc *desc)
2772 desc->status &= ~IRQ_LEVEL;
2773 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2774 "edge");
2777 static void __init setup_nmi(void)
2780 * Dirty trick to enable the NMI watchdog ...
2781 * We put the 8259A master into AEOI mode and
2782 * unmask on all local APICs LVT0 as NMI.
2784 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2785 * is from Maciej W. Rozycki - so we do not have to EOI from
2786 * the NMI handler or the timer interrupt.
2788 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2790 enable_NMI_through_LVT0();
2792 apic_printk(APIC_VERBOSE, " done.\n");
2796 * This looks a bit hackish but it's about the only one way of sending
2797 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2798 * not support the ExtINT mode, unfortunately. We need to send these
2799 * cycles as some i82489DX-based boards have glue logic that keeps the
2800 * 8259A interrupt line asserted until INTA. --macro
2802 static inline void __init unlock_ExtINT_logic(void)
2804 int apic, pin, i;
2805 struct IO_APIC_route_entry entry0, entry1;
2806 unsigned char save_control, save_freq_select;
2808 pin = find_isa_irq_pin(8, mp_INT);
2809 if (pin == -1) {
2810 WARN_ON_ONCE(1);
2811 return;
2813 apic = find_isa_irq_apic(8, mp_INT);
2814 if (apic == -1) {
2815 WARN_ON_ONCE(1);
2816 return;
2819 entry0 = ioapic_read_entry(apic, pin);
2820 clear_IO_APIC_pin(apic, pin);
2822 memset(&entry1, 0, sizeof(entry1));
2824 entry1.dest_mode = 0; /* physical delivery */
2825 entry1.mask = 0; /* unmask IRQ now */
2826 entry1.dest = hard_smp_processor_id();
2827 entry1.delivery_mode = dest_ExtINT;
2828 entry1.polarity = entry0.polarity;
2829 entry1.trigger = 0;
2830 entry1.vector = 0;
2832 ioapic_write_entry(apic, pin, entry1);
2834 save_control = CMOS_READ(RTC_CONTROL);
2835 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2836 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2837 RTC_FREQ_SELECT);
2838 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2840 i = 100;
2841 while (i-- > 0) {
2842 mdelay(10);
2843 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2844 i -= 10;
2847 CMOS_WRITE(save_control, RTC_CONTROL);
2848 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2849 clear_IO_APIC_pin(apic, pin);
2851 ioapic_write_entry(apic, pin, entry0);
2854 static int disable_timer_pin_1 __initdata;
2855 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2856 static int __init disable_timer_pin_setup(char *arg)
2858 disable_timer_pin_1 = 1;
2859 return 0;
2861 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2863 int timer_through_8259 __initdata;
2866 * This code may look a bit paranoid, but it's supposed to cooperate with
2867 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2868 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2869 * fanatically on his truly buggy board.
2871 * FIXME: really need to revamp this for all platforms.
2873 static inline void __init check_timer(void)
2875 struct irq_desc *desc = irq_to_desc(0);
2876 struct irq_cfg *cfg = desc->chip_data;
2877 int cpu = boot_cpu_id;
2878 int apic1, pin1, apic2, pin2;
2879 unsigned long flags;
2880 int no_pin1 = 0;
2882 local_irq_save(flags);
2885 * get/set the timer IRQ vector:
2887 disable_8259A_irq(0);
2888 assign_irq_vector(0, cfg, apic->target_cpus());
2891 * As IRQ0 is to be enabled in the 8259A, the virtual
2892 * wire has to be disabled in the local APIC. Also
2893 * timer interrupts need to be acknowledged manually in
2894 * the 8259A for the i82489DX when using the NMI
2895 * watchdog as that APIC treats NMIs as level-triggered.
2896 * The AEOI mode will finish them in the 8259A
2897 * automatically.
2899 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2900 init_8259A(1);
2901 #ifdef CONFIG_X86_32
2903 unsigned int ver;
2905 ver = apic_read(APIC_LVR);
2906 ver = GET_APIC_VERSION(ver);
2907 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2909 #endif
2911 pin1 = find_isa_irq_pin(0, mp_INT);
2912 apic1 = find_isa_irq_apic(0, mp_INT);
2913 pin2 = ioapic_i8259.pin;
2914 apic2 = ioapic_i8259.apic;
2916 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2917 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2918 cfg->vector, apic1, pin1, apic2, pin2);
2921 * Some BIOS writers are clueless and report the ExtINTA
2922 * I/O APIC input from the cascaded 8259A as the timer
2923 * interrupt input. So just in case, if only one pin
2924 * was found above, try it both directly and through the
2925 * 8259A.
2927 if (pin1 == -1) {
2928 if (intr_remapping_enabled)
2929 panic("BIOS bug: timer not connected to IO-APIC");
2930 pin1 = pin2;
2931 apic1 = apic2;
2932 no_pin1 = 1;
2933 } else if (pin2 == -1) {
2934 pin2 = pin1;
2935 apic2 = apic1;
2938 if (pin1 != -1) {
2940 * Ok, does IRQ0 through the IOAPIC work?
2942 if (no_pin1) {
2943 add_pin_to_irq_cpu(cfg, cpu, apic1, pin1);
2944 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2945 } else {
2946 /* for edge trigger, setup_IO_APIC_irq already
2947 * leave it unmasked.
2948 * so only need to unmask if it is level-trigger
2949 * do we really have level trigger timer?
2951 int idx;
2952 idx = find_irq_entry(apic1, pin1, mp_INT);
2953 if (idx != -1 && irq_trigger(idx))
2954 unmask_IO_APIC_irq_desc(desc);
2956 if (timer_irq_works()) {
2957 if (nmi_watchdog == NMI_IO_APIC) {
2958 setup_nmi();
2959 enable_8259A_irq(0);
2961 if (disable_timer_pin_1 > 0)
2962 clear_IO_APIC_pin(0, pin1);
2963 goto out;
2965 if (intr_remapping_enabled)
2966 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2967 local_irq_disable();
2968 clear_IO_APIC_pin(apic1, pin1);
2969 if (!no_pin1)
2970 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2971 "8254 timer not connected to IO-APIC\n");
2973 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2974 "(IRQ0) through the 8259A ...\n");
2975 apic_printk(APIC_QUIET, KERN_INFO
2976 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2978 * legacy devices should be connected to IO APIC #0
2980 replace_pin_at_irq_cpu(cfg, cpu, apic1, pin1, apic2, pin2);
2981 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2982 enable_8259A_irq(0);
2983 if (timer_irq_works()) {
2984 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2985 timer_through_8259 = 1;
2986 if (nmi_watchdog == NMI_IO_APIC) {
2987 disable_8259A_irq(0);
2988 setup_nmi();
2989 enable_8259A_irq(0);
2991 goto out;
2994 * Cleanup, just in case ...
2996 local_irq_disable();
2997 disable_8259A_irq(0);
2998 clear_IO_APIC_pin(apic2, pin2);
2999 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
3002 if (nmi_watchdog == NMI_IO_APIC) {
3003 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
3004 "through the IO-APIC - disabling NMI Watchdog!\n");
3005 nmi_watchdog = NMI_NONE;
3007 #ifdef CONFIG_X86_32
3008 timer_ack = 0;
3009 #endif
3011 apic_printk(APIC_QUIET, KERN_INFO
3012 "...trying to set up timer as Virtual Wire IRQ...\n");
3014 lapic_register_intr(0, desc);
3015 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
3016 enable_8259A_irq(0);
3018 if (timer_irq_works()) {
3019 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3020 goto out;
3022 local_irq_disable();
3023 disable_8259A_irq(0);
3024 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3025 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3027 apic_printk(APIC_QUIET, KERN_INFO
3028 "...trying to set up timer as ExtINT IRQ...\n");
3030 init_8259A(0);
3031 make_8259A_irq(0);
3032 apic_write(APIC_LVT0, APIC_DM_EXTINT);
3034 unlock_ExtINT_logic();
3036 if (timer_irq_works()) {
3037 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3038 goto out;
3040 local_irq_disable();
3041 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3042 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
3043 "report. Then try booting with the 'noapic' option.\n");
3044 out:
3045 local_irq_restore(flags);
3049 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3050 * to devices. However there may be an I/O APIC pin available for
3051 * this interrupt regardless. The pin may be left unconnected, but
3052 * typically it will be reused as an ExtINT cascade interrupt for
3053 * the master 8259A. In the MPS case such a pin will normally be
3054 * reported as an ExtINT interrupt in the MP table. With ACPI
3055 * there is no provision for ExtINT interrupts, and in the absence
3056 * of an override it would be treated as an ordinary ISA I/O APIC
3057 * interrupt, that is edge-triggered and unmasked by default. We
3058 * used to do this, but it caused problems on some systems because
3059 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3060 * the same ExtINT cascade interrupt to drive the local APIC of the
3061 * bootstrap processor. Therefore we refrain from routing IRQ2 to
3062 * the I/O APIC in all cases now. No actual device should request
3063 * it anyway. --macro
3065 #define PIC_IRQS (1 << PIC_CASCADE_IR)
3067 void __init setup_IO_APIC(void)
3071 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3074 io_apic_irqs = ~PIC_IRQS;
3076 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3078 * Set up IO-APIC IRQ routing.
3080 #ifdef CONFIG_X86_32
3081 if (!acpi_ioapic)
3082 setup_ioapic_ids_from_mpc();
3083 #endif
3084 sync_Arb_IDs();
3085 setup_IO_APIC_irqs();
3086 init_IO_APIC_traps();
3087 check_timer();
3091 * Called after all the initialization is done. If we didnt find any
3092 * APIC bugs then we can allow the modify fast path
3095 static int __init io_apic_bug_finalize(void)
3097 if (sis_apic_bug == -1)
3098 sis_apic_bug = 0;
3099 return 0;
3102 late_initcall(io_apic_bug_finalize);
3104 struct sysfs_ioapic_data {
3105 struct sys_device dev;
3106 struct IO_APIC_route_entry entry[0];
3108 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3110 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3112 struct IO_APIC_route_entry *entry;
3113 struct sysfs_ioapic_data *data;
3114 int i;
3116 data = container_of(dev, struct sysfs_ioapic_data, dev);
3117 entry = data->entry;
3118 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3119 *entry = ioapic_read_entry(dev->id, i);
3121 return 0;
3124 static int ioapic_resume(struct sys_device *dev)
3126 struct IO_APIC_route_entry *entry;
3127 struct sysfs_ioapic_data *data;
3128 unsigned long flags;
3129 union IO_APIC_reg_00 reg_00;
3130 int i;
3132 data = container_of(dev, struct sysfs_ioapic_data, dev);
3133 entry = data->entry;
3135 spin_lock_irqsave(&ioapic_lock, flags);
3136 reg_00.raw = io_apic_read(dev->id, 0);
3137 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3138 reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3139 io_apic_write(dev->id, 0, reg_00.raw);
3141 spin_unlock_irqrestore(&ioapic_lock, flags);
3142 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3143 ioapic_write_entry(dev->id, i, entry[i]);
3145 return 0;
3148 static struct sysdev_class ioapic_sysdev_class = {
3149 .name = "ioapic",
3150 .suspend = ioapic_suspend,
3151 .resume = ioapic_resume,
3154 static int __init ioapic_init_sysfs(void)
3156 struct sys_device * dev;
3157 int i, size, error;
3159 error = sysdev_class_register(&ioapic_sysdev_class);
3160 if (error)
3161 return error;
3163 for (i = 0; i < nr_ioapics; i++ ) {
3164 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3165 * sizeof(struct IO_APIC_route_entry);
3166 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3167 if (!mp_ioapic_data[i]) {
3168 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3169 continue;
3171 dev = &mp_ioapic_data[i]->dev;
3172 dev->id = i;
3173 dev->cls = &ioapic_sysdev_class;
3174 error = sysdev_register(dev);
3175 if (error) {
3176 kfree(mp_ioapic_data[i]);
3177 mp_ioapic_data[i] = NULL;
3178 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3179 continue;
3183 return 0;
3186 device_initcall(ioapic_init_sysfs);
3188 static int nr_irqs_gsi = NR_IRQS_LEGACY;
3190 * Dynamic irq allocate and deallocation
3192 unsigned int create_irq_nr(unsigned int irq_want)
3194 /* Allocate an unused irq */
3195 unsigned int irq;
3196 unsigned int new;
3197 unsigned long flags;
3198 struct irq_cfg *cfg_new = NULL;
3199 int cpu = boot_cpu_id;
3200 struct irq_desc *desc_new = NULL;
3202 irq = 0;
3203 if (irq_want < nr_irqs_gsi)
3204 irq_want = nr_irqs_gsi;
3206 spin_lock_irqsave(&vector_lock, flags);
3207 for (new = irq_want; new < nr_irqs; new++) {
3208 desc_new = irq_to_desc_alloc_cpu(new, cpu);
3209 if (!desc_new) {
3210 printk(KERN_INFO "can not get irq_desc for %d\n", new);
3211 continue;
3213 cfg_new = desc_new->chip_data;
3215 if (cfg_new->vector != 0)
3216 continue;
3217 if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3218 irq = new;
3219 break;
3221 spin_unlock_irqrestore(&vector_lock, flags);
3223 if (irq > 0) {
3224 dynamic_irq_init(irq);
3225 /* restore it, in case dynamic_irq_init clear it */
3226 if (desc_new)
3227 desc_new->chip_data = cfg_new;
3229 return irq;
3232 int create_irq(void)
3234 unsigned int irq_want;
3235 int irq;
3237 irq_want = nr_irqs_gsi;
3238 irq = create_irq_nr(irq_want);
3240 if (irq == 0)
3241 irq = -1;
3243 return irq;
3246 void destroy_irq(unsigned int irq)
3248 unsigned long flags;
3249 struct irq_cfg *cfg;
3250 struct irq_desc *desc;
3252 /* store it, in case dynamic_irq_cleanup clear it */
3253 desc = irq_to_desc(irq);
3254 cfg = desc->chip_data;
3255 dynamic_irq_cleanup(irq);
3256 /* connect back irq_cfg */
3257 if (desc)
3258 desc->chip_data = cfg;
3260 free_irte(irq);
3261 spin_lock_irqsave(&vector_lock, flags);
3262 __clear_irq_vector(irq, cfg);
3263 spin_unlock_irqrestore(&vector_lock, flags);
3267 * MSI message composition
3269 #ifdef CONFIG_PCI_MSI
3270 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3272 struct irq_cfg *cfg;
3273 int err;
3274 unsigned dest;
3276 if (disable_apic)
3277 return -ENXIO;
3279 cfg = irq_cfg(irq);
3280 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3281 if (err)
3282 return err;
3284 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3286 if (irq_remapped(irq)) {
3287 struct irte irte;
3288 int ir_index;
3289 u16 sub_handle;
3291 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3292 BUG_ON(ir_index == -1);
3294 memset (&irte, 0, sizeof(irte));
3296 irte.present = 1;
3297 irte.dst_mode = apic->irq_dest_mode;
3298 irte.trigger_mode = 0; /* edge */
3299 irte.dlvry_mode = apic->irq_delivery_mode;
3300 irte.vector = cfg->vector;
3301 irte.dest_id = IRTE_DEST(dest);
3303 modify_irte(irq, &irte);
3305 msg->address_hi = MSI_ADDR_BASE_HI;
3306 msg->data = sub_handle;
3307 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3308 MSI_ADDR_IR_SHV |
3309 MSI_ADDR_IR_INDEX1(ir_index) |
3310 MSI_ADDR_IR_INDEX2(ir_index);
3311 } else {
3312 if (x2apic_enabled())
3313 msg->address_hi = MSI_ADDR_BASE_HI |
3314 MSI_ADDR_EXT_DEST_ID(dest);
3315 else
3316 msg->address_hi = MSI_ADDR_BASE_HI;
3318 msg->address_lo =
3319 MSI_ADDR_BASE_LO |
3320 ((apic->irq_dest_mode == 0) ?
3321 MSI_ADDR_DEST_MODE_PHYSICAL:
3322 MSI_ADDR_DEST_MODE_LOGICAL) |
3323 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3324 MSI_ADDR_REDIRECTION_CPU:
3325 MSI_ADDR_REDIRECTION_LOWPRI) |
3326 MSI_ADDR_DEST_ID(dest);
3328 msg->data =
3329 MSI_DATA_TRIGGER_EDGE |
3330 MSI_DATA_LEVEL_ASSERT |
3331 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3332 MSI_DATA_DELIVERY_FIXED:
3333 MSI_DATA_DELIVERY_LOWPRI) |
3334 MSI_DATA_VECTOR(cfg->vector);
3336 return err;
3339 #ifdef CONFIG_SMP
3340 static void set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3342 struct irq_desc *desc = irq_to_desc(irq);
3343 struct irq_cfg *cfg;
3344 struct msi_msg msg;
3345 unsigned int dest;
3347 dest = set_desc_affinity(desc, mask);
3348 if (dest == BAD_APICID)
3349 return;
3351 cfg = desc->chip_data;
3353 read_msi_msg_desc(desc, &msg);
3355 msg.data &= ~MSI_DATA_VECTOR_MASK;
3356 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3357 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3358 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3360 write_msi_msg_desc(desc, &msg);
3362 #ifdef CONFIG_INTR_REMAP
3364 * Migrate the MSI irq to another cpumask. This migration is
3365 * done in the process context using interrupt-remapping hardware.
3367 static void
3368 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3370 struct irq_desc *desc = irq_to_desc(irq);
3371 struct irq_cfg *cfg = desc->chip_data;
3372 unsigned int dest;
3373 struct irte irte;
3375 if (get_irte(irq, &irte))
3376 return;
3378 dest = set_desc_affinity(desc, mask);
3379 if (dest == BAD_APICID)
3380 return;
3382 irte.vector = cfg->vector;
3383 irte.dest_id = IRTE_DEST(dest);
3386 * atomically update the IRTE with the new destination and vector.
3388 modify_irte(irq, &irte);
3391 * After this point, all the interrupts will start arriving
3392 * at the new destination. So, time to cleanup the previous
3393 * vector allocation.
3395 if (cfg->move_in_progress)
3396 send_cleanup_vector(cfg);
3399 #endif
3400 #endif /* CONFIG_SMP */
3403 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3404 * which implement the MSI or MSI-X Capability Structure.
3406 static struct irq_chip msi_chip = {
3407 .name = "PCI-MSI",
3408 .unmask = unmask_msi_irq,
3409 .mask = mask_msi_irq,
3410 .ack = ack_apic_edge,
3411 #ifdef CONFIG_SMP
3412 .set_affinity = set_msi_irq_affinity,
3413 #endif
3414 .retrigger = ioapic_retrigger_irq,
3417 static struct irq_chip msi_ir_chip = {
3418 .name = "IR-PCI-MSI",
3419 .unmask = unmask_msi_irq,
3420 .mask = mask_msi_irq,
3421 #ifdef CONFIG_INTR_REMAP
3422 .ack = ir_ack_apic_edge,
3423 #ifdef CONFIG_SMP
3424 .set_affinity = ir_set_msi_irq_affinity,
3425 #endif
3426 #endif
3427 .retrigger = ioapic_retrigger_irq,
3431 * Map the PCI dev to the corresponding remapping hardware unit
3432 * and allocate 'nvec' consecutive interrupt-remapping table entries
3433 * in it.
3435 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3437 struct intel_iommu *iommu;
3438 int index;
3440 iommu = map_dev_to_ir(dev);
3441 if (!iommu) {
3442 printk(KERN_ERR
3443 "Unable to map PCI %s to iommu\n", pci_name(dev));
3444 return -ENOENT;
3447 index = alloc_irte(iommu, irq, nvec);
3448 if (index < 0) {
3449 printk(KERN_ERR
3450 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3451 pci_name(dev));
3452 return -ENOSPC;
3454 return index;
3457 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3459 int ret;
3460 struct msi_msg msg;
3462 ret = msi_compose_msg(dev, irq, &msg);
3463 if (ret < 0)
3464 return ret;
3466 set_irq_msi(irq, msidesc);
3467 write_msi_msg(irq, &msg);
3469 if (irq_remapped(irq)) {
3470 struct irq_desc *desc = irq_to_desc(irq);
3472 * irq migration in process context
3474 desc->status |= IRQ_MOVE_PCNTXT;
3475 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3476 } else
3477 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3479 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3481 return 0;
3484 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3486 unsigned int irq;
3487 int ret, sub_handle;
3488 struct msi_desc *msidesc;
3489 unsigned int irq_want;
3490 struct intel_iommu *iommu = NULL;
3491 int index = 0;
3493 /* x86 doesn't support multiple MSI yet */
3494 if (type == PCI_CAP_ID_MSI && nvec > 1)
3495 return 1;
3497 irq_want = nr_irqs_gsi;
3498 sub_handle = 0;
3499 list_for_each_entry(msidesc, &dev->msi_list, list) {
3500 irq = create_irq_nr(irq_want);
3501 if (irq == 0)
3502 return -1;
3503 irq_want = irq + 1;
3504 if (!intr_remapping_enabled)
3505 goto no_ir;
3507 if (!sub_handle) {
3509 * allocate the consecutive block of IRTE's
3510 * for 'nvec'
3512 index = msi_alloc_irte(dev, irq, nvec);
3513 if (index < 0) {
3514 ret = index;
3515 goto error;
3517 } else {
3518 iommu = map_dev_to_ir(dev);
3519 if (!iommu) {
3520 ret = -ENOENT;
3521 goto error;
3524 * setup the mapping between the irq and the IRTE
3525 * base index, the sub_handle pointing to the
3526 * appropriate interrupt remap table entry.
3528 set_irte_irq(irq, iommu, index, sub_handle);
3530 no_ir:
3531 ret = setup_msi_irq(dev, msidesc, irq);
3532 if (ret < 0)
3533 goto error;
3534 sub_handle++;
3536 return 0;
3538 error:
3539 destroy_irq(irq);
3540 return ret;
3543 void arch_teardown_msi_irq(unsigned int irq)
3545 destroy_irq(irq);
3548 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3549 #ifdef CONFIG_SMP
3550 static void dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3552 struct irq_desc *desc = irq_to_desc(irq);
3553 struct irq_cfg *cfg;
3554 struct msi_msg msg;
3555 unsigned int dest;
3557 dest = set_desc_affinity(desc, mask);
3558 if (dest == BAD_APICID)
3559 return;
3561 cfg = desc->chip_data;
3563 dmar_msi_read(irq, &msg);
3565 msg.data &= ~MSI_DATA_VECTOR_MASK;
3566 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3567 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3568 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3570 dmar_msi_write(irq, &msg);
3573 #endif /* CONFIG_SMP */
3575 struct irq_chip dmar_msi_type = {
3576 .name = "DMAR_MSI",
3577 .unmask = dmar_msi_unmask,
3578 .mask = dmar_msi_mask,
3579 .ack = ack_apic_edge,
3580 #ifdef CONFIG_SMP
3581 .set_affinity = dmar_msi_set_affinity,
3582 #endif
3583 .retrigger = ioapic_retrigger_irq,
3586 int arch_setup_dmar_msi(unsigned int irq)
3588 int ret;
3589 struct msi_msg msg;
3591 ret = msi_compose_msg(NULL, irq, &msg);
3592 if (ret < 0)
3593 return ret;
3594 dmar_msi_write(irq, &msg);
3595 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3596 "edge");
3597 return 0;
3599 #endif
3601 #ifdef CONFIG_HPET_TIMER
3603 #ifdef CONFIG_SMP
3604 static void hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3606 struct irq_desc *desc = irq_to_desc(irq);
3607 struct irq_cfg *cfg;
3608 struct msi_msg msg;
3609 unsigned int dest;
3611 dest = set_desc_affinity(desc, mask);
3612 if (dest == BAD_APICID)
3613 return;
3615 cfg = desc->chip_data;
3617 hpet_msi_read(irq, &msg);
3619 msg.data &= ~MSI_DATA_VECTOR_MASK;
3620 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3621 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3622 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3624 hpet_msi_write(irq, &msg);
3627 #endif /* CONFIG_SMP */
3629 static struct irq_chip hpet_msi_type = {
3630 .name = "HPET_MSI",
3631 .unmask = hpet_msi_unmask,
3632 .mask = hpet_msi_mask,
3633 .ack = ack_apic_edge,
3634 #ifdef CONFIG_SMP
3635 .set_affinity = hpet_msi_set_affinity,
3636 #endif
3637 .retrigger = ioapic_retrigger_irq,
3640 int arch_setup_hpet_msi(unsigned int irq)
3642 int ret;
3643 struct msi_msg msg;
3645 ret = msi_compose_msg(NULL, irq, &msg);
3646 if (ret < 0)
3647 return ret;
3649 hpet_msi_write(irq, &msg);
3650 set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3651 "edge");
3653 return 0;
3655 #endif
3657 #endif /* CONFIG_PCI_MSI */
3659 * Hypertransport interrupt support
3661 #ifdef CONFIG_HT_IRQ
3663 #ifdef CONFIG_SMP
3665 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3667 struct ht_irq_msg msg;
3668 fetch_ht_irq_msg(irq, &msg);
3670 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3671 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3673 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3674 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3676 write_ht_irq_msg(irq, &msg);
3679 static void set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3681 struct irq_desc *desc = irq_to_desc(irq);
3682 struct irq_cfg *cfg;
3683 unsigned int dest;
3685 dest = set_desc_affinity(desc, mask);
3686 if (dest == BAD_APICID)
3687 return;
3689 cfg = desc->chip_data;
3691 target_ht_irq(irq, dest, cfg->vector);
3694 #endif
3696 static struct irq_chip ht_irq_chip = {
3697 .name = "PCI-HT",
3698 .mask = mask_ht_irq,
3699 .unmask = unmask_ht_irq,
3700 .ack = ack_apic_edge,
3701 #ifdef CONFIG_SMP
3702 .set_affinity = set_ht_irq_affinity,
3703 #endif
3704 .retrigger = ioapic_retrigger_irq,
3707 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3709 struct irq_cfg *cfg;
3710 int err;
3712 if (disable_apic)
3713 return -ENXIO;
3715 cfg = irq_cfg(irq);
3716 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3717 if (!err) {
3718 struct ht_irq_msg msg;
3719 unsigned dest;
3721 dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3722 apic->target_cpus());
3724 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3726 msg.address_lo =
3727 HT_IRQ_LOW_BASE |
3728 HT_IRQ_LOW_DEST_ID(dest) |
3729 HT_IRQ_LOW_VECTOR(cfg->vector) |
3730 ((apic->irq_dest_mode == 0) ?
3731 HT_IRQ_LOW_DM_PHYSICAL :
3732 HT_IRQ_LOW_DM_LOGICAL) |
3733 HT_IRQ_LOW_RQEOI_EDGE |
3734 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3735 HT_IRQ_LOW_MT_FIXED :
3736 HT_IRQ_LOW_MT_ARBITRATED) |
3737 HT_IRQ_LOW_IRQ_MASKED;
3739 write_ht_irq_msg(irq, &msg);
3741 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3742 handle_edge_irq, "edge");
3744 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3746 return err;
3748 #endif /* CONFIG_HT_IRQ */
3750 #ifdef CONFIG_X86_UV
3752 * Re-target the irq to the specified CPU and enable the specified MMR located
3753 * on the specified blade to allow the sending of MSIs to the specified CPU.
3755 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3756 unsigned long mmr_offset)
3758 const struct cpumask *eligible_cpu = cpumask_of(cpu);
3759 struct irq_cfg *cfg;
3760 int mmr_pnode;
3761 unsigned long mmr_value;
3762 struct uv_IO_APIC_route_entry *entry;
3763 unsigned long flags;
3764 int err;
3766 cfg = irq_cfg(irq);
3768 err = assign_irq_vector(irq, cfg, eligible_cpu);
3769 if (err != 0)
3770 return err;
3772 spin_lock_irqsave(&vector_lock, flags);
3773 set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3774 irq_name);
3775 spin_unlock_irqrestore(&vector_lock, flags);
3777 mmr_value = 0;
3778 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3779 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3781 entry->vector = cfg->vector;
3782 entry->delivery_mode = apic->irq_delivery_mode;
3783 entry->dest_mode = apic->irq_dest_mode;
3784 entry->polarity = 0;
3785 entry->trigger = 0;
3786 entry->mask = 0;
3787 entry->dest = apic->cpu_mask_to_apicid(eligible_cpu);
3789 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3790 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3792 return irq;
3796 * Disable the specified MMR located on the specified blade so that MSIs are
3797 * longer allowed to be sent.
3799 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3801 unsigned long mmr_value;
3802 struct uv_IO_APIC_route_entry *entry;
3803 int mmr_pnode;
3805 mmr_value = 0;
3806 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3807 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3809 entry->mask = 1;
3811 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3812 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3814 #endif /* CONFIG_X86_64 */
3816 int __init io_apic_get_redir_entries (int ioapic)
3818 union IO_APIC_reg_01 reg_01;
3819 unsigned long flags;
3821 spin_lock_irqsave(&ioapic_lock, flags);
3822 reg_01.raw = io_apic_read(ioapic, 1);
3823 spin_unlock_irqrestore(&ioapic_lock, flags);
3825 return reg_01.bits.entries;
3828 void __init probe_nr_irqs_gsi(void)
3830 int nr = 0;
3832 nr = acpi_probe_gsi();
3833 if (nr > nr_irqs_gsi) {
3834 nr_irqs_gsi = nr;
3835 } else {
3836 /* for acpi=off or acpi is not compiled in */
3837 int idx;
3839 nr = 0;
3840 for (idx = 0; idx < nr_ioapics; idx++)
3841 nr += io_apic_get_redir_entries(idx) + 1;
3843 if (nr > nr_irqs_gsi)
3844 nr_irqs_gsi = nr;
3847 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3850 #ifdef CONFIG_SPARSE_IRQ
3851 int __init arch_probe_nr_irqs(void)
3853 int nr;
3855 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3856 nr_irqs = NR_VECTORS * nr_cpu_ids;
3858 nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3859 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3861 * for MSI and HT dyn irq
3863 nr += nr_irqs_gsi * 16;
3864 #endif
3865 if (nr < nr_irqs)
3866 nr_irqs = nr;
3868 return 0;
3870 #endif
3872 /* --------------------------------------------------------------------------
3873 ACPI-based IOAPIC Configuration
3874 -------------------------------------------------------------------------- */
3876 #ifdef CONFIG_ACPI
3878 #ifdef CONFIG_X86_32
3879 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3881 union IO_APIC_reg_00 reg_00;
3882 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3883 physid_mask_t tmp;
3884 unsigned long flags;
3885 int i = 0;
3888 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3889 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3890 * supports up to 16 on one shared APIC bus.
3892 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3893 * advantage of new APIC bus architecture.
3896 if (physids_empty(apic_id_map))
3897 apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
3899 spin_lock_irqsave(&ioapic_lock, flags);
3900 reg_00.raw = io_apic_read(ioapic, 0);
3901 spin_unlock_irqrestore(&ioapic_lock, flags);
3903 if (apic_id >= get_physical_broadcast()) {
3904 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3905 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3906 apic_id = reg_00.bits.ID;
3910 * Every APIC in a system must have a unique ID or we get lots of nice
3911 * 'stuck on smp_invalidate_needed IPI wait' messages.
3913 if (apic->check_apicid_used(apic_id_map, apic_id)) {
3915 for (i = 0; i < get_physical_broadcast(); i++) {
3916 if (!apic->check_apicid_used(apic_id_map, i))
3917 break;
3920 if (i == get_physical_broadcast())
3921 panic("Max apic_id exceeded!\n");
3923 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3924 "trying %d\n", ioapic, apic_id, i);
3926 apic_id = i;
3929 tmp = apic->apicid_to_cpu_present(apic_id);
3930 physids_or(apic_id_map, apic_id_map, tmp);
3932 if (reg_00.bits.ID != apic_id) {
3933 reg_00.bits.ID = apic_id;
3935 spin_lock_irqsave(&ioapic_lock, flags);
3936 io_apic_write(ioapic, 0, reg_00.raw);
3937 reg_00.raw = io_apic_read(ioapic, 0);
3938 spin_unlock_irqrestore(&ioapic_lock, flags);
3940 /* Sanity check */
3941 if (reg_00.bits.ID != apic_id) {
3942 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3943 return -1;
3947 apic_printk(APIC_VERBOSE, KERN_INFO
3948 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3950 return apic_id;
3953 int __init io_apic_get_version(int ioapic)
3955 union IO_APIC_reg_01 reg_01;
3956 unsigned long flags;
3958 spin_lock_irqsave(&ioapic_lock, flags);
3959 reg_01.raw = io_apic_read(ioapic, 1);
3960 spin_unlock_irqrestore(&ioapic_lock, flags);
3962 return reg_01.bits.version;
3964 #endif
3966 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3968 struct irq_desc *desc;
3969 struct irq_cfg *cfg;
3970 int cpu = boot_cpu_id;
3972 if (!IO_APIC_IRQ(irq)) {
3973 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3974 ioapic);
3975 return -EINVAL;
3978 desc = irq_to_desc_alloc_cpu(irq, cpu);
3979 if (!desc) {
3980 printk(KERN_INFO "can not get irq_desc %d\n", irq);
3981 return 0;
3985 * IRQs < 16 are already in the irq_2_pin[] map
3987 if (irq >= NR_IRQS_LEGACY) {
3988 cfg = desc->chip_data;
3989 add_pin_to_irq_cpu(cfg, cpu, ioapic, pin);
3992 setup_IO_APIC_irq(ioapic, pin, irq, desc, triggering, polarity);
3994 return 0;
3998 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
4000 int i;
4002 if (skip_ioapic_setup)
4003 return -1;
4005 for (i = 0; i < mp_irq_entries; i++)
4006 if (mp_irqs[i].irqtype == mp_INT &&
4007 mp_irqs[i].srcbusirq == bus_irq)
4008 break;
4009 if (i >= mp_irq_entries)
4010 return -1;
4012 *trigger = irq_trigger(i);
4013 *polarity = irq_polarity(i);
4014 return 0;
4017 #endif /* CONFIG_ACPI */
4020 * This function currently is only a helper for the i386 smp boot process where
4021 * we need to reprogram the ioredtbls to cater for the cpus which have come online
4022 * so mask in all cases should simply be apic->target_cpus()
4024 #ifdef CONFIG_SMP
4025 void __init setup_ioapic_dest(void)
4027 int pin, ioapic, irq, irq_entry;
4028 struct irq_desc *desc;
4029 struct irq_cfg *cfg;
4030 const struct cpumask *mask;
4032 if (skip_ioapic_setup == 1)
4033 return;
4035 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
4036 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4037 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4038 if (irq_entry == -1)
4039 continue;
4040 irq = pin_2_irq(irq_entry, ioapic, pin);
4042 /* setup_IO_APIC_irqs could fail to get vector for some device
4043 * when you have too many devices, because at that time only boot
4044 * cpu is online.
4046 desc = irq_to_desc(irq);
4047 cfg = desc->chip_data;
4048 if (!cfg->vector) {
4049 setup_IO_APIC_irq(ioapic, pin, irq, desc,
4050 irq_trigger(irq_entry),
4051 irq_polarity(irq_entry));
4052 continue;
4057 * Honour affinities which have been set in early boot
4059 if (desc->status &
4060 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4061 mask = desc->affinity;
4062 else
4063 mask = apic->target_cpus();
4065 if (intr_remapping_enabled)
4066 set_ir_ioapic_affinity_irq_desc(desc, mask);
4067 else
4068 set_ioapic_affinity_irq_desc(desc, mask);
4073 #endif
4075 #define IOAPIC_RESOURCE_NAME_SIZE 11
4077 static struct resource *ioapic_resources;
4079 static struct resource * __init ioapic_setup_resources(void)
4081 unsigned long n;
4082 struct resource *res;
4083 char *mem;
4084 int i;
4086 if (nr_ioapics <= 0)
4087 return NULL;
4089 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4090 n *= nr_ioapics;
4092 mem = alloc_bootmem(n);
4093 res = (void *)mem;
4095 if (mem != NULL) {
4096 mem += sizeof(struct resource) * nr_ioapics;
4098 for (i = 0; i < nr_ioapics; i++) {
4099 res[i].name = mem;
4100 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4101 sprintf(mem, "IOAPIC %u", i);
4102 mem += IOAPIC_RESOURCE_NAME_SIZE;
4106 ioapic_resources = res;
4108 return res;
4111 void __init ioapic_init_mappings(void)
4113 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4114 struct resource *ioapic_res;
4115 int i;
4117 ioapic_res = ioapic_setup_resources();
4118 for (i = 0; i < nr_ioapics; i++) {
4119 if (smp_found_config) {
4120 ioapic_phys = mp_ioapics[i].apicaddr;
4121 #ifdef CONFIG_X86_32
4122 if (!ioapic_phys) {
4123 printk(KERN_ERR
4124 "WARNING: bogus zero IO-APIC "
4125 "address found in MPTABLE, "
4126 "disabling IO/APIC support!\n");
4127 smp_found_config = 0;
4128 skip_ioapic_setup = 1;
4129 goto fake_ioapic_page;
4131 #endif
4132 } else {
4133 #ifdef CONFIG_X86_32
4134 fake_ioapic_page:
4135 #endif
4136 ioapic_phys = (unsigned long)
4137 alloc_bootmem_pages(PAGE_SIZE);
4138 ioapic_phys = __pa(ioapic_phys);
4140 set_fixmap_nocache(idx, ioapic_phys);
4141 apic_printk(APIC_VERBOSE,
4142 "mapped IOAPIC to %08lx (%08lx)\n",
4143 __fix_to_virt(idx), ioapic_phys);
4144 idx++;
4146 if (ioapic_res != NULL) {
4147 ioapic_res->start = ioapic_phys;
4148 ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4149 ioapic_res++;
4154 static int __init ioapic_insert_resources(void)
4156 int i;
4157 struct resource *r = ioapic_resources;
4159 if (!r) {
4160 if (nr_ioapics > 0) {
4161 printk(KERN_ERR
4162 "IO APIC resources couldn't be allocated.\n");
4163 return -1;
4165 return 0;
4168 for (i = 0; i < nr_ioapics; i++) {
4169 insert_resource(&iomem_resource, r);
4170 r++;
4173 return 0;
4176 /* Insert the IO APIC resources after PCI initialization has occured to handle
4177 * IO APICS that are mapped in on a BAR in PCI space. */
4178 late_initcall(ioapic_insert_resources);